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Abstract� The classical in�nite loopspace machines in fact induce an equivalence of
categories between a localization of the category of symmetric monoidal categories and
the stable homotopy category of 	�	connective spectra�

Introduction

Since the early seventies it has been known that the classifying spaces of small symmetric
monoidal categories are in�nite loop spaces� the zeroth space in a spectrum� a sequence
of spaces Xi� i � � with given homotopy equivalences to the loops on the succeeding
space Xi

�
�� �Xi��� Indeed� many of the classical examples of in�nite loop spaces

were found as such classifying spaces � e�g� �Ma��� �Se�	� These in�nite loop spaces and
spectra are of great interest to topologists� The homotopy category formed by inverting
the weak equivalences of spectra is the stable homotopy category� much better behaved
than but still closely related to the usual homotopy category of spaces �e�g�� �Ad� III 	�
One has in fact classically a functor Spt from the category of small symmetric mo


noidal categories to the category of 
�
connective spectra� those spectra Xi for which
�kXi � � when k � i ��Ma��� �Se�� �Th��	� Moreover� any two such functors satisfying
the condition that the zeroth space of Spt�S	 is the group completion� of the classifying
space BS are naturally homotopy equivalent ��Ma��� �Th��	�
The aim of this article is to prove the new result �Thm� ���	 that in fact Spt induces

an equivalence of categories between the stable homotopy category of ��
connective
spectra and the localization of the category of small symmetric monoidal categories by
inverting those morphisms that Spt sends to weak homotopy equivalences� In particular�
each ��
connective spectrum is weak equivalent to Spt�S	 for some symmetric monoidal
category S�
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Thus the category of symmetric monoidal categories provides an alternate model
for the ��
connective stable homotopy category� one which looks rather di�erent from
the classical model category of spectra� It is really coordinate
free� in that there are
no suspension coordinates at all� in contrast to May�s coordinate
free spectra ��Ma��
II	 which use all �nite subspaces of an in�nite vector space as coordinates� and thus
are just free of choices of coordinates� The category of E�
spaces� spaces with an
action of an E� operad ��Ma��	� is similarly a model for 
 
�
connective spectra which
is really coordinate free� But a symmetric monoidal category structure is much more
rigid than a general E�
space structure� and as a consequence can be speci�ed and
manipulated much more readily� As convincing evidence for this claim� I refer to my
talk at the Colloque en l�honneur de Michel Zisman at l�Universit�e Paris VII in June
����� There I used this alternate model of stable homotopy to give the �rst known
construction of a smash product which is associative and commutative up to coherent
natural isomorphism in the model category� This will be the subject of an article to
appear�

The proof that the functor Spt induces an equivalence between a localization of
the category of symmetric monoidal categories and the ��
connective stable homotopy
category begins by constructing an inverse functor� The construction is made in several
steps� First� there are known equivalences of homotopy categories induced by functors
between the category of ��
connective spectra and the category of E�
spaces� Thus
one reduces to �nding an appropriate functor to the category of symmetric monoidal
categories from that of E�
spaces� Any space X is weak homotopy equivalent to the
classifying space of the category Null�X of weakly contractible spaces over X� When
X is an E�
space the operad action on X induces operations on this category� For
example� for each integer n � � there is an n
ary functor sending the objects C� �
X�C� � X� � � � � Cn � X to E�n	�C��C��� � ��Cn �� E�n	�

Qn
X �� X� where the

last arrow E�n	�
Qn

X �� X is given by the operad action� The internal composition
functions of the operad induce certain natural transformations between composites of
these operations on Null�X� Using Kelly�s theory of clubs ��Ke��� �Ke��	 one �nds
that Null�X has been given the structure of a lax algebra for the club � of symmetric
monoidal categories� The next step is to replace this lax symmetric monoidal category
by a symmetric monoidal one� There is a Godement resolution of a lax algebra by free lax
algebras� yielding a simplicial lax algebra� By coherence theory� the latter is degree
wise
stably homotopy equivalent to a simplicial free symmetric monoidal category� Taking a
sort of homotopy colimit of the last simplicial object ��Th��	 yields the desired symmetric
monoidal category�

The layout of the article is as follows� The �rst section is a review� starting with the
de�nitions of non
unital symmetric monoidal categories� and of lax� strong and strict
symmetric monoidal functors� I recall in ��� the basic properties of the classical functor
from symmetric monoidal categories to spectra� Next in ��� comes a review of the
de�nitions of op
lax functors into a �
category and left op
lax natural transformations
between such� The homotopy colimit� or op
lax colimit� of a diagram of symmetric
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monoidal functors is recalled in ���� and its good homotopy theoretic properties stated�
The �rst section closes with a proof in ��� that all the variant categories of symmetric
monoidal categories considered have equivalent homotopy categories� Section � begins
with a review of lax algebras over a doctrine� A Godement type simplicial resolution
of lax algebras by free lax algebras in given in ���� This resolution is shown to be left
op
lax natural with respect to lax morphisms of lax algebras� In ��� I consider the
special case of lax symmetric monoidal categories� The functor to Spectra is extended
to these in ���� In ��� I use the Godement resolution and the homotopy colimit to show
how to replace a lax symmetric monoidal category by a symmetric monoidal category�
Section � reviews the notion of an E�
space and the equivalence of homotopy categories
between E�
spaces and Spectra� Section � contains the construction of a lax symmetric
monoidal category associated to an E�
space� Finally Section � �nishes the proof by
showing various round
trip functors made by joining the above pieces are linked to the
identity by a chain of stable homotopy equivalences�

� Symmetric monoidal categories and homotopy colimits

I will need to use the homotopy colimit� of diagrams of symmetric monoidal categories�
The based version of the homotopy colimit does not have good homotopy behavior
except under stringent non
degenerate basepoint conditions�� essentially one would
have to ask that the symmetric monoidal unit have no non
identity automorphisms and
that every morphism to or from the unit be an isomorphism� Such a symmetric monoidal
category is equivalent to the disjoint union of � with a possibly non
unital symmetric
monoidal category� and �nally all homotopy colimit results are easier to state if one
works with variant categories of non
unital symmetric monoidal categories from the
beginning� Thus�

��� Definition� By unital symmetric monoidal category� I mean a symmetric monoidal
category in the classic sense� a category S provided with an object � and a functor
��S �S � S� together with natural isomorphisms of associativity� commutativity� and
unitaricity for which certain simple diagrams are to commute� For the details see for
example �McL� VII x�� x��

��� Definition� A symmetric monoidal category is a category S together with a functor
��S � S � S and natural isomorphisms�

������	
��A� �B � C	

�
�� �A �B	 �C

��A�B
�
�� B �A

which are such that the following two pentagon and hexagon diagrams commute�
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������	

A � �B � �C �D			 ���

��
���

�A �B	 � �C �D	 ���
��A �B	 �C	�D

A� ��B � C	�D	 ��
�

�A � �B � C		�D

OO

���

������	

A � �B � C	 ���

��
���

�A �B	 �C ���
C � �A �B	

��
�

A � �C �B	 ��
� �A � C	�B ��

���
�C �A	 �B

The usual results of coherence theory that every diagram commutes� continue to
hold for these non
unital symmetric monoidal categories� indeed the precise statements
and the demonstrations become easier without the additional structure of the unitaricity
natural isomorphisms ��Ep�� �Ke�� ���	�
To compare with the existing literature it will be useful to recall ��Ma�� ��� and

�McLa� VII x�	 that a permutative category is a unital symmetric monoidal category
where the natural associativity isomorphism � is the identity� It follows from coherence
theory that every unital symmetric monoidal category is equivalent to a permutative
category� Indeed the equivalence is realized by strong unital symmetric monoidal func

tors and unital symmetric monoidal natural isomorphisms� See �Ma�� ��� or �Ke�� ����
����� ����
As to morphisms between symmetric monoidal categories� one needs to consider

three kinds� the lax� the strong� and the strict symmetric monoidal functors� The usual
de�nitions adapt to the the non
unital case easily�

��� Definition� For S and T symmetric monoidal categories� a lax symmetric mo�
noidal functor from S to T consists of a functor F �S � T together with a natural
transformation of functors from S � S�

f �FA � FB � F �A �B	

such that the following two diagrams commute�

������	

FA � �FB � FC	 ����f

��
�

FA� F �B � C	 ��f
F �A� �B � C		

��
F�

�FA � FB	� FC ��
f��

F �A �B	 � FC ��
f

F ��A �B	 � C	
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������	

FA� FB ��f

��
�

F �A�B	

��
F�

FB � FA ��
f

F �B �A	

One will often abusively denote the lax symmetric monoidal functor �F� f	 as simply
F � censoring the expression of the natural transformation f �
A strong symmetric monoidal functor is a lax symmetric monoidal functor such that

the natural transformation f is in fact a natural isomorphism�
A strict symmetric monoidal functor is a strong symmetric monoidal functor such

that the natural transformation f is the identity� Thus F strictly preserves the operation
� and the natural isomorphisms � and ��

The usual de�nition of a lax� strong� or strict unital symmetric monoidal functor
between unital symmetric monoidal categories imposes the additional structure of a
morphism �� F� �respectively� an isomorphism� an identity	 subject to a commutative
diagram involving the unitaricity isomorphisms� See e�g� �Th�� ����	�

��� Definition� A symmetric monoidal natural transformation ��F � G between two
lax symmetric monoidal functors �F� f	� �G� g	�S � T is a natural transformation �
such that the following diagram commutes�

������	

FA� FB ��f

��
���

F �A �B	

��
�

GA�GB ��
g

G�A �B	

A symmetric monoidal natural transformation between two strict or two strong sym

metric monoidal functors is a symmetric monoidal natural transformation between the
underlying lax symmetric monoidal functors�

Note that such an � is automatically compatible with the associativity and commu

tativity isomorphisms � and � by naturality of �� �� and �� On the other hand� the de�

nition of a unital symmetric monoidal natural transformation between unital symmetric
monoidal functors imposes a new compatibility with the unitaricity isomorphisms� as
in e�g� �Th�� ����	� �Thus a symmetric monoidal natural transformation between two
unital symmetrical monoidal functors need not be a unital symmetric monoidal natural
transformation�	

���� Catalog of variant �
categories of symmetric monoidal categories�
In order to model spectra� I want to consider only small symmetric monoidal cate


gories� those for which the class of all morphisms is in fact a set� In order to be able
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to localize categories of such� I suppose Grothendieck�s axiom of universes ��SGA�� I
Appendice	� This axiom is that each set is contained in a set U the elements of which
form a model of set
theory such that the internal power sets in the model U are the true
power sets� For each such universe U � one has several categories of U
small symmetric
monoidal categories� A category is U
small if the class of all its morphisms is an element
of U � The class of objects is then also an element of U � Any of the variant categories
of U
small categories below will then itself be V 
small for any universe containing U as
an element� The localization of any of the variants by inverting any set of morphisms
is then W 
small for any universe W containing V �
The variants� di�ering in unitaricity and in degree of laxity of morphisms� are�

SymMon�
Objects� U
small symmetric monoidal categories
Morphisms� lax symmetric monoidal functors
�
cells� symmetric monoidal natural transformations

SymMonStrong�
Objects� U
small symmetric monoidal categories
Morphisms� strong symmetric monoidal functors
�
cells� symmetric monoidal natural transformations

SymMonStrict�
Objects� U
small symmetric monoidal categories
Morphisms� strict symmetric monoidal functors
�
cells� symmetric monoidal natural transformations

UniSymMon�
Objects� U
small unital symmetric monoidal categories
Morphisms� lax unital symmetric monoidal functors
�
cells� unital symmetric monoidal natural transformations

UniSymMonStrong�
Objects� U
small unital symmetric monoidal categories
Morphisms� strong unital symmetric monoidal functors
�
cells� unital symmetric monoidal natural transformations

UniSymMonStrict�
Objects� U
small unital symmetric monoidal categories
Morphisms� strict unital symmetric monoidal functors
�
cells� unital symmetric monoidal natural transformations

Of these� what the common man means by the� category of small symmetric mo

noidal categories is UniSymMonStrong� To express the universal mapping property
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characterizing homotopy colimits� one needs instead to consider both SymMon and
SymMonStrict� Adding the non
unital and unital analogs of all these produces the list
of six �
categories above�
One has the obvious diagram of forgetful �
functors�

������	

UniSymMonStrict ��

��

UniSymMonStrong ��

��

UniSymMon

��
SymMonStrict �� SymMonStrong �� SymMon

There is also a �
functor from the bottom to the top of each column in ������	�
On objects it sends the non
unital symmetric monoidal category S to the coproduct
of categories S

�
�� where � is the category with one object � and only the identity

morphism� The symmetric monoidal structure on the coproduct is determined by saying
that the inclusion of S is a strict symmetric monoidal functor and that there are natural
identities of functors on the coproduct

Id� � � Id � �� Id

which we take as the unitaricity isomorphisms� Thus � becomes a strict unit� This
construction on objects extends to a �
functor in the obvious way�

���� The functor Spt� SymMon� Spectra�
A slight elaboration ��Th�� Appendix	 of either May�s or Segal�s in�nite loop space

machines gives a functor into the category of spectra�

Spt� SymMon� Spectra

Moreover� symmetric monoidal natural transformations canonically induce homotopies
of maps of spectra ��Th�� ���	�
Let B� Cat � Top denote the classifying space functor� By �Th�� ��� there is a

natural transformation of functors from SymMon to Top

������	 	�BS � Spt�S	�

where Spt�S	� is the underlying zeroth space of the spectrum Spt�S	� When S admits
the structure of a unital symmetric monoidal category� this 	 is a group
completion�
Equivalently� it induces an isomorphism on homology groups after inverting the action
of the monoid ��BS�

������	 ���	
��H��BS�Z	

�
�� H��Spt�S	��Z	
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When S is not unital� Spt�S	� is a group
completion of the unital S
�
� since by

�Th�� ��� the inclusion of S into the this symmetric monoidal category induces a weak
homotopy equivalence of spectra�

������	 Spt�S	
�
� Spt�S

a
�	

�This last assertion ultimately reduces to the observation that any monoid M has
group
completion isomorphic to that of the monoid M

�
� formed by forgetting there

was already a unit and freely adding a new one �� For the group completion pro

cess forces the identi�cation of the new � with all other idempotent elements� and in
particular with the old forgotten unit� For details of the reduction see �Th�� A���	
The proof of May�s uniqueness theorem ��Ma�� Thm� �	 for functors de�ned from

the category of permutative categories easily generalizes to show any two functors from
SymMon to Spectra which satisfy the above
cited group
completion conditions of �Th��
��� and ��� are connected by a chain of natural weak homotopy equivalences� �See
�Th�� pp� ����� �����	 In particular� the two functors become naturally isomorphic
after composition with the functor from Spectra into the stable homotopy category�
The same statements hold for any two functors with the group
completion properties
de�ned on any of the six variant categories of symmetric monoidal categories considered
in ����

����� Definition� A lax symmetric monoidal functor F �S � T is said to be a stable
homotopy equivalence if Spt�F 	 is a weak homotopy equivalence of spectra� A morphism
in any of the variant categories of symmetric monoidal categories listed in ��� is said to
be a stable homotopy equivalence if the underlying lax symmetric monoidal functor is
such�

������ If the lax symmetric monoidal functor F induces a homotopy equivalence of
classifying spaces BS

�
�� BT � then F is a stable homotopy equivalence� This follows

from the group completion property of ������ For a map of 
�
connective spectra is a
stable homotopy equivalence if and only if the induced map on the zeroth spaces is a
weak homotopy equivalence� �Indeed� the stable homotopy groups of the spectrum are
� in negative degrees by 
�
connectivity� and in non
negative degrees are isomorphic
to the homotopy groups of the zeroth space�	 And by the Whitehead theorem �for H

spaces not necessarily simply
connected	 this condition is in turn equivalent to the map
of zeroth spaces inducing an isomorphism on homology with Zcoe�cients�
More generally� this shows Spt�F 	 is a stable homotopy equivalence if and only if BF

induces an isomorphism on the localizations of the homology groups by inverting the
action of the monoid ���

���� H��BF 	� ���BS	
��H��BS�Z	

�
�� ���BT 	

��H��BT �Z	
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���� Left op
lax natural transformations�
I will need the notions of op
lax functors and left op
lax natural transformations

between them� Theses concepts are ultimately derived from Benabou�s work on bicate

gories and Grothendieck�s theory of pseudofunctors� I follow the terminology of Street
�St� suitably dualized from lax to op
lax and generalized from Cat to an arbitrary �

category�
Let L be a category and K a �
category�

����� Definition� An op�lax functor ��L� K consists of functions assigning to each

object L of L an object �L of K� to each morphism 
�L � L� of L a morphism

�
� �L � �L� of K� to each composable pair of morphisms L
�
�� L�

��

�� L�� in
L a �
cell in K ������ ��
�
	 � ��
�	��
	� and to each object L of L a �
cell in K

�L� ���L	� ��L� These are to satisfy the following three identities of �
cells�

For each L�
���� L�

���� L�
���� L� in L

��������	

�L�

��

���

�����������

���

� ��

�L�

�L� ��
���

��

�������

�����������������
�L�

OO

��� �

�L�

��

���

�����������

��

�������

CC
CC

CC
CC

CC
CC

CC
CC

C
���

� ��

�L�

�L� ��
���

�L�

OO

���

For each morphism 
�L� L� in L

��������	

�L ����

��

��

��
��

��
��

��
��

��
�

��

�
rrrru� �

�

��

�L� �L ����

��

��

��
��

��
��

��
��

��
�

�

��

�L�

� id �

�L

EE

��

���������������
�L

EE

��

���������������

PP

�

KKKK ��
�

A functor may be considered as an op
lax functor with identity structure �
cells �� A
pseudo�functor is an op
lax functor where the structure �
cells are isomorphisms� The
de�nition of a lax functor is obtained by reversing the direction of the structure �
cells
in ������

����� Definition� A left op�lax natural transformation between two op
lax functors
����L� K is a function assigning to each object L of L a morphism in K� �L� �L�
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�L� and to each morphism 
�L� L� a �
cell in K� ��� �
 � �L � �L� � �
 These are to
satisfy the following two identities of �
cells�

For each L�
���� L�

���� L� in L�

��������	

�L�

�	

���

xx
xx
xx
xx

��
�L�

��

����� �����
��

�L�

��

������L�

�
��� FF
FF

FF
FF �

ks

�L� ��
�L�

�L�

�

�L�

�	

���

xx
xx
xx
xx

��
�L�

�����

�L�

�	

���

xx
xx
xx
xx

��

��������L� ��
�L�

�
��� FF
FF

FF
FF

�����

�L�

	���� FF
FF

FF
FF �

ks

�L� ��
�L�

�L�

And for each object L of L�

��������	

�L ���L

��


�

�

�

����ks
� ��

��

�L

��

��

�L

��

�

���L
�L

��


�

�

�

����ks
�

�

�L ��
�L

�L �L ��
�L

�L

Any natural transformation between two functors may be considered a left op
lax
natural transformation with identity structure �
cells ��� There is a notion of right op

lax natural transformation obtained by reversing the direction of the structure �
cells�
For a left lax natural transformation between two lax functors� the �
cells �� go in the
same sense as for a left op
lax natural transformation� but of course the structure two
cells of � and � go in the opposite sense� The conditions to impose on the �
cells of a
left lax natural transformation are analogous to ������� and �������� �See �St� x��	

����� Definition� A modi�cation s� � � � between two left op
lax natural transfor

mations is a function assigning to each object L of L a �
cell sL� �L � �L of K� These
are to satisfy the �
cell identity that for each morphism 
�L� L� in L�
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��������	

�L

��

��

�L
��

�L

�
�� ��

�� sL

��
��

�L

��

��

�L

��

��

���L

��
��

�L

��

���

�L� ��
�L�

�L� �L�

�L�
��

�L�

�
�� ��

�� sL� �L�

����� Notation� Let L be a small category and K a �
category� Denote by

Cat�L�K	

the �
category of functors from L to K� Its �
cells are natural transformations and its
�
cells are modi�cations� Denote by

�

op
Lax�L�K	

the �
category of op
lax functors from L to K� Its objects are op
lax functors� the
morphisms are left op
lax natural transformations� and the �
cells are modi�cations�
Denote by

�

Fun�L�K	

the sub �
category whose objects are functors� whose morphisms are left op
lax natural
transformations� and whose �
cells are modi�cations�

���� Homotopy colimits�
I recall from �Th�� the homotopy colimit of a diagram of symmetric monoidal cat


egories� This is a sort of op
lax colimit which turns out to have good properties with
respect to stable homotopy theory� More precisely�
The homotopy colimit is a �
functor

������	 hocolimL�
�

Fun�L�SymMon	� SymMonStrict

which is left �
adjoint to the composite of the forgetful functor SymMonStrict �

SymMon and the �
functor SymMon �
�

Fun�L�SymMon	 sending a symmetric mo

noidal category S to the constant functor from L sending each L to S� Thus there is
a natural adjunction isomorphism of categories for each functor ��L � SymMon and
each symmetric monoidal category S in SymMonStrict�

������	 �
�

Fun�L�SymMon		���S	 �� SymMonStrict�hocolimL��S	
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This adjunction isomorphism is equivalent to the universal mapping property stated
in �Th�� Prop� ����� as follows by a straightforward calculation on expanding out the
various de�nitions and using ��Th�� ����		�
I call this op
lax colimit a homotopy colimit because of its relation to the homotopy

colimit of diagrams of spectra� Recall ��BK� XII� �Th�� x�	 the latter homotopy colimit
is a functor�

hocolimL� Cat�L�Spectra	� Spectra

which sends natural stable homotopy equivalences to stable homotopy equivalences
equivalences� It induces a total derived functor of colimL on the homotopy categories�
Among its other good properties is a natural spectral sequence for the stable homotopy
groups� whose E� term is expressed in terms of homology of the category L�

������	 E�
p�q � Hp�L��q�	� �p�qhocolimL�

But by �Th�� Thm� ���� there is a natural stable homotopy equivalence between
functors from Cat�L�SymMon	 to the category of Spectra�

������	 hocolimLSpt��	
�
�� Spt�hocolimL�	

In particular� there is a spectral sequence natural in � �
�

Fun�L�SymMon	

������	 E�
p�q � Hp�L��qSpt��		� �p�qSpt�hocolimL�	

Since �qSpt �� � for q 	 ��� the spectral sequence ����� lives in the �rst quadrant
and converges strongly �e�g� �Th�� ����	� Since a map of spectra is a stable homotopy
equivalence if and only if it induces an isomorphism on stable homotopy groups ���
this spectral sequence directly gives good homotopy
theoretic control of the symmetric
monoidal category hocolimL�� �The extended naturality of the spectral sequence ������	
for left op
lax natural transformations is proved using recti�cation of op
lax functors as
in the last paragraph of �Th�� x�� cf� �Th�� ���	

���� Comparison of variant homotopy categories�
As a �rst application of the homotopy colimit� I will now proceed to show all the vari


ant categories of ��� all have equivalent localizations on inverting the stable homotopy
equivalences�
As explained after the diagram ������ for each of the vertical forgetful functors in

this diagram there is a functor going in the opposite direction which freely adds a unit
�� There are natural transformations between the identity functors and the composites
of these vertical forgetful and free
unit functors� The components of these natural
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transformations are the inclusion 	�S � S
�
� for S non
unital and the map sending � to

the old unit �S
�
�� S for S unital� By ����� Spt�		 is a stable homotopy equivalence�

Since Spt�	 is a right inverse to an instance of Spt�		� it is also a stable homotopy
equivalence� Thus these natural transformations become natural isomorphisms in the
localizations� and the localizations of the unital and non
unital variants in each column
of ����� are equivalent�
It remains only to see that the forgetful functors between the non
unital variants

in the bottom row of ����� induce equivalences of localizations� But one has another
functor in the opposite direction given by�

������	 SymMon �� Cat���SymMon	�
�

Fun���SymMon	� SymMonStrict

where the last functor is the hocolim� of ���� Let this composite functor be denoted

by d� 	� Using the universal mapping property ������	 of hocolim�� one gets a natural

transformation of functors on SymMonStrict with components bS � hocolim�S � S�
By ����� these components are stable homotopy equivalences� Moreover� this is still

a natural stable homotopy equivalence after pre
 or post
composing d� 	 with any of

the forgetful functors in the bottom row of ������ Thus these composites with d� 	
induce inverses to the forgetful functors after localization� This has proved the following
reassuring principle�

����� Lemma� The forgetful functors in diagram ����� all induce equivalences of cate�
gories between the localizations of these variant categories by inverting the stable homo�
topy equivalences�

� Lax symmetric monoidal categories

In this section� I will study the category of lax algebras in Cat over the doctrine of sym

metric monoidal categories� that is� the category of lax symmetric monoidal categories�
Following Kelly� I give generators and relations for a club whose strict algebras are the
lax symmetric monoidal categories� The functor Spt� 	 of ��� extends to a functor
on these� A Godement construction shows that each lax symmetric monoidal category
admits a simplicial resolution by �strict	 symmetric monoidal categories� Using this and
the homotopy colimit along �op I de�ne a functor from the category of lax symmetric
monoidal categories to that of symmetric monoidal categories which commutes up to
natural stable homotopy equivalence with Spt� 	�

���� Clubs and doctrines�

������ I will suppose the reader is familiar with Kelly�s theory of clubs� an e�cient means
of describing algebraic structures imposed on categories� A club prescribes certain n
ary
functors� which are to be operations on a category� and natural transformations between
them� These may be considered as generated by iterated substitution and composition
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of a smaller basic set of operations and transformations� The club structure encodes
this substitution process� I will consider only clubs over the skeletal category of �nite
sets with permutations as morphisms� That is� each operation in a club will have a �nite
arity n� and natural transformations between operations are allowed to specify a required
permutation of the order of inputs between the source and the target operations� The
type� functor from the club to the category of �nite sets speci�es the arity of the
operations and the permutations associated to the natural transformations� The reader
may consult �Ke�� x�� and x� for a quick review of club theory� See also �Ke��� �Ke���

������ Denote by � the club for symmetric monoidal categories� The underlying category
of this club has as objects a Tn of type n � N for each way to build up an n
ary operation
by iterated substitution of a binary operation � into instances of itself� �This includes
an empty set of substitutions� which yields the identity functor � as a �
ary operation�	
For each n � � the type functor is an equivalence of categories between the subcategory
of objects of type n and the symmetric group of order n� Thus any two objects of the
same type are isomorphic� and the group of automorphisms of any object of type n is
the symmetric group  n� All this follows from standard coherence theory� given that in
this paper symmetric monoidal categories are not assumed to have units�
In order to construct the Godement resolution needed to pass from lax symmetric

monoidal categories to symmetric monoidal ones� I will need to consider the doctrine
associated to a club� The reader may consult �KS� x��� for a review of doctrines� I recall
the de�nitions for its convenience�

����� Definitions� A doctrine in a �
category K is an endo �
functor D together with
�
natural transformations j� Id� D and ��DD � D satisfying the de�ning identities�

��������	 � �D� � � � �D � �Dj � id � � � jD

A D�algebra is an object A of K together with a morphism a�DA� A �the action�	
satisfying the de�ning identities�

��������	 a �Da � a � �A�DDA� A idA � a � j

A lax morphism between two D
algebras �A� a	 and �B� b	 consists of a morphism in
K� f �A� B together with a �
cell f �

��������	

DA ��Df

��

a
f

��

DB

��

b

A ��
f

B
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which is to satisfy the following two identities of �
cells�

��������	

DDA ��DDf

��

�A

DDB

��

�B

DDA ��DDf

��

Da
Df

��

DDB

��

Db

DA ��Df

��

a
f

��

DB

��

b

� DA ��Df

��

a
f

��

DB

��

b

A ��
f

B A ��
f

B

��������	

A ��f

��

jA

B

��

jB A ��f

��

�

B

��

�DA ��Df

��

a
f

��

DB

��

b

�

A ��
f

B

A ��
f

B

A strong morphism between D
algebras is a lax morphism such that the �
cell f is
an isomorphism� A strict morphism of D
algebras is a lax morphism such that f is the
identity�
A D���cell between two �lax� strong� or strict	 morphisms of D
algebras f� g�A� B

is a �
cell of K s� f � g such that one has the identity of �
cells�

��������	 g �Ds � s � f

Denote by D
Alg the �
category whose objects are D
algebras� whose �
cells are lax
morphisms of D
algebras� and whose �
cells are D
�
cells� The variant sub �
categories
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whose �
cells are the strong or strict morphisms of D
algebras are denoted D
AlgStrong
and D
AlgStrict respectively�

������ The doctrineD � �� on the �
category Cat associated to a club � sends a category
C to the underlying category of the free � algebra on C� From �Ke�� x� and �Ke�� x ���
or �Ke�� x��� one derives the following description� Denote by ��n	 the category whose
objects are �T� � 	 where T is an object of type n in the club� and � �  n� A morphism
�T� � 	 � �T �� � �	 consists of a morphism u�T � T � in � whose type � satis�es �� � � ��
��n	 is thus roughly speaking the category of operations induced by elements of the
club and permutations of inputs� Then the doctrine corresponding to � is�

��������	 �C �
a
n��

��n	 n	n C
n

Here  n acts on the n
fold product C
n by permuting the factors� and on ��n	 by the

free right action �T� � 	� � 
� �T� ��	�
The natural transformation ��� � �C � �C is given as part of the club structure

and encodes the substitution of operations into other operations� It is induced by a
collection of functors�

��������	 ��n	� ��j�	� � � � � ��jn	� ��j� ! � � � ! jn	

The natural transformation j�C � �C is induced by the inclusion

��������	 � � ���	

of the distinguished object ��� �	 corresponding to the identity operation�
Assigning to each object and morphism in the club an operation and natural trans


formation of operations on C of the appropriate arity corresponds to giving a morphism
c��C � C� If the assignment is compatible with substitution of operations and the
identity� then c is the structure of an algebra for the doctrine ��

������ In the case of the club � of ������ the structure of a �
algebra is exactly the
structure of a symmetric monoidal category� The lax� strong� and strict morphisms
of �
algebras correspond respectively to lax� strong� and strict symmetric monoidal
functors� The coherence theorem for symmetric monoidal categories noted in ����� is
equivalent to the fact that for each n � � there is a unique isomorphism between any
two objects of ��n	�

���� Godement enriched and lax�
Recall that �op� the category such that functors �op � C are the simplicial objects of

C� is the opposite category of the skeletal category � of �nite non
empty totally ordered
sets n � f� � � � � � � � ng and monotone increasing maps� Following �Th�� ��� let ��
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be the category with objects n � f�� � � � � � � � � � ng for n � �� and morphisms
the monotone increasing maps sending �� to ��� There is a standard inclusion functor
from � to �� sending n to n� A functor X���op � C is a simplicial object X�
together with an augmentation � � d��X� � X�� and a system of extra degeneracies
s���Xn � Xn�� for n � ��� These must satisfy certain relations extending the usual
simplicial identities� That is� one requires on Xn that�

������	

didj � dj��di if � 	 i � j 	 n

sisj � sj��si if ��� 	 i 	 j 	 n

disj � sj��di if � 	 i � j 	 n

disj � id if � � 	 j 	 n and � 	 i � fj� j ! �g

disj � sjdi�� if ��� 	 j and j ! � � i 	 n! �

The extra degeneracies imply that the augmentation X� � X�� is a simplicial homo

topy equivalence� even that there is a simplicial homotopy on X� that is a deformation
retraction to the constant simplicial object on X��� �Cf� e�g� �Ma�� x�	

����� Proposition� Let D be a doctrine on the ��category K� Recall the notations of
����� and of x� above�

Then there is a natural ��functor� the Godement resolution�

R��D�Alg ��
�

Fun���op�K	

such that Rn � Dn�� for n � � while R�� is the functor sending a D�algebra to its
underlying object in K�

After restriction of the values in
�

Fun from ��op to the standard subcategory �op� R�
lifts canonically to a ��functor

R� j �
op�D�Alg ��

�

Fun��op�D�AlgStrict	

Considering R�� � Id�D�Alg � D�Alg as taking values in constant simplicial D�
algebras� the augmentation induces a ��natural transformation d�

����R� j �op � R��

of functors into
�

Fun��op�D�Alg	

The restriction of R to D�AlgStrict factors through the sub ��category of
�

Fun whose
��cells are �strict	 natural transformations�

R��D�AlgStrict �� Cat���op�K	

Thus for a D
algebra A� R�A is a simplicial free D
algebra with a D
algebra augmen

tation to A� the augmentation being a simplicial homotopy equivalence after forgetting
the D
algebra structure� The whole thing is strictly natural for strict morphisms of D

algebras� and is left op
lax natural for lax morphisms of D
algebras� If the �
category
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K has only identity �
cells� the doctrine D is just a monad and all reduces to the clas

sical Godement resolution �Go� Appendice or to May�s reformulation as a two
sided bar
construction B��D�D� Id	 in �Ma�� x��

Proof� For �A� a	 a D
algebra� de�ne the functor R��A� a	 from ��op by giving values
on on objects and on the generating morphisms di and si of ��op� On objects� RnA �
Dn��A for n � ��� For the morphisms�

��������	 di�RnA� Rn��A �

�
Di�Dn�i���Dn��A� DnA for � 	 i � n

Dna�Dn��A� DnA for i � n

��������	 si�RnA� Rn��A � Di��jDn�i�Dn��A� Dn��A for � � 	 i 	 n

Naturality and the de�ning identities ����� for the structure maps �� j� and a of doctrines
and algebras give that these di and si satisfy the extended simplicial identities ������	
and so de�ne a functor on ��op� All di and the si other than s�� are strict maps of
D
algebras�
Given a morphism of D
algebras f �A� B� let Rnf � Dn��f � Note that for a strict

algebra morphism f this formula de�nes a natural transformation R�f �R�A � R�B
of functors on ��op� For such an f strictly commutes with �� j� and a� For a D
�

cell between two morphisms s� f � g let Rns � Dn��s�Dn��f � Dn��g� Routine
veri�cation now yields the results of the last paragraph of Proposition ������
The essential point remaining is to de�ne the structure of a left op
lax natural trans


formation ������	 R�f �R�A� R�B for each lax morphism of D
algebras �f� f 	�A� B�
The structure �
cells of this R�f are the Rnf � Dn�� above� The structure �
cell
��������	

Dn��A ��Dn��f

��

��
Rf���

Dn��B

��

��

Dq��A ��
Dq��f

Dq��B

associated to a morphism �� q � n in �� is derived from the structure �
cells of the
lax algebra map as follows�
If �� f�� � � � � � � � qg � f�� � � � � � ng preserves the maximal element�

��q	 � n� then � in ��op can be written as a composite of si and those di for which i
is not maximal� Thus �� can be written as a composite of Di�Dk and DijDk� without
using any action maps Dia� In this case the diagram of �
cells in ��������	 commutes
and one takes Rf� to be the identity �
cell� In the other case where � does not preserve

the maximal element� it factors uniquely in �� as�

� � f�� � � � � � qg
	
�� f�� � � � � � q � q ! �g

�
�� f�� � � � � � pg
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where 	 is the inclusion of the initial segment and � is determined by �	 � � with
��q ! �	 � n� Thus � preserves the maximal element� As for 	� 	� � d�q � Dq��a�

One sets the structure �
cell Rf� to be that induced by the structure �
cell of the lax
algebra morphism�

��������	

Dn��A

��

��

��Dn��f
Dn��B

��

��

Dq��A

��

Dq��a

��Dq��f

Dq��f
��

Dq��B

��

Dq��b

Dq��A ��
Dq��f

Dq��B

That these Rf� satisfy the de�ning identities ������� and ������� for an op
lax natural
transformation follows by routine case by case analysis of these speci�cations and the
identities ������� and ������� of lax morphisms of algebras�
Finally� for s a D
�
cell� R�s is a modi�cation of left op
lax natural transformations�

The required identity ������� results from ��������

����� Addendum� Preserving the hypotheses and notations of ������ suppose that
E�K � Q is a ��functor which is a right D�algebra� That is� suppose there is a ��

natural transformation e�ED � E such that

e� � e � eD�EDD � E

and
� � e �Ej�E � ED� E

�
Then there is a ��functor

ED��D�Alg ��
�

Fun��op� Q	

speci�ed as follows

Given �A� a	 a D�algebra� the simplicial object ED�A��op � Q is de�ned by


n 
� EDnA
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si � EDijDn�i�EDnA� EDn��A

di�ED
nA� EDn��A �

���
��

eDn�� for i � �

EDi���Dn�i�� for � � i � n

EDn��a for i � n

Given �f� f 	� �A� a	 � �B� b	 a lax morphism of D�algebras� the associated left op�lax
natural transformation ED�A� ED�B has structure ��cells EDnf �EDnA � EDnB
and structure ��cells given by the obvious generalization of ������� on replacing all
Dn��A by EDnA� etc�

Given s� f � g a modi�cation of lax morphisms of D�algebras� the associated modi�
�cation of left op�lax natural transformations has component ��cells

EDns�EDnf � EDng

Veri�cation of all these points results from calculations which are trivial modi�cations
of those required for the veri�cation of ������

���� LaxSymMon�

����� Definition� The club "� for lax symmetric monoidal categories is the club over
the category of �nite ordinals and permutations with the following presentation�
The objects of "� are generated under substitution by a T for each object T of the

club for symmetric monoidal categories �� The type of the generator Tn equals the type
of Tn� No relations are imposed on the objects� �In particular� if � denotes the objects
in � and "� corresponding to the identity operation� one does not have � � ��	
The morphisms of "� are generated by�

i	 A morphism
u�T � R

for each morphism u�T � S in �� The type of u is the permutation which is the type
of u�

ii	 A morphism

"aT 
S��S����� �Sn��T �S�� � � � � Sn	� T �S�� � � � � Sn	

of type the identity permutation for each object T of � and each n
tuple of objects
S�� � � � � Sn of �� Here n � N is the type of T �

iii	 A morphism
#a� �� �

of type ��

The relations imposed on these generators are a	
e	 below�
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�������a	

u � v � uv

idT � idT

�������b	

T ��� � � � � �	 ��T��a���� ��a�

��
id

OOO
OOO

OOO
OOO

O
T ��� � � � � �	

��
aT������ ���

T

�������c	

��S� ���a
S�

��
id DD

DD
DD

DD
D

��S�

��
a��S�

S

�������d	

T �S��R��� � � � 	� � � � � Sn�Rn�� � � � 		 ��a

��
T �a���� �a�

T �S�� � � � � Sn	�R��� � � � � Rnq	

��
a

T �S��R��� � � � 	� � � � � Sn�Rn�� � � � 		 ��
a

T �S��R��� � � � 	� � � � � Sn�� � � � Rnq		

�������e	

T �S�� � � � � Sn	 ��
aT�S����� �Sn�

��
u�v����� �vn�

T �S�� � � � � Sn	

��
u�v����� �vn�

T ��S��� � � � � S�n	 ��
aT ��S�

�
���� �S�n�

T ��S��� � � � � S
�
n	

for each ordered set of morphisms in � consisting of a u�T � T � and of vi�Si � S���i�
where � is the type of u�

������ Comparison with �Ke�� ����� ���
��� shows that this club "� is indeed the club
whose doctrine has as strict algebras the lax algebras over the doctrine of symmetric
monoidal categories�
There is a map of clubs

��������	 s� "� � �
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sending the object T to T � the morphism u to u� and the morphisms #a and "aT 
S����� �Sn�
to identity morphisms� This map of clubs induces a morphism of the corresponding
doctrines�
By �Ke�� ��� Thm� ��� there is also a lax doctrine map going in the opposite direction�

��������	 �h� "h� #h	�� � "�

As in �Ke�� ���� h is induced by the functor between the underlying categories of the
clubs which sends the object T to T and the morphism u�T � S to u� This functor
is not a �strict	 morphism of clubs since it does not strictly preserve the operational
substitution which is part of the club structure�
The following facts are immediately deduced from the cheap� coherence result of

�Ke�� ��� and the description of � above in ���� For each object U of "� there is an object
V in �� and a morphism in "� U � V � hV � Given U � any V for which there exists a
morphism U � V is isomorphic to sU in �� Two morphisms U � V in "� are equal if
and only if their images under s are equal� that is to say� if and only if they have the
same permutation as type�
Rephrasing this� we get that there is a �
cell of lax maps of doctrines � � �� hs such

that s� � � and �h � �� In particular for any category C the functor h��C � "�C is
right adjoint to s� "�C � �C�
Note that these results of coherence theory together with ������ ������ and the ele


ments of the homotopy theory of categories ��Qu� x�	 imply that one has the following
homotopy equivalences of classifying spaces� naturally in any category C�

��������	 B�"�C	
�
��
s

B��C	
�

���������
type

�a
n��

E n �	n B�C	
n

����� Definition� The �
category LaxSymMonStrict has as objects the U
small alge

bras for the club "�� i�e� the �U
small	 lax symmetrical monoidal categories� The �
cells
are the strict morphisms of "�
algebras� those functors which strictly preserve the oper

ations T and the natural transformations u� "a� and #a� The �
cells are the modi�cations
of �
cells ������	�

There are variant �
categories LaxSymMonStrong and LaxSymMon whose �
cells are
respectively the strong and the lax morphisms of "�
algebras ������	 and whose �
cells
are the modi�cations of such�
To preserve compatibility with the more common terminology of x�� I will use the

term lax symmetric monoidal functor� only for a �
cell in the category SymMon of
������ A �
cell in LaxSymMonStrict will be a strict functor between lax symmetric
monoidal categories��
There is a forgetful �
functor
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������	 SymMon� LaxSymMon

induced by the map of clubs s� "� � ��

���� Spt� 	 on LaxSymMon�
The functor Spt� SymMon � Spectra of ��� extends to a functor on

LaxSymMon� Indeed the construction in �Th�� Appendix generalizes easily� The only
di�erences arise because now forA a lax symmetric monoidal category which has a strict
unit �� one step of the construction gives a lax functor ������� or �St�	 A� $op � Cat
instead of a pseudofunctor� To construct this� choose for each �nite ordinal n � � one
of the isomorphic objects Tn of type n in the club �� Let T� denote the strict unit of
A� The lax functor A sends p to

QpA� For each morphism �� p� q in the category of
�nite based sets $op� let A��	�

QpA�
QqA be the functor sending �A�� � � � � Ap	 to

�T�������Ai� i � �����		� � � � � T����q��Ai� i � ����q			

Here in each T����j��Ai� i � ����j		 one orders the Ai by increasing order of the indexes
i� The structure natural transformations of the lax functor A��	A��	 � A���	 and
id � A�id	 have components induced by the unique tuple of morphisms in the club
"� that have the appropriate type to universally de�ne such a natural transformation�
The essential ingredients are the "a and #a of ������ The identities required by the lax
functor axioms hold by the coherence result mentioned in ������ In the case where A
is a strict symmetric monoidal category� this lax functor is in fact a pseudofunctor�
that associated to A in �Th�� Appendix� A lax morphism of lax symmetric monoidal
categories induces a left lax natural transformation of lax functors $op � Cat by trivial
generalization of the formulae in �Th��� To the lax functor A one now applies Street�s
second construction� of �St� to convert this into a strict functor from $op to Cat which
sends p to a category related to Ap by an adjoint pair of functors� From this it follows
that its classifying space is homotopy equivalent to

Qp
B�A	 ��Qu� x� Prop�� Cor��	�

Thus on applying the classifying space functor B� Cat� Top to this� one has a special
$ space � in the sense of Segal �Se�� to which his in�nite loop space machine associates
a spectrum� By �St� Thm� �� Street�s second construction is in fact a functor

�

Lax�$op�Cat	� Cat�$op�Cat	

and thus a left lax natural transformation yields a map of special $ spaces��
The rest of the argument� including generalization to the non
unital case� now pro


ceeds exactly as in �Th���
In the case whereA is a strict symmetric monoidal category the construction coincides

with that given in �Th��� except that instead of considering a pseudofunctor on $op as an
op
lax functor and applying Street�s �rst construction for op
lax functors� one considers
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it as a lax
functor and applies the second construction� The proof given in �Th�� shows
that this variant also yields a functor Spt� SymMon � Spectra satisfying conditions
��� and ��� of �Th��� and thus ��Th�� p� ����	 is linked by a chain of natural stable
homotopy equivalences to the original version Spt� 	�

������ By an argument identical to that in �Th��� one obtains the analogs of the group
completion results ������	� ������	� Similarly as in ������ these imply that if F �S � T is
a �
cell in LaxSymMon such that BF is a homotopy equivalence of spaces� then Spt�F 	
is a stable homotopy equivalence of spectra�

��� Proposition� There is a ��functor


������	 S�LaxSymMon � SymMon

and a chain of natural stable homotopy equivalences of spectra


������	 Spt�SS	
�
�� hocolim�opSpt� "R�S	

�
�� Spt�S	

It follows that S preserves stable homotopy equivalences between lax symmetric monoidal
categories�

Denote by I�SymMon � LaxSymMon the inclusion functor� There is a ��natural
transformation to the identity functor


������	 ��S � I � �SymMon

such that Spt��	 is a stable homotopy equivalence of spectra�

If U is a Grothendieck universe inspection of the construction in ��� shows that the
functor S preserves U
smallness�

Proof� Recall that LaxSymMon is the �
category of algebras for the doctrine "��
The strict map of doctrines s� "� � � of ����� induces the structure of a right "�


algebra on the doctrine for symmetric monoidal categories �� The action map is given
by� � � �s��"� � �� � �� Thus the addendum ����� to the Godement resolution

yields a �
functor ��"�	� from LaxSymMon to
�

Fun��op�SymMonStrict	 sending S to
the simplicial symmetric monoidal category n 
� �"�nS
Let S� LaxSymMon� SymMon be the composite of this �
functor with the homotopy

colimit functor of ���

hocolim�op �
�

Fun��op�SymMon	� SymMonStrict  SymMon

To construct the chain of stable homotopy equivalences of spectra ������ let "R� be the
Godement resolution functor ����� n 
� "�"�n� Then s"�n� "�"�n � �"�n gives a simplicial
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map "R � �"�� which is a stable homotopy equivalence in each degree n � �op by
��������	� By ����� and ����� this map induces a natural stable homotopy equivalence�

������	

hocolim�opSpt "R�S
�
�� hocolim�opSpt�"��S

�
�� Spt�hocolim�op�"��S	 � SptSS

On the other hand� since "R�S is a resolution of S� the augmentation map "R�S � S
induces a stable homotopy equivalence hocolim�opSpt "R�S

�
�� SptS� Indeed� by a

standard reasoning on 
�
connective spectra using the group completion property �����
�cf� �Th�� ��� 	 it su�ces to show that the map induced by the augmentation from the
geometric realization of the simplicial classifying space kn 
� B"�n��Sk � BS is a weak
homotopy equivalence of spaces� But this map is such since the resolution simplicially
deformation retracts to S because of the extra degeneracies s�� ����	� �cf� e�g� �Ma��
���	� This completes the construction of the chain of stable homotopy equivalences
������	�
It remains to construct the natural stable homotopy equivalence ��S � I � Id� But

there is a �
natural transformation

������	 ��"�	� � I � R�� SymMon�
�

Fun��op�SymMon	

to the Godement resolution ����� for �
algebras� The component at S is the natural
transformation of functors on �op whose component at n � �op is �snS��"�nS �
�n��S� The �
natural transformation ������	 induces a map of homotopy colimits

������	 SI � hocolim�op�n 
� �"�nS	� hocolim�op�n 
� �n��S	

By the universal mapping property of homotopy colimits ������ the augmentation of
the Godement resolution for �
algebras ��S � S yields a natural �
cell

������	 hocolim�op�n 
� �n��S	� S

The �
natural transformation ��SI�S	 � S is the composite of ����� and ������ To
show it is a stable homotopy equivalence� it su�ces to show ����� and ����� are such�

 From the homotopy equivalences ��������	 it follows that s� "�C � �C induces a

homotopy equivalence on classifying spaces of categories� and that both functors "�
and � preserve homotopy equivalences of categories� Thus in each degree n � �op

the component of ������	 is a homotopy equivalence of categories� Then it is a stable
homotopy equivalence for each n and so by ��� the induced map ����� of homotopy
colimits is a stable homotopy equivalence�
As for the map ������ to show it is a stable homotopy equivalence it su�ces by �����

to show that the augmentation induces a stable homtopy equivalence

hocolim�opSptR�S
�
�� SptS

But as above this holds since R�S is a resolution of S�
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� From Spectra to E��spaces

In this section� I will recall May�s notion of E�
operad and his result on the equivalence
of the homotopy category of 
�
connective spectra with a localization of the category of
E�
spaces� This is an essential link in the chain of equivalences connecting the former
with the localization of SymMon� I begin by recalling some de�nitions from �Ma��� since
one will need to have the details available for x��

��� Definition� An operad in the category of compactly generated Hausdor� spaces
consists of the following data�

i	 For each integer n � �� a space E�n	 and a right action of the symmetric group
 n on E�n	�

ii	 A point � � E��	
iii	 For each n � � and each sequence j�� j�� � � � � jn of non
negative integers� a

continuous function�

������	 ��E�n	�
�
E�j�	�E�j�	� � � � �E�jn	

�
� E�j� ! j� ! � � �! jn	

These are to satisfy the following conditions�

a	 The space E��	 � � is a single point�
b	 The distinguished point � � E��	 is an identity for the composition law �� That
is� for any f � E�n	 and g � E�j	 one has�

��f � �� � � � � �	 � f

���� g	 � g

c	 The composition law is compatible with the action of the symmetric group�
That is� for any � �  n� any sequence of �k �  jk for k � �� � � � � n and any
f � E�n	� gk � E�jk	 one has�

��f�� g�� � � � � gn	 � ��f � g
������ � � � g
���n�	��j�� � � � � jn	

��f � g���� � � � � gn�n	 � ��f � g�� � � � � gn	��� q � � � q �n	

Here ��j�� � � � � jn	 denotes the permutation in  j������jn that permutes the n
blocks of jk successive integers according to � �  n� leaving the order within
each block �xed� ��q � � �q �n is the permutation leaving the n blocks invariant
and which restricts to �k on the kth block�

d	 The composition law is associative� That is� given f � E�n	� gi � E�ji	 for
i � �� �� � � � � n� and hik � E�
k	 for k � �� �� � � � � ji� one has�

��f � ��gi�hik		 � ����f � gi	�hik	
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��� Definition� An E��operad is an operad such that for each n the space E�n	 is
homotopy equivalent to a point and  n acts freely on E�n	�

��� Definition� An E�space for E an operad is a based space X together with con

tinuous functions for each non
negative integer n�

�n�E�n	�
nY
X � X

such that this action � is based� unital� and respects the permutations and the compo

sition law of the operad� More precisely� one requires that�

a	 ����	 is the basepoint of X�
b	 �����x	 � x for the distinguished point � � E��	�
c	

�n�f��x� � x�� � � � � xn	 � �n�f �x
������ � � � � x
���n�	

for any f � E�n	 and � �  n�
d	

�j������jn���f � g�� � � � � gn	�x��� � � � � x�j� � x��� � � � � xnjn 	 �

�n�f ��j� �g��x��� � � � � x�j�	� � � � � �jn�gn�xn�� � � � � xnjn		

for any f � E�n	� and any sequence gi � E�ji	 for i � �� � � � � n

A morphism of E
spaces is a continuous function ��X � Y such that for all n the
following diagram commutes�

����	

E�n	 �
Qn

X ��id	
Qn �

��
�n

E�n	�
Qn

Y

��
�n

X ��
� Y

A morphism of E
spaces is a weak homotopy equivalence if it is a weak homotopy
equivalence on the underlying spaces�
These de�nitions are due to May ��Ma�� ���� ���� ���	 inspired by earlier work of

Adams� Beck� Boardman� MacLane� Stashe�� and Vogt�
One �xes an E� operad E in a Grothendieck universe U and considers the category

of U
small E
spaces� For any two choices of such E� there are functors between the
two categories such that the composites each way are linked to the identity by a chain
of natural homotopy equivalences of E
spaces ��MaT� ���� x�� x�� cf� �Ma�� x�� up to
����	� Thus these categories are essentially interchangeable� I will therefore conform to
the standard abuse and speak of any of them as the category of E�
spaces�
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May�s approach to in�nite loop space theory produces an functor Spt� from the
category of E�
spaces to the category of 
�
connective spectra ��Ma��	� In fact� he
shows this functor induces an equivalence of a localization of the category of E�
spaces
and the stable homotopy category of 
 
�
connective spectra� The inverse functor is
given by imposing a natural action of an E� operad on the zeroth space of a spectrum�

��� Proposition 	May
� The functor Spt��E��spaces � Spectra induces an equiva�
lence from the localization of E��spaces by inverting all maps that Spt� sends to stable
homotopy equivalences� to the full subcategory of the stable homotopy category consisting
of ���connective spectra� The inverse equivalence is induced by the zeroth space functor
���

This is just a combination and slight reinterpretation of parts of the statements
��Ma�� Thm� ���� Cor� ���� Thm� ���	� to which I refer the reader for the proof�

������ The morphisms of E�
spaces ��X � Y that Spt� sends to stable homotopy
equivalences are precisely those which induce isomorphisms on homology after localizing
by inverting the action of the abelian monoid �� of the E�
spaces�

������X	
��H��X�Z	

�
�� ���Y 	

��H��Y �Z	

This follows from the group
completion theorem ��Ma�� ���iv� ���� �Se� x�	�

���� Let � be a club such that the categories ��n	 of ����� have contractible classifying
spaces B��n	� Suppose further that ���	 is isomorphic to the category with one mor

phism� By coherence theory the club for strict unital symmetric monoidal categories
is such a club� Then setting E�n	 � B��n	 for n � � yields an E�
operad� For the
free action of  n on ��n	 induces a free right  n action on B��n	� The distinguished
object � � ���	 induces a distinguished point � � B���	� Since the classifying space
functor B preserves �nite products� the composition law of the club expressed in form
��������	 induces a composition law � on the B��n	 for n � �� The conditions ����a
d
for an operad hold as a consequence of the similar conditions satis�ed by a club�
Moreover� an action of such a club � on a category C induces an action of the operad

B� on BC� For the action map of the club

������	
a
n��

��n	n	n C
n �� �C � C

induces an action of the operad on applying B�
This procedure is natural for strict morphisms of � actions� In particular� taking �

to be the club for unital symmetric monoidal categories� this procedure gives a functor

������	 B� UniSymMonStrict� E�
spaces

The May functor �Ma�� from UniSymMonStrict to Spectra is the composition of
this functor B and the May machine Spt�� As noted in ���� this functor is linked by
a chain of natural stable homotopy equivalences to the restriction from SymMon to
UniSymMonStrict of our functor Spt�
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� From E��spaces to lax symmetric monoidal categories

In this section� I construct a functor from E�
spaces to LaxSymMonStrict that will be
the essential constituent of an inverse up to natural stable homotopy equivalence to the
functor Spt of x�� The strategy of the construction is �rst to show that the category
of contractible spaces over a space X has a classifying space weak homotopy equivalent
to X� and then to use the action of the E�
operad on X to produce a lax symmetric
monoidal structure on this category�

���� I begin by recalling some well
known facts from the theory of simplicial sets� Denote
by �� ���� Top the functor sending p to the standard topological p
simplex� Recall
that the singular functor

Sing� 	� Top� �op
Sets

sends a space X to the simplicial set which in degree p is the set Top���p��X	� There
is a natural weak homotopy equivalence from the geometric realization of the singular
complex

������	 jSing�X	j
�
�� X

Denote by

������	 ��X

the category whose objects are the singular simplices of X� c���p� � X and whose
morphisms from c to c����q�� X are morphisms �� p� q in � such that the following
diagram commutes in Top�
������	

��p�

��

�
��
��

c

CC
CC

CC
CC

X

��q�

��

c�

��������

This construction yields a functor from Top to Cat�

��� Proposition 	Quillen
� There is a natural weak homotopy equivalence from the
classifying space of the category ��X to X


������	 B��X
�
�� X

Proof� Given the weak homotopy equivalence of ������ it su�ces to �nd a natural weak
equivalence of simplicial sets from the nerve of ��X to Sing�X	� For the geometric
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realization of this weak equivalence is then a weak equivalence of spaces and can then
be composed with the map of ����� to yield the equivalence of ������
By de�nition� a p
simplex of the nerve N��X is a sequence of p composable mor


phisms in ��X�

������	

��k�� ���
���

��
c�

WWWW
WWWW

WWWW
WWWW

WWWW
WWWW

WWW ��k�� ���
���

��RR
RRR

RRR
RRR

RRR
RR

� � � ���
�p�
��kp�

��
cp

X

One sends this to the p
simplex of Sing�X	 speci�ed as follows� The sequence of
morphisms �i determine a map in � �� f�� �� � � � � pg � f�� �� � � � � kpg in the category of
�nite ordinals and monotone maps � by ��i	 � �p�p�� � � ��i���ki	 for i � �� �� � � � � p�
�For i � p one considers the composition of an empty set of � to be the identity� so
��p	 � kp�	 The desired p
simplex of Sing�X	 is the composite�

cp�������p�� ��kp�� X

One easily checks this de�nes a map of simplicial sets�

������	 N��X � Sing�X	

It remains to show this map is a weak homotopy equivalence�
This could be deduced from trivial modi�cations to the argument given in �Il� VII x�

for the weaker formulation of the proposition given there� I prefer an alternate proof�
��X is isomorphic to the opposite category of the Grothendieck construction ��Th��

���	 �op
R
Sing�X	 on Sing�X	 considered as a functor �op � Sets  Cat� Thus one

may conclude by dualizing the homotopy colimit theorem of �Th�� ���� that there is a
natural weak homotopy equivalence of simplicial sets�

������	 hocolim�op�p 
� Singp�X		
�
� I

�
�op

Z
�p 
� Singp�X		

�
�� N���X	

Here I is the version of the nerve functor used in �BK� XI ��� and �Th��� which has
the opposite orientation to the nerve functor N of �Qu� x� used in this paper �cf� �����	�
The two are related by�

NC � ICop

By �BK� XII ���� there is a natural weak homotopy equivalence from the homotopy
colimit of a F ��op � �opSets to the diagonal simplicial set of F considered as a
bisimplicial set� Applied to the simplicial set Sing�X	 considered as a bisimplicial set
constant in one direction� this gives a weak equivalence�
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������	 hocolim�opSing�X	
�
� Diag

�
p� q 
� Singp�X	

�
�� Sing�X	

Explicit formulas for the equivalences ����� and ����� may be deduced from �Th��
����� and �BK� XI ���� XII ���� A routine calculation then yields that these equivalences
�t into a commutative triangle ������	 with the map ������	� which is therefore also an
equivalence as required�

������	

hocolim�opNSing�X	

	�

�

GG
GG

GG
GG

GG
GG

GG
GG

GG
G

��

�

ww
ww
ww
ww
ww
ww
ww
ww
ww

N��X �� Sing�X	

�In verifying the commutativity it is important to note that �BK� XII ��� is incorrect
in stating that obviously� �opnp � ��p� What is correct is that �opnp � ���p	op�
When this correction is fed through �BK� XII ���� the result is that the description given
above of ����� is right� whereas the erroneous formulae in �BK� XII ��� and XI ��� would
lead one to expect a description using minima � instead of the maxima ki	

��� Notation� For X a topological space� let Null�X be the category whose objects
are maps of spaces c�C � X where C is weak homotopy equivalent to a point� A
morphism �C� c	� �C �� c�	 is a map of spaces ��C � C � such that c � c���

��� Lemma� The obvious inclusion of categories 	���X � Null�X induces a natural
weak homotopy equivalence of classifying spaces


������	 B��X
�
�� BNull�X

Proof� By Quillen�s Thm� A ��Qu� x�	� it su�ces to show for each object c�C � X
that the comma category 	��C� c	 is contractible� But this comma category is just
��C� Thus Prop� ��� gives that its classifying space is weakly equivalent to C� hence
contractible as required�

It follows immediately from ��� and ��� that the functors B� Cat� Top and Null�� 	�
Top � Cat induce inverse equivalences of localized categories on inverting the weak
homotopy equivalences� �Modulo the usual precautions to take the categories of U

small objects�	
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��� Proposition� The functor Null�� 	�Top � Cat lifts to a functor E��spaces �
LaxSymMonStrict�

Proof� This claim is that one can construct a natural lax symmetric monoidal struc

ture on Null�X from an action of an E�
operad fE�n	g on X� By the presentation of
the club "� for lax symmetric monoidal categories given in ������ and the description of
a club action in terms of its presentation ��Ke�� ����%����	� this amounts to giving the
following data�

�����

i	 For each object T of type n in the club � for symmetric monoidal categories� i�e�
for each n
ary operation built up by iterated substitution of a binary operation
into itself� a functor�

T �

nY
Null�X � Null�X

ii	 For each morphism u�T � S in the club �� a natural transformation with
components�

u�T �c�� � � � cn	� S�c������� � � � � c����n�	

Here � is the permutation which is the type of u�
iii	 A natural transformation

#a� �� �

iv	 For each T in � of type n� and each n
tuple Si of objects in �� a natural
transformation of type the identity

"aT 
S��S����� �Sn��T �S�� � � � � Sn	� T �S�� � � � � Sn	

such that the diagrams ������a�b�c�d� and e commute�

I construct all this as follows� Note that the category Top is a symmetric monoidal
category under product of spaces� Thus for each T of type n in the club �� and each
n
tuple of spaces Y�� � � � � Yn� one has the product space T �Y�� � � � � Yn	� usually denoted
Y� � � � � � Yn with the choice of parentheses censored�

T will be the functor sending an n
tuple of objects ci�Ci � X in Null�X to the
contractible space over X given by the product of the Ci and E�n	�

������	

E�n	� T �C�� � � � � Cn	
�	T �c����� �cn�
��������������������������� E�n	� T �X� � � � �X	

�n�� X

The natural transformations of ii	 u�T � S for u�T � S in � will have as components
the maps induced by the symmetric monoidal structure of Top�
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������	
�� u�E�n	� T �C�� � � � � Cn	� E�n	 � S�C������� � � � � C����n�	

This map is compatible with the structure maps to X by naturality of u and the
compatibility �����c	 of the operad action � with the symmetric group action on the
E�n	� Thus it is a map in Null�X�
The natural transformation of iii	� #a��� � will have components�

������	
C � �� C � E��	� C � ��C	

induced by the inclusion of the operad�s distinguished point � � E��	�
This is a map over X by ����b�
The natural transformation of iv	� "aT 
S� ���� �Sn� will have as components the maps

induced by the composition law of the operad ��

������	

E�n	 � T
�
E�k�	� S��C��� � � � � C�k�	� � � � � E�kn	� Sn�Cn�� � � � � Cnkn	

�
��

��

E�n	 �E�k�	� � � � �E�kn	 � T �S�� � � � � Sn	
�
C��� � � � � Cnkn

�
��

�	id

E�k� ! � � �! kn	 � T �S�� � � � � Sn	
�
C��� � � � � Cnkn

�
This is a map over X by ����d�
These data satisfy the conditions imposed because of the conditions satis�ed by

the structure of an operad and of and operad action� Thus condition ������a holds
by naturality� conditions ������b and ������c by ����b� ������d by ����d� and ������e by
naturality with ����c and ����c�
Finally� the construction is functorial� that is� it takes maps of operad actions to

strict morphisms between lax symmetric monoidal categories�

��� Lemma� The functor Null�� 	�E��spaces � LaxSymMonStrict of ��� preserves
stable homotopy equivalences�

Proof� By group completion ������� ������ �����	 it su�ces to show that if f �X � Y is
a map of E�
spaces which induces an isomorphism on homology localized by the action
of the monoid ���

������	 f�����X	
��H��X�Z	

�
�� ���Y 	

��H��Y �Z	

then is also an isomorphism the map�

B�Null�f	�����BNull�X	
��H��BNull�X�Z	

�
�� ���BNull�Y 	

��H��BNull�Y �Z	
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But by ��� and ���� there is a chain of natural homotopy equivalences between the E�

space Z and BNull�Z� inducing an isomorphism on H�� �Z	 and on the set ��� 	�
Thus it su�ces to show this isomorphism respects the actions of of �� on the homology
groups� and so induces an isomorphism of the localizations� For z � Z considered as
a representative of a class in ��Z� and for any choice of m in the contractible E��	�
the action on H��Z�Z	 is the map on homology induced by the homotopy class of the
endomorphism Z � Z given by

������	 Z �� m� z � Z  E��	� Z � Z
���� Z

By naturality of the chain of homotopy equivalences� this map on homology agrees with
the endomorphism of H��BNull�Z�Z	 induced by Z � Z� This is the map on homology
induced by the endofunctor of Null�Z sending C � Z to

������	 C �� m� z � C  E��	 �Z � Z
���� Z

On the other hand� the action of z � ��Z �� ��BNull�Z for the lax symmetric monoidal
structure is the map on homology induced by the endofunctor sending C � Z to

������	 T �z � Z�C � Z	 � E��	 � z � C � E��	 �Z � Z
���� Z

for any choice of T in the contractible ���	� But the two endofunctors are homotopic�
since they are linked by the natural transformation with components

������	 C �m� z �C �� E��	� z � C

This shows the actions on homology by an element of �� are compatible under the
isomorphism induced by the chain of ��� and ���� Similarly� the isomorphism of ��Z
with ��BNull�Z respects the translation action of �� on itself� and so is an isomorphism
of monoids� Thus the two �� actions are isomorphic�

� The main theorem

Recall that one has �xed a Grothendieck universe U and by convention considers only
symmetric monoidal categories and spectra which are U
small�

��� Theorem� Let Spectra�� be the category of ���connective spectra� and SymMon the
category of symmetric monoidal categories ����	� Then the functor ���	

Spt�SymMon� Spectra��

induces an equivalence between their homotopy categories formed by inverting the stable
homotopy equivalences�
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The inverse equivalence is induced by the functor


������	 Spectra�� � E��spaces � LaxSymMon � SymMon

which is the composite of the zeroth space functor ���Spectra�� � E��spaces of
���� the functor Null�� 	�E��spaces � LaxSymMonStrict of ���� and the functor
S�LaxSymMon � SymMon of ����

Proof� The functors of ���� ���� and ��� all preserve stable homotopy equivalences�
Thus the composite functor does induce a functor on the homotopy categories� It
remains to show the two functors are inverse on the homotopy categories�
One already knows by ��� that Spectra�� and E�
spaces are linked by functors

�� and Spt� inducing inverse equivalences of homotopy categories� Similarly� by ������
the inclusions between all the variants of SymMon listed in ����� induce equivalences
of homotopy categories� Moreover one knows ������	 that the restriction of Spt to
UniSymMonStrict is linked by a chain of natural stable homotopy equivalences to the
composite of a lift of the classifying space functor B� UniSymMonStrict � E�
spaces
and the May machine functor Spt��E�
spaces� Spectra���
In light of this� to prove the two functors of the theorem are inverse to each other on

the homotopy category� it su�ces to show�

a	 The composite functor

UniSymMonStrict
B
�� E�
spaces

SNull�� �
��������������������� SymMon

is linked to the inclusion functor by natural stable homotopy equivalences�
b	 The composite functor

Spectra�� � SymMon� Spectra��

is linked to the identity functor by natural stable homotopy equivalences�

These will be proved in the course of this section� The statement a	 will be proven
by direct construction of the link� and b	 will result from the uniqueness theorem for
in�nite loop space machines of �MaT��

���� proof of ����a	�
In order to prove ����a	 it su�ces to construct a chain of functors and natural stable

homotopy equivalences linking the composite

������	 UniSymMonStrict
B
�� E�
spaces

Null�� �
������������������ LaxSymMon

to the inclusion I of UniSymMonStrict into LaxSymMon� For then on applying the
functor S� LaxSymMon� SymMon of ��� to this link one obtains a link of SNull�B� 	
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to SI� which in turn is linked to the inclusion of UniSymMonStrict in SymMon by the
natural stable homotopy equivalence � of ����
I will need to de�ne a functor

������	 Null�� 	�UniSymMonStrict� LaxSymMon

which will be the analog for categories of Null�� 	 for spaces� First� I will construct
the underlying endofunctor of Cat and show there is a natural homotopy equivalence
� from the identity to this endofunctor� For A a category� let Null�A be the category
whose objects are �C� c	 where C is a U
small category such that BC is contractible and
c�C �A is a functor� A morphism in Null�A from �C� c	 to �C �� c�	 is a functor ��C �
C � such that c � c��� Let Term�A be the full subcategory of those �C� c	 such that C has
a terminal object� For each such C� chose a terminal tC out of the isomorphism class of
terminal objects� Then one may construct a functor �� Term�A � A sending the object
�C� c	 to the image of the terminal object� c�tC	� 

� sends the morphism �C� c	� �C �� c�	
to c� of the unique morphism in C � from the image of tC to the terminal object tC� � This
functor � is not strictly natural in A because of the choice of terminal object� Consider
now the full subcategory ��A whose objects are those �C� c	 for which C is the total
order f� � � � � � � � ng for some n� Since here the terminal object n is unique� the
restriction of � gives a functor ���A � A� is strictly natural in A� Moreover� given
any object A � A� the comma category �A has a terminal object ��f�g� c	�� c��	 � A	�
and so is contractible� By Quillen�s Theorem A ��Qu� x�	 it follows that  is a homotopy
equivalence of categories� This statement is the analog of Prop� ���� As in the proof
of Lemma ���� the comma categories 	��C� c	 of the inclusion 	���A � Null�A are
isomorphic to ��C and hence are homotopy equivalent to the contractible C� Then by
Quillen�s Theorem A the inclusion 	 is a homotopy equivalence� Similarly� the inclusion
of ��A into Term�A is a homotopy equivalence� Thus Null�A is linked by a chain of
homotopy equivalences of categories to A� In fact the following natural functor

������	 ��A � Null�A

is a homotopy equivalence� This � sends an object A to the canonical forgetful functor
from the comma category C � A�A� A� � sends a morphismA�� A� to the canonical
map of comma categories A�A � A�A�� As each A�A has a terminal object� � is the
composite of a functor �� into Term�A and the homotopy equivalence given by the
inclusion of the latter in Null�A� But ��� � �� and since � is a homotopy equivalence�
so is �� and �� This completes the proof of the chain of homotopy equivalences of
categories for a general category A�
Now return to the case where A runs over UniSymMonStrict� Let � be the club for

strict unital symmetric monoidal categories� Then as in ���� the natural action of � on
the unital symmetric monoidal A is expressed by action maps ������	� The action of
the E�
operad E�n	 � B��n	 on BA is given by applying the classifying space functor
B to the categorical action ������	� Then replacing everywhere in the construction ���
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of the lax symmetric monoidal structure on Null�X the operad E�n	 � B��n	 by the
categories ��n	 of ������ and Top by Cat� one �nds a construction of a lax symmetric
monoidal category structure on Null�A strictly natural for A in UniSymMonStrict�

There is a natural strict morphism of lax symmetric monoidal categories�

������	 B� Null�A� Null�BA

This B sends the object �C� c�C � A	 to �BC�Bc�BC � BA	� Moreover� this B
induces a homotopy equivalence on the underlying categories� For since B�f� � � � � �
ng	 � ��n�� B restricts to a functor ��A � ��BA� and one has a commutative ladder
of classifying spaces whose sides are given by the homotopy equivalences of ��� and ����
and the maps induced by their above categorical analogs�

������	

BNull�A

��
BB

B��Aoo � ���

��

BA

��
�

BNull�BA B��BA ���oo � BA

This diagram shows that up to homotopy equivalence� the B of ������	 is indenti�ed
to the identity map of A� A fortiori is a fortiori a natural stable homotopy equivalence�

ForA in UniSymMonStrict the natural homotopy equivalence ��A� Null�A of �����
is a lax morphism of lax symmetric monoidal categories� To give � such a structure� it
su�ces considering the presentation of the club for lax symmetric monoidal categories
����� and the description of lax morphisms in terms of presentations ��Ke�� ��� �Ke��
����
����	 to give for each object T of type n in the club � for symmetric monoidal
categories� a natural transformation

������	 �T �T ��A�� � � � �An	� ��T �A�� � � �An		

in Null�A satisfying the following compatibilities with the natural transformations which
are part of the lax symmetric monoidal structure�

�������a	 For each morphism u�T � R in � of type � �  n� the following diagram
commutes�

T ��A�� � � � � �An	 ���T

��
u��A�

��T �A�� � � � � An		

��
��u�A��

R��A����� � � � � �A���n	 ��
�R

��R�A����� � � � � A���n	
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�������b	 For each natural transformation "aT 
R�����Rn� as in ������iv	� the following dia

gram commutes�

T �Ri	��Aj 	 ��
T ��Ri�Aij��

��
aT �Ri�

�Aj�

T ���Ri�Aij		 ���T �Ri�Aij�
��T �Ri�Aij 			

��
�

T �Ri	��Aj	 ��
�T �Ri�

�Aj�
��T �Ri�Aij 			

�������c	 For the natural transformation #a� � � � of ������iii	� the following diagram
commutes�

����A	� ���

��
�a

����A�	

��
���A�

����A	� ��
��

����A		

But for T of type n� T ��A�� � � � �An	 is the contractible category over A

��n	 �A�A� � � � �A�An � ��n	 �A� � � �A � A

Since T is a terminal object in ��n	 and Ai is terminal in A�Ai� the above functor
factors canonically through the comma category A�T �A�� � � � � An	 � ��T �A�� � � � � An		�
Then letting �T be this factorization yields the required natural transformation� It is
routine to check the properties ������	 hold�
Thus the � of ����� is a natural stable homotopy equivalence between functors

SymMonStrict � LaxSymMon� Composing this with the natural stable homotopy
equivalence of ����� yields a natural stable homotopy equivalence from the inclusion
functor I to Null�B� 	� as required to complete the proof of ����a�

���� proof of ����b�
It remains to link the functor Spectra�� � SymMon � Spectra�� to the identity

functor by a chain of natural stable homotopy equivalences�
After composing with the zeroth space functor � 	�� Spectra � Top� one has the

chain of homotopy equivalences of spaces� all naturally in X � Spectra�

������	 Spt�Null�X�	�
�
�� B�Null�X�	

�
�� B���X�	

�
�� X�

The second and third maps of ����� are the natural homotopy equivalences of ��� and
���� The �rst map is the canonical group completion map ������ which is a homotopy
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equivalence in this case� For as in the proof of ���� ��B�Null�X�	 is isomorphic as a
monoid to ��X� and so is already a group�
It would be quite di�cult to specify by hand a chain of E�
homotopy equivalences

between the two ends of ������ Instead� I will circumvent the need to do this by the
following Lemma� Its proof will complete the proof of ����b and hence of the Theorem
���� It is essentially an avatar of the May
Thomason uniqueness theorem for in�nite
loop space machines �MaT��

����� Lemma� Let F �Spectra�� � Spectra�� be an endofunctor of the category of �
���connective spectra� Suppose there exists a chain of functors Gi�Spectra�� � Top and
of natural homotopy equivalences of spaces


��������	 �F 	� � G�
�
�� G�

�
�� � � �

�
�� Gn��

�
�� Gn � � 	�

Then there is a chain of endofunctors of Spectra�� and natural stable homotopy
equivalences linking F to Id�

Proof� Recall ������	 that a map of 
�
connective spectra is a stable homotopy equiva

lence if and only if it induces a homotopy equivalence on the zeroth space� From this and
the chain of homotopy equivalences of zeroth spaces � � �Gi � � � one sees that F preserves
stable homotopy equivalences� Also all the Gi send products of spectra to products of
spaces� at least up to homotopy�
Consider the category of special $
spaces � of Segal �Se�� the category of functors

from the category of �nite based sets $op to Top that take wedges to products up to
homotopy� Segal�s in�nite loop space machine Sg is a functor from the category of
special $
spaces to Spectra��� By �Se� x� there is a functor is the opposite direction�
with the two composites linked to the identity by stable homotopy equivalences� 
 From
this it follows that it su�ces to link FSg to Sg by a chain of natural stable homotopy
equivalences of functors from special $
spaces to Spectra���
But this can be shown to hold by a slight modi�cation of the proof of �MaT� ���� In

more detail� one has a functor given by smash product of �nite based sets�

$op � $op � $op

If A� $op � Top is a special $
space� then the induced A� $op � $op � Top is such that
for each p q 
� A�pq	 is a special $
space� Indeed� as p varies it is a special $
�special
$
space	� so $op � Spectra�� sending p to Sg�q 
� A�pq		 is homotopy equivalent to the
p
fold product of the spectrum Sg�q 
� A��q		� Applying the chain ��������	 of product

preserving natural homotopy equivalences of spaces to the spectra Sg�q 
� A�pq		 yields
a chain of homotopy equivalences of special $
spaces linking p 
� �FSg�q 
� A�pq			� to
p 
� �Sg�q 
� A�pq			�� The Segal machine gives a group completion map natural in the
$
space A�p�	� A�p�	 � �Sg�q 
� A�pq			�� Thus it induces a homotopy equivalence of

associated spectra Sg�p 
� A�p		
�
�� Sg�p 
� �Sg�q 
� A�pq			�	� Applying Sg�p 
� 	
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to the chain of homotopy equivalences of special $
spaces gives a chain of natural stable
homotopy equivalences from the latter spectrum to Sg�p 
� �FSg�q 
� A�pq			�	� By
the over and across theorem� �MaT� ��� for bispectra associated to special $
spectra�
there is a natural chain of stable homotopy equivalences linking Sg�p 
� �FSg�q 
�
A�pq			�	 to FSg�q 
� A��q		 � FSg�A	� Combining the above chains give the required
chain of stable homotopy equivalences linking Sg to FSg�
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