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PASTING IN MULTIPLE CATEGORIES

RICHARD STEINER
Transmitted by Peter Johnstone

ABSTRACT. In the literature there are several kinds of concrete and abstract cell
complexes representing composition in n-categories, ω-categories or ∞-categories, and
the slightly more general partial ω-categories. Some examples are parity complexes,
pasting schemes and directed complexes. In this paper we give an axiomatic treat-
ment: that is to say, we study the class of ‘ω-complexes’ which consists of all complexes
representing partial ω-categories. We show that ω-complexes can be given geometric
structures and that in most important examples they become well-behaved CW com-
plexes; we characterise ω-complexes by conditions on their cells; we show that a product
of ω-complexes is again an ω-complex; and we describe some products in detail.

1. Introduction

In this paper we consider pasting diagrams representing compositions in multiple cat-
egories. To be specific, the multiple categories concerned are n-categories and their
infinite-dimensional analogues, which are called ω-categories or ∞-categories; we also
use the slightly more general partial ω-categories (see Section 2 for definitions).

Several authors have studied such diagrams; they have names such as parity complex,
pasting scheme or directed complex. See Al-Agl and Steiner [2], Johnson [5], Kapranov
and Voevodsky [6], Power [9], Steiner [10] and Street [12]. In each case the authors
construct a class of more or less abstract cell complexes, subject to some apparently
arbitrary axioms, and show that their cells generate partial ω-categories (often, in fact,
genuine ω-categories). In each case the composites are represented by unions and the
equality of complicated iterated composites can be tested by looking at the corresponding
sets. It is not clear how the various constructions are related, and the aim of this paper
is to clarify matters by giving an axiomatic treatment. That is to say, we define a class of
‘ω-complexes’ by requiring that their cells generate partial ω-categories; this means that
all previous constructions are included. The definition is given in Section 2.

As an abstract cell complex, an ω-complex is a union of ‘cells’ or ‘atoms’ of various
dimensions. In Section 3 we show that the entire structure is determined by a small
amount of information on each cell; essentially we need its dimension and its boundary.
The interiors of the cells (that is, the complements of the boundaries) are required to
be non-empty disjoint sets, but so far as the algebra is concerned, it does otherwise
matter what they are. They can be singletons, which gives a purely combinatorial theory,
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or they can be chosen so that the ω-complex has a geometric structure. In Section 4
we describe a natural geometric choice; in most important examples the cells are then
genuine topological cells and the ω-complex is a well-behaved CW complex. In Section 5
we give a converse to Section 3: that is to say, we give necessary and sufficient conditions
for dimension and boundary functions to produce an ω-complex.

The rest of the paper is concerned with products. We show that two ω-complexes have
a natural product, which is also an ω-complex; the theory is described in Section 6, but
most of the proofs are deferred to Section 8. In Section 7 we describe some interactions
between products and geometric structures. As a by-product we give explicit formulae
for tensor products of ω-categories (see [2], 12); in particular, we give very explicit de-
scriptions for the product of two infinite-dimensional globes and some related products
(see Example 6.19). This may help in understanding the work of Gray [4]; it may also
help in understanding weak n-categories (compare the formulae of Baez and Neuchl [3]
and Kapranov and Voevodsky [8]).

In principle, the work of Sections 3 and 5 gives an entirely satisfactory local theory
for ω-complexes, although one of the conditions in Section 5 may be difficult to verify
in practice. In effect, we produce a completely natural higher-dimensional version of a
directed graph. There is also a global problem: to characterise the ω-complexes which cor-
respond to genuine ω-categories, not just partial ω-categories. In graph-theoretic terms,
we are seeking a higher-dimensional version of a loop-free directed graph. We discuss this
problem at the end of Section 2, but we do not know a satisfactory answer.

2. Definitions

In this section we define ω-categories, partial ω-categories and ω-complexes, and discuss
some examples.

An ω-category consists of a sequence of small categories C0, C1, . . . , all of which have
the same morphism set X. The category structures commute with one another, and for
every x ∈ X there is a non-negative integer p such that x is an identity in Cn if and only
if n ≥ p. In the category Cn we write d−

n x and d+
n x for the identities of the target and

source of a morphism x, and we write #n for the composition operation. Thus x #n y
is defined if and only if d+

n x = d−
n y. To get a partial ω-category, we require only that

d+
n x = d−

n y if x #n y is defined, but not necessarily vice versa.

In practice we avoid mentioning the objects, so we regard an ω-category or partial ω-
category as a single set X with unary operations d−

n , d+
n and partial binary operations #n.

In this language, the definitions can be spelled out explicitly as follows.

2.1. Definition. An partial ω-category is a set X together with unary operations d−
0 ,

d+
0 , d−

1 , d+
1 , . . . and not everywhere defined binary operations #0, #1, . . . such that the

following conditions hold:

(i) if x #n y is defined then d+
n x = d−

n y;
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(ii) for α, β = ± and for non-negative integers m, n,

dβ
mdα

nx =

{
dβ

mx if m < n,
dα

nx if m ≥ n;

(iii) d−
n x #n x = x #n d+

n x = x for x ∈ X and for all n;
(iv) if x #n y is defined then

dα
m(x #n y) = dα

mx = dα
my for m < n,

d−
n (x #n y) = d−

n x, d+
n (x #n y) = d+

n y,

dα
m(x #n y) = dα

mx #n dα
my for m > n;

(v) (x #n y) #n z = x #n (y #n z) if either side is defined;
(vi) (x′ #n y′) #m (x′′ #n y′′) = (x′ #m x′′) #n (y′ #m y′′) if m < n and the left side is

defined;
(vii) for every x ∈ X there is a non-negative integer p such that dα

nx = x if and only
if n ≥ p.

2.2. Definition. An ω-category is a partial ω-category in which x#n y is defined if and
only if d+

n x = d−
n y.

The term ∞-category is sometimes used instead of ω-category.
In some of the literature, condition (vii) of Definition 2.1 is omitted.
The integer p in condition (vii) of Definition 2.1 is called the dimension of x, denoted

dim x.
For n = 0, 1, . . . , an n-category is an ω-category such that dim x ≤ n for every

element x.
We aim to represent partial ω-categories by ‘pasting diagrams’. These should be cell

complexes such that the elements of the partial ω-category are represented by appropriate
subcomplexes, the operations dα

n are represented by parts of boundaries, and composites
are represented by unions.

As an example, consider the ω-category X with the following presentation: there are
generators a, x, y and relations

dim a = 1, dim x = dim y = 2, d+
1 x = d−

1 y, d+
0 a = d−

0 x = d−
0 y.

It turns out that X has 16 elements and that these can be represented by subcomplexes
of the diagram in Figure 1: there are three cells a, x, y representing the generators;
three additional 0-cells u, v, w representing d−

0 a, d+
0 a = d−

0 x = d−
0 y and d+

0 x = d+
0 y;

three additional 1-cells b, c, d representing d−
1 x, d+

1 x = d−
1 y and d+

1 y; and the seven
subcomplexes

x ∪ y, a ∪ b, a ∪ c, a ∪ d, a ∪ x, a ∪ y, a ∪ x ∪ y

representing

x #1 y, a #0 b, a #0 c, a #0 d, a #0 x, a #0 y, a #0 (x #1 y).
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Figure 1
In this figure, d−

0 , d+
0 , d−

1 , d+
1 are represented by left end, right end, bottom and top

respectively; for example, d+
1 a = a because dim a = 1, and

d+
1 [a #0 (x #1 y)] = d+

1 a #0 d+
1 (x #1 y) = a #0 d+

1 y = a #0 d.

Suppose that ξ #n η is a composite in a partial ω-category, and suppose that ξ and η
are represented by complexes x and y in a pasting diagram. We then have d+

n ξ = d−
n η = ζ,

say, and ζ must be represented by a subcomplex z of the intersection x ∩ y. In fact our
intuition requires z to be the whole of x ∩ y. For we want z to be at one extreme of x
and at the opposite extreme of y, so x \ z and y \ z should be on opposite sides of z, and
therefore disjoint.

For an example of what can go wrong if this requirement is not satisfied, let π, ρ, σ, τ
be elements of a partial ω-category such that

d+
0 π = d−

0 ρ = σ, d+
0 ρ = d−

0 π = τ, σ 
= τ.

Let p, r, s, t be representatives for π, ρ, σ, τ in a pasting diagram; then the diagram must
be as in Figure 2. Suppose also that the composites π #0 ρ and ρ #0 π both exist. They
are distinct (because d−

0 (π #0 ρ) 
= d−
0 (ρ#0 π)), so it is not satisfactory to have them both

represented by the union p∪ r. This unsatisfactory behaviour arises because p∩ r strictly
contains s and strictly contains t.

s
��

r

t��

p

Figure 2
Taking these considerations into account, we now define ω-complexes as follows.

2.3. Definition. An ω-complex is a set K together with two families of subsets called
atoms and molecules subject to the following conditions.

(i) The molecules form a partial ω-category.
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(ii) Let x and y be molecules. Then x #n y exists if and only if x ∩ y = d+
n x = d−

n y; if
x #n y does exist, then x #n y = x ∪ y.

(iii) Every atom is a molecule, and the molecules are the sets generated from the atoms
by applying the composition operations #0, #1, . . . .

(iv) The set K is the union of its atoms.
(v) For each atom a, let ∂−a and ∂+a be the sets given by

∂αa =
{

dα
p−1a if dim a = p > 0,

∅ if dim a = 0,

and let the interior of a be the subset Int a given by

Int a = a \ (∂−a ∪ ∂+a).

Then the interiors of the atoms are non-empty and disjoint.

Informally, the effect of Definition 2.3 is as follows: conditions (iv) and (v) say that
K is a sort of cell complex with the atoms as cells; conditions (i)–(iii) say that the atoms
generate a partial ω-category of molecules in which composites are represented by well-
behaved unions.

2.4. Example. An ω-complex u is called an infinite-dimensional globe if it has two n-
dimensional atoms u−

n and u+
n for each n ≥ 0 and dβ

muα
n = uβ

m for m < n. It is easy to check
that such ω-complexes exist; all the molecules are atoms, and they form an ω-category,
not just a partial ω-category.

For a non-negative integer p, an ω-complex u is called a p-dimensional globe if its
atoms can be listed in the form

up, d−
p−1up, d+

p−1up, . . . , d−
0 up, d+

0 up

such that dim up = p, dim dα
nup = n for n < p, and d−

n up 
= d+
n up for n < p. As before,

p-dimensional globes exist, all the molecules are atoms, and and they form an ω-category.
For a non-negative integer p, one can check that there is also an ω-complex Kp as

follows: Kp is the union of two infinite-dimensional globes u and v, and u∩ v = u+
p = v−

p .
For n < p there are just two n-dimensional atoms, since u−

n = v−
n and u+

n = v+
n ; there are

three p-dimensional atoms u−
p , u+

p = v−
p and v+

p ; for n > p there are four n-dimensional
atoms u−

n , u+
n , v−

n and v+
n . The molecules are the atoms and the composites uα

m #p vβ
n for

m > p and n > p, and they form an ω-category. By a slight abuse of language, Kp can
be called a p-composite of u and v and denoted u #p v.

It is clear that the class of ω-complexes include the constructions of [2], [5], [6], [9],
[10] and [12]. See also Aitchison [1] and Kapranov and Voevodsky [7] for the particular
case of cubes, and Street [11] for simplexes. The characterisation of ω-complexes by local
data in the next two section shows that the class of ω-complexes is not excessively large.
We make two remarks, however.

First, one may ask for conditions under which the molecules in an ω-complex form a
genuine ω-category, not just a partial ω-category. For complexes of dimension at most 1, it
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is necessary and sufficient that there should be no directed loops. For higher-dimensional
complexes, the obvious generalisation of this condition is insufficient (see [9]). It is also
unnecessary, as one can see from the example in Figure 3: here the molecules form a
genuine ω-category but there is a ‘higher-dimensional directed loop’ a, x, b, y, a. There
are various sufficient conditions (see [5], [10], [12]), but the example in Figure 3 shows
that none of them is necessary.
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Figure 3
Second, most previous treatments make the following requirement: if a is a p-dimen-

sional atom with p > 0, then the dα
p−1a should be unions of (p − 1)-dimensional atoms.

This requirement is partially explained by Proposition 4.11 below. The requirement is not
satisfied in all ω-complexes; for example, there is an ω-complex with two atoms x and y
such that dim x = 2, dim y = 0, d−

1 x = d+
1 x = d−

0 x = d+
0 x = y. This ω-complex gives an

economical representation for a 2-sphere, but is in some ways badly behaved. We have to
exclude such ω-complexes from some of the geometrical work in Section 4.

3. A local description of an ω-complex

In this section we give a chain of results designed to show that an ω-complex is determined
by its atoms, their dimensions, and the functions ∂−, ∂+ (see Corollary 3.7). The main
result (Theorem 3.6) shows how this local information determines the operations dα

n.
Propositions 3.1–3.5 are technical preliminaries.

3.1. Proposition. (i) Let x be a molecule in an ω-complex. Then dα
nx ⊂ x for α = ±

and n ≥ 0.
(ii) Let a be an atom in an ω-complex. Then ∂αa ⊂ a for α = ±; if ∂αa 
= ∅ then ∂αa

is a molecule such that dim ∂αa < dim a.

Proof. (i) This holds because x = d−
n x #n x #n d+

n x = d−
n x ∪ x ∪ d+

n x.
(ii) Suppose that dim a = 0. Then ∂αa = ∅ and the results hold trivially.
On the other hand, suppose that dim a = p > 0. Then ∂αa = dα

p−1a, so ∂αa ⊂ a by
part (i). Also, ∂αa is a molecule, and dim ∂αa ≤ p−1 < dim a because dα

p−1d
α
p−1a = dα

p−1a.
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3.2. Proposition. Let x be a molecule in an ω-complex with a decomposition into factors
y1, . . . , yk. Then the following hold :

(i) x \ dα
nx = (y1 \ dα

ny1) ∪ . . . ∪ (yk \ dα
nyk) for all n and α;

(ii) dim yi ≤ dim x for all i.

Proof. (i) It suffices to consider the case x = y1 #p y2.

For n < p we have x = y1 ∪ y2 and dα
nx = dα

ny1 = dα
ny2, and the result is obvious.

For n = p and α = −, we use Proposition 3.1(i) to get d−
p y1 ⊂ y1, and we then get

x \ d−
p x = (y1 ∪ y2) \ d−

p y1 = (y1 \ d−
p y1) ∪ [y2 \ (y1 ∩ y2)] = (y1 \ d−

p y1) ∪ (y2 \ d−
p y2).

For n = p and α = + the proof is similar.

Finally, suppose that n > p. Using Proposition 3.1(i) we get

y1 ∩ dα
ny2 ⊂ y1 ∩ y2 = d+

p y1 = d+
p dα

ny1 ⊂ dα
ny1,

and similarly y2 ∩ dα
ny1 ⊂ dα

ny2. It follows that

x \ dα
nx = (y1 ∪ y2) \ (dα

ny1 ∪ dα
ny2) = (y1 \ dα

ny1) ∪ (y2 \ dα
ny2),

as required.

(ii) Let n be the dimension of x, so that d−
n x = x. By part (i), yi \d−

n yi ⊂ x \d−
n x = ∅,

so yi ⊂ d−
n yi. It now follows from Proposition 3.1(i) that d−

n yi = yi, so dim yi ≤ n = dim x
as required.

3.3. Proposition. Let x be a molecule and a be an atom in an ω-complex. Then the
following are equivalent :

(i) a ⊂ x;

(ii) Int a ∩ x 
= ∅;

(iii) a is a factor in some decomposition of x.

Proof. It is obvious that (iii) implies (i). Since Int a 
= ∅, (i) implies (ii). It remains to
show that (ii) implies (iii). We use induction on dim x.

Since x is a molecule, it has a decomposition into atoms a1, . . . , ak. Since Int a∩x 
= ∅,
we must have Int a ∩ ai 
= ∅ for some i. Since ai \ (∂−ai ∪ ∂+ai) = Int ai, we must have
Int a ∩ Int ai 
= ∅ or Int a ∩ ∂αai 
= ∅ for some α.

Suppose that Int a ∩ Int ai 
= ∅. Since distinct atoms have disjoint interiors, it follows
that a = ai, so a is certainly a factor of x.

Now suppose that Int a ∩ ∂αai 
= ∅. By Propositions 3.1(ii) and 3.2(ii), ∂αai is a
molecule and dim ∂αai < dim ai ≤ dim x. By the inductive hypothesis, a is a factor in
some decomposition of ∂αai. Since ∂αai = dα

p−1ai, where p = dim ai, and since ai =
d−

p−1ai #p−1 ai #p−1 d+
p−1ai, it follows that a is a factor in a decomposition of x. This

completes the proof.
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3.4. Proposition. Let ξ be a point in an ω-complex, and let a be an atom of minimal
dimension such that ξ ∈ a. Then ξ ∈ Int a.

Proof. Suppose that ξ /∈ Int a; we must then have ξ ∈ ∂αa for some α. By Proposition
3.1(i), ∂αa is a molecule, so it is a composite of atoms a1, . . . , ak, and we get ξ ∈ ai

for some i. But dim ai ≤ dim ∂αa < dim a by Propositions 3.2(ii) and 3.1(ii), so this
contradicts the minimality of dim a. This contradiction shows that ξ must be in Int a.

3.5. Proposition. Let ξ be an element of a molecule x in an ω-complex. For given n
and α, suppose that b is an atom in x of minimal dimension such that ξ ∈ b \ dα

nb. Then
ξ ∈ Int b or dim b = n + 1.

Proof. Suppose that ξ /∈ Int b and dim b 
= n + 1. We get a contradiction as follows.
Since ξ /∈ Int b we have ξ ∈ ∂βb for some β. Since b \ dα

nb 
= ∅ we have dim b > n,
so in fact dim b > n + 1. Therefore dα

n∂
βb = dα

nb, so ξ ∈ ∂βb \ dα
n∂

βb. By Proposition
3.2(i), ξ ∈ b′ \ dα

nb
′ for some atomic factor b′ of ∂βb. Using Proposition 3.1(ii), we get

b′ ⊂ ∂βb ⊂ b ⊂ x. Using Propositions 3.2(ii) and 3.1(ii), we get dim b′ ≤ dim ∂βb < dim b,
so we have a contradiction to the minimality of dim b. This contradiction completes the
proof.

3.6. Proposition. Let x be a molecule in an ω-complex. Then

dα
nx =

[ ⋃
a⊂x

dim a≤n

a
]
\

[ ⋃
b⊂x

dim b=n+1

(b \ ∂αb)
]
,

where the unions are over atoms a and b.

A similar formula has been used as a definition ([10], 2.3), but the only justification
was that it led to good results; it was not shown to be necessary.

Proof. First, let ξ be a member of dα
nx. We show that ξ ∈ a ⊂ x for some atom a such

that dim a ≤ n. Indeed, dα
nx is a molecule of dimension at most n (because dα

nd
α
nx = dα

nx),
so dα

nx is a composite of atoms of dimensions at most n by Proposition 3.2(ii). Therefore
ξ ∈ a ⊂ dα

nx for some atom a such that dim a ≤ n. Since dα
nx ⊂ x (Proposition 3.1(i)),

we get ξ ∈ a ⊂ x as required.
Next, let ξ be a member of dα

nx and b be an (n + 1)-dimensional atom contained
in x. We show that ξ /∈ b \ ∂αb. Indeed, b is a factor of x by Proposition 3.3, so
b \ ∂αb = b \ dα

nb ⊂ x \ dα
nx by Proposition 3.2(i), and this gives the required result

ξ /∈ b \ ∂αb.
Finally, let ξ be a point not in dα

nx such that ξ ∈ a ⊂ x for some atom a of dimension
at most n. We show that ξ ∈ b \ ∂αb for some atom b ⊂ x of dimension n + 1. Indeed,
ξ ∈ x \ dα

nx, so ξ ∈ b \ dα
nb for some atomic factor b of x by Proposition 3.2(i). We

can therefore choose an atom b ⊂ x of minimal dimension such that ξ ∈ b \ dα
nb. By

Proposition 3.5, ξ ∈ Int b or dim b = n + 1. But dim b > n (since dα
nb 
= b), so we have

ξ ∈ a ⊂ x with dim a < dim b. By Proposition 3.4, ξ /∈ Int b. Therefore dim b = n + 1 and
we get ξ ∈ b \ dα

nb = b \ ∂αb as required.
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3.7. Corollary. An ω-complex is determined by its atoms, their dimensions, and the
functions ∂−, ∂+.

Proof. According to Definition 2.3, an ω-complex is determined by its atoms, its mol-
ecules, and the ω-category operations dα

n, #n. But the molecules are determined by the
atoms and the #n (Definition 2.3(iii)), the #n are determined by the dα

n (Definition 2.3(ii)),
and the dα

n are determined by the atoms, their dimensions, and the ∂α (Theorem 3.6).
The result follows.

4. Geometric structures

Let K be an ω-complex. The interiors of the atoms must be non-empty and disjoint,
but so far as the algebra is concerned they can otherwise be chosen arbitrarily. In this
section we describe a natural choice which produces a topological space. The result is
like a CW complex, and under mild restrictions we show that it really is a CW complex
(Corollary 4.16).

The topological construction is based on cones ; we recall the definition.

4.1. Definition. A topological space C is a cone if it is homeomorphic to a quotient
space of the form

(X × [0, 1]) � P

∼ ,

where X is an arbitrary topological space, [0, 1] is the unit closed interval, P is a singleton
space, � denotes disjoint union, and the equivalence relation is got by collapsing the sub-
space (X × {0}) � P to a single point. The base of C is the subspace of C corresponding
to the image of X × {1} (thus the base is a closed subspace homeomorphic to X).

4.2. Example. A Euclidean ball is a cone on its boundary sphere; in particular a 0-ball
(a singleton space) is a cone on its boundary (the empty set).

It is also convenient to define skeleta for ω-complexes, as follows.

4.3. Definition. Let K be an ω-complex and let n be an integer. Then the n-skeleton
of K, denoted Kn, is the subcomplex consisting of the atoms of dimension at most n.

The main definition is as follows.

4.4. Definition. An ω-complex K is geometric if it has a topology satisfying the follow-
ing conditions:

(i) each atom a is a cone with base ∂−a ∪ ∂+a;
(ii) a subset F of Kn is closed in Kn if and only if F ∩a is closed in a for each atom a

of dimension at most n;
(iii) a subset F of K is closed in K if and only if F ∩ a is closed in a for each atom a.

Obviously a geometric ω-complex is determined up to homeomorphism by its partial
ω-category structure.
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4.5. Example. If one interprets the ω-complex of Figure 1 as a subset of the plane, then
it becomes a geometric ω-complex.

There is a geometric p-dimensional globe (see Example 2.4) as follows: the generator up

is the Euclidean p-ball

{ (t0, . . . , tp−1) ∈ Rp : t20 + . . . + t2p−1 ≤ 1 };

for 0 ≤ n < p the atom dα
nup is the n-dimensional hemisphere

{ (t0, . . . , tn, 0, . . . , 0) : t20 + . . . + t2n = 1, αtn ≥ 0 }.

We shall need the following technical property.

4.6. Proposition. If x is a subcomplex of a geometric ω-complex K, then x is closed
in K.

Proof. We must show that x∩ a is closed in a for each atom a. Let n be the dimension
of a; we shall use induction on n.

Suppose first that x∩ Int a 
= ∅. By Proposition 3.3, a ⊂ x, so x∩ a is certainly closed
in a.

Now suppose that x∩ Int a = ∅. This means that x∩a = x∩ (∂−a∪∂+a). Since a is a
cone with base ∂−a∪ ∂+a, it suffices to show that x∩ (∂−a∪ ∂+a) is closed in ∂−a∪ ∂+a.
Since ∂−a ∪ ∂+a ⊂ Kn−1, it suffices to show that x ∩ Kn−1 is closed in Kn−1. But x ∩ a′

is closed in a′ for each atom a′ of dimension less than n by the inductive hypothesis, so
x ∩ Kn−1 is closed in Kn−1 by Definition 4.4(ii).

This completes the proof.

We shall now show that every ω-complex is equivalent to a geometric ω-complex, where
equivalence is formally defined as follows.

4.7. Definition. Two ω-complexes K and L are equivalent if there is a bijection f from
the atoms of K to the atoms of L such that, for each atom a in K, the following properties
hold:

(i) dim f(a) = dim a;
(ii) ∂αf(a) is the union of the atoms f(b) such that b ⊂ ∂αa.

4.8. Proposition. Every ω-complex is equivalent to a geometric ω-complex.

Proof. Let the given ω-complex be K; we must construct a geometric ω-complex L and
a bijection f as in Definition 4.7.

We begin by constructing geometric ω-complexes L0, L1, . . . such that Ln−1 is a
subcomplex of Ln and the Ln are compatibly equivalent to the skeleta Kn.

We take L0 to be a discrete space whose points are in one-one correspondence with
the 0-dimensional atoms of K; the atoms of L0 are to be the singleton subsets, and all
the atoms are to be 0-dimensional. It is clear that L0 is a geometric ω-complex equivalent
to K0.
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For n > 0, suppose that we have constructed Ln−1 with the desired properties. Let f
be the bijection from the atoms of Kn−1 to the atoms of Ln−1. For a an n-dimensional
atom of K, let δαa be the union of the atoms f(b) such that b ⊂ ∂αa and let C(a) be a
cone with base δ−a∪ δ+a. Let Ln be the quotient of the disjoint union Ln−1�⊔

a C(a) got
by identifying the base of each cone C(a) with the corresponding subspace of Ln−1. Since
the base of a cone is closed in that cone, we may identify Ln−1 with a closed subspace
of Ln. Since the sets δ−a∪ δ+a are closed in Ln−1 (Proposition 4.6), we may also identify
the C(a) with closed subspaces of Ln. Clearly the geometric ω-complex structure of Ln−1

can be extended to a geometric ω-complex structure on Ln: the additional atoms are
the sets C(a), they are n-dimensional, and ∂αC(a) = δαa. The equivalence f from Kn−1

to Ln−1 extends in the obvious way to give an equivalence from Kn to Ln.
We now have a chain of geometric ω-complexes L0 ⊂ L1 ⊂ L2 ⊂ . . . compatibly

equivalent to the Kn, and each Ln−1 is a subcomplex of Ln. By Proposition 4.6, Ln−1 is
closed in Ln. To complete the proof, let L be the union of the Ln, topologised so that F
is closed in L if and only if F is closed in Ln for all n. It is then clear how to make L into
a geometric ω-complex equivalent to K. This completes the proof.

In many ways, geometric ω-complexes are like CW complexes; in particular we have
the following properties.

4.9. Proposition. (i) If x is a finite union of atoms in a geometric ω-complex, then x
is compact.

(ii) A geometric ω-complex is compactly generated Hausdorff.

Proof. (i) It suffices to show that the atoms are compact. But an atom is a cone with
base a finite union of atoms of lower dimension, so this holds by induction on dimension.

(ii) Let K be the geometric ω-complex. Because of part (i) and Definition 4.4(iii), it
suffices to show that K is Hausdorff. Let ξ and η be distinct points in K; we must find
disjoint open sets U and V in K such that ξ ∈ U and η ∈ V .

By induction on n, it is straightforward to construct disjoint sets Un and V n open
in Kn with the following properties: Un ∩ Kn−1 = Un−1; V n ∩ Kn−1 = V n−1; if ξ ∈ Kn

then ξ ∈ Un; if η ∈ Kn then η ∈ V n.
Now let U =

⋃
n Un and V =

⋃
n Vn. We find that U and V are disjoint open sets in K

with ξ ∈ U and η ∈ V as required.

For a geometric ω-complex to be a genuine CW complex, it clearly suffices that the
n-dimensional atoms should be homeomorphic to n-balls. To achieve this, we impose a
restriction, which is usually satisfied in practice: we require the atoms to be round in the
sense of the following definition.

4.10. Definition. A molecule x in an ω-complex is round provided that the following
conditions hold:

(i) if dim x > 0 then d−
0 x ∩ d+

0 x = ∅;
(ii) if 0 < n < dim x then d−

n x ∩ d+
n x = d−

n−1x ∪ d+
n−1x.

For example, the atoms in globes (see Example 2.4) are round, the atoms in Figure 1
are round, but the molecule a #0 (x #1 y) in Figure 1 is not round. In the important
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examples such as cubes and simplexes, all the atoms are round, and the same is true for
most examples in the literature. Also, if an ω-complex is in any sense loop-free, then one
expects its atoms to be round.

We shall use the following properties of round molecules.

4.11. Proposition. Let x be a round molecule in an ω-complex and let n be such that
0 ≤ n ≤ dim x. Then dα

nx is a union of n-dimensional atoms, dim dα
nx = n, and dα

nx is
round.

Proof. Let a be an atom contained in dα
nx such that dim a = m < n; we claim that

a is contained in some (m + 1)-dimensional atom contained in dα
nx. Indeed, if m = 0

then d−
mx ∩ d+

mx = ∅, and if m > 0 then d−
mx ∩ d+

mx = d−
m−1x ∪ d+

m−1x, and in both cases
we see that d−

mdα
nx ∩ d+

mdα
nx = d−

mx ∩ d+
mx is disjoint from the interior of a. Let ξ be a

point of Int a; we must then have ξ ∈ b for some (m + 1)-dimensional atom b ⊂ dα
nx. By

Proposition 3.3, a ⊂ b. This verifies the claim.
By iterating this argument, we see that dα

nx is contained in a union of atoms of
dimension at least n; on the other hand, by Propositions 3.2(ii) and 3.3, an atom contained
in dα

nx is at most n-dimensional. Therefore dα
nx is a union of atoms of dimension exactly n.

It follows that dβ
mdα

nx 
= dβ
mx for m < n; therefore dim dα

nx = n.
Finally, since dβ

mdα
nx = dβ

mx for m < n, it follows that dα
nx is round.

In earlier work, if a is a p-dimensional atom, then the ∂αa have usually been required
to be unions of (p − 1)-dimensional atoms. Proposition 4.11 shows that this property
holds whenever the atoms are round.

Let x be a molecule in a geometric ω-complex. Intuitively, one expects to construct x
as follows: let the dα

0x be points, let the dα
1x be got by joining d−

0 x to d+
0 x, let the dα

2x be
got by joining d−

1 x to d+
1 x, and so on up to the dimension of x. We shall formalise the

idea of joining by using bands, which we define as follows.

4.12. Definition. Let B be a topological space with subspaces H− and H+. Then B
is a band from H− to H+ if there are a topological space X and continuous real-valued
functions φ−, φ+ on X such that the following conditions hold:

(i) φ−(ξ) ≤ φ+(ξ) for ξ ∈ X;
(ii) B is homeomorphic to the space

{ (ξ, t) ∈ X × R : φ−(ξ) ≤ φ+(ξ) }

such that H− and H+ correspond to the subspaces {(ξ, φ−(ξ))} and {(ξ, φ+(ξ))}.
Roughly speaking, in Definition 4.12, B is the product of X with a closed interval,

but the interval varies from point to point in X and may be reduced to a single point.
Note that H− and H+ are both homeomorphic to X. Note also that they need not be
disjoint; their intersection corresponds to points ξ in X such that φ−(ξ) = φ+(ξ).

As an example, if B is a closed ball of positive dimension and its boundary is divided
into hemispheres H− and H+ in the standard way, then B is a band from H− to H+.

We can describe geometric ω-complexes with round atoms in terms of bands as follows.
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4.13. Theorem. Let x be a molecule in a geometric ω-complex all of whose atoms are
round. Then the following conditions hold :

(i) the dα
0x are single point spaces ;

(ii) for n > 0 the dα
nx are bands from d−

n−1x to d+
n−1x;

(iii) if x is round and dim x = p then x is homeomorphic to a p-ball ; if also p > 0 then
d−

p−1x ∪ d+
p−1x corresponds to the boundary (p − 1)-sphere.

Theorem 4.13 may be verified for the geometric ω-categories in Example 4.5.
Molecules with the properties described in Theorem 4.13(i)–(ii) have been considered

in [2] and [6]; they are homeomorphic in an obvious way to subspaces of Euclidean spaces.
Before proving Theorem 4.13, we give two lemmas.

4.14. Lemma. Let x be a p-dimensional round molecule in a geometric ω-complex such
that the dα

nx are bands from d−
n−1x to d+

n−1x for 0 < n ≤ p. Then x is homeomorphic to a
p-ball and, if p > 0, then d−

p−1x ∪ d+
p−1x corresponds to the boundary (p − 1)-sphere.

Proof. We use induction on p.
Suppose that p = 0. Then x is a composite of 0-dimensional atoms (Proposition

3.2(ii)), so it is a 0-dimensional atom, and is therefore a single point (see Example 4.2).
The result follows.

Suppose that p > 0. Here x is a band from d−
p−1x to d+

p−1x. By Proposition 4.11, d−
p−1x

is round and (p − 1)-dimensional, so d−
p−1x is homeomorphic to a (p − 1)-ball B by the

inductive hypothesis. If p = 1 then d−
p−1x ∩ d+

p−1x is empty; if p > 1, then

d−
p−1x ∩ d+

p−1x = d−
p−2x ∪ d+

p−2x = d−
p−2d

−
p−1x ∪ d+

p−2d
−
p−1x,

which corresponds to the boundary of B. In both cases, it follows that x is homeomorphic
to a p-ball and d−

p−1x ∪ d+
p−1x corresponds to the boundary (p − 1)-sphere.

4.15. Lemma. Let x = x− #q x+ be a composite of molecules in a geometric ω-complex
such that for some n > 0 and some α the dα

nx
θ are bands from d−

n−1x
θ to d+

n−1x
θ. Then

dα
nx is a band from d−

n−1x to d+
n−1x.

Proof. If 0 < n ≤ q then the result holds because dα
nx = dα

nx
α, d−

n−1x = d−
n−1x

α, and
d+

n−1x = d+
n−1x

α.
If n = q + 1 then the result holds because dα

nx = dα
nx

− ∪ dα
nx

+, d−
n−1x = d−

n−1x
−,

d+
n−1x = d+

n−1x
+, and dα

nx
− ∩ dα

nx
+ = d+

n−1x
− = d−

n−1x
+.

If n > q+1 then the result holds because dα
nx = dα

nx
−∪dα

nx
+, d−

n−1x = d−
n−1x

−∪d−
n−1x

+,
d+

n−1x = d+
n−1x

− ∪ d+
n−1x

+, and dα
nx

− ∩ dα
nx

+ ⊂ d−
n−1x ∩ d+

n−1x.

Proof. Proof of Theorem 4.13 (i) Clearly dα
0x is 0-dimensional and round, so this follows

from Lemma 4.14.
(ii) Let the dimension of x be p; we shall use induction on p. By Proposition 3.2(ii),

a p-dimensional molecule is a composite of atoms of dimension at most p; because of
Lemma 4.15 we may therefore assume that x is an atom.

Suppose that n < p. Then dα
nx = dα

nd
α
p−1x, d−

n−1x = d−
n−1d

α
p−1x, d+

n−1x = d+
n−1d

α
p−1x,

and dim dα
p−1x < p, so the result holds by the inductive hypothesis.
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Suppose that n > p. Then dα
nx = d−

n−1x = d+
n−1x, so the result holds trivially.

It remains to show that x is a band from d−
p−1x to d+

p−1x, assuming that p > 0.
By hypothesis, x is round, so d−

p−1x and d+
p−1x are round and (p − 1)-dimensional by

Proposition 4.11. By the inductive hypothesis and Lemma 4.14, d−
p−1x and d+

p−1x are
homeomorphic to (p − 1)-balls H− and H+. If p = 1, then d−

p−1x ∩ d+
p−1x = ∅; if p > 1

then d−
p−1x∩ d+

p−1x = d−
p−2x∪ d+

p−2x, which corresponds to the boundaries of H− and H+

under the homeomorphisms. It follows that d−
p−1x ∪ d+

p−1x is homeomorphic to a (p − 1)-

sphere, and that the dβ
p−1x correspond to the two hemispheres in a standard subdivision.

Since x is a cone with base d−
p−1x∪ d+

p−1x, it follows that x is a band from d−
p−1x to d+

p−1x
as required.

(iii) This follows from part (ii) and Lemma 4.14.

We now give two corollaries. The first is obvious; the second goes a little way towards
characterising molecules.

4.16. Corollary. If K is a geometric ω-complex all of whose atoms are round, then K
is a CW complex in which the n-cells are the n-dimensional atoms and the characteristic
maps are homeomorphisms from n-balls onto subcomplexes.

4.17. Corollary. If x is a molecule in a geometric ω-complex all of whose atoms are
round, then x is contractible.

Proof. From Theorem 4.13, d−
0 x is a point and d−

n x has d−
n−1x as a deformation retract

for n > 0. By an inductive argument, each d−
n x is contractible. The result follows, since

x = d−
n x for n sufficiently large.

5. Atomic complexes

According to Corollary 3.7, ω-complexes may be regarded as families of sets, called atoms,
together with functions dim, ∂−, ∂+. In this section we find necessary and sufficient
conditions for such families and functions to produce ω-complexes. The main result is
Theorem 5.14. The arguments are similar to those of [10], 3.

The first step is to show that an ω-complex is an atomic complex in the sense of the
following definition.

5.1. Definition. An atomic complex is a set K together with a family of subsets called
atoms and functions dim, ∂−, ∂+ defined on the family of atoms such that the following
conditions hold.

(i) If a is an atom then dim a is a non-negative integer called the dimension of a.
(ii) If a is an atom then the ∂αa are subsets of a and are unions of atoms of dimension

less than that of a.
(iii) The set K is the union of the atoms.
(iv) For each atom a, let the interior of a be the subset Int a given by

Int a = a \ (∂−a ∪ ∂+a).

Then the interiors of the atoms are non-empty and disjoint.
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5.2. Proposition. An ω-complex is an atomic complex.

Proof. It is obvious that the atoms of an ω-complex satisfy conditions (i), (iii) and (iv)
of Definition 5.1. By Propositions 3.1(ii) and 3.2(ii) they also satisfy condition (ii).

The problem is now to find necessary and sufficient conditions for an atomic complex K
to be an ω-complex. Our strategy is as follows: we define operations dα

n on arbitrary
subsets of K; we define induced operations #n and an induced notion of molecule; we show
that there is a family of subsets called ‘finite-dimensional globelike subcomplexes’ which
forms a partial ω-category under these operations dα

n and the induced operations #n; we
find necessary and sufficient conditions for the molecules to form a sub-partial ω-category
making K an ω-complex.

We define the dα
n (and then the #n and the molecules) by generalising Theorem 3.6.

5.3. Definition. Let K be an atomic complex.
If x is a subset, α = ± and n ≥ 0, then dα

nx is the subset of x given by

dα
nx =

[ ⋃
a⊂x

dim a≤n

a
]
\

[ ⋃
b⊂x

dim b=n+1

(b \ ∂αb)
]
,

where the unions are over atoms a and b.
If x and y are subsets and n ≥ 0, then the composite x #n y is defined if and only if

x ∩ y = d+
n x = d−

n y; if x #n y is defined, then x #n y = x ∪ y.
A molecule is a subset generated from the atoms by applying the composition operations

#0, #1, . . . .

Next we define the terms ‘subcomplex’, ‘finite-dimensional’ and ‘globelike’.

5.4. Definition. A subcomplex of an atomic complex is a subset which is a union of
atoms.

A subcomplex x is finite-dimensional if d−
n x = d+

n x = x for some n.
A subcomplex x is globelike if it satisfies the following conditions:
(i) dα

nx is a subcomplex for all n ≥ 0 and for all α;
(ii) dβ

mdα
nx = dβ

mx for 0 ≤ m < n and for all α, β.

Note that, if the molecules form a partial ω-category, then they must necessarily be
finite-dimensional globelike subcomplexes.

We shall now show that the finite-dimensional globelike subcomplexes of an atomic
complex form a partial ω-category (Theorem 5.12). We need several preliminary results
(Propositions 5.5–5.11).

5.5. Proposition. (i) Let a and c be distinct atoms in an atomic complex such that
Int c ∩ a 
= ∅. Then dim c < dim a and c ⊂ ∂αa for some α.

(ii) Let a be a p-dimensional atom in an atomic complex. Then

dα
na =




dα
n(∂−a ∪ ∂+a) for 0 ≤ n < p − 1,

∂αa for n = p − 1 ≥ 0,
a for n ≥ p.
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(iii) Let x be a subcomplex of an atomic complex contained in the union of a family of
atoms of dimension at most n. Then dα

nx = x.

Proof. (i) We use induction on dim a. Since a and c are distinct, Int c ∩ Int a = ∅;
therefore Int c ∩ ∂αa 
= ∅ for some α. Since ∂αa is a union of atoms of dimension less
than that of a, we have Int c ∩ b 
= ∅ for some atom b ⊂ ∂αa such that dim b < dim a. If
c 
= b then the inductive hypothesis implies that dim c < dim b and c ⊂ ∂βb for some β.
Whether or not c = b, we then get dim c ≤ dim b < dim a and c ⊂ b ⊂ ∂αa.

(ii) From part (i) the atoms contained in a are a itself and the atoms contained in
∂−a or ∂+a, and the atoms contained in ∂−a or ∂+a all have dimension less than p. The
result follows.

(iii) It suffices to show that dim c ≤ n for every atom c contained in x. But Int c is a
non-empty subset of c, so Int c∩ a 
= ∅ for some atom a in the given family, and it follows
from part (i) that dim c ≤ dim a ≤ n as required.

5.6. Proposition. If x is a globelike subcomplex of an atomic complex, then dβ
mdα

nx =
dα

nx for m ≥ n.

Proof. Since x is globelike, dα
nx is a union of atoms. By definition, dα

nx is contained in a
union of atoms of dimension at most n. The result now follows from Proposition 5.5(iii).

5.7. Proposition. If x is a globelike subcomplex of an atomic complex then the dα
nx are

finite-dimensional globelike subcomplexes.

Proof. By Definition 5.4, dα
nx is a subcomplex. By Proposition 5.6, dα

nx is finite-
dimensional. It remains to show that dα

nx is globelike. We must show that the dβ
mdα

nx are
subcomplexes and that dγ

pd
β
mdα

nx = dγ
pd

α
nx for p < m.

Suppose that m ≥ n. Then dβ
mdα

nx = dα
nx by Proposition 5.6. Since x is globelike,

dβ
mdα

nx is a subcomplex, and for p < m we trivially get dγ
pd

β
mdα

nx = dγ
pd

α
nx.

Now suppose that m < n. Since x is globelike, dβ
mdα

nx = dβ
mx, which is a subcomplex,

and for p < m we get

dγ
pd

β
mdα

nx = dγ
pd

β
mx = dγ

px = dγ
pd

α
nx.

5.8. Proposition. If x and y are subcomplexes of an atomic complex such that y ⊂ x,
then dα

nx ∩ y ⊂ dα
ny.

Proof. Let ξ be a point of dα
nx ∩ y; we must show that ξ ∈ dα

ny. It suffices to show
that ξ ∈ c ⊂ y for some atom c of dimension at most n. To do this, let c be an atom
containing ξ which is of minimal dimension. Since ξ ∈ dα

nx, we must have dim c ≤ n.
From Definition 5.1(ii) we see that ξ ∈ Int c. Since y is a subcomplex, Int c ∩ a 
= ∅
for some atom a such that a ⊂ y. By Proposition 5.5(i), c ⊂ a; therefore c ⊂ y. This
completes the proof.
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5.9. Proposition. If y and z are subcomplexes of an atomic complex, then

dα
n(y ∪ z) = (dα

ny ∩ dα
nz) ∪ (dα

ny \ z) ∪ (dα
nz \ y).

Proof. By Proposition 5.8, dα
n(y∪z)∩y ⊂ dα

ny and dα
n(y∪z)∩z ⊂ dα

nz. Since dα
n(y∪z) ⊂

y ∪ z, it follows that the set on the left is contained in the set on the right.
To show that the set on the right is contained in the set on the left, it suffices to show

that every (n + 1)-dimensional atom b contained in y ∪ z is contained in y or z. But Int b
is a non-empty subset of b, so we must have Int b ∩ a 
= ∅ for some atom a contained in y
or z. By Proposition 5.5(i), b ⊂ a, so b ⊂ y or b ⊂ z as required.

This completes the proof.

5.10. Proposition. If y and z are globelike subcomplexes of an atomic complex such
that y #p z is defined, then

dα
n(y #p z) = dα

ny = dα
nz for 0 ≤ n < p,

d−
p (y #p z) = d−

p y, d+
p (y #p z) = d+

p z,

dα
n(y #p z) = dα

ny #p dα
nz for n > p.

Proof. We use the formula for dα
n(y #p z) = dα

n(y ∪ z) given in Proposition 5.9.
For 0 ≤ n < p we have dα

ny = dα
nd

+
p y = dα

nd
−
p z = dα

nz, because y and z are globelike,
and the result follows.

For n = p we have

d−
p (y #p z) = (d−

p y ∩ d−
p z) ∪ (d−

p y \ z) ∪ (d−
p z \ y)

= [d−
p y ∩ (y ∩ z)] ∪ (d−

p y \ z) ∪ [(y ∩ z) \ y]

= (d−
p y ∩ z) ∪ (d−

p y \ z) ∪ ∅
= d−

p y,

and similarly d+
p (y #p z) = d+

p z.
Now suppose that n > p. We have

y ∩ z = d+
p y = d+

p dα
ny ⊂ dα

ny

and
y ∩ z = d−

p z = d−
p dα

nz ⊂ dα
nz,

so
dα

ny ∩ dα
nz = y ∩ z = d+

p dα
ny = d−

p dα
nz.

It follows that dα
ny #p dα

nz is defined. It also follows that

dα
n(y #p z) = (dα

ny ∩ dα
nz) ∪ (dα

ny \ z) ∪ (dα
nz \ y)

= [(dα
ny ∩ z) ∪ (dα

nz ∩ y)] ∪ (dα
ny \ z) ∪ (dα

nz \ y)

= dα
ny ∪ dα

nz

= dα
ny #p dα

nz.

This completes the proof.
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5.11. Proposition. Let y and z be globelike subcomplexes of an atomic complex such
that y #p z is defined. Then y #p z is a globelike subcomplex, which is finite-dimensional
if y and z are finite-dimensional.

Proof. Obviously y #p z is a subcomplex.
To show that y #p z is globelike, we must show that the dα

n(y #p z) are subcomplexes
and that dβ

mdα
n(y #p z) = dβ

m(y #p z) for m < n. But dα
ny and dα

nz are subcomplexes, so
dα

n(y #p z) is a subcomplex by Proposition 5.10. When m < n ≤ p, it is straightforward
to check that dβ

mdα
n(y #p z) = dβ

m(y #p z). When m < n and n > p, one can compute

dβ
mdα

n(y #p z) = dβ
m(dα

ny #p dα
nz)

by Proposition 5.10, since dα
ny and dα

nz are globelike by Proposition 5.7, and one finds
that dβ

mdα
n(y #p z) = dβ

m(y #p z) in all cases.
Finally, suppose that y and z are finite-dimensional. Then y and z are unions of

atoms of bounded dimensions, so y #p z is a union of atoms of bounded dimensions. It
now follows from Proposition 5.5(iii) that y #p z is finite-dimensional.

This completes the proof.

5.12. Theorem. The finite-dimensional globelike subcomplexes in an atomic complex
form a partial ω-category which is closed under the composition operations.

Proof. We must verify the conditions of Definition 2.1.
By Proposition 5.7, if x is a finite-dimensional globelike subcomplex then dα

nx is a
finite-dimensional globelike subcomplex.

By Proposition 5.11, the class of finite-dimensional globelike subcomplexes is closed
under the composition operations (where defined).

Condition (i) holds by construction (see Definition 5.3).
Condition (ii) holds by Definition 5.4 and Proposition 5.6.
As to condition (iii), let x be a finite-dimensional globelike subcomplex. Then d−

n x ∩
x = d−

n x = d+
n d−

n x by Proposition 5.6, so the composite d−
n x #n x exists, and d−

n x #n x =
d−

n x ∪ x = x. Similarly x #n d+
n x = x.

Condition (iv) holds by Proposition 5.10.
As to condition (v), suppose that (x #n y) #n z exists. Then

y ∩ z ⊂ (x #n y) ∩ z = d−
n z = d+

n (x #n y) = d+
n y,

using condition (iv). Since d+
n y ⊂ y and d−

n z ⊂ z, it follows that y ∩ z = d+
n y = d−

n z;
therefore y #n z exists. We now get

x ∩ z ⊂ (x #n y) ∩ z = d+
n y ⊂ y,

so
x ∩ (y #n z) = x ∩ y = d+

n x = d−
n y = d−

n (y #n z),

using condition (iv) again. Therefore x #n (y #n z) exists. Clearly

(x #n y) #n z = x ∪ y ∪ z = x #n (y #n z).
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By a similar argument, this equation also holds if its right side is defined.
Condition (vi) is proved in a similar way. Suppose that (x′ #n y′) #m (x′′ #n y′′) exists,

where m < n. We then have

(x′ #n y′) ∩ (x′′ #n y′′) = d+
m(x′ #n y′) = d+

mx′

and
(x′ #n y′) ∩ (x′′ #n y′′) = d−

m(x′′ #n y′′) = d−
mx′′.

Since x′ ∩ x′′ ⊂ (x′ #n y′) ∩ (x′′ #n y′′), it follows that x′ ∩ x′′ = d+
mx′ = d−

mx′′; therefore
x′ #m x′′ exists. Similarly y′ #m y′′ exists. Using condition (iv), we get

d+
n (x′ #m x′′) = d+

n x′ #m d+
n x′′ = d−

n y′ #m d−
n y′′ = d−

n (y′ #m y′′).

We also have x′ ∩ y′ = d+
n x′ ⊂ d+

n (x′ #m x′′) and

x′ ∩ y′′ ⊂ (x′ #n y′)∩ (x′′ #n y′′) = d+
m(x′ #n y′) = d+

mx′ = d+
md+

n x′ ⊂ d+
n x′ ⊂ d+

n (x′ #m x′′),

etc., so
(x′ #m x′′) ∩ (y′ #m y′′) = d+

n (x′ #m x′′) = d−
n (y′ #m y′′).

Therefore (x′ #m x′′) #n (y′ #m y′′) exists. It is clear that

(x′ #n y′) #m (x′′ #n y′′) = (x′ #m x′′) #n (y′ #m y′′).

Finally, for condition (vii), let x be a finite-dimensional globelike complex. By defi-
nition, there exists n such that d−

n x = d+
n x = x. By Proposition 5.6, there exists p such

that dα
nx = x if and only if n ≥ p.

This completes the proof.

We now know that the finite-dimensional globelike subcomplexes of an atomic complex
form a well-behaved partial ω-category. An atom belongs to this partial ω-category if and
only if it is globelike, and we now give necessary and sufficient conditions for this to
happen.

5.13. Proposition. Let a be a p-dimensional atom in an atomic complex. If p = 0
or p = 1 then a is globelike. If p ≥ 2 then the following conditions are necessary and
sufficient for a to be globelike:

(i) the dα
p−1a are globelike;

(ii) dβ
p−2d

α
p−1a = dβ

p−2a for all signs α and β.

Proof. Suppose that p = 0. By Proposition 5.5(ii), dα
na = a for n ≥ 0, and it easily

follows that a is globelike.
Suppose that p = 1. By Proposition 5.5(ii), dα

0a = ∂αa, which is a subcomplex by
Definition 5.1(ii), and dα

na = a for n ≥ 1. Again it follows that a is globelike.
From now on, let p be at least 2.
Suppose that a is globelike. Then condition (i) holds by Proposition 5.7 and condi-

tion (ii) holds by Definition 5.4.
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Conversely, suppose that conditions (i) and (ii) hold. We must show that dα
na is a

subcomplex for all n, and that dβ
mdα

na = dβ
ma for 0 ≤ m < n.

Suppose that n ≥ p. Then dα
na = a by Proposition 5.5(ii), so dα

na is a subcomplex and
dβ

mdα
na = dβ

ma trivially.
By Proposition 5.5(ii), dα

p−1a = ∂αa, which is a subcomplex by Definition 5.1(ii).
Let m be such that 0 ≤ m < p − 1. By conditions (i) and (ii),

dβ
mdα

p−1a = dβ
mdβ

p−2d
α
p−1a = dβ

mdβ
p−2a

(in the case m = p − 2 this uses Proposition 5.6). Similarly dβ
md−α

p−1a = dβ
mdβ

p−2a. By
Proposition 5.5(ii), dβ

ma = dβ
m(dα

p−1a ∪ d−α
p−1a). Since dβ

mdα
p−1a = dβ

md−α
p−1a, it follows from

Proposition 5.9 that dβ
mdα

p−1a = dβ
ma.

Finally, suppose that n < p − 1. We have already seen that dα
na = dα

nd
−
p−1a. Since

d−
p−1a is globelike, dα

na is a subcomplex, and for m < n we also get dβ
mdα

na = dβ
mdα

nd
−
p−1a =

dβ
md−

p−1a = dβ
ma.

This completes the proof.

The main theorem, characterising ω-complexes, is now as follows.

5.14. Theorem. For an atomic complex to be an ω-complex the following conditions are
necessary and sufficient.

(i) If a is an atom and dim a = p > 0, then the dα
p−1a are molecules.

(ii) If a is an atom and dim a = p > 1 then dβ
p−2d

α
p−1a = dβ

p−2a for all signs α and β.

This theorem is satisfactory, in that it gives necessary and sufficient conditions. The
drawback is that condition (i) may be hard to verify, because it may be hard to recognise
molecules; for an example of the work that can be involved, see Section 6, especially Ex-
ample 6.19. In the most important cases one can use characterisations by well-formedness
conditions ([5], [11], [12]); see also Corollary 4.17.

Proof. Clearly the conditions hold in an atomic complex which is an ω-complex.
Conversely, suppose that the conditions hold. Let x be a molecule; we first show that

x is globelike and that the dα
nx are molecules. We use induction on p, the maximum of

the dimensions of the atoms in a decomposition of x. By Propositions 5.10 and 5.11, the
results hold for x if they hold for each atomic factor of x; we may therefore assume that
x is a p-dimensional atom.

If p > 0 then the dα
p−1x are molecules by condition (i), and they are composites of

atoms of dimension at most p − 1 by Proposition 5.5(i), so they are globelike by the
inductive hypothesis. If p > 1 then dβ

p−2d
α
p−1x = dβ

p−2x by condition (ii). For any value
of p, it now follows from Proposition 5.13 that x is globelike. If n ≥ p then dα

nx = x
by Proposition 5.5(ii), so dα

nx is a molecule. If n < p then dα
nx = dα

nd
α
p−1x because x is

globelike, so dα
nx is a molecule by the inductive hypothesis.

We now see that the class of molecules consists of of finite-dimensional globelike sub-
complexes and is closed under the operations dα

n. Since the finite-dimensional globelike
subcomplexes form a partial ω-category (Theorem 5.12), it follows that the molecules form
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a sub-partial ω-category, which clearly produces an ω-complex. By Proposition 5.5(ii),
the functions dim, ∂− and ∂+ which are given by this ω-complex structure coincide with
those given as part of the original atomic complex structure. Therefore the original atomic
complex is an ω-complex, as required.

This completes the proof.

6. Products

In this section we give the standard product construction for atomic complexes, and we
outline a proof that the product of two ω-complexes is an ω-complex; most of the details
are given in Section 8. For the most important special cases, there is an easier proof in
[12], 5, and there is a more difficult proof covering more cases in [10], 7. The proof given
here is completely general and easier than that of [10]; it amounts to an explicit algorithm
for decomposing molecules in products of ω-complexes. The method can also be applied
to joins; see [12] and [10].

Products of atomic complexes are modelled on products of cell complexes, with sign
conventions taken from homological algebra, in the following way.

6.1. Definition. Let K and L be atomic complexes; then the product set K×L is made
into an atomic complex as follows. The atoms of K × L are the sets of the form a × b
such that a is an atom in K and b is an atom in L. The structure functions are given by

dim(a × b) = dim a + dim b

and
∂γ(a × b) = (a × ∂δb) ∪ (∂γa × b),

where δ = (−)dim aγ.

It is straightforward to check that a product of atomic complexes is an atomic complex.
Up to coherent isomorphisms, the product construction is associative and has 0-

dimensional globes (see Example 2.4) as identities.
We wish to prove that a product of ω-complexes is itself an ω-complex, by verifying

the conditions of Theorem 5.14; in particular, we must show that ∂γ(a× b) is a molecule
when a × b is a product atom of positive dimension. Suppose that a and b have positive
dimensions i and j; then

∂γ(a × b) = (dα
i a × dδ

j−1b) ∪ (dγ
i−1a × dβ

j b),

where δ = (−)iγ and where α and β are arbitrary. It is convenient to represent this
subcomplex of a × b by the matrix

[
i α j − 1 δ

i − 1 γ j β

]
,

and in general we make the following convention.
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6.2. Notation. Let x and y be molecules in ω-complexes and let λ be a matrix with rows
of the form [i α j β] such that i and j are non-negative integers and α and β are signs.
Then λ(x, y) denotes the union of the corresponding complexes dα

i x × dβ
j y.

We aim to show that λ(x, y) is a molecule when λ is a molecular matrix in the sense
of the following definition.

6.3. Definition. A molecular matrix is a non-empty matrix of the form


i0 α0 j0 β0
...

...
...

...
ir αr jr βr




such that the iq and jq are non-negative integers, the αq and βq are signs, and

i0 > i1 > . . . > ir,

j0 < j1 < . . . < jr,

βq−1 = −(−)iqαq for 1 ≤ q ≤ r.

For example, let

λ =
[

i α j − 1 δ
i − 1 γ j β

]

with δ = (−)iγ; then λ is a molecular matrix. Another important example appears in the
next result.

6.4. Theorem. Let x and y be molecules in ω-complexes. Then dγ
n(x × y) = λ(x, y),

where

λ =




n γ 0 (−)nγ
n − 1 γ 1 (−)n−1γ

...
...

...
...

0 γ n γ


 .

The proof is given in Section 8.
We now define operations dγ

n on molecular matrices; eventually we will show that they
represent the corresponding operations on complexes.

6.5. Definition. Let λ be a molecular matrix, let n be a non-negative integer and let γ
be a sign. Then dγ

nλ is the matrix defined as follows. Form a block decomposition

λ =




λ0

...
λt




such that consecutive rows [i′ α′ j β] and [i α j′ β′] lie in the same block if and only if
j + i ≥ n. Then

dγ
nλ =




ν0

...
νt


 ,
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where νs is constructed from λs as follows. Let the top row of λs start with [i α] and the
bottom row of λs end with [j β]. If i > n, let [i∗ α∗] = [n γ]; otherwise, let [i∗ α∗] = [i α]. If
j > n, let [j∗ β∗] = [n γ]; otherwise, let [j∗ β∗] = [j β]. If i∗+j∗ ≤ n, let νs = [i∗ α∗ j∗ β∗];
otherwise, let

νs =




i∗ α∗ n − i∗ (−)i∗γ
i∗ − 1 γ n − i∗ + 1 (−)i∗−1γ
i∗ − 2 γ n − i∗ + 2 (−)i∗−2γ

...
...

...
...

n − j∗ + 1 γ j∗ − 1 (−)n−j∗+1γ
n − j∗ γ j∗ β∗




.

For example, if

λ =




5 − 2 −
4 + 3 −
1 − 4 −
0 + 7 +




then

d−
6 λ =




5 − 1 +
4 − 2 −
3 − 3 −
1 − 4 −
0 + 6 −


 .

In Definition 6.5, note that a row [i α j β] in λ with i + j ≤ n must form an entire
block λs by itself, and that νs = λs in such cases. Note also that [i∗ α∗] = [i α] except
possibly for the top block λ0, and that [j∗ β∗] = [j β] except possibly for the bottom
block λt.

The operations dγ
n have the following properties.

6.6. Theorem. Let λ be a molecular matrix, let n be a non-negative integer, and let γ
be a sign. Then the following hold :

(i) dγ
nλ is a molecular matrix ;

(ii) if x and y are molecules in ω-complexes, then dγ
n[λ(x, y)] = (dγ

nλ)(x, y).

The proof is given in Section 8.
Next we define operations #n on molecular matrices. Let µ− and µ+ be molecular

matrices such that d+
n µ− = d−

n µ+. We define µ−#nµ+ to be a molecular matrix consisting
of certain rows from µ− and µ+. For this to make sense, we must of course show that the
required rows really do form a molecular matrix if arranged in the right order; we shall
do this in Section 8.

6.7. Definition. Let µ− and µ+ be molecular matrices such that d+
n µ− = d−

n µ+. Then
µ− #n µ+ is the molecular matrix consisting of the rows [i α j β] with i + j > n which
appear in µ− or µ+, and of the rows [i α j β] with i + j ≤ n which are common to both
factors.
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For example, let

µ− =




5 − 0 +
4 − 2 +
2 − 3 −
1 − 4 +
0 − 5 +


 , µ+ =




6 + 0 −
5 − 1 +
3 + 2 +
2 − 4 +
0 − 5 +


 ;

then

d+
5 µ− = d−

5 µ+ =




5 − 0 +
4 − 1 +
3 + 2 +
2 − 3 −
1 − 4 +
0 − 5 +




and

µ− #5 µ+ =




6 + 0 −
5 − 1 +
4 − 2 +
2 − 4 +
0 − 5 +


 .

We have the following result.

6.8. Theorem. Let x and y be molecules in ω-complexes, and let µ− and µ+ be molecular
matrices such that d+

n µ− = d−
n µ+. Then

µ−(x, y) #n µ+(x, y) = (µ− #n µ+)(x, y).

The proof is given in Section 8.
Conversely, we have the following result.

6.9. Theorem. A matrix is molecular if and only if it has a decomposition into single-
rowed matrices.

The proof is given in Section 8.
Theorems 6.8 and 6.9 enable us to decompose sets into factors which are products

of molecules. We actually wish to decompose them into atoms. We therefore need to
decompose x×y whenever x or y is a proper composite; in other words, we must consider
subsets of products of the forms (x− #p x+) × y and x × (y− #p y+). The two cases are
similar, and we shall concentrate on (x− #p x+) × y. We index its subsets by pairs of
molecular matrices according to the following convention, which is designed to interact
well with Proposition 5.9.

6.10. Notation. Let x− and x+ be molecules in an ω-complex, let y be a molecule in an
ω-complex, and let Λ = (Λ−, Λ+) be a pair of molecular matrices. Then we write

Λ(x−, x+; y) = [Λ−(x−, y) ∩ Λ+(x+, y)] ∪ [Λ−(x−, y) \ (x+ × y)] ∪ [Λ+(x+, y) \ (x− × y)].

The relevant pairs turn out to be the left p-compatible pairs, which are defined as
follows.
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6.11. Definition. A pair of molecular matrices Λ = (Λ−, Λ+) is left p-compatible if

Λ−(x, y) ∩ (d−
p x × y) ⊂ Λ+(x, y) and Λ+(x, y) ∩ (d+

p x × y) ⊂ Λ−(x, y)

for all molecules x and y in all ω-complexes.

For example, a pair of the form (λ, λ) is left p-compatible; we also have certain basic
examples as follows.

6.12. Example. Let
Λ = ([i− α− j β], [i+ α+ j β])

such that i− = i+ < p and α− = α+, or such that i− ≥ p and [i+ α+] = [p −], or such
that i+ ≥ p and [i− α−] = [p +]; then Λ is left p-compatible. Left p-compatible pairs of
these forms will be called basic.

If x− #p x+ is a composite of molecules in an ω-complex, if y is a molecule in an ω-
complex, and if Λ is a basic left p-compatible pair of molecular matrices, then Λ(x−, x+; y)
has the form dα

i xθ × dβ
j y.

Left p-compatible pairs can be characterised more explicitly as follows.

6.13. Proposition. A pair of molecular matrices Λ = (Λ−, Λ+) is left p-compatible if
and only if the following conditions hold :

(i) Λ− and Λ+ have the same rows [i α j β] such that i < p;
(ii) if one of the matrices Λ− and Λ+ has rows beginning with [i α] such that i ≥ p,

then so also does the other, and the last two such rows in Λ− and Λ+ end with the same
pair [j β];

(iii) if Λθ has top row [p θ j β], then Λ−θ has top row [p θ j β];
(iv) if Λθ has a row [p θ j β] preceded by a row ending with [l δ], then Λ−θ has a row

[p θ j β] either at the top or preceded by a row ending with [l′ δ] such that l′ ≤ l.

The proof is given in Section 8.
We define operations dγ

n and #n on pairs in the obvious way, as follows.

6.14. Definition. Let Λ = (Λ−, Λ+) be a pair of molecular matrices. Then dγ
nΛ is the

pair of molecular matrices given by dγ
nΛ = (dγ

nΛ−, dγ
nΛ+).

Let M− = (M−
−, M−

+) and M+ = (M+
−, M+

+) be pairs of molecular matrices such that
d+

n M− = d−
n M+. Then M− #n M+ is the pair of molecular matrices given by

M− #n M+ = (M−
− #n M+

−, M−
+ #n M+

+).

We have the following results on left p-compatible pairs.

6.15. Theorem. Let x− #p x+ be a composite of molecules in an ω-complex and let y be
a molecule in an ω-complex.

(i) If Λ is a left p-compatible pair of molecular matrices, then Λ(x−, x+; y) is a sub-
complex of (x− #p x+) × y.

(ii) If Λ is a left p-compatible pair of molecular matrices then dγ
nΛ is left p-compatible

and dγ
n[Λ(x−, x+; y)] = (dγ

nΛ)(x−, x+; y).
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(iii) If M− and M+ are left p-compatible pairs of molecular matrices such that d+
n M− =

d−
n M+, then M− #n M+ is left p-compatible and

M−(x−, x+; y) #n M+(x−, x+; y) = (M− #n M+)(x−, x+; y).

The proof is given in Section 8.

6.16. Theorem. A pair of molecular matrices is left p-compatible if and only if it has a
decomposition into basic left p-compatible pairs.

The proof is given in Section 8.
There are of course analogous results for right p-compatible pairs applied to products of

the form x×(y−#py+). We omit all the details, even the definition of right p-compatibility.
We now use our results to show that various sets are molecules.

6.17. Theorem. Let K and L be ω-complexes, and let w be a subset of K × L. Then w
is a molecule if w = λ(x, y) such that x and y are molecules and λ is a molecular matrix,
or if w = Λ(x−, x+; y) such that x− #p x+ is a composite of molecules, y is a molecule,
and Λ is a left p-compatible pair of molecular matrices, or if w = Λ(x; y−, y+) such that
x is a molecule, y− #p y+ is a composite of molecules, and Λ is a right p-compatible pair
of molecular matrices.

Proof. In the first case, by Theorems 6.8 and 6.9, w is a composite of sets of the form
dα

i x × dβ
j y; therefore w is a composite of sets of the form x′ × y′ such that x′ and y′

are molecules. In the second case, the same conclusion follows from Theorems 6.15(iii)
and 6.16. In the third case, it follows similarly. It therefore suffices to decompose x′ × y′

into atoms when x′ and y′ are molecules. We shall use induction on the dimensions of x′

and y′.
Suppose that x′ is not an atom. There is then a proper decomposition x′ = x− #p x+.

By Proposition 3.2(ii), dim xθ ≤ dim x′ for each θ. We can express x′ × y′ in the form
Λ(x−, x+; y′) with Λ left p-compatible (take Λ = (λ, λ) such that λ = [k ε l ζ] with k
and l large). As before, we can decompose x′× y′ into factors of the form dα

i xθ ×dβ
j y

′. By
repeating this process until x′ is decomposed into atoms, we decompose x′×y′ into factors
of the form x′′ × y′′ such that x′′ and y′′ are molecules, x′′ is an atom or dim x′′ < dim x′,
and y′′ = y′ or dim y′′ < dim y′. By using a decomposition of y′ in a similar way and
iterating, we eventually decompose x′ × y′ into atoms as required.

This completes the proof.

We can now deduce the main theorem.

6.18. Theorem. If K and L are ω-complexes, then K × L is an ω-complex.

Proof. We must verify the conditions of Theorem 5.14. Let c be an atom in K × L;
thus c = a × b for some atoms a and b. It follows that c = λ(a, b) for some single-rowed
matrix λ. Trivially λ is molecular.

Suppose that dim c = q > 0; we must show that the dγ
q−1c are molecules. But dγ

q−1c =
(dγ

q−1λ)(a, b) by Theorem 6.6(ii) and dγ
q−1λ is molecular by Proposition 6.6(i), so dγ

q−1c is
a molecule by Theorem 6.17.
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Suppose that dim c = q > 1; we must show that dδ
q−2d

γ
q−1c = dδ

q−2c. But, by repeated
applications of Theorem 6.6(ii), it suffices to show that dδ

q−2d
γ
q−1λ = dδ

q−2λ, and this is
easily verified.

This completes the proof.

6.19. Example. Let u and v be infinite-dimensional globes as in Example 2.4. Recall
that u has two n-dimensional atoms u−

n and u+
n for each n, and that dβ

muα
n = uβ

m for m < n;
the structure of v is similar. If λ is a molecular matrix, then the value of λ(uα

m, vβ
n) is

independent of m, α, n and β, provided that m and n are sufficiently large; we shall write
λ(u, v) for the common value. It is easy to see that the function λ �→ λ(u, v) is injective.
By Theorem 6.17, the λ(u, v) are molecules in u × v.

Suppose that µ− and µ+ are molecular matrices such that d+
n [µ−(u, v)] = d−

n [µ+(u, v)].
By Theorem 6.6(ii), (d+

n µ−)(u, v) = (d−
n µ+)(u, v). Since the function λ �→ λ(u, v) is

injective, d+
n µ− = d−

n µ+. By Theorem 6.8, µ−(u, v) #n µ+(u, v) is defined and is equal to
(µ− #n µ+)(u, v). Since the atoms have the form λ(u, v), it follows that every molecule
has the form λ(u, v).

We have now shown that the molecules of u×v are in one-to-one correspondence with
the molecular matrices. Since µ−(u, v) #n µ+(u, v) is defined whenever d+

n [µ−(u, v)] =
d−

n [µ+(u, v)], it follows that the molecules of u × v form an ω-category, not just a partial
ω-category. The operations dγ

n and #n are given by Definitions 6.5 and 6.7. This recovers
results of Street [12], with more explicit formulae.

In a similar way, let u− #p u+ and v− #p v+ be composites of infinite-dimensional
globes; then the molecules in (u− #p u+) × v and u × (v− #p v+) form ω-categories in
one-to-one correspondence with left and right p-compatible pairs of molecular matrices.

7. Geometric structures and products

In this section we make two observations relating the geometric structures of Section 4 to
the products of Section 6.

Recall that a product of CW complexes is again a CW complex, provided that one
uses the compactly generated topology. For geometric ω-complexes there is an analogous
result.

7.1. Proposition. If K and L are geometric ω-complexes and K ×L is given the com-
pactly generated topology, then K × L is also a geometric ω-complex.

Proof. By Theorem 6.18, K × L is an ω-complex; to show that K × L is a geometric
ω-complex we must verify the conditions of Definition 4.4. Conditions (ii) and (iii) are
proved in a standard way from Proposition 4.9 and the properties of compactly generated
topologies, and it remains to verify condition (i). Let a and b be atoms in K and L, so
that a × b is an atom in K × L; we must show that a × b is a cone with base

∂−(a × b) ∪ ∂+(a × b).
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Let ∂a = ∂−a ∪ ∂+a and ∂b = ∂−b ∪ ∂+b. Since K and L are geometric ω-complexes,
a and b are cones with bases ∂a and ∂b; also, ∂a and ∂b are compact Hausdorff by
Proposition 4.9. By properties of cones, a × b is a cone with base

(a × ∂b) ∪ (∂a × b).

But

(a × ∂b) ∪ (∂a × b) = ∂−(a × b) ∪ ∂+(a × b)

by Definition 6.1; therefore a × b is a cone on

∂−(a × b) ∪ ∂+(a × b)

as required.
This completes the proof.

The other observation concerns roundness. The geometric theory works best for ω-
complexes in which all the atoms are round (see Theorem 4.13, Corollary 4.16 and Corol-
lary 4.17). We therefore want this property to be preserved when we form products; in
other words we want a product of round atoms to be round. This is in fact true, as a
special case of the following result.

7.2. Proposition. If x and y are round molecules in ω-complexes, then x × y is also a
round molecule.

Proof. As in the proof of Theorem 6.18, x×y = λ(x, y) for some single-rowed molecular
matrix λ. By Theorem 6.17, x × y is a molecule. It follows from Theorem 6.4 that x × y
satisfies the conditions of Definition 4.10; therefore x × y is also round. This completes
the proof.

8. Proofs

In this section we give the proofs omitted from Section 6.

Proof of Theorem 6.4 Let x and y be molecules in ω-complexes; we must show that

dγ
n(x × y) is the union of the sets dγ

i x × d
(−)iγ
n−i y.

Suppose first that (ξ, η) ∈ dγ
n(x × y); we shall show that (ξ, η) ∈ dγ

i x × d
(−)iγ
n−i y for

some i. Since (ξ, η) belongs to an atom of dimension at most n contained in x × y, we
must have ξ ∈ Int a and η ∈ Int b for some atoms a in x and b in y of dimensions k and l
with k + l ≤ n. By considering (n + 1)-dimensional atoms in x× y of the form a′ × b such
that ξ ∈ a′, we see that ξ ∈ dγ

n−lx. Let i be minimal such that ξ ∈ dγ
i x; thus k ≤ i ≤ n− l.

There is then an i-dimensional atom a′′ in x such that ξ ∈ a′′ \∂γa′′ (if i = k, take a′′ = a;
if i > k, use the fact that ξ /∈ dγ

i−1x). Now η ∈ b ⊂ y with dim b = l ≤ n − i, and, by
considering (n + 1)-dimensional atoms in x × y of the form a′′ × b′ such that η ∈ b′, we

see that η ∈ d
(−)iγ
n−i y. Therefore (ξ, η) ∈ dγ

i x × d
(−)iγ
n−i y as required.
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Conversely, suppose that (ξ, η) ∈ dγ
i x× d

(−)iγ
n−i y for some i; we shall show that (ξ, η) ∈

dγ
n(x × y). It is clear that (ξ, η) belongs to some atom in x × y of dimension at most n.

Suppose that a × b is an (n + 1)-dimensional atom in x × y containing (ξ, η); we must
show that (ξ, η) ∈ ∂γ(a × b). Let dim a = k, so that dim b = n + 1 − k. If i < k then
Proposition 5.8 gives us

ξ ∈ dγ
i a ⊂ dγ

k−1a = ∂γa;

if i ≥ k then Proposition 5.8 gives us

η ∈ d
(−)iγ
n−i b ⊂ d

(−)kγ
n−k b = ∂(−)kγb;

in both cases, (ξ, η) ∈ ∂γ(a × b) as required.
This completes the proof.

Proof of Theorem 6.6(i) Let λ be a molecular matrix; we must show that dγ
nλ is a

molecular matrix. We use the notation of Definition 6.5. It is clear that the consecutive
rows inside each block νs satisfy the conditions of Definition 6.3, and it remains to consider
the passage from one block to the next.

Suppose that νs−1 has bottom row [i′ α′ j β] and νs has top row [i α j′ β′]; we must
show that i′ > i, j < j′, and β = −(−)iα. We note that the bottom row of λs−1 and
the top row of λs have the forms [i′′ α′′ j β] and [i α j′′ β′′]; we also note that i′ = i′′

or i′ = n − j, etc. But i′′ > i because λ is molecular, and n − j > i because the rows
[i′′ α′′ j β] and [i α j′′ β′′] are in different blocks; therefore i′ > i in all cases. Similarly
j < j′. Finally, β = −(−)iα because λ is molecular.

Proof of Theorem 6.6(ii) Let λ be a molecular matrix and let x and y be molecules
in ω-complexes; we must show that dγ

n[λ(x, y)] = (dγ
nλ)(x, y).

First we show that (dγ
nλ)(x, y) ⊂ λ(x, y); in other words, we show that dε

kx × dζ
l y ⊂

λ(x, y) for each row [k ε l ζ] in dγ
nλ. It is clear that λ has a row [i α j β] with i ≥ k and

j ≥ l. There are now three cases.
1. Suppose that [i α] = [k ε] or i > k; suppose also that [j β] = [l ζ] or l > j. Then

dε
kx × dζ

l y ⊂ dα
i x × dβ

j y ⊂ λ(x, y).
2. Suppose that [i α] = [k − ε]. We must then have [k ε l ζ] = [k γ n−k (−)kγ]; also,

the row [i α j β] = [k − γ j β] in λ must be preceded by [i′ α′ j′ β′] such that i′ > i = k,

j′ ≥ n−i = n−k = l, and β′ = (−)kγ = ζ. It follows that dε
kx×dζ

l y ⊂ dα′
i′ x×dβ′

j′ y ⊂ λ(x, y).

3. Suppose that [j β] = [l − ζ]. Then dε
kx × dζ

l y ⊂ λ(x, y) by a similar argument.
This completes the proof that (dγ

nλ)(x, y) ⊂ λ(x, y).
To prove that (dγ

nλ)(x, y) ⊂ dγ
n[λ(x, y)], it now suffices, by Proposition 5.9, to prove

that
(dε

kx × dζ
l y) ∩ (dα

i x × dβ
j y) ⊂ dγ

n(dα
i x × dβ

j y)

for every row [k ε l ζ] in dγ
nλ and every row [i α j β] in λ. There are again three cases.

1. Suppose that [i α j β] is in a block λs as in Definition 6.5 and that [k ε l ζ] is in the
corresponding block of dγ

nλ. Let the top row of λs begin with [i′ α′] and let the bottom
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row of λs end with [j′ β′]. We then have dα
i x× dβ

j y ⊂ dα′
i′ x× dβ′

j′ y, and from Theorem 6.4

we have dε
kx × dζ

l y ⊂ dγ
n(dα′

i′ x × dβ′
j′ y). It now follows from Proposition 5.8 that

(dε
kx × dζ

l y) ∩ (dα
i x × dβ

j y) ⊂ dγ
n(dα

i x × dβ
j y).

2. Suppose that [i α j β] is in a block λs as in Definition 6.5, and suppose that
[k ε l ζ] is in a block of dγ

nλ which comes from a higher block in λ. We then have k < i
and j < n − k, and it follows from Theorem 6.4 that

(dε
kx × dζ

l y) ∩ (dα
i x × dβ

j y) ⊂ dγ
k+1d

α
i x × d

(−)k+1γ
n−k−1 dβ

j y ⊂ dγ
n(dα

i x × dβ
j y).

3. Suppose that [i α j β] is in a block λs as in Definition 6.5, and suppose that [k ε l ζ]
is in a block of dγ

nλ which comes from a lower block in λ. We use an argument similar to
that for Case 2.

This completes the proof that (dγ
nλ)(x, y) ⊂ dγ

n[λ(x, y)].
It remains to show that every point (ξ, η) of dγ

n[λ(x, y)] is in (dγ
nλ)(x, y). By Propo-

sition 5.9, (ξ, η) ∈ dγ
n(dα

i x × dβ
j y) for some row [i α j β] in λ. It then follows from

Theorem 6.4 that (ξ, η) ∈ (dγ
nλ)(x, y) except in the following two cases: α = −γ, the row

[i α j β] is preceded by [i′ α′ j′ β′] with j′ ≥ n− i, and ξ ∈ d−γ
i x \ dγ

i x; or β = −(−)n−jγ,

the row [i α j β] is followed by [i′ α′ j′ β′] with i′ ≥ n− j, and η ∈ d
−(−)n−jγ
j y \ d

(−)n−jγ
j y.

The argument is similar in both of these cases; we consider the first.
Since (ξ, η) ∈ dγ

n(dα
i x×dβ

j y) and ξ /∈ dγ
kd

α
i x for k < i, it follows from Theorem 6.4 that

η ∈ d
(−)iγ
n−i y. We automatically have i′ > i and β′ = (−)iγ; since also j′ ≥ n − i, it follows

that (ξ, η) ∈ dα′
i′ x×dβ′

j′ y. By Proposition 5.8, (ξ, η) ∈ dγ
n(dα′

i′ x×dβ′
j′ y). But ξ /∈ dγ

i d
α′
i′ x, so it

follows from Theorem 6.4 that η ∈ d
(−)i+1γ
n−i−1 y. Also dγ

nλ has a row [i+1 ε n− i−1 (−)i+1γ]
and ξ ∈ d−γ

i x ⊂ dε
i+1x. Therefore (ξ, η) ∈ (dγ

nλ)(x, y)as required.
This completes the proof.

Justification of Definition 6.7 Let µ− and µ+ be molecular matrices such that
d+

n µ− = d−
n µ+. Let L be the set of rows [i α j β] with i+ j > n which appear in µ− or µ+

and of the rows [i α j β] with i + j ≤ n which are common to both. We must show that
the rows of L can be formed into a molecular matrix.

Consider the blocks of µ− and µ+ as used in Definition 6.5. There are two types of
block: those consisting of one or more rows [i α j β] with i + j > n, and those consisting
of a single row [i α j β] with i + j ≤ n. Let K be the set consisting of all the blocks of
the first type, and of the blocks of the second type which are common to both factors;
then the rows of L are precisely the rows of the members of K. It therefore suffices to list
the members of K as κ0, . . . , κt such that the bottom row of κs−1 and the top row of κs

satisfy the conditions of Definition 6.3.
Let ν = d+

n µ− = d−
n µ+; then the members of K correspond to blocks in ν. Inspection

of Definition 6.5 shows that these blocks form the whole of ν and that the blocks corre-
sponding to distinct members of K can overlap by at most one row. If a row of ν lies
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in an overlap, then it comes from blocks κ− and κ+ in µ− and µ+ of the first type, the
common row has the form [k γ n−k − (−)kγ], it is the bottom row of dγ

nκ
−γ and the top

row of d−γ
n κγ. We can therefore list the members of K as κ0, . . . , κt such that the corre-

sponding blocks ν0, . . . , νt of ν satisfy the following conditions: the bottom row of νs−1 is
immediately above the top row of νs or coincides with it; in the case of coincidence, the
common row has the form [k γ n − k − (−)kγ] such that κs−1 and κs are blocks of the
first type in µ−γ and µγ respectively.

We now check that the bottom row of κs−1 and the top row of κs satisfy the the
conditions of Definition 6.3 in the two possible cases.

In the case of non-coincidence, let the bottom row of νs−1 and the top row of νs be
[i′ α′ j β] and [i α j′ β′]; then the bottom row of κs−1 and the top row of κs have the
forms [i′′ α′′ j β] and [i α j′′ β′′] with i′′ ≥ i′ and j′ ≤ j′′. Since ν is a molecular matrix
(Theorem 6.6(i)), we get i′′ ≥ i′ > i, j < j′ ≤ j′′ and β = −(−)iα.

In the case of coincidence, let the common row be [k γ n − k − (−)kγ]. Then the
bottom row of κs−1 and the top row of κs have the forms [i′′ α′′ n − k − (−)kγ] and
[k γ j′′ β′′] with i′′ > k and n − k < j′′, and again the conditions are satisfied.

Proof of Theorem 6.8 Let µ− and µ+ be molecular matrices such that d+
n µ− = d−

n µ+,
and let x and y be molecules in ω-complexes. We must show that µ−(x, y) #n µ+(x, y) =
(µ− #n µ+)(x, y).

Let ν = d+
n µ− = d−

n µ+ and let λ = µ− #n µ+. By Theorem 6.6(ii), d+
n [µ−(x, y)] =

d−
n [µ+(x, y)] = ν(x, y). We shall prove the result by showing that

µ−(x, y) ∩ µ+(x, y) ⊂ ν(x, y)

and
µ−(x, y) ∪ µ+(x, y) = λ(x, y).

To show that µ−(x, y) ∩ µ+(x, y) ⊂ ν(x, y), let σ− = [i− α− j− β−] and σ+ =
[i+ α+ j+ β+] be rows of µ− and µ+; we must show that σ−(x, y) ∩ σ+(x, y) ⊂ ν(x, y). If
iγ + jγ ≤ n for some γ, then σγ is a row in ν and the result follows. We may therefore
assume that i−+j− > n and i+ +j+ > n, so that σ− and σ+ are rows in λ. Choose γ such
that σγ comes above σ−γ. Let κ− and κ+ be the blocks of µ− and µ+ as in Definition 6.5
containing σ− and σ+, let ν− and ν+ be the corresponding blocks of ν, let [i′ α′ j β] be
the bottom row of νγ, and let [i α j′ β′] be the top row of ν−γ. We then have jγ < j or
[jγ βγ] = [j β], and similarly i−γ < i or [i−γ α−γ ] = [i α], so that

σ−(x, y) ∩ σ+(x, y) ⊂ dα
i x × dβ

j y.

But, as in the justification of Definition 6.7, [i′ α′ j β] comes above [i α j′ β′] in ν or
coincides with it, so that i < i′ or [i α] = [i′ α′]. It follows that

dα
i x × dβ

j y ⊂ dα′
i′ x × dβ

j y ⊂ ν(x, y);

therefore σ−(x, y) ∩ σ+(x, y) ⊂ ν(x, y) as required.
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It remains to show that µ−(x, y) ∪ µ+(x, y) = λ(x, y). Every row of λ is a row in µ−

or µ+, so λ(x, y) ⊂ µ−(x, y) ∪ µ+(x, y). Let σ = [i α j β] be a row of µγ which is not
a row of λ; we must show that σ(x, y) ⊂ λ(x, y). We note that i + j ≤ n and that σ is
not a row in µ−γ. From Definition 6.5, σ is a row in d−γ

n µγ = dγ
nµ

−γ. By the proof of
Theorem 6.6(ii), σ(x, y) ⊂ τ(x, y) for some row τ in µ−γ; also, since σ is not a row in µ−γ,
we must have τ = [i′ α′ j′ β′] with i′ + j′ > n. It follows that τ is a row in λ; therefore
σ(x, y) ⊂ λ(x, y) as required.

This completes the proof.

Proof of Theorem 6.9 Obviously a single-rowed matrix is molecular, so a composite
of single-rowed matrices is molecular by Definition 6.7. We must prove the converse, that
any molecular matrix is a composite of single-rowed matrices.

We shall use the partial ordering of the class of molecular matrices given in the fol-
lowing way: µ ≤ λ if µ(x, y) ⊂ λ(x, y) for all molecules x and y in all ω-complexes. By
Theorem 6.8, µ− ≤ µ− #n µ+ and µ+ ≤ µ− #n µ+ whenever µ− #n µ+ is defined. For a
given row [i α j β] and for sufficiently high-dimensional x and y, there are only finitely
many rows [k ε l ζ] such that dε

kx×dζ
l y ⊂ dα

i x×dβ
j y; therefore any given molecular matrix

has only finitely many predecessors. By an inductive argument, it therefore suffices to
construct a proper decomposition λ = µ− #n µ+ whenever λ is a molecular matrix with
more than one row.

To do this, choose an arbitrary partition

λ =
[
λ1

λ2

]

such that λ1 and λ2 are non-empty. Let the bottom row of λ1 end with [j β], let the top
row of λ2 start with [i α], and let n = j + i. We find that the bottom row of dα

nλ1 and
the top row of d−α

n λ2 are both equal to [i α j β]. Let π1 and π2 be the (possibly empty)
matrices got from dα

nλ1 and d−α
n λ2 by removing the row [i α j β], and let

µ−α =
[
λ1

π2

]
, µα =

[
π1

λ2

]
.

We find that µ− and µ+ are molecular matrices distinct from λ such that λ = µ− #n µ+.

This completes the proof.

Proof of Proposition 6.13 We must show that a pair Λ = (Λ−, Λ+) is left p-
compatible if and only if it satisfies conditions (i)–(iv).

Suppose that Λ is left p-compatible. It clearly follows that Λ−(x, y) = Λ+(x, y) for all
molecules x and y such that dim x ≤ p. From this it follows that Λ satisfies conditions
(i)–(ii).

The rest of the proof is a straightforward calculation.



Theory and Applications of Categories, Vol. 4, No. 1 33

Proof of Theorem 6.15(i) We must show that Λ(x−, x+; y) is a subcomplex if Λ is
a left p-compatible pair and the composite x− #p x+ exists. Let Λ = (Λ−, Λ+). Using
Proposition 6.13, it is straightforward to check the following results: if Λ− and Λ+ do not
have a common row beginning with [p θ], then

Λ(x−, x+; y) = Λ−(x−, y) ∪ Λ+(x+, y);

if Λ− and Λ+ do have a common row [p θ j β], then

Λ(x−, x+; y) = Λθ(xθ, y) ∪ Λ′
−θ(x−θ, y),

where Λ′
−θ is got from Λ−θ by deleting the row [p θ j β]. In both cases, Λ(x−, x+; y) is a

subcomplex as required.

Proof of Theorem 6.15(ii) Let Λ be a left p-compatible pair. We must show that dγ
nΛ

is left p-compatible, and that dγ
n[Λ(x−, x+; y)] = (dγ

nΛ)(x−, x+; y) when x− #p x+ exists.
Let Λ = (Λ−, Λ+), so that dγ

nΛ = (dγ
nΛ−, dγ

nΛ+).
To show that dγ

nΛ is left p-compatible, we verify the conditions of Proposition 6.13. It
is easy to see that dγ

nΛ satisfies conditions (i) and (ii), because Λ does so. We therefore
concentrate on conditions (iii) and (iv). There are two cases.

1. Suppose that dγ
nΛθ has a row [p θ j β] at the top of a block as in Definition 6.5.

One finds that dγ
nΛ−θ also has the row [p θ j β] at the top of a block. Suppose further

that this row is preceded in dγ
nΛ−θ by a row ending with [l′ δ]. Then Λ− and Λ+ have a

common row of the form [p θ j′ β′]. In Λ−θ this row is preceded by a row ending with
[l′ δ]; in Λθ it is therefore preceded by a row ending with [l δ] such that l ≥ l′. In dγ

nΛθ, it
now follows that [p θ j β] is preceded by a row ending with [l δ]. Therefore dγ

nΛ satisfies
conditions (iii) and (iv).

2. Suppose that dγ
nΛθ has a row [p θ j β] not at the top of a block as in Definition 6.5.

Then θ = γ and the preceding row in dγ
nΛγ ends with [n− p− 1 δ]. One finds that dγ

nΛ−γ

also has a row beginning with [p γ j β]. By general properties of dγ
n (see Definition 6.5),

the preceding row in dγ
nΛ−γ (if any) must end with [l′ δ] such that l′ ≤ n − p − 1. Again

dγ
nΛ satisfies conditions (iii) and (iv).

This completes the proof that dγ
nΛ is left p-compatible.

We now show that dγ
n[Λ(x−, x+; y)] = (dγ

nΛ)(x−, x+; y). Recall from Theorem 6.6(ii)
that dγ

n[Λθ(xθ, y)] = (dγ
nΛθ)(xθ, y); we shall use this result without comment.

For ζ a point of (xθ × y) \ (x−θ × y), an atom containing ζ is contained in Λ(x−, x+; y)
if and only if it is contained in Λθ(xθ, y). It easily follows that

dγ
n[Λ(x−, x+; y)] \ (x−θ × y) = (dγ

nΛθ)(xθ, y) \ (x−θ × y)

for each θ.
By Proposition 5.9, (dγ

nΛ−)(x−, y) ∩ (dγ
nΛ+)(x+, y) ⊂ dγ

n[Λ−(x−, y) ∪ Λ+(x+, y)]. Ob-
viously

(dγ
nΛ−)(x−, y) ∩ (dγ

nΛ+)(x+, y) ⊂ Λ(x−, x+; y) ⊂ Λ−(x−, y) ∪ Λ+(x+, y),
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and with the use of Proposition 5.8 we get

(dγ
nΛ−)(x−, y) ∩ (dγ

nΛ+)(x+, y) ⊂ dγ
n[Λ(x−, x+; y)] ∩ (x− × y) ∩ (x+ × y).

To complete the proof, it suffices to show that ζ ∈ (dγ
nΛ−)(x−, y)∩(dγ

nΛ+)(x+, y) whenever
ζ ∈ dγ

n[Λ(x−, x+; y)] ∩ (x− × y) ∩ (x+ × y). There are two cases, as follows.
1. Suppose that Λ− and Λ+ do not have a common row beginning with [p θ]. By the

proof of part (i), ζ ∈ Λ−(x−, y) ⊂ Λ(x−, x+; y) and ζ ∈ Λ+(x+, y) ⊂ Λ(x−, x+; y), and it
follows from Proposition 5.8 that ζ ∈ (dγ

nΛ−)(x−, y) ∩ (dγ
nΛ+)(x+, y).

2. Suppose that Λ− and Λ+ have a common row [p θ j β]. Let Λ′
−θ be the matrix

got from Λ−θ by deleting this common row. By the proof of part (i), ζ ∈ Λθ(xθ, y) ⊂
Λ(x−, x+; y) and ζ ∈ Λ′

−θ(x−θ, y) ⊂ Λ(x−, x+; y). As in Case 1, it follows that ζ ∈
(dγ

nΛθ)(xθ, y) ∩ dγ
n[Λ′

−θ(x−θ, y)]. To complete the proof, by Proposition 5.9, it suffices to
show that

(dγ
nΛθ)(xθ, y) ∩ (dθ

px−θ × dβ
j y) ⊂ dγ

n(dθ
px−θ × dβ

j y).

But [p θ j β] is a row in Λθ, so

(dγ
nΛθ)(xθ, y) ∩ (dθ

pxθ × dβ
j y) ⊂ dγ

n(dθ
pxθ × dβ

j y)

by Proposition 5.8. The result now follows from calculations with Theorem 6.4, since
dγ

i d
θ
px−θ = dγ

i d
θ
pxθ for i < p and since dγ

i d
θ
px−θ = dθ

px−θ for i ≥ p.

Proof of Theorem 6.15(iii) Let M− and M+ be left p-compatible pairs such that
d+

n M− = d−
n M+. We must show that M− #n M+ is left p-compatible, and that

M−(x−, x+; y) #n M+(x−, x+; y) = (M− #n M+)(x−, x+; y)

when x− #p x+ exists.
Let Mα = (Mα

−, Mα
+) for each α. By Theorem 6.8(ii),

(M−
θ #n M+

θ )(x, y) = M−
θ (x, y) #n M+

θ (x, y)

for each θ, where x and y are arbitrary molecules in ω-complexes. The left p-compatibility
of M− #n M+ now follows from Definition 6.11, and the equality

M−(x−, x+; y) #n M+(x−, x+; y) = (M− #n M+)(x−, x+; y)

follows by comparing Notation 6.10 with Proposition 5.9.

Proof of Theorem 6.16 As in the proof of Theorem 6.9, it suffices to find a proper
decomposition

Λ = M− #n M+

for each non-basic left p-compatible pair Λ. We write Λ = (Λ−, Λ+) and Mα = (Mα
−, Mα

+),
and we use Proposition 6.13 throughout. There are various cases, as follows.
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Suppose that Λ− and Λ+ have only one row each. Since Λ is not basic, we must have

Λ = ([i− α− j β], [i+ α+ j β])

with i− > p and i+ > p. We take n = p + j and M− = (Λ−, d−
n Λ+), M+ = (d+

n Λ−, Λ+).
From now on suppose that Λ− or Λ+ has more than one row. To be specific, suppose

that

Λθ =
[
λ1

λ2

]

such that the bottom row of λ1 ends with [j β] and the top row of λ2 starts with [i α].
As in the proof of Theorem 6.9, we take n = j + i and

M−α
θ =

[
λ1

π2

]
, Mα

θ =
[
π1

λ2

]
,

where π1 and π2 are got from dα
nλ1 and d−α

n λ2 by deleting the rows [i α j β]. To get the
values of M−α

−θ and Mα
−θ we split cases further, as follows.

First, suppose that i < p. Then Λ−θ also contains a row ending with [j β] followed by
a row beginning with [i α], and we decompose Λ−θ in the same way as Λθ.

Next, suppose that [i α] = [p θ], and suppose that the row in Λ−θ beginning with [p θ]
is also preceded by a row ending with [j β]. Again we decompose Λ−θ in the same way
as Λθ.

Next, suppose that [i α] = [p θ], and suppose that the row in Λ−θ beginning with [p θ]
is preceded by a row ending with [j′ β] such that j′ < j. We then have

Λ−θ =
[
λ′

1

λ2

]

such that the bottom row of λ′
1 ends with [j′ β] and we take

M−α
−θ =

[
λ′

1

d−α
n λ2

]
, Mα

−θ =
[
dα

nλ
′
1

λ2

]
.

Next, suppose that [i α] = [p θ], and suppose that the top row of Λ−θ begins with
[p θ]. We take M−α

−θ = d−α
n Λ−θ and Mα

−θ = Λ−θ.
In the remaining cases, [i α] = [p − θ] or i > p. We again take M−α

−θ = d−α
n Λ−θ and

Mα
−θ = Λ−θ.

This completes the proof.
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