Theory and Applications of Categories, Vol. 3, No. 10, 1997, pp. 250-268

CLOSED MODEL CATEGORIES FOR [n,m]-TYPES

J. IGNACIO EXTREMIANA ALDANA, L. JAVIER HERNANDEZ PARICIO
AND M. TERESA RIVAS RODRIGUEZ

Transmitted by Ronald Brown

ABSTRACT. For m > n > 0, a map f between pointed spaces is said to be a weak
[, m]-equivalence if f induces isomorphisms of the homotopy groups 7, for n < k < m .
Associated with this notion we give two different closed model category structures to the
category of pointed spaces. Both structures have the same class of weak equivalences but
different classes of fibrations and therefore of cofibrations. Using one of these structures,
one obtains that the localized category is equivalent to the category of n-reduced CW-
complexes with dimension less than or equal to m 4+ 1 and m-homotopy classes of cellular
pointed maps. Using the other structure we see that the localized category is also equiva-
lent to the homotopy category of (n — 1)-connected (m + 1)-coconnected CW-complexes.

Introduction.

D. Quillen [19] introduced the notion of closed model category and proved that the
categories of spaces and of simplicial sets have the structure of a closed model category.
This structure gives you some advantages. For instance, you can use sequences of
homotopy fibres or homotopy cofibres associated to a map. In many cases, you can also
compare two closed model categories by using a pair of adjoint functors. For example,
you can prove that the localized categories of spaces and of simplicial sets are equivalent.
In other cases, the cofibrant (or fibrant) approximation of an object gives objects and
canonical maps with certain universal properties or can be used to construct derived
functors.

In this paper, for m > n > 0 , we take as weak equivalences those maps of Top,
which induce isomorphisms on the homotopy group functors 7y for m > k > n . A map
f with this property is said to be a weak [n,m]-equivalence. We complete this class of
weak equivalences with fibrations and cofibrations in two different ways:
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In the first structure, we use [n, m]-fibrations and [n, m]-cofibrations to obtain a closed
model category structure such that all the pointed spaces are [n, m]-fibrant and all n-
reduced CW-complexes with dimension less than or equal to m + 1 are [n, m|-cofibrant.
Using this structure one has that the localized category Ho(Top[*"’m]) is equivalent to the
m-homotopy category of n-reduced C'W-complexes with dimension less than or equal
to m+1 . Recall that two cellular pointed maps f,g: X — Y are m-homotopic if there
is a cellular pointed homotopy F: X @ 0U sk, X @ TU X ® 1 — Y such that Foy = f
and F0; = g , where 0y and 0; are the usual canonical inclusions and sk,, denotes the
standard m-skeleton of a C'W-complex.

In the second structure (the structure “prime”), we use new classes of [n,m]|-
fibrations and [n,m]’-cofibrations to give a distinct closed model category structure
such that a [n, m]’-cofibrant space is weak equivalent to a n-reduced CW-complex and
a pointed space X is [n,m)-fibrant if and only if X is (m + 1)-coconnected. Therefore
the [n, m]'-cofibrant [n, m]’-fibrant spaces are weak equivalent to n-reduced (m + 1)-
coconnected C'W-complexes. In this case we have a different homotopical interpretation
of the localized category Ho(Top[*"’m]/ ). One has that the localized category is equivalent
to standard homotopy category of n-reduced (m + 1)-coconnected C'W-complexes.

We remark that the equivalence between these two different homotopical interpreta-
tions of the localized category are topological versions of the well known (m+1)-skeleton
and (m 4+ 1)-coskeleton functors.

We point out that the category of (n — 1)-connected (m 4+ 1)-coconnected spaces is
not closed by finite limits and colimits. This implies that is not possible to develop
some standard homotopy constructions in this category. Nevertheless, the category of
(n — 1)-connected (m + 1)-coconnected spaces is closed under the homotopy fibres and
loops given by the new closed model category Top[*"’m]/

In order to have a shorter paper we have mainly developed questions related to closed
model category structures. However, we briefly mention the following aspects:

There are equivalences of categories with the corresponding [n, m]-types of pointed
simplicial sets and [n — 1, m — 1]-types of simplicial groups. We refer the reader to [4] ,
[12] for some closed model categories for [n — 1, m — 1]-types of simplicial groups.

In the stable range m < 2n — 2, we have a natural equivalence of categories

Ho(Top["’m]) ~ Ho(Top["+1’m+1])

* *

Therefore, for each “length” r, we only have to study a finite number of categories of
this form, exactly the categories: Ho(Top[*O’r]) \ Ho(Top[*l’r"H]) R Ho(Top[:"i'z’zH'z]) .
For the study of some stable algebraic models for spaces with two consecutive non trivial
homotopy groups, we refer the reader to [3] , [6] , [10], [12] .

We also remark that using the fibrant approximations of a space X in the model
categories Top[*"’m]/ , when m — oo , we obtain the well known Postnikov decomposition
of X. We have included a reformulation of the Postnikov theory to describe how the

Grothendieck integration of the cohomological functor H™+!(—; 7, (—)) on the category
Ho(Top[*"’m_l]/) X Ho(Top[*m]/)"p is equivalent to the category Ho(Top[*"’m]/) .
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We note that for (n— 1)-connected pointed spaces X , Y the following exact sequence
gives an interesting relation between the set of pointed homotopy classes from X to Y,
and the hom-sets of the categories Ho(Top[*"’m])

0 — lim}, Ho(Top™™)(2X,Y) — Ho(Top, )(X,Y) — lim,, Ho(Top™™)(X,Y) = 0
This implies that the family of categories Ho(Top[*"’m]) gives a good approach to the total
homotopy type of pointed spaces. This formula has been used to work with phantom
maps. A map f: X — Y is said to be a phantom map it its restriction to each skeleton
is inessential. Results about the existence of phantom maps have been proved by B.IL
Gray [13] and for the study of spaces of different type but with the same n-type for all
n > 0 we refer the reader to [13], [16], [21].

One of the techniques to study the types and n-types of spaces is the construction
of algebraic models for some particular class of spaces. Recall the notion of homotopy
system, introduced by J.H.C. Whitehead, which is an algebraic model for the types
and n-types of connected CW-complexes whose homotopy groups are isomorphic to the
homology groups of the corresponding universal covering spaces. Brown-Higgings [1]
have developed the notion of crossed complex which generalizes the homotopy system
for non-connected spaces.

Brown-Golasinski [2] have proved that the category of crossed complexes admits the
structure of a closed model category. There are also a truncated version for n-types of
crossed complexes and for pro-crossed complexes given by Hernandez-Porter [14] .

There are other many algebraic models for n-types, for example the notion of cat”-
group introduced by J.-L. Loday [15], the crossed n-cubes analyzed by T. Porter [18]
and the hypercrossed complexes studied by Cegarra-Carrasco [5]. For the case of
[n, n+1]-types one has the categories of cat!-groups, braided cat!-groups and symmetric
catl-groups. We want to mention that some of these models can be adapted for
the equivariant setting, Moerdijk-Svensson [17] have given models for equivariant 2-
types and Garzén-Miranda [11] have developed a technique to give models for higher
dimensions.

We think that our study of closed model categories for [n, m]-types of spaces suggests
that the study of algebraic models for [n,m]-types and stable [n,m]-types can be
developed by using closed model category structures. An equivalence of closed model
categories is stronger than an equivalence of categories. The existence of an equivalence
between a model category of spaces and an algebraic model category permits that some
homotopy constructions can be developed by using algebraic techniques.

1. Preliminaries.

In this section we recall some definitions and notations which will be used later.

1.1 DEFINITION. A closed model category C 1s a category endowed with three
distinguished famailies of maps called cofibrations, fibrations and weak equivalences

satisfying the azioms CM1-C' M5 below:
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CM1. C s closed under finite projective and inductive limits.
CM?2. If f and g are maps such that gf 1s defined then if two of these f.g and gf are
weak equivalences then so is the third.

Recall that the maps in C form the objects of a category Maps(C) having
commutative squares for morphisms. We say that a map f in C s a retract of g if
there are morphisms ¢: f — g and ¥: g — f in Maps(C) such that Yo = idy.

A map which 1s a weak equivalence and a fibration 1s said to be a trivial fibration
and, ssmilarly, a map which 1s a weak equivalence and a cofibration s said to be a trivial
cofibration.

CM3. If f is a retract of g and g 1s a fibration, cofibration or weak equivalence then so
s f.
CM4. (Lifting.) Given a solid arrow diagram

A X

J Jp

B Y

the diagonal arrow from B to X exists in either of the following situations:
(1) @ is a cofibration and p is a trivial fibration,

(11) @ s a trivial cofibration and p is a fibration.
CMS5. (Factorization.) Any map f may be factored in two ways:

—

(*)

—

(1) f = pi where i is a cofibration and p is a trivial fibration,
(11) f = qj where j is a trivial cofibration and q is a fibration.

We say that a map i:A — B in a category has the left lifting property (LLP)
with respect to another map p: X — Y and p is said to have the right lifting property
RLP with respect to 7 if the dotted arrow exists in any diagram of the form (x).

The initial object of C is denoted by ) and the final object by x. An object X of
C is said to be fibrant if the morphism X — * is a fibration and it is said cofibrant if
) — X is a cofibration.

Let Top, be the category of pointed topological spaces and SS, the category of
pointed simplicial sets.

The following functors will be used:

Sing: Top, — SS,, the “singular” functor which is right adjoint to the
“realization” functor | |: SS, — Top, .

cosky: 5SS, — 5S4, the “ g—coskeleton” functor which is right adjoint to the “¢—
skeleton” functor sk,:SS, — 5SS, .

R,:SS, — SS, the “n-reduction” functor defined as follows: Given a pointed
simplicial set X, the n-reduction R, (X) is the simplicial subset of X of those simplices
of X whose g-faces for ¢ < n are degeneracies of the base 0-simplex. The left adjoint of
R, is the functor ( )¢,): SS« — SS4 defined by X,y = X/ sk, 1 X.
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We shall use the following notation: For each integer n > 0, A[n] denotes the
“standard n-simplex”, and for n > 0, A[n] (resp. V(n,k) for 0 < k < n) denotes the
simplicial subset of A[n] which is the union of the i-faces of A[n] for 0 < ¢ < n (resp.
0<i<n,t#k).

In this paper the following closed model categories given by Quillen [19] ,[20] will
be considered:

(1) Top, denotes the category of pointed topological spaces with the following
structure: Given a map f: X — Y in Top,, f is said to be a fibration if it is
a fibre map in the sense of Serre; f is a weak equivalence if f induces isomorphisms
7g(f) for ¢ > 0 and for any choice of base point and f is a cofibration if it has the
LLP with respect to all trivial fibrations.

(2) SS. denotes the category of pointed simplicial sets with the following structure: A
map f: X — Y in SS, is said to be a fibration if f is a fibre map in the sense
of Kan; f is a weak equivalence if its geometric realization, |f|, is a homotopy
equivalence and f is a cofibration if it has the LLP with respect to any trivial
fibration.

(3) SS,, denotes the category of the n-reduced simplicial sets. A pointed simplicial
set X is said to be n-reduced if sk, _y X is isomorphic to the simplicial subset
generated by the base 0-simplex of X . We write SS,, for the full subcategory of
SS, determined by all the n-reduced simplicial sets. A map f: X — Y in SS,, is
said to be a cofibration in SS,, if f is injective, f is a weak equivalence if it is a
weak equivalence in SS, and f is a fibration if it has the RLP with respect to the
trivial cofibrations in SS,, .

We also need the closed model structures given in [7] and [§] .

(4) Topf] , n = 0, denotes the category of pointed topological spaces with the following
structure: A map f: X — Y in Top, is said to be an nl-fibration if f has in Top
the RLP with respect to the maps of the family V™! — I?, 0 < p < n + 1, and
yrrl j"+2, where I? denotes the g-dimensional unit cube; I is the union of
all the (¢ — 1)-faces of I? (if ¢ = 0, I = 0) and VI~ = cl(jq — (1771 < {1}))
is the space obtained to removing the face 171 x {1} of I1. A map f is said
to be a weak nl-equivalence if, for £ = 0,1,--- ,n and @ € X, the induced map
mg(f)img(X,2) — 7wy (Y, f(z)) is an isomorphism. An nl-fibration which is also
a weak n]-equivalence is said to be a trivial n]-fibration, and a map f is an nl-
cofibration if f has the LLP with respect to each trivial n]-fibration.

(5) SSZ] , n = 0, denotes the category of pointed simplicial sets with the following
structure: A map f: X — Y in SS, is said to be a weak n]-equivalence if
|f]:|X] — |Y] is a weak n]-equivalence in Top, , f is said to be an n]-fibration
if f has the RLP with respect to V(p, k) — Alp]for 0 <p<n+1, 0 <k <p
and V(n 4+ 2,k) — A[n—I—Z], 0 <k <n+2 A map f which is a weak n]-
equivalence and an n|-fibration is said to be a trivial n]-fibration, and a map f is
an nl-cofibration if f has the LLP with respect to any trivial n]-fibration.
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(6) Top[*" , n > 0, denotes the category of pointed topological spaces with the following
structure: A map f: X — Y in Top, is said to be a weak [n-equivalence if the
induced map 7 (f):7y(X) — 74(Y) is an isomorphism for each ¢ > n; f is an
[n-fibration if it has the RLP with respect to the inclusions in Top,

|V(p, k)/ skn-1 V(p, k)| — [ Alp] / skn—1 Alp]]

for every p > nand 0 < k < p. If f is both an [n-fibration and a weak [n-
equivalence is said to be a trivial [n-fibration. And f is an [n-cofibration if it has
the LLP with respect to any trivial [n-fibration.

Let Ho(Top, ), Ho(SS,), Ho(SS,), Ho(Topf]) HO(SSZ]) and Ho(Top[*") denote the
corresponding localized categories obtained by formal inversion of the respective families
of weak equivalences defined above.

2. The categories Topl™™ and Topl™™'.

In the category of pointed topological spaces and continuous maps, Top,, for each
pair of integers n, m such that 0 < n < m, we consider the following families of maps:

2.1 DEFINITION. Let f: X — Y be a map n Top, ,
(1) [ is a weak [n,m]-equivalence if the induced map 7y (f):my(X) — 7((Y) 1s an
1somorphism for every q such that n < g < m.
(11) f is an [n,m]-fibration if it has the RLP with respect to the inclusions

|V(p,k)/ skna V(p, k)| — | Alp] / skn—1 Alp]|
for every p such thatn <p<m+1and 0 <k < p, and
|V(m 4+ 2,k)/ skn_1 V(m +2,k)| — | Alm + 2] / skn_q Alm + 2] |

for0<k<m+2.

A map which is both an [n, m]-fibration and a weak [n, m]-equivalence is said to be
a trivial [n, m]-fibration.
(111) f is an [n,m]-cofibration if it has the LLP with respect to any trivial [n, m]-fibration.

A map which is both an [n, m]-cofibration and a weak [n,ml-equivalence is said to
be a trivial [n, m]-cofibration.

A pointed space X is said to be [n,m]-fibrant if the map X — x is an [n,m]-
fibration, and X is said to be [n, m]-cofibrant if the map x — X 1is an [n, m]-cofibration.

REMARK. We note that the homotopy group m,(X) only depends on the path
component C' of the given base point of X . Therefore the inclusion C' — X is always
a weak [n,m]-equivalence. On the other hand, the objects |V(p,k)/sk,—1 V(p, k)|,

| Alp] / skn—1 Alp] ], | V(m 4+ 2,k)/ skn—1 V(m + 2, k)| and | Alm + 2] /sk,—1 A[m + 2] |
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used in the definition of [n, m]-fibration are considered as pointed spaces. It is also clear
that all objects in Top, are [n,m]-fibrant.

Using the same class of “weak equivalences”, we introduce new classes of
“fibrations” and “cofibrations” that will give a different structure to Top, . The new
class of fibrations is a subclass of the fibrations given in Definition 2.1. We distinguish
the new structure by using the notation “prime”.

2.1” DEFINITION. Let f: X — Y be a map wn Top, ,
(1) f is a weak [n,m]'-equivalence if f is a weak [n,m]-equivalence.
(11) f is an [n,m] -fibration if f is an [n,m]-fibration and it has the RLP with respect
to the inclusions

| Alp] / skn—1 Alp] | — | Alp] / skne1 Alp] |

for any p > m + 2.

In a similar way to Definition 2.1, we define the corresponding notions of
trivial [n, m]’'-fibration, [n, ml’-cofibration,trivial [n, m|'-cofibration and [n, m]'-fibrant or
[, m] -cofibrant object.

In this paper, with the definitions given above we will prove the following results:

2.2 THEOREM. For each pair of integers n,m, such that 0 < n < m, the category
Top, together with the families of [n, m]-fibrations, [n, m]-cofibrations and weak [n,m]-
equivalences, has the structure of a closed model category.

2.2 THEOREM. Analogous to Theorem 2.2 writing [n, m]" instead of [n,m].

We shall denote by Top[*"’m] the closed model category Top, with the distinguished
families of [n, m]-fibrations, [n,m]-cofibrations and weak [n,m]-equivalences. When
[,n]

n = m we shall denote by Top[*"] the category Topl"™. Similarly, we will use the

notation Top[*"’m]/ \ Top[*"]/ .

It is well know that Axiom C'M1 is satisfied by Top, , Axiom C'M?2 is an immediate
consequence of the properties of the isomorphisms of groups, and the definition of
[, m]-cofibration ([n,m]’-cofibration) implies obviously Axiom CM4 (i). Then, we will
complete the proof of the Theorem 2.2 and Theorem 2.2” as a consequence of the results
below.

2.3 LEMMA. If a map f is a retract of a map g and g has the RLP (resp LLP) with
respect to another map h, then f has also this property.

2.4 PROPOSITION. (Aziom CM3) In Top, if a map f is a retract of a map g and g s
an [n,ml-fibration, [n,m|-cofibration or weak [n, m]-equivalence, then so is f.
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2.4 PROPOSITION. Analogous to Proposition 2.4 writing [n,m|" instead of [n, m].

2.5 PROPOSITION. Let f be a map wn Top,, then
(1) f s an [n,m]-fibration if and only if coskpyy1 Ry, Sing f is a fibration in SS,,
(11) f is a weak [n, m]-equivalence if and only if cosky,41 Ry, Sing f is a weak equivalence
mn SSy,
(111) f is a trivial [n,m]-fibration if and only if coskmyy1 Ry, Sing f is a trivial fibration
m SS,.

PRrROOF. (i) Taking into account that the functors Sing and R,, are right adjoints to
the functors | | and ( )(,) respectively, we have, for a map f in Top,, that f is an
[, m]-fibration if and only if R, Sing f has the RLP with respect to the inclusions

V(m +2,k) — Alm + 2]

for 0 < k< m+42, and
V(p, k) — Alp]

forn<p<m+1,0<Ek<p.

Note that if p > m + 2, then sky,41 V(p, k) — skpmt1 Alp] is an isomorphism; if
p = m+ 2, then sky,41 V(m + 2, k) — sky1 A[m + 2] is isomorphic in Maps(SS) to
Vim +2,k) — A[m—I—Q], and if p < m + 2, then sky,11 V(p, k) — skpy1 Alp] is
isomorphic to V(p, k) — Alp] .

Therefore, f is an [n, m]-fibration if and only if R,, Sing f has the RLP with respect
to the inclusions sky,+1 V(p, k) — skpy1 Afp] foreach p>n , 0<k <p.

Now, applying that the functor sk,,;1 is left adjoint to the functor cosk,,+1 the
above condition is equivalent to cosk,,+1 R, Sing f has the RLP with respect to the
family of inclusions V(p, k) — Alp], n < p.

Because cosky,+1 R, Sing f is a map in SS, and for any pointed space X,
cosky,11 Ry, Sing X is a Kan complex, we can apply the Proposition 2.12 of [20] to
conclude that f is an [n,m]-fibration in Top, if and only if cosk,,41 R, Sing f is a
fibration in SS,,.

(ii) Since for any pointed space X, Sing X is a Kan simplicial set, then R, Sing X
is the n-Eilenberg subcomplex of Sing X. Therefore, for each ¢ > n, we have the
isomorphisms

7g(R, Sing X') = 7 (Sing X ) = 7, (X).
On the other hand, for each pointed simplicial set L, the natural map n: L —» cosk,,, 41 L
induces the isomorphisms 7,(n), for ¢ < m.

Taking into account that for any pointed space X, R,, Sing X is a Kan simplicial set,
then cosky,,+1 R, Sing X is an (m + 1)-coconnected n-reduced simplicial set. Therefore
we obtain g (cosky,41 Ry, SingX) = 0 for ¢ < n or ¢ > m and the isomorphisms
mg(coskpmqt Ry Sing X ) = 7 (X) for n < g < m.

So, for a map f in Top,, f is a weak [n,m]-equivalence if and only if
cosky,,+1 R, Sing f is a weak equivalence in SS,.

(iii) It is an immediate consequence of (i) and (ii). i
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2.6 PROPOSITION. For a map f:X — Y n Top,, the following statements are
equivalent:

(1) f is a trivial [n, m]-fibration,

(11) f has the RLP with respect to the inclusions

| Alp] / skn—1 Alp] | — | Alp] / skne1 Alp] |

form<p<m-+1.

PROOF. Let f be a map in Top,. By Proposition 2.5 and Proposition 2.3 of [20] , f is
a trivial [n, m]-fibration if and only if cosk,,+1 R, Sing f has the RLP with respect to
the inclusions A[p] —s A[p] for each integer p > 0.

Because sk,,4+1 and cosk,,;1 are adjoints, the above condition is equivalent to
R, Sing f has the RLP with respect to the inclusions

skm41 Alp] — sking1 Alp]

for each p > 0.

We note that if p > m + 2, the map sky,4+1 A[p] — skt Alp] is an isomorphism
and, for p < m + 1, the inclusion sk, 41 A[p] — skpy41 Alp] is isomorphic in Maps(SS)
to the inclusion Alp] — A[p]. Then, f is a trivial [n,m]-fibration if and only if
R, Sing f has the RLP with respect to the inclusions A[p] — Alp]for0<p<m+ 1.

Now, using the adjointness of R, Sing and | [( )(,), we obtain that the above
condition is equivalent to f has the RLP with respect to

| Alp] / skn—1 Alp) | — | Alp] /ska—1 Alp]|, n <p<m+ 1.

2.6 PROPOSITION. For a map f: X — Y wn Top,, the following statements are
equivalent:

(1) f s a trivial [n, m]’ -fibration,

(11) f has the RLP with respect to the inclusions

| Alp] / skn—1 Alp] | — | Alp] / skne1 Alp] |

for every p > n.

REMARK. Note that since (ii) is the characterization of the trivial [n-fibrations (see [8]),
then the family of the [n, m]’-cofibrations agree with the family of the [n-cofibrations.

2.7 PROPOSITION. (Aziom CM5) Let f: X — Y be a map in Top,, then f can be
factored in two ways:
(1) f = pi, where i is an [n,m]-cofibration and p is a trivial [n, m]-fibration,
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(11) f = qj, where j is a weak [n,m|-equivalence having the LLP with respect to all
[n, m]-fibrations and q is an [n,m]-fibration.

PROOF. Given a class F of maps, denote by F’ the class of maps which have the RLP
with respect to the maps of F.
(i) Consider the family F of inclusions

| Alr] ) skno1 Alr]| — | AlF] [ sknoy A[r]], n <7 <m+1.

By Proposition 2.6, F' is the class of trivial [n, m]-fibrations.

Now, we can use the “small object argument”, in a similar way to Lemma 3 of ch
I1, §3 of Quillen [19] to factor f: X — Y as f = pi where p is in F' and 7 has the
LLP with respect to the maps of F'. Then, p is a trivial [n, m]-fibration and 7 is an
[, m]-cofibration.

(ii) Consider the following family F of maps which is the union of the following Fy
and Fs:

Fi is the family of inclusions
|V(r, k) skna V(r, k)| — [A[r] /sknt Alr]], n <r<m+1,0< k<,
and F, is the family
|V(m 4+ 2,k)/ skn_1 V(m +2,k)| — | Alm +2] /skp_1 Alm +2]|, 0 < k < m+2.

In this case, by Definition 2.1, F’ is the class of [n, m]-fibrations. Analogously to (i),
we can factor f = ¢j where ¢ is an [n, m]-fibration and j has the LLP with respect to
all [n, m]-fibrations.

Now, we note that for any map |V(m + 2,k)/sk,—1 V(m + 2,k)] — X, 0 < k <
m + 2, in Top, , the inclusion map

hX — X U | Alm 4 2]/ skn_1 A[m + 2] |
|V(m+27k)/5kn—1 V(m+27k)|

induces isomorphisms 7, (h) for ¢ < m; and for any map |V(r,k)/skn—1 V(r, k)| —
X, r>n, 0<k <r, in Top, , the inclusion

X — X U | A[r] ] skn_y Alr]]
|V (ryk)/ skn—1 V (1,k)]

is a trivial cofibration.
Using these facts one can check that the map j is a weak [n, m]-equivalence. i
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2.77 PROPOSITION. Analogous to Proposition 2.7, writing [n,m]" instead of [n, m].

PROOF. (i) This decomposition is the same that the given for the [n-structure. See [§].
(ii) In a similar way to the proof of Proposition 2.7 (ii) and taking into account
that for any map
| Alr] [ sknoy AP — X, 7= m +2.

in Top,, the inclusion map

X — X U | A[r] ] skn_y Alr]]
| ALr] / skn—1 A[1] |

induces isomorphisms m,(h") for ¢ < m. 1

REMARK. Note that if X = %, the [n, m]’-cofibrant space Z , constructed in the proof
of Proposition 2.7 (i) for the decomposition x — Z — Y | is (n — 1)-connected. And
if Y = %, the [n, m]-fibrant space W |, constructed in the proof of Proposition 2.7 (ii)
for the decomposition X — W — %, is (m + 1)-coconnected. Then for any pointed
space X, we can construct in a functorial way, an object of Top,, denoted by X["’m]/,
which is [n, m]'-fibrant and [n, m]'-cofibrant, weak [n, m]'-equivalent to X, and X[mm
is (n — 1)-connected and (m 4+ 1)-coconnected.

2.8 COROLLARY. (Aziom CM4 (ii)) Any trivial [n,m]-cofibration has the LLP with

respect to all [n, m]-fibrations.

PROOF. Let : A — B be a trivial [n,m]-cofibration. By Proposition 2.7 we have a
commutative diagram in Top,
j

A——W
J Jq

where ¢ is an [n, m]-fibration and j is a weak [n, m]-equivalence which has the LLP with
respect to any [n, m]-fibration.

Because Axiom CM?2 is verified, ¢ is a trivial [n, m]-fibration. Therefore, there is
a lifting h: B — W for the diagram above, and the map ¢ is a retract of 5. Applying
Lemma 2.3, it follows that 7 has the LLP with respect to all [n, m]-fibrations. i

2.8 COROLLARY. Analogous to Corollary 2.8 writing [n, m]" instead of [n,m].

REMARK. (i) In Definition 2.1 we have considered classes of cofibrations, fibrations and
weak equivalences to define the [n, m]-structure for integers n, m such that 0 < n <m .
Obviously we can extend Definition 2.1 for the case m = co. In order to extend this
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for the case n = 0 , we proceed as follows: Note that for any simplicial set K, when
n > 0, |K/sk,_1 K| is the pushout |K| U * . If we take sk_y( ) = 0 , then, for
Iskn_1 K|

n = 0, this pushout is homeomorphic to |[KT| , where KT denotes the disjoint union
of K and a point. Note that the class of [n,m]-fibrations given in Definition 2.1 and
the class of trivial [n, m]-fibrations are characterized by the RLP with respect to the
family F[n,m| given in Definition 2.1 and the family 7 [n, m] given in Proposition 2.6.
With this notation, for n = 0 , the RLP with respect to F[n,m| induces the class
of [0, m]-fibrations and the RLP with respect to 7[n,m] produces the class of trivial
[0, m]-fibrations. We can use the LLP with respect these classes to define the classes
of trivial [0, m]-cofibrations and [0, m]-cofibrations. Finally, we can define the weak
[0, m]-equivalences how those morphisms f that can be factored as f = pi , where 7 is
a trivial [0, m]-cofibration and p is a trivial [0, m]-fibration. This [0, m]-structure is just
the m]-structure given in §1 (4), that have been analyzed in [7] . For m =00 , n >0,
one obtains the category Topl™ (see [8] ) and for the case n = 0, m = oo we have the
structure of closed model category Top, given by Quillen for pointed spaces.

(ii) We can give an equivalent definition of the notion of [n, m]-fibration if we change
the family of inclusions used in Definition 2.1 by the following family:

cstaol Jster—cstarl; n—1<k<m-1
and
Csm @0l Jsm el — a(CS™ @ I)

where 0 denotes the standard boundary.

Then, the trivial [n, m]-fibrations are characterized by the RLP with respect to the
inclusions * — S™ and S* — D**! for every k such that n < k < m.

(iii) Similarly, for the [n,m]’-structure, we can give an equivalent definition of the
notion of [n, m]’-fibration by adding to the family of inclusions given in (ii) the maps

Sk DML E>m 41,

Then, the trivial [n, m]'-fibrations are characterized by the RLP with respect to the
inclusions + — S™ and S¥ — D! for every k > n.

3. The category Ho(Topl™™).

Let n,m be integers such that 0 < n < m. Let Ho(Top[*"’m]) denote the localized
category obtained by formal inversion of the family of weak [n, m]-equivalences. Note

that Ho(Topl™™) = Ho(Top[*"’m]/).

We shall compare Ho(Top[*"’m]) with the localized category Ho(SS,,) :
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Consider the adjoint functors

skon
| [skimt1 (]

SS,+——To
" cosk,, 41 Ry, Sing P

Note that, by Proposition 2.5, the functor cosk,,+1 R, Sing preserves fibrations
and weak equivalences. We also have that every object of Top[*"’m] is [n, m]-fibrant. On
the other hand, all objects of SS,, are cofibrant and the functor | |sk,,+; verifies the

following properties:

3.1 PROPOSITION. Let f: X — Y be a map in SS,,. Then:
(1) If f is a weak equivalence in SS,,, then |skpy1 f| ts a weak [n,m]-equivalence.
(11) If f is a cofibration in SS,,, then |skmy1 f| is an [n, m]-cofibration.

PROOF. (i) For any pointed simplicial set I, the natural map p:skpy1 K — K
induces an isomorphism 7 () for each ¢ < m.

So, given a map f in SS, such that 7 (f) is an isomorphism for every ¢, the
maps 7, (| skm+1 f|) are isomorphism for ¢ < m. Obviously, |skp,4+1 f| is a weak [n, m]-
equivalence.

(ii) It is an immediate consequence of the Proposition 2.5 (iii) and the fact that
the functors | |sk,,4+1 and cosk,,4+1 R, Sing are adjoints. i

Recall that if F: A — B is a functor between closed model categories, and F
carries a weak equivalence between cofibrant objects of A into a weak equivalence of B,
there exists a left derived functor F*: Ho(A) — Ho(B) defined by FL(X) = F(LX),
where LX — X is a trivial fibration and LX is a cofibrant object in A. In a dual
context one has right derived functors G*.

In our case, by Proposition 2.5 and Proposition 3.1, it follows that the functors
| | skyt1 and cosk,, 41 R, Sing induce the adjoint functors (| |skpy1)? = | | skmy1 and
(coskmy1 Ry Sing)R = cosk,,4+1 R, Sing between the localized categories:

| [skmta
y—— [n,m]
Y N S ——
HO(SS )coskm+1 R, Sing HO(TOP* )

Remember that for any pointed space X, cosk,,41 Ry, Sing X is an (m + 1)-
coconnected n-reduced simplicial set. Let Ho(SSy)|(m+1)—coco the full subcategory of
Ho(SS,,) determined by the (m + 1)-coconnected n-reduced simplicial sets. Then, we
have:

3.2 THEOREM. The pair of adjoint functors | |skp41 , coskpi1 Ry Sing induce an
equivalence of categories
| [skm1

—> n,m
HO(SSn) |(m+1)—cocom HO(TOP& ])

PROOF. It suffices to check that for any (m 4 1)-coconnected object X of SS,,, the unit
X — coskpmy1 Ry Sing | skpt1 X| of the adjunction is an isomorphism of Ho(SS,,).
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And for every object Y of Top,, the counit |sk;,41 coskyq1 Ry SingY | — Y is an

[r,m]

isomorphism of Ho(Topy"™). i

[r,m]

REMARKS. The category Ho(Top{"") is related with the closed model categories given
in §1 as follows:
(i) Consider the equivalences of categories given in [8]:

| | (Id)*
HO(SSn)m HO(TOPE?)T HO(TOP*)|(n—1)—co

where Ho(Top, )|(n—1)-co denotes the full subcategory of Ho(Top,) determined by the
(n — 1)-connected spaces.

These functors induce between the respective full subcategories determined by the
(m + 1)-coconnected objects the equivalences:

| ] (Id)"
HO(SSn)|(m+1)_COCOm HO(TOpg(n”(m—l—l)—cocoT HO(TOP*)|(n—1)—co;(m—|—1)—coco

On the other hand, consider the equivalences of categories given in [7]:

skint1 | |
HO(SS*)|(m+1)—cocom HO(SST])W HO(TOPT])
cosKym 41

which induce in the respective subcategories determined by the (n—1)-connected objects
the equivalences:

Sk777,-|—1
HO(SS.)] -1 1 con 2 BO(SSI)) 10 = Ho(Top D) 11
coskyn g1 n

Tacking into account that the equivalence between the localized categories

| I
Ho(Top*)<T Ho(SS,)
ing

induces an equivalence of categories:

|
HO(TOP*) |(n—1)—co;(m+1)—cocow HO(SS*) |(n—1)—co;(m—|—1)—coco

we have that the category Ho(Top[*"’m]) is also equivalent to the categories

HO(TOP*)|(n—1)—co;(m—|—1)—coc07 HO(SS*)|(n—1)—co;(m—|—1)—coc07 HO(SST]”(n—l)—cov
HO(TOPT]”(n—l)—cov HO(TOp&n”(m—I—l)—COCO'

(ii) Let 7 CW[, ,, denote the category of pointed CW-complexes with dimension
< m + 1 whose (n — 1)-skeleton consists just of one 0-cell and the morphisms
are given by pointed cellular m-homotopy classes of pointed cellular maps. Then,

n,m])

the functors given in (i) induce an equivalence between the categories Ho(Top[*

and # CW[,, -
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(iii) Let m CW,, ,,,» denote the category of pointed CW-complexes (1m + 1)-coconnected
whose (n — 1)-skeleton consists just of one 0-cell and the morphisms are given
by pointed cellular homotopy classes of pointed cellular maps. Then, since
Ho(Top[*"’m]) = Ho(Top[*"’m]/), we can use the [n,m]’-structure to check that the

categories Ho(Top[*"’m]) and 7 CW, ] are equivalent.

(iv) It is well known that Ho(Top[*O]) is equivalent to the category of pointed sets,
Ho(Top[*l]) is equivalent to the category of groups and for k > 2, Ho(Top[*k]) is
equivalent to the category of abelian groups. For two consecutive non trivial

homotopy groups, we have that Ho(Top[*O’l]) is equivalent to a localization of

pointed groupoids, Ho(Top[*l’Z]) is equivalent to a localization of cat-groups,
Ho(Top[f’S]) is equivalent to a localization of braided cat-groups and for k > 3,
Ho(ToplF¥+11) is equivalent to a localization of symmetric cat-groups (see [6], [12]

(v) %The [, m]-structures and [n,m]’-structures developed for pointed spaces are
connected with the closed model structures developed in [12] . In particular we have
the usual equivalence of categories Ho(Top[*"’m]) with categories of [n — 1,m — 1]-
types of simplicial groups.

4. Integration of the singular cohomology.

Let n,m integers such that 1 < n < m. In this section, we shall prove that the

localized category Ho(Top[*"’m]/) is the category of elements of P, where P is an adequate
functor from the category Ho(Top[*’”"m_l]/)Op X Ho(Top[*m]/) to the category of sets.

Recall that if P:C°P — Sets is a functor, where C°P denotes the opposite category
of a category C, then the category of elements of P, denoted by fc P, is defined as follows:
Its objects are all pairs (C, p) where C is an object of C and p € P(C). Its morphisms
(C",p") — (C,p) are those morphisms u: C' — C of C for which P(u)p = p’. These
morphisms are composed by composing the underlying arrows u of C.

We consider the functor
P: Ho(Top[*r"m_l]/)Op X Ho(Top[*m]/) — Sets
defined by
P(A,B) = H"" (4,7, B)

where A’ denotes the object Al"™=1" which is the [, m — 1)’-cofibrant and [rn, m — 1]'-
fibrant approximation of A in the [n, m —1]"-structure (see the Remark after Proposition
2.7.)

Now, if

/ H™ () 7))

[n,m—1] [m) yop
Ho(Tops )xHo(Topy )

is the category of elements of P, we have the following result:
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[r,m]’

4.1 THEOREM. The category Ho(Top ) is equivalent to the category

/ H™ () 7))

Ho(Top&n’m_l]/ ) ><H0(Top£m]/ )op

PRrROOF. We can check that the categories above are equivalent by using the functors

Ho(Top[*"’m]/) & / H™ () 7))

am

Ho(Top&n’m_l]/ ) ><H0(Top£m]/ )op

defined as follows:

Let (A, B;p) be an object of / H™ (Y, 70()). We can

Ho(Topl™ ™~y xHo(Topl™"yop

suppose that A is an [n, m — 1)'-fibrant [n, m — 1]’-cofibrant object in Top[*"’m_l]/ and B
is an [m]’-fibrant [m]’-cofibrant object in Top[*m]/ . Then A is an (n — 1)connected and
m-coconnected pointed topological space and B is an (m — 1)-connected and (m + 1)-
coconnected pointed topological space. In this case we have that A’ = A .

We note that if p € H" (A", 7,B) = [A, K(7,B,m + 1)] , then we define
am(A, B; p) as the amplification of A by p; in others words, am(A, B; p) is the homotopy
fibre of p, defined by the pull-back

am(A,B;p) ——— P

A———K(mB,m +1)

where a: P — K (7, B, m+1) is a fibration of Serre and P is weak equivalent to a point.
We note that ¢: am(A, B; p) — A is afibration of Serre whose fibre is an Eilenberg—Mac
Lane space K (7, B,m). Observe that am(A, B;p) is an (n — 1)-connected, (m + 1)-

coconnected pointed space which is isomorphic to A in Ho(Top[*"’m_l]/) and isomorphic

to B in Ho(Top[*m]/).

Conversely, let X be an object of Ho(Top[*"’m]/). We can suppose that X is
an (n — 1)-connected and (m + 1)-coconnected pointed topological space. Let P =
{X1, f,,k%"1} a fibred Postnikov system for X. We may assume that X? = X° = «
forall g <n—1and X9 = X™ for all ¢ > m. Note that X" and X are isomorphic in
Ho(Top[*"’m]/).

Then, we define de(X) as the object (X™™1 K;k™%1) where K denotes the fibre
of the map f,: X™ — X™~ 1 which is an Eilenberg-Mac Lane space K(7,,, X, m) and
Emtl g the (m + 1)-invariant of Postnikov.
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By the properties of the Postnikov invariants it is obvious that the functors am
and de give an equivalence of categories.

REMARKS.
(i) If we apply consecutively the functor de

Ho(Topl™ ™) ~ / H™ (Y omm () . m>n.

Ho(Top&n’m_l]/ ) ><H0(Top£m]/ )op

we obtain the Postnikov decomposition of an object of Ho(Top[*"’m]/) . That is, for X
in Ho(Top[*"’m]/) , one has

deX = (X" K(rp X, m); k™)

deX™ 1 = (X" K(rpmo1 X,m — 1);E™)

d@Xn_|_1 = (Xn,ff(ﬂ'rH_lX,n + 1), kn+2)

(ii) Using the following equivalences of categories
Ho(Top[*k]/) ~Ab, k=2

Ho(Top[f’?)]/) ~ Ho(Bcat(Gr))
Ho(Top[*SA]/) ~ Ho((Scat(Gr))

where Ab is the category of abelian groups, Beat(Gr) the category of braided cat-
groups, and Scat(Gr) is the category of symmetric cat-groups, we have the induced
equivalences of categories

Ho(Beat(G)) = [ () ma( )

Ho((Scat(Gr)) ~ / H5(( Y ma( )

Abx AbOP

(iii) For the case of [n,n + 2]-types, we have

Ho(Top!**! H?(() ()

) B /Ho(Bcat(Gr)) X AbOP

Ho(Top[*3’5]/) ~ HO(( ), ms())

/Ho(Scat(Gr)) X AbOP

Ho(Toplt! H((),76( )

=)
Ho(Scat(Gr)) x AbOP
We leave the reader the work of writing down the equivalences above with two

integrals and we propose the study of the possible topological interpretation of Fubini

Theorems of this theory of integration of functors on a product of categories.
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