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ON GENERIC SEPARABLE OBJECTS

ROBBIE GATES
Transmitted by R.J. Wood

ABSTRACT. The notion of separable (alternatively unramified, or decidable) objects
and their place in a categorical theory of space have been described by Lawvere (see [9]),
drawing on notions of separable from algebra and unramified from geometry. In [10],
Schanuel constructed the generic separable object in an extensive category with products
as an object of the free category with finite sums on the dual of the category of finite
sets and injections.
We present here a generalization of the work of [10], replacing the category of finite sets
and injections by a category A with a suitable factorization system. We describe the
analogous construction, and identify and prove a universal property of the constructed
category for both extensive categories and extensive categories with products (in the
case A admits sums).
In constructing the machinery for proving the required universal property, we recall
briefly the boolean algebra structure of the summands of an object in an extensive
category. We further present a notion of direct image for certain maps in an extensive
category, to allow construction of left adjoints to the inverse image maps obtained from
pullbacks.

1. Introduction

A category X is said to be extensive (see [3]) if X admits finite sums, and for each pair
of objects X and Y of X , the functor

X /X × X /Y ✲ X /(X + Y )

A B A + B

, ✲

X

f ❄
Y

g❄
X + Y

f + g❄
(1)

obtained from the sums is an equivalence. If we consider the objects of the comma
category X /X as being like X-indexed families in X , this equivalence asserts that to
give an (X + Y )-indexed family of objects is precisely to give both an X-indexed and
a Y -indexed family of objects. A useful motivating case is that of X = Setsf (the
category of finite sets), where the comma category Setsf/X is (equivalent to) the expo-
nential SetsX

f , and the assertion that the arrow of (1) is an equivalence is precisely the
familiar exponential law

Setsf
X × Setsf

Y � Setsf
(X+Y )
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An alternative (equivalent) definition of extensivity is that X admit finite sums and
pullbacks along injections of finite sums, and that for any commuting diagram in X of
the form

A ✲ C ✛ B

X
❄

i
✲ X + Y

❄
✛

j
Y
❄

for which the bottom row is a sum, we have that the squares are pullbacks if and only
if the top row is a sum. It is this latter formulation we shall typically use in the current
paper, the advantage of the former being that it shows clearly that extensivity is a property
of the sums of X . In particular, an extensive category is not presupposed to admit any
limits – the pullbacks arising in the second formulation arise because the sums of X are
well-behaved.

In the event that an extensive category does possess finite products, it is then auto-
matically distributive – i.e., the canonical map

X × Y + X × Z → X × (Y + Z)

obtained from products, the injections and the universal property of sums is invertible.

An object X of an extensive category with finite products is said to be separable
if the diagonal ∆: X → X2 is a summand. The summands in an extensive category
with products enjoy closure under composition (associativity), sums (commutativity), and
products (distributivity). These closure properties allow construction of many summands
from a given summand, such as the diagonal. In particular, given a function e: A → B
in Setsf and an object X of a category with products, we obtain an arrow Xe: XB → XA

from the universal property of products in the usual way. The diagonal is the map
obtained in this way from the surjection 1 + 1 → 1 in Setsf . Using the closure properties
of summands and the fact that all surjections in finite sets can be constructed from sums
and composites of the surjection 1 + 1 → 1, we can show:

1.1. Proposition. Given a separable object X of an extensive category with products,
and a surjection e: A → B in Setsf , the arrow Xe: XB → XA is a summand.

In general, an arrow of the form Xe for arbitrary e: B → A may be thought of as
producing A-tuples of Xs from B-tuples of Xs by rearranging, duplicating (in the event e
is not injective), or omitting (in the event e is not surjective) entries.

In [10], Schanuel described the construction of a generic separable object in an exten-
sive category with products. One considers the free category with sums on the dual of the
category of finite sets and injections – this is a category of families, and the family with
the single element 1 is the desired generic separable object. A natural generalization of
this notion is to consider what can be said about the free category with sums on the dual
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of the category of Ms of an (E ,M)-factorization system. This is the question considered
in this paper – such categories are shown to have a universal property. The universal
property is analogous to that described by proposition 1.1 – the surjection e is replaced
by an E of the factorization system, and exponentiation is replaced by a suitable functor.

In the course of analyzing this universal property, one has cause to consider in reason-
able detail the boolean algebra of summands of an object of an extensive category. As
well as recalling well known aspects of this structure in section 3, we present in section 4
a definition for a notion of direct images of summands in an extensive category. The
property is enjoyed by structural maps in the extensive category (such as summands and
codiagonals) and is preserved by extensive operations (composition, sums and pullback
along summands). Importantly, it is also strong enough to allow construction of a right
adjoint to the inverse image map on summands given by pullback. These direct image
maps considerably simplify certain calculations with summands used in establishing the
universal property.

The motivation for this work is primarily a desire to understand more deeply the
construction of the generic separable object in the classic case. Using objects of an
extensive category with products as categorical models of data types (see [12] and [13]),
an object which is separable is an object possessing an equality operation – to give a
complement for the diagonal of X is precisely to give a map X2 → 1 + 1 with pullback
against one of the injections being the diagonal, i.e., an equality predicate. Categories of
families of the dual of a category with sums arise in finding generic solutions to polynomial
equations (see [7]), which can be seen as generic data types of a certain kind. It would
seem natural to combine these two constructions to find generic separable solutions to
polynomial equations, and thus construct generic data types having equality operations.
Another view of this work is that it is a specific case of universally making a given family
of maps into summands – the author is not aware of general conditions on a family of
arrows in an extensive category that yield a tractable construction of such a universal
category.

1.2. Remark. The notation is this paper is largely standard, and new notation is de-
scribed where it is introduced. A possible exception is the notation (f | g) (resp. (|i fi))
for the arrows out of binary (resp. familial) sums constructed via the universal property.
In the case of familial sums where the precise family is not clear from context, the family
involved will be given in the subscript, such as (|i∈I fi). Also, all references to sums and
products are taken to mean finite sums and finite products, although we shall occasionally
say finite for emphasis. We denote the 2-category of extensive categories, sum preserving
functors and natural transformations by Ext.

1.3. Acknowledgements. An earlier version of this work appeared in the author’s
thesis (see [6]). This treatment clarifies somewhat the work on images, and gives a proof
of the universal property for the case of extensive with products which was lacking in [6].
The author thanks the Australian Research Council for their support for this project. The
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author acknowledges the use of Paul Taylor’s diagrams macro package in the production of
this paper. The author wishes to thank the participants of the Sussex Category Meeting,
July 1996 and the members of the Australian Category Seminar for hearing talks on this
material and offering insights. The author also expresses his gratitude to R. F. C. Walters,
for Ph.D. supervision when the majority of this work was done, and to the markers of [6],
for their detailed comments.

2. Stirling Exponents and Stirling Polynomials

As described in the introduction, our general context will be a small category A with a
suitable (E ,M)-factorization system and possibly with finite sums. After introducing the
factorization systems of interest, we examine the category of families of Mop. We show
this category has products when A has sums, and identify which objects are separable –
that is, have their diagonal a summand (see [1] and [9]). We also investigate the relation of
this category to the category of families of Aop. We describe how to view these categories
as categories of polynomials, and give an adjunction between these categories.

For details on factorization systems the reader is referred to [2] and [5]. It should be
noted that references to these below are references to standard results on factorization
systems – the deeper theory of factorization systems is not required for our purposes here.

We begin by making precise what we require of our factorization system:

2.1. Definition. By a category of Stirling exponents (A, E ,M) we mean a category A
and an (E ,M)-factorization system on A, such that
(SE1) Every e ∈ E is epic in A.
(SE2) Pushouts of any arrow along an e ∈ E exist in A.
(SE3) The collection of isomorphism classes of E-quotients of any A in A is finite.

It should be noted this definition differs from that given in [6], inasmuch as the the
requirement that A possess finite sums has been removed. Rather, we shall note precisely
which results depend on sums in A.

Before continuing, we note for reference a lemma which appears as a part of propo-
sition 2.1.4 of [5] and of proposition 2.5 of [2] – in the latter reference note that the
conditions on the category are unnecessary for the result we require.

2.2. Lemma. Let (E ,M) be a prefactorization system on a category A such that every E
is epic. Then

(i) If f : A → B and g: B → C in A are such that fg is an M, then g is an M.

(ii) If f : A → B and e: B → C in A are such that fe is an M and e is an E, then e is
invertible.
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Proof. The first result is dual to (a)⇒(c) in proposition 2.1.4 of [5], or precisely (a)⇒(b)
in proposition 2.5 of [2] (this implication not requiring the completeness or cocompleteness
conditions imposed there). The second result is an immediate corollary, on noting the
fact that an arrow which is both an E and an M is invertible.

2.3. Notation. For the remainder of this section, we fix a category of Stirling expo-
nents (A, E ,M).

Combinatorially speaking, the Stirling numbers of the second kind, denoted S(n, k),
count the partitions of an n element set into k blocks. Categorically, we see S(n, k) counts
the isomorphism classes of surjections from an n element set to a k element set in the
category of finite sets. This is the motivation behind selecting the adjective Stirling to
describe these notions – as property (3) above suggests, we shall have cause to consider
the isomorphism classes of E-quotients of objects of A. The following construction records
the basic properties we can arrange in a class of representatives of the E-quotients of a
given object:

2.4. Construction. For each A ∈ A, we select a finite set I; a distinguished ele-
ment i∗ ∈ I; and a family (Ai, ai) for i ∈ I, where each Ai ∈ A and each ai: A → Ai is
an E; such that
(i) The family (ai)i∈I is a complete, irredundant set of representatives of the isomor-

phism classes of E-quotients of A.

(ii) We have Ai∗ = A and ai∗ = 1A.

(iii) If ai is invertible for i ∈ I, then i = i∗.

(iv) Given any f : B → A in A, we may factorize f as f = m · ai for a unique i ∈ I and
unique m ∈ M.

We shall write QuoE(A) = (Ai, ai, I, i∗) to describe this situation.

Proof. Construct I and the family (Ai, ai) for i ∈ I by selecting representatives as de-
scribed in part (i). By property (3), the set I is finite. Since 1A is an E , we may choose
it to represent its isomorphism class, and denote by i∗ the index of this class in I. If ai is
invertible, then it is isomorphic to 1A as an E-quotient of A. Hence irredundancy of the
representatives implies that ai∗ is the only invertible ai.

For any f : A → B in A, we may factor f = m · e with m an M and e an E . For
some i ∈ I, we have e ∼= ai as E-quotients of A, by completeness of the representatives.
Thus we may choose our factorization to be f = m · ai for some i ∈ I. Finally, if
m · ai = n · aj where m and n are Ms and i, j ∈ I, uniqueness of factorizations gives
an isomorphism α: Ai → Aj commuting with the factorization; i.e., such that α · ai = aj

and n · α = m. Irredundancy of the representatives implies that i = j, and so ai = aj.
Now ai, being an E , is epic by property (1). Hence α = 1Ai

, so m = n, and thus required
uniqueness.
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Recall that for a category A, we may construct the category of finite families in Aop,
denoted Fam(Aop). This category is the free category with finite sums on Aop, and is
extensive (see section 1 of [1], proposition 2.4 of [3], or section 5.2 of [4]). We use the
notation P(A) for Fam(Aop), and think of it as a category of polynomials with exponents
drawn from A. We denote objects of P(A) as sums of monomials, the family (Ai)i∈I being
denoted ∑

i∈I

XAi

Since sums in P(A) are given by disjoint unions of families, the sum of monomials notation
yields the natural formula for sums in P(A). In the case A has sums, the category Aop,
and hence P(A), has products. These products are given on monomials by the exponential
law

XA × XB ∼= XA+B

Products of sums of monomials are given by the distributive law, since an extensive
category with products is distributive.

Similarly, we consider Fam(Mop) to be a category of polynomials of a kind:

2.5. Definition. Given a category of Stirling exponents (A, E ,M), we define the cat-
egory of A-Stirling polynomials, denoted by SP(A, E ,M), or SP(A) for brevity, to
be Fam(Mop). We shall denote the inclusion of Mop as one point families by

X[–]:Mop ✲ SP(A)

and refer to X[A] as a Stirling monomial. More generally, we write
∑

i∈I X[Ai] for the
family (Ai)i∈I in SP(A).

Informally, drawing intuition from the case of A = Setsf with the surjection/injection
factorization system, we think of the Es of A as describing identifications. For a surjection
e: B → A, the image of Xe consists of those B-tuples whose entries are equal when their
indices are identified by e. For an injection m: B → A in Setsf , the arrow Xm will not
duplicate entries, and thus carries distinct A-tuples to distinct B-tuples. The Stirling
monomial X[A] then can be thought of as distinct A-tuples, as the only arrows in SP(A)
are those which “map distinct tuples to distinct tuples”.

We now show that if A has sums, then SP(A) has products. This is somewhat
surprising for, as described above, the obvious way for Fam(Mop) to have products is
for M to have sums. However, sums in A do not give sums in M in general – even if
the injections in A are Ms (as they are in the case A = Setsf and M is the injections),
there is no reason for (m | n) to be an M even if m and n are Ms. Indeed, the product
of two Stirling monomials is not usually a Stirling monomial. This situation is referred to
as familial finite products in [4], however, as the category SP(A) is an object of primary
interest here, we shall work with products in the category of families.
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2.6. Construction. Suppose that A admits finite sums. For A, B ∈ A, consider a sum
C = A+B in A with injections i: A → C and j: B → C. Writing QuoE(C) = (Ci, ci, I, i∗)
and

I× = {i ∈ I | ci · i ∈ M, ci · j ∈ M}
p = (|i∈I× X[ci·i])

q = (|i∈I× X[ci·j])

the diagram

X[A] ✛p ∑
i∈I×

X[Ci] q✲ X[B] (2)

is a product in SP(A).

Proof. Firstly, observe that the claimed projection arrows are indeed arrows of SP(A),
since i ∈ I× implies that ci · i and ci · j are Ms. Secondly, extensivity of SP(A) and the
fact that every object of SP(A) is a sum of Stirling monomials imply that we need only
check the required universal property for cones from Stirling monomials.

To see that diagram (2) is a product diagram, take a Stirling monomial X[D] together
with X[m]: X[D] → X[A] and X[n]: X[D] → X[B] in SP(A). Factor (m|n): A+B → D uniquely
as (m |n) = f · cj for some j ∈ I and f : Cj → D an M. Now f · cj · i = m and f · cj · j = n
are Ms. Since f is an M, we have that cj · i and cj · j are Ms (proposition 2.2(c) of [2]).
Hence j ∈ I×, and we have the arrow

X[D] X[f ]
✲ X[Cj ]

injj✲
∑
i∈I×

X[Ci]

in SP(A). We calculate

p · inji · X[f ] = X[ci·i] · X[f ] = X[f ·ci·i] = X[m]

q · inji · X[f ] = X[ci·j] · X[f ] = X[f ·ci·j] = X[n]

Thus we have produced an arrow as required for the product property.
For uniqueness, note that to give an arrow X[D] to the claimed product is is to give

j′ ∈ I× and h: Cj → D in M, the given arrow being injj′ · X[h]. If this arrow satisfies the
property defining injj · f above, a routine calculation shows and properties of sums imply
that h · cj′ = (m | n), and uniqueness of the factorization which produced j and f implies
that j′ = j and h = f .

Thinking informally, an element of the product of the distinct A-tuples and distinct
B-tuples is classified by the amount of identification between the A-tuple part and the
B-tuple part. However, no identification within the A-tuple part is permitted (since the
A-tuple is distinct), and similarly for the B-tuple part; hence, we restrict the monomials
in the sum yielding the product X[A] × X[B].
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2.7. Proposition. If A admits finite sums, then SP(A) admits finite products.

Proof. It suffices to consider existence of a terminal object and binary products. For
the latter, construction 2.6 gives binary products of Stirling monomials. Every object
of SP(A) is a sum of Stirling monomials, and so extensivity allows construction of all
binary products. For the terminal object, we observe that, as for products, it suffices to
produce terminal arrows from Stirling monomials.

Consider an initial object A of A and write QuoE(A) = (Ai, ai, I, i∗). We claim
that

∑
i∈I X[Ai] is terminal in SP(A). For any Stirling monomial X[B], factoring the unique

arrow A → B as m · aj for j ∈ I by construction 2.4(iv) yields an arrow

X[B] X[m]
✲ X[Aj ]

injj✲
∑
i∈I

X[Ai]

as required by terminality. Uniqueness of this arrow follows routinely from the uniqueness
in construction 2.4(iv) and the uniqueness of arrows from the initial A.

We now give the precise connection between the construction described here and the
classical categorical definition of separable – namely, that the diagonal be a summand.

2.8. Proposition. Suppose that A admits sums. The following are equivalent:

(i) The object X[A] of SP(A) is separable.

(ii) The codiagonal ∇: A + A → A is an E.
Proof. We use the notation of construction 2.6 with B = A. The diagonal of X[A] is injj ·
X[m], where ∇ = m · cj is the unique factorization of ∇ with j ∈ I and m an M. For this
to be a summand is for m to be invertible.

To see that (i) implies (ii), observe that if m is invertible, it is an E , and so ∇ is a
composite of Es and hence an E . For the converse, let us suppose that ∇ is an E . Since cj

is an E , we have that m is an E (proposition 2.1.1(e) of [5]). Thus m is invertible, and it
follows X[A] is separable.

In any extensive category with products, a sum X+Y is separable if and only if both X
and Y are separable (part (3) of theorem 11 of [1]). Hence, in a category of families, such
as SP(A), determining separability of the monomials is sufficient to determine separability
of all objects.

We now describe a functor S:P(A) → SP(A) which, informally speaking, “separates”
the objects of P(A) by classifying the A-tuples as distinct A-tuples with duplicated entries.
Note that from the point of view of constructing classifying categories, or generic objects,
functors from P(A) to an extensive category X are considered to be “objects” of a certain
type in X . In this context, the functor S is an “object” of SP(A) – it is the “separable
object” viewed as a mere “object”. In section 5, the functor S will play an integral role
in the equivalence that is the universal property of SP(A).
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2.9. Construction. We have a functor S:P(A) → SP(A) in Ext such that:

(i) For A ∈ A, writing QuoE(A) = (Ai, ai, I, i∗), we have

SXA =
∑
i∈I

X[Ai] (3)

(ii) For f : B → A in A, writing QuoE(A) = (Ai, ai, I, i∗) and QuoE(B) = (Bj, bj, J, j∗),
we have commutativity of

X[Ai]
inji✲ SXA

X[Bj ]

X[mi]

❄

injj
✲ SXB

❄

SXf (4)

for each i ∈ I, where mi · bj = ai · f is the unique factorization with j ∈ J and mi

an M.

Proof. By the universal property of the families construction, it suffices to define S on
monomials and arrows between monomials, and then this definition lifts to a unique
functor P(A) → SP(A) in Ext.

Equation (3) defines S on monomials. Given an arrow between monomials Xf where
f : B → A in A, we may uniquely factor ai · f = mi · bj by construction 2.4(iv). This
defines j ∈ J and mi an M. Using universal properties of sums, we may thus take
diagram (4) as the definition for S on arrows between monomials.

Functoriality of S is routine. The factorizations 1Ai
· ai = ai · 1A (since identities

are Ms), for i ∈ I, define SX1A . Diagram (4) and universal properties of sums imply
that S preserves identities. For compositionality, use the fact that composites of Ms
are Ms, paste two instances of diagram (4) to produce a third, and use universal properties
of sums.

It is interesting to compare the definition of S on objects to the combinatorial identity

xn =
n∑

k=0

S(n, k)(x)k (5)

where (x)k = x(x − 1) . . . (x − k + 1), and S(n, k) is a Stirling number of the second
kind (see [11], p. 35). Indeed, in the case where A is the category of finite sets with the
surjection/injection factorization system, the sum defining SXA is precisely an objective
version of the right hand side of equation (5) – the sum of equation (5) is just that of
equation (3) classified by the size of Ai. Note also that (x)k counts the distinct k-tuples
of x elements which agrees with our intuition that X[A] consists of “distinct A-tuples”.

We now examine SXf in the case that f is an E or an M:

2.10. Proposition. In the context of construction 2.9(ii), let f = e be an E. We have
that SXe is a summand.
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Proof. Since e is an E , we see that ai · e is an E for each i ∈ I. It follows that for each
factorization ai · e = mi · bj, the arrow mi is an E (proposition 2.1.1(e) of [5]). So mi is
both an M and an E , and hence invertible.

Furthermore, if i, i′ ∈ I are such that ai · e = mi · bj and ai′ · e = mi′ · bj (that is,
they factor through the same injection into the sum SXB), then mi and m′

i (isomorphisms
by the previous paragraph) yield an isomorphism between ai and a′

i as E-quotients of A.
Irredundancy of the representatives comprising QuoE(A) implies that i = i′. So the
summands of SXA map isomorphically to distinct summands of SXB, and it follows SXe

is a summand in SP(A).

2.11. Proposition. In the context of construction 2.9(ii), let f = m be an M. We
have a commuting diagram:

X[A]
inji∗✲ SXA

X[B]

X[m]

❄

injj∗

✲ SXB
❄

SXm

Proof. Since m is an M, we see that ai∗ ·m is an M, and thus factorizes as (ai∗ ·m) · bj∗
(since bj∗ is an identity). In diagram (4) then, we have j = j∗ and mi = ai∗ · m = m
(since ai∗ is an identity), and the result follows.

Applying Fam(–op) to the inclusion of M as a subcategory of A yields an inclusion
U :SP(A) → P(A), with UX[A] = XA on objects and UX[m] = Xm on arrows. We now
turn to showing that S is right adjoint to the inclusion U . We begin by constructing the
unit and the counit of the adjunction:

2.12. Construction. In the context of construction 2.9(i), and with U the inclusion
SP(A) → P(A), the data

ηX[A] = inji∗ (6)

gives the components of a natural transformation η: 1SP(A) → SU at Stirling monomials.

Proof. To construct η it suffices to define it on Stirling monomials and lift it to SP(A) by
the universal property of Fam(–). Equation (6) defines η on monomials, and naturality
at m: B → A of M is precisely the result of proposition 2.11.

2.13. Construction. In the context of construction 2.9(i), and with U the inclusion
SP(A) → P(A), the data

εXA = (|i Xai) (7)

gives the components of a natural transformation ε: US → 1P(A) at monomials.
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Proof. Again, the universal property of Fam(–) allows us to lift the above data to define ε
fully. For naturality, it suffices to check at Xf in P(A) where f : B → A in A. With the
notation of construction 2.9(ii), consider for each i ∈ I the diagram

XAi

✠�
�

�inji ❅
❅

❅
Xai

❘∑
i∈I

XAi
εXA

✲ XA

XBj

❄
Xmi

✠�
�

�injj ❅
❅

❅
Xbj

❘∑
j∈J

XBj

SXf

❄

εXB
✲ XB

❄

Xf

where ai · f = mi · bj is the unique factorization with j ∈ J and mi an M. The left
parallelogram is diagram (4), the definition of SXf . The right parallelogram is the equa-
tion ai · f = mi · bj expressed in terms of one element families. The triangles are the
components of the definition of εXA and εXB, i.e., equation (7). The universal property
of sums gives commutativity of the square, and hence the required naturality.

2.14. Proposition. Consider the functor S of construction 2.9 and U the inclusion
SP(A) → P(A). We have an adjunction U � S with unit η and counit ε as defined in
constructions 2.12 and 2.13.

Proof. We need only check the triangular equations, having already constructed and
established naturality of η and ε.

Firstly, to check that 1S = Sε · ηS, it suffices to check at monomials. For A ∈ A,
write QuoE(A) = (Ai, ai, I, i∗), and, for each i ∈ I, write QuoE(Ai) = (Bi

j, b
i
j, Ji, j

i
∗).

Then, for each i, we consider the following diagram:

X[Ai]
X[1Ai

]
✲ X[Ai]

❅
❅

❅
ηX[Ai]

❘

❅
❅

❅
inji
❘∑

j∈Ji

X[Bi
j ]

SXai

✲ SXA

�
�

�
�

�
�

�
�

SεXA

✒

SXA

inji

❄

❅
❅

❅ηSXA ❘∑
i∈I

SXAi

❄

inji

(8)
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The left parallelogram is the definition of η lifted to sums of Stirling monomials. The
triangle is S applied to the i’th component of εXA. The top parallelogram follows from
diagram (4), the definition of SXai , on observing that construction 2.4(iv) gives the fac-
torization

bi
ji∗ · ai = 1Bi∗ · ai = 1Ai

· ai

with 1Ai
an M. Thus diagram (8) commutes, and the top edge has composite inji. Thus

the universal property of sums shows that SεXA · ηSXA = 1SXA as required.

Now we check that 1U = εU · Uη. Once again, it suffices to check this at Stirling
monomials. Given A ∈ A with QuoE(A) = (Ai, ai, I, i∗), we observe that

εUX[A] · UηX[A] = εXA · inji∗ = X1A

using the definition of η, construction 2.4(iv), and the fact U preserves injections. This
is precisely the required equality at the Stirling monomial X[A], and we have proved the
claimed adjunction.

We obtain immediately

2.15. Corollary. The functor S of construction 2.9 preserves any limits of P(A).

In particular, in the case A admits sums, the functor S preserves the products then
present in P(A). Let us return to the combinatorial identity of equation (5). In the
case A = Setsf with the surjection/injection factorization system, we have SX1 = X[1],
and thus preservation of products gives an isomorphism

(X[1])A ∼= SXA

which is an objective version of the equality of equation (5).

The observation of Schanuel (in [10]) described in the abstract is that, in the case
of A = Setsf with the surjection/injection factorization system, the category SP(A)
possesses a universal property, namely, that the object X[1] is the generic separable object
in an extensive category with products. The proof proceeds by constructing, for a finite
set A and a separable object X in an extensive category with products, an object which can
be viewed as “distinct” A-tuples of X. This construction is carried out by manipulating
summands of XA.

In section 5, we shall identify and prove an analogous universal property for the cate-
gory SP(A) in general – for an extensive category X (possibly with products), we identify
which functors P(A) → X arise by composing S with a functor SP(A) → X . As de-
scribed in the introduction, the analogue of proposition 1.1 identifies these functors. To
facilitate a proof, we shall first develop some machinery for computing with summands of
objects in extensive categories.
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3. Calculating with Summands

In this section we present the basic results for the algebra of summands of an object in an
extensive category. The results here are well known – the author learnt the basic theory
at the CT’95 Summer School at Halifax [10].

3.1. Notation. For this section, we fix an extensive category X .
For an object X of X , the summands of X are preordered by the arrows of X – for

summands s: S → X and t: T → X we shall write s ≤ t if there exists an arrow a: S → T
of X such that t · a = s. Since summands are monic in an extensive category, the arrow a
is necessarily unique if it exists – we shall refer to such an a as the comparison arrow
exhibiting s ≤ t. We digress briefly to establish a property of comparison arrows, which
may also thought of as the closure of summands under left division.

3.2. Lemma. Let s: S → X and t: T → X be summands in X . If a is a comparison
arrow exhibiting s ≤ t, then a is a summand.

Proof. Consider a pullback of s and t:

U
u ✲ S

✠�
�

�
�

a

T

v

❄

t
✲ X

s

❄

The arrow a, together with the identity of S and properties of pullbacks, yields a section
of u, and note u is a summand (being a pullback of t), and hence monic. Thus u is
invertible, and so a is isomorphic to v, which is a summand (being a pullback of u).

In the usual manner, the preorder on summands induces an equivalence relation “s ≤ t
and t ≤ s” on the summands, and the equivalence class of s is denoted [s]. The set of
such equivalence classes of a given object X is denoted by X∗, which is a poset with the
order induced by the preordering of summands.

In fact, the poset X∗ is a boolean algebra. We shall now describe the boolean structure
of X∗ for X ∈ X , but omit the verification of most of the details. Note that the terms
meet and join are understood to refer only to finite meets and joins.

The top element of the boolean algebra X∗ is � = [1X ]. The meet of [s] and [t] is the
diagonal of the square formed by pulling back s and t, and we denote this diagonal s∧ t.
The requisite universal property follows from that of pullbacks in X .

Given a summand s: S → X, consider a complement ¬s:¬S → X. Any summand
isomorphic to s (as a summand) is complemented by ¬s, and extensivity of X implies
that ¬s is unique up to isomorphism (as a summand). This allows us to define ¬[s] = [¬s]
for any [s] in X∗. We see that ¬¬[s] = [s], and can show that for any [s], [t] ∈ X∗, we have
[s] ≤ ¬[t] if and only if [t] ≤ ¬[s]. Hence ¬ gives an isomorphism of posets (X∗)op → X∗.
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Since X∗ has a top and meets, it follows from (X∗)op ∼= X∗ that X∗ has a bottom and
joins. We compute immediately that ⊥ = ¬� = [!], where !: 0 → X is the unique arrow.
For elements [s] and [t] ∈ X∗, their join is given by [s]∨ [t] = ¬(¬[s]∧¬[t]). Consider the
following diagram, where all the squares are formed by pullback.

S ∧ T ✲ T ✛ ¬S ∧ T

S
❄

s
✲ X

❄

t

✛
¬s

¬S
❄

S ∧ ¬T

✻

✲ ¬T

✻

¬t

✛ ¬S ∧ ¬T

✻
(9)

Let S ∨ T be a sum (S ∧ ¬T ) + (S ∧ T ) + (¬S ∧ T ), and let s ∨ t: S ∨ T → X be
the arrow constructed by properties of sums from the diagonals of the pullback squares.
Since pullbacks of sums are sums, and using associativity of sums, we see that s ∨ t is a
complement for the diagonal of the lower right pullback square. Thus s∨t is a complement
for the summand ¬s ∧ ¬t. It follows [s ∨ t] = [s] ∨ [t] in X∗. We shall record two lemmas
about joins.

3.3. Lemma. Consider summands s: S → X and t: T → X in X , together with a sum-
mand s ∨ t: S ∨ T → X such that [s ∨ t] = [s] ∨ [t] in X∗. Let es,t: S + T → S ∨ T be
the arrow constructed from the comparison arrows S → S ∨ T and T → S ∨ T using the
universal property of sums. The arrow es,t is split epic, and moreover

(s ∨ t) · es,t = (s | t)

Proof. It suffices to do this for any representative of [s] ∨ [t] – in particular the repre-
sentative given in the preceding paragraph. Now S ∨ T can, by associativity of sums, be
expressed as a sum S + (¬S ∧ T ), and es,t is split by the arrow mapping the summand S
to the summand S, and including ¬S ∧ T in the summand T . The required factorization
of (s | t) follows by direct computation of composites with injections.

3.4. Lemma. Consider summands s: S → X and t: T → X in X such that [s] ∧ [t] = ⊥
in X∗. The arrow (s | t): S + T → X is a summand, and [(s | t)] = [s] ∨ [t].

Proof. With the notation of diagram (9), disjointness of s and t gives S ∧ T ∼= 0. Thus
S ∧ ¬T ∼= S and ¬S ∧ T ∼= T , with both these isomorphisms being isomorphisms of
summands. It follows that (s | t): S +T → X is isomorphic to s∨ t: S∨T → X, and hence
the result of the lemma.

The final stage in this exploration of X∗ is to show that it is distributive, and thus
a boolean algebra. We commence by showing that meets distribute over binary disjoint
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joins. Given summands s: S → X, t: T → X and u: U → X, where [s] ∧ [t] = ⊥, we see
that ([u] ∧ [s]) ∧ ([u] ∧ [t]) = ⊥, and applying lemma 3.4 we obtain the formulas

[s] ∧ [t] = [(s | t)]
([u] ∧ [s]) ∨ ([u] ∧ [t]) = [(u ∧ s | u ∧ t)]

Given pullbacks

U ∧ S
f ✲ U

S

g

❄

s
✲ X

❄

u and

U ∧ T
h ✲ U

T

k

❄

t
✲ X

❄

u

it is routine to check that

U ∧ S + U ∧ T
(f | h)✲ U

S + T

(g + k)

❄

(s | t)
✲ X

❄

u

is a pullback. Together with the formulas above, we deduce

[u] ∧ ([s] ∨ [t]) = ([u] ∧ [s]) ∨ ([u] ∧ [t])

Inductively, we see that meets distribute over pairwise disjoint joins.
For any [s], [t] ∈ X∗, we have [s] ∨ ¬[s] = � and [t] ∨ ¬[t] = �, and note that

[s] ∨ [t] = ([s] ∧ �) ∨ ([t] ∧ �)

= (([s] ∧ [t]) ∨ ([s] ∧ ¬[t])) ∨ (([s] ∧ [t]) ∨ (¬[s] ∧ [t]))

= ([s] ∧ ¬[t]) ∨ ([s] ∧ [t]) ∨ (¬[s] ∧ [t])

reducing the case of arbitrary joins to that of disjoint joins. Hence meets distributive
over joins in general. The other distributive law is a consequence of this, and we have
that X∗ is a boolean algebra.

The fact that meets distribute over joins, together with the above observations on
disjoint joins, has the following useful consequence:

3.5. Proposition. Let si: Si → X, for i ∈ I, be a finite family of pairwise disjoint
summands in X . The arrow (|i si):

∑
i∈I Si → X is a summand, and

[(|i si)] =
∨
i∈I

[si]

Proof. Use lemma 3.4, and proceed inductively using distributivity to show that the
required joins are disjoint.
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Given an arrow f : Y → X in X , the existence of pullbacks along summands in X allows
us to obtain a map from the preorder of summands of X to the preorder of summands
of Y by pullback with f . A routine argument using the properties of pullbacks shows that
this map is order preserving. Further, since pullbacks of isomorphs are isomorphic, this
map induces an order preserving map of posets f ∗: X∗ → Y ∗.

In fact, the arrow f ∗ is a map of boolean algebras. Extensivity implies that pullbacks of
sums are sums, thus the map f ∗ preserves complements. Furthermore, routine arguments
with pullbacks show that f ∗ preserves meets. Since we can write a formula for joins in
terms of meets and complements, the map f ∗ preserves joins and is thus a boolean algebra
map as claimed.

We thus obtain a functor –∗:X op → Bool, defined on objects by X �→ X∗ and on
arrows by f �→ f ∗. Functoriality is an immediate consequence of the nature of pullbacks
along identities and the fact that pullback squares compose. Further, it is a direct con-
sequence of extensivity that this functor preserves products. One useful feature of this
notion of inverse image is that it facilitates construction of arrows between summands of
objects of an extensive category by “restriction”:

3.6. Proposition. Let f : X → Y in X . For summands s: S → X and t: T → Y , we
have s ≤ f ∗t if and only if there exists g: S → T such that t · g = f · s. The arrow g is
necessarily unique.

Proof. In the case s ≤ f ∗t, form the pullback defining f ∗t, and observe that we may
compose the comparison arrow S → f ∗T (exhibiting s ≤ f ∗t) with the pullback projection
f ∗T → T to produce a g with the required property. Now t, being a summand, is monic,
so this g is unique. Conversely, given such g, form the pullback defining f ∗t. The arrows
g and t provide the required data to obtain a comparison arrow exhibiting s ≤ f ∗t from
the pullback property.

Functors in Ext map summands to summands and thus induce transformations of the
summand posets. In fact, these transformations are boolean algebra maps. Before proving
this, we present a lemma that may be interpreted as saying that functors which preserve
sums are “the right morphisms” for Ext, as they preserve the relevant pullback structure
automatically. We also observe a nice property of natural transformations between such
functors. We note that part (i) appears as lemma 4.13 of [4], but for distributive extensive
categories.

3.7. Lemma. Let X and Y be extensive categories.

(i) A functor F :X → Y in Ext preserves pullbacks along summands.

(ii) For a natural α: F → G in Ext, naturality squares at summands are pullbacks.

Proof. Let us be given a summand s: S → X, an arrow f : Y → X and a pullback of s
along f . Take a complement ¬s:¬S → X of s, and pull ¬s back along f to produce a
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sum decomposition of Y . Apply F to the pullback squares – since F preserves sums this
yields a diagram

Ff ∗S
Ff ∗s✲ FY ✛Ff ∗¬s

Ff ∗¬S

FS
❄

Fs
✲ FX

Ff

❄
✛

F¬s
F¬S

❄

with both top and bottom rows sums. By extensivity the squares are pullbacks, thus the
pullback of s along f is preserved by F .

For a natural α: F → G and a summand s: S → X in X , consider the diagram

FS
Fs ✲ FX ✛ F¬s

F¬S

GS

αS

❄

Gs
✲ GX

❄

αX

✛
G¬s

G¬S
❄

α¬S

The bottom and top rows are sum diagrams (since F and G preserve sums), and thus the
squares are pullbacks by extensivity.

3.8. Construction. Consider a functor F :X → Y in Ext. For X ∈ X , defining maps
F∗X: X∗ → (FX)∗ by

F∗X([s]) = [Fs]

gives a family of boolean algebra maps natural in X.

Proof. The functor F preserves sums, hence Fs is a summand in Y . Since functors pre-
serve isomorphisms, we have a well-defined map X∗ → (FX)∗. Applying F to comparison
arrows shows that this map is order preserving.

Now F preserves the initial object, so F preserves the bottom element ⊥ ∈ X∗. The
binary meets of X∗ are formed by pulling back along summands, and such pullbacks
are preserved by F , so F∗X also preserves binary meets. Thus F∗X preserves meets.
The fact F preserves sums implies that F∗X preserves the complements of X∗, and the
existence of a formula for the joins of X∗ in terms of complements and meets shows
that F∗X preserves joins, and is thus a boolean algebra map.

Naturality of F∗ at f : Y → X in X is the equality (Ff)∗ · F∗X = F∗Y · f ∗. For



Theory and Applications of Categories, Vol. 4, No. 10 225

any [s] ∈ X∗, the pullback square defining f ∗s is preserved by F , and thus

F (f ∗S) ✲ FS

FY

F (f ∗s)

❄

Ff
✲ FX

❄

Fs

is a pullback. Pullbacks are unique up to an isomorphism commuting with the projections,
and the claimed naturality follows.

4. A Notion of Image

In general, an extensive category X does not have enough structure to get a general
notion of direct image; we can, however, produce a useful notion of direct image for
certain specific arrows in an extensive category. The object of this section is to show that
certain arrows (the “structural” arrows of the extensive category) have left adjoints to
the inverse image maps described in section 3, and that these adjoints have nice objective
descriptions in X .

In what follows, some of the definitions and basic results are phrased in terms of
a composition and sum closed class of epics in X , with smaller classes yielding more
restrictive notions. All the examples of interest in this paper are for the case where the
class is that of split epics. However, in the interests of generality, the broader notion is
presented as basic. It should be noted that the class of epics is not intended to be related
to the factorization system used in section 2.

4.1. Notation. For this section, we fix an extensive category X and a composition and
sum closed class of epics F in X .

By composition and sum closed, we mean that composites and sums of Fs are again Fs
and that F contains all identities. The classes all epics, all strong epics, and all split epics
are well known to be composition closed and it follows routinely from properties of sums
that these classes are also closed under sums. The reader is referred to [8] for terminology
and analysis of the various classes of monics and epics.

4.2. Definition. An arrow f : X → Y in X is said to admit clean F -images if, for any
summand s: S → X, we have a commuting diagram

S
f|S✲✲ f∗S

X

s

❄

f
✲ Y

❄

f∗s (10)
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such that f∗s: f∗S → Y is a summand, and f|S ∈ F .
The term clean is chosen to emphasise the fact that we are only taking images of

summands, which in some sense are the subobjects which sit cleanly within X. If F
and F ′ are composition closed classes of epics of X such that F ⊆ F ′, then it is clear that
any f that admits clean F -images also admits clean F ′-images. In particular, we shall
say f admits clean images to mean f admits clean F -images where F consists of all epics
of X . If f admits clean F -images for any F then f admits clean images.

It is worth observing that to admit clean F -images is a very strong condition on a
monic f – if f is either strongly monic or every element of F is strong, then diagram (10)
with s = 1X admits a diagonal fill-in which is easily seen to be invertible, and thus f
is a summand (being isomorphic to the summand f∗1X). Another easy consequence of
the definition is that for an arrow f : X → Y such that X is connected and f ∈ F , the
arrow f admits clean F -images – the only summands of X are the initial object 0 and X
itself, and one easily verifies that f∗0 = 0 with f|0 = 10, and f∗X = Y with f|X = f .

Before continuing our analysis of this notion of image, we record some facts about
summands of an extensive category – note the second two parts are applications of [8] to
the first part of the lemma.

4.3. Lemma. If s: S → X is a summand in X , then

(i) The arrow s is a regular monic.

(ii) If s is epic, then s is invertible

(iii) A diagram
e ✲

✠..
..
..
..
..
.

w

S
❄

s
✲ X

❄

in which e is epic admits a diagonal fill-in w making both triangles commute.

Proof. For (i), consider the arrow f : X → X + X which is constructed from properties
of sums by mapping S into the first summand, and the complement of S into the second
summand. It is routine to check s is the equalizer of f and the first injection of the
sum X + X, and thus s is regular.

Part (ii) is an immediate corollary of the fact such an s is both regular monic and
epic. See for example propositions 3.1 and 3.3 of [8], and dualize. Part (iii) follows from
the fact that regular monics are strong monics, that is to say, admit diagonal fill-ins from
any epic (dualize proposition 3.1 of [8]).
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4.4. Proposition. In the context of definition 4.2, the data defining the clean F-image
is unique up to an isomorphism of f∗S commuting with the data.

Proof. Given another commuting square of the form of diagram (10), say

S
g ✲✲ T

X

s

❄

f
✲ Y

❄

t

with t a summand and g ∈ F , then since t and f∗s are summands we may form the
following pullback

U
v ✲ f∗S

T

w

❄

t
✲ Y

❄

f∗s

in which v and w are summands. Now

t · g = f · s = f∗s · f|S

and the pullback property gives an arrow k: S → U such that v · k = f|S and w · k =
g. Thus the summands v and w are epic, since precomposing with k yields the epics
f|S and g. Hence v and w are isomorphisms by lemma 4.3(ii). It follows that v · w−1 is
an isomorphism T ∼= f∗S, and we calculate

f∗s · v · w−1 = t · w · w−1 = t

and

v · w−1 · g = v · w−1 · w · k = v · k = f|S
and thus the isomorphism respects the structure of the clean F -image.

4.5. Construction. For an arrow f : X → Y in X which admits clean images, defin-
ing f∗[s] = [f∗s] induces an order preserving map f∗: X∗ → Y ∗.

Proof. Given summands s: S → X and t: T → X such that s ≤ t, we shall prove f∗s ≤ f∗t.
Together with proposition 4.4, this suffices to show both that f∗ is well-defined and order



Theory and Applications of Categories, Vol. 4, No. 10 228

preserving. Consider the diagram

S
f|S ✲✲ f∗S

❅
❅

❅
a
❘

........
b
❘

T
f|T ✲✲ f∗T

✠�
�

�

t ✠�
�

�

f∗t
X

s

❄

f
✲ Y

f∗s
❄

showing the construction of f∗s and f∗t along with a comparison arrow a exhibiting s ≤ t.
We wish to obtain the dotted arrow b such that f∗t · b = f∗s.

We note that
f∗t · f|T · a = f · t · a = f · s = f∗s · f|S

and use lemma 4.3(iii) to find a diagonal fill-in b for the square

S
f|S✲✲ f∗S

✠..
..

..
..

..

b

f∗T

f|T · a
❄

f∗t
✲ Y

❄

f∗s

such that the triangles commute. Commutativity of the lower right triangle shows that b
is a comparison arrow exhibiting f∗s ≤ f∗t as required.

The following proposition may be considered the justification of the definition of clean
image. We show that f∗ is a direct image, in the sense of being left adjoint to inverse
image.

4.6. Proposition. If f : X → Y in X admits clean images, then f∗ � f ∗.

Proof. We need only produce the unit and counit – the triangular equations being auto-
matic since X∗ and Y ∗ are posets.

Given a summand s: S → X, construct f ∗f∗s as shown:

S

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

s



❍❍❍❍❍❍❍❍❍❍

f|S
❥❥

..........❘

f ∗f∗S ✲ f∗S

X
❄

f ∗f∗s

f
✲ Y

❄

f∗s
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Properties of pullbacks yield a comparison arrow S → f ∗f∗S, and so s ≤ f ∗f∗s. Thus
[s] ≤ f∗f∗[s] for any [s] ∈ X∗, and we have a unit as claimed.

Given a summand t: T → Y , construct f∗f ∗t as shown:

f ∗T
f|f∗T ✲✲ f∗f ∗T

❅
❅

❅g ❘

T

❅
❅

❅

t

❘

X

f ∗t

❄

f
✲ Y

❄

f∗f ∗t

The map g is provided by the pullback defining f ∗t (this pullback being the lower-left
part of the above square). We observe that

t · g = f · f ∗t = f∗f ∗t · f|f∗T

and thus the diagonal fill-in property for the summand t provides an arrow a in the
following square

f ∗T
f|f∗T✲✲ f∗f ∗T

✠..
..

..
..

..
..

..

a

T

g

❄

t
✲ Y

❄

f∗f ∗t

So a is a comparison arrow exhibiting f∗f ∗t ≤ t, as required. Hence f∗f ∗[t] ≤ [t] for
any [t] ∈ Y ∗, and we have the required counit.

Thus we have the adjunction as claimed.

As a consequence of this adjunction, we record the corollary:

4.7. Corollary. If f : X → Y in X admits clean images, then f∗ preserves joins.

We now provide ourselves with a reasonable supply of arrows admitting clean images
in X . We shall use the term clean split-image for a clean F -image in the case F consists
of all split epics in the category under consideration.

4.8. Proposition.

(i) Any summand s: S → X admits clean F-images, and for any summand t of S, we
have s∗[t] = [st].

(ii) Any codiagonal ∇: X + X → X admits clean split-images, and for any two sum-
mands t and u of X, we have ∇∗[t + u] = [t] ∨ [u].
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Proof. For case (i), consider a summand t: T → S. The definitions

s∗T = T s∗t = s · t s|T = 1T

provide the data for a clean split-image, since composites of summands are summands
and F contains all identities. The required diagram is immediate.

For case (ii), consider a summand s: S → X + X. By extensivity, we have that
s = t + u for summands t: T → X and u: U → X. Now ∇ · (t + u) = (t | u), and we factor
(t | u) = (t ∨ u) · et,u using lemma 3.3, where et,u is split epic. The definitions

∇∗S = T ∨ U ∇∗s = t ∨ u ∇|S = et,u

provide the data for a clean split-image. The required diagram commutes by the following
calculation:

∇∗s · ∇|S = (t ∨ u) · et,u = (t | u) = ∇ · (t + u) = ∇ · s

4.9. Proposition. Let X be an extensive category, and F be a composition and sum
closed family of epics of X , then

(i) Given arrows f : X → Y and g: Y → Z of X admitting clean F-images, the
composite g · f admits clean F-images, and for any summand s of X, we have
(g · f)∗[s] = g∗f∗[s].

(ii) Given arrows f : X → Y and g: Z → W of X admitting clean F-images, the sum
f + g: X + Z → Y + W admits clean F-images, and for any summands t of X and
u of Z, we have ∇∗[t + u] = f∗[t] + g∗[u].

(iii) Given an arrow f : X → Y admitting clean F-images, the pullback of f along a
summand admits clean F-images.

Proof. For case (i), consider a summand s: S → X of X, and define

(g · f)∗S = g∗(f∗S) (g · f)∗s = g∗(f∗s) (g · f)|S = g|g∗S · f|S
This yields the data required for a clean F -image, since composites of Fs are Fs. The
required diagram is obtained by pasting those for f∗s and g∗(f∗s).

For case (ii), consider a summand s: S → X + Z – by extensivity we have s = t + u
for summands t: T → X and u: U → Y . Defining

(f + g)∗S = f∗T + g∗U (f + g)∗s = f∗t + g∗u (f + g)|S = f|T + g|U
gives the data for a clean F -image, since sums of summands are summands and sums
of Fs are Fs. The required diagram is the sum of those for f∗t and g∗u.
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For case (iii), consider a summand s: S → Y and a pullback g: f ∗S → S of f along s.
Given a summand t: T → f ∗S, consider the diagram

T
t ✲ f ∗S

f ∗s✲ X

S

g
❄

..
..

..
..

a ✒ ❅
❅

❅

s

❘

f∗T

f|T

❄

f∗(f ∗s · t)
✲ Y

❄

f (11)

formed by finding the clean F -image of f ∗s · t under f , noting f ∗s · t is a composite of
summands and hence a summand.

We now produce the comparison arrow a shown dotted on diagram (11). Observe
that f ∗s · t ≤ f ∗s as summands of Y (the arrow t being the comparison), and thus by
proposition 4.6, we have f∗(f ∗s · t) ≤ s. The data

g∗T = f∗T g∗t = a g|T = f|T
gives the data for a clean F -image, since a is a summand by lemma 3.2. The required
diagram is the left trapezoid in diagram (11).

Observe that the formulas given for codiagonals and sums cover all summands by
extensivity, as noted in the proof. Further, the previous two propositions imply that, in
the case F contains all split epics, the subcategory of an extensive category with objects
all objects and arrows those admitting clean F -images is an extensive category in its own
right, for universal arrows from sums can be constructed using sums, composites and the
codiagonal, and we have the required pullbacks.

We now address the question of the extent to which the sums of an extensive category
are disjoint joins. For X ∈ X , the connection between joins of X∗ and clean images is
given by proposition 4.8(ii) – joins are precisely clean split-images along a codiagonal.
Given summands s and t of X, we note

(s | t) = ∇ · (s + t)

and apply propositions 4.8 and 4.9 to obtain

(s | t)∗[�] = [s] ∨ [t]

More generally, for a finite family of summands si (for i ∈ I), we have

(|i si)∗[�] =
∨
i∈I

[si]
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4.10. Proposition. Consider a finite family of summands si: Si → X (for i ∈ I) in X .
If the si are pairwise disjoint and

∨
i[si] = �, then the family si is a sum decomposition

of X.

Proof. Applying propositions 4.8 and 4.9, we see that (|i si) admits clean split-images.
Now

(|i si)∗[�] =
∨
i

[si] = �

and examining the square defining clean split-images we see that (|i si) is isomorphic to
a split epic, and hence split epic. By proposition 3.5, the arrow (|i si) is also a summand,
and hence monic. Thus (|i si) is invertible, from which it follows that the si are the
injections of a sum.

In the next section we shall use this result to show invertibility of arrows where actual
construction of the inverse is difficult or overly complicated. Since the condition of this
theorem is stated in terms of meets and joins, we have the full machinery of boolean
algebra to assist us, together with the image adjunction give by proposition 4.6. We
conclude this section with a lemma on clean images of complements under summands.

4.11. Lemma. Given summands s: S → X and t: T → S in X , we have
s∗(¬[t]) = [s] ∧ ¬(s∗[t])

Proof. By associativity of sums, we have the disjoint union

[s · t] ∨ [s · ¬t] ∨ ¬[s] = �
Hence [s·¬t] = ¬([s·t]∨¬[s]). Now [s·¬t] = s∗(¬[t]) and [s·t] = s∗[t] by proposition 4.8(i),
and so

s∗(¬[t]) = [s · ¬t] = ¬([s · t] ∨ ¬[s]) = [s] ∧ ¬(s∗[t])

as claimed.

5. Stirling Polynomials are Generic Separables

We now turn to the universal property of the category of Stirling polynomials SP(A)
described in section 2. For a category of Stirling exponents A, what universal property
do we expect SP(A) to possess? That is to say, given an extensive category X and a
functor H:P(A) → X in Ext, when do we expect a factorization

P(A)
S ✲ SP(A)

❅
❅

❅
❅

❅
H

❘

X
❄

.........

F (12)
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through the functor S of construction 2.9 ? More precisely, can we identify the image of
precomposition by S as a subcategory of Ext[P(A),X ] ?

Given e: B → A in E , we have seen in proposition 2.10 that SXe is a summand.
Moreover, given a pushout along e in A, it is routine to check that this yields a pull-
back in P(A). Since S preserves limits by corollary 2.15, we obtain a pullback diagram
in SP(A) after applying S. Since functors in Ext map summands to summands, and, by
lemma 3.7, preserve pullbacks along summands, we see that a composite FS must also
map X[e] to a summand, and preserve pullbacks along arrows of the form X[e] in P(A).
For a natural transformation α: F → G between functors F and G:SP(A) → X in Ext,
lemma 3.7 implies that a naturality square of α at a summand is a pullback. Thus the
naturality square of αS at Xe is a pullback square.

Considering these restrictions on the functors and natural transformation arising by
precomposition with S, and comparing them to the result of proposition 1.1 which moti-
vated the generalization, it seems reasonable to make the following definition:

5.1. Definition. Given a category of Stirling exponents (A, E ,M) and an extensive
category X ,
(AS1) a functor H:P(A) → X in Ext is A-separable if, for all e ∈ E, the arrow HXe

is a summand and H preserves pullbacks along Xe.

(AS2) a natural transformation γ: H → K between A-separable functors H and K is
A-separable if, for all e ∈ E, the naturality square at Xe is a pullback square.

The subcategory of Ext[P(A),X ] with objects the A-separable functors and arrows the
A-separable natural transformations is denoted A-Sep(X ).

Note that since pullback squares compose, it is immediate that the composite of
A-separable natural transformations is again A-separable, and thus we indeed obtain
a subcategory A-Sep(X ) of Ext[P(A),X ].

5.2. Notation. For this section, we fix a category of Stirling exponents (A, E ,M) and
an extensive category X . The functor S is that of construction 2.9, and U denotes the
inclusion SP(A) → P(A).

5.3. Proposition. The functor S induces a functor Ext[SP(A),X ] → A-Sep(X ) by
precomposition.

Proof. This is precisely the content of the discussion motivating definition 5.1.

We now turn to factorizing A-separable functors and natural transformations through
the functor S. The main result we are aiming for is that a factorization as in diagram (12)
exists precisely when H is A-separable, and moreover that this factorization leads to an
equivalence between A-Sep(X ) and Ext[SP(A),X ].

Given an A-separable functor H:P(A) → X , we now describe the lifting of H to a
functor H:SP(A) → X in Ext such that HS ∼= H. It shall transpire in what follows
that HX[A] is a summand of HXA. We begin by identifying these summands:
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5.4. Construction. Consider an A-separable functor H:P(A) → X . For each A ∈ A,
write QuoE(A) = (Ai, ai, I, i∗) and I∗ = I \ {i∗}. Construct a summand

φHX[A]: HX[A] ✲ HXA

such that
[φHX[A]] = ¬ ∨

i∈I∗
[HXai ] (13)

in (HXA)
∗
. The summand φHX[A] is termed the distinct A-tuples of H.

Proof. Each HXai is a summand, since ai is an E and H is A-separable. So we have
a well defined element of (HXA)

∗
, and we take any representative for the result of the

construction.

To be precise, one should consider the symbols φHX[A] and HX[A] in this definition
indivisible, but it will of course transpire that we can lift H to a functor and φH to a
natural transformation. Informally, justifying our choice of language for this definition,
we are locating the distinct A-tuples by complementing the join of all the A-tuples with
duplicated entries.

5.5. Lemma. Consider an A-separable functor H:P(A) → X . If m: B → A is an M,
then

[φHX[A]] ≤ (HXm)∗[φHX[B]]

Proof. Write QuoE(B) = (Bj, bj, J, j∗) and J∗ = J \ {j∗}, and observe

(HXm)∗(¬ ∨
j∈J∗

[HXbj ]) = ¬ ∨
j∈J∗

(HXm)∗[HXbj ]

since inverse image maps are maps of boolean algebras. Now ¬[s] ≤ ¬[t] if and only if
[t] ≤ [s], so it suffices to show

∨
j∈J∗

(HXm)∗[HXbj ] ≤ ∨
i∈I∗

[HXai ] (14)

To show this, we shall show that each term in the left hand join is at most some term
in the right hand join. Given j ∈ J∗ then, push m out along bj in A, since A admits
pushouts along Es. Since pushouts of Es are Es (proposition 2.1.1(b) of [5]), we may
assume that this pushout has the form

B
m ✲ A

Bj

bj

❄

f
✲ Ai

❄

ai
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for some i ∈ I. Observe that if ai is invertible, then f · bj = ai · m is an M. Thus bj

is invertible by lemma 2.2(ii), contrary to j ∈ J∗. We deduce that i ∈ I∗, and the
A-separability of H gives a pullback

HXA HXm
✲ HXB

HXAi

HXai

✻

HXf
✲ HXBj

✻

HXbj

Hence (HXm)∗[HXbj ] = [HXai ] in (HXA)
∗
. In particular (HXm)∗[HXbj ] is at most [HXai ],

and equation (14) follows.

Given this inequality, we can define H on arrows between Stirling monomials by re-
striction:

5.6. Construction. Consider an A-separable functor H:P(A) → X . For m: B → A
an M, we construct HX[m]: HX[A] → HX[B] as the unique arrow making commutative:

HX[A] φX[A]
✲ HXA

HX[B]

HX[m]

❄

φX[B]
✲ HXB

❄

HXm (15)

Proof. Use lemma 5.5 and proposition 3.6.

Constructions 5.4 and 5.6 together yield:

5.7. Construction. Given an A-separable functor H:P(A) → X , we have:
(i) a functor H:SP(A) → X in Ext consistent with constructions 5.4 and 5.6.

(ii) a natural transformation φH : H → HU whose component at X[A] is the distinct
A-tuples of H for each A ∈ A. Moreover, every component of φH is a summand.

Proof. We construct H by lifting the relevant data using the universal property of the
category of families SP(A). The necessary functoriality of the data follows from the fact
that HX[m] is unique in diagram (15). For φH , lift the data given for Stirling monomials,
noting diagram (15) gives the required naturality. Since the components of φH in general
are given by sums of components at Stirling monomials and sums of summands are sum-
mands, we see that every component of φH is a summand.
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The construction (–) gives the data on objects for the functor which is equivalence
inverse to precomposition with S. Our next goal is to lift this construction to A-separable
natural transformations.

5.8. Lemma. Consider an A-separable natural transformation γ: H → K and A ∈ A.
We have

[φHX[A]] ≤ (γXA)∗[φKX[A]]

Proof. Write QuoE(A) = (Ai, ai, I, i∗) and I∗ = I \ {i∗}. For each i ∈ I, since γ is
A-separable we obtain a pullback

HXAi
HXai

✲ HXA

KXAi

γXAi

❄

KXai

✲ KXA
❄

γXA

So [HXai ] = (γXA)∗[KXai ], and it follows that

(γXA)∗¬(
∨

i∈I∗
[KXai ]) = ¬(γXA)∗(

∨
i∈I∗

[KXai ])

= ¬ ∨
i∈I∗

(γXA)∗[KXai ]

= ¬ ∨
i∈I∗

[HXai ]

Thus (γXA)∗[φKX[A]] = [φHX[A]], and hence the required inequality.

It is interesting to note that the proposition actually gives a stronger result. One
can check if γ is a mere natural transformation (not known to be A-separable), then the
inequality given by the naturality square is the reverse of the inequality we are seeking.

5.9. Construction. Consider an A-separable natural transformation γ: H → K. We
construct a natural transformation γ: H → K unique such that

HX[A] φHX[A]
✲ HXA

KX[A]

γX[A]

❄

φKX[A]
✲ KXA

❄

γXA (16)

commutes for each A ∈ A, where H and K are as in construction 5.7(i).
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Proof. Using lemma 5.8 and proposition 3.6, we can produce components of γ at Stirling
monomials X[A] for each A ∈ A, and then lift via the universal property of families. It
suffices to check naturality of γ at X[m] for m: B → A an M. Consider the following
diagram:

HX[A] HX[m]
✲ HX[B]

❅
❅

❅
❅

φHX[A]

❘

❅
❅

❅
❅

φHX[B]

❘

HXA HXm
✲

γX[B]

HXB

KX[A]

γX[A]

❄

KX[m]
✲ KX[B]

❄

❅
❅

❅
❅φKX[A]
❘

❅
❅

❅
❅φKX[B]
❘

KXA

γXA

❄

KXm
✲ KXB

❄

γXB

The left (resp. right) face is the definition of γ at X[A] (resp. X[B]). The top (resp. bottom)
face is the naturality of φH (resp. φK) at X[m]. The front face is naturality of γ at Xm.
Thus we may deduce that the back face (the required naturality of γ at X[m]) commutes
when postcomposed with φKX[B]. But φKX[B] is a summand, and hence monic, and thus
the back face commutes giving the required naturality.

We now have all the data required to construct the functor which the the equivalence
inverse to precomposition with S.

5.10. Construction. There is a functor (–):A-Sep(X ) → Ext[SP(A),X ] consistent
with constructions 5.7 and 5.9.

Proof. The only remaining validation is functoriality of (–) – this follows from uniqueness
of γX[A] in diagram (16) and by pasting such diagrams together. Preservation of identities
is likewise routine.

Having described the functor which is the equivalence inverse to precomposing S,
we now turn to a proof of this equivalence. While the proof requires a few technical
lemmas, the method of proof is by no means difficult. We simply describe the two required
natural isomorphisms – HS ∼= H natural in H and FS ∼= F natural in F . The required
invertibility in each case is shown by using equality in the boolean algebra of summands.

We first show that HS ∼= H natural in H for each A-separable H. We shall show
that the natural transformation Hε · φHS: HS → H is invertible, where ε is the counit
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of U � S. Informally, the next two lemmas describe the fact that any A-tuple of H is
obtained uniquely by duplicating entries of a distinct Ai-tuple of H for some ai: A → Ai.

5.11. Lemma. Consider an A-separable functor H:P(A) → X . For each A ∈ A, writ-
ing QuoE(A) = (Ai, ai, I, i∗), the family of summands

HXai · φHX[Ai]

of HXA for i ∈ I is pairwise disjoint.

Proof. We note firstly this is indeed a family of summands, as each arrow is a composite
of summands. For each i ∈ I, let us write QuoE(Ai) = (Bi

j, b
i
j, Ji, j

i
∗) and J∗

i = Ji \ {ji
∗}.

Take distinct i1, i2 ∈ I, and form a pushout of ai1 and ai2 in A, noting that A admits
pushouts along Es. Since pushouts of Es are Es and QuoE(A), QuoE(Ai1) and QuoE(Ai2)
are complete sets of representatives, we may assume that we have a commuting diagram

A
ai1 ✲ Ai1

❅
❅

❅
❅

ai

❘

❅
❅

❅
❅

bi1
j1

❘

Ai2

ai2

❄
✲ Ai

❄

∼=
✲ Bi1

j1

❅
❅

❅
❅bi2

j2 ❘

Bi2
j2

❄

∼=

(17)

in A, where j1 ∈ Ji1 , j2 ∈ Ji2 , and the square is a pushout. The unlabelled arrows are
unique (since Es are epic), and we shall leave them unnamed.

Observe that at least one of bi1
j1 and bi2

j2 is not invertible – if both were invertible then
ai1 and ai2 would be isomorphic as E-quotients of A, and thus i1 = i2 contrary to the fact
they are distinct. That is to say, either j1 ∈ J∗

i1
or j2 ∈ J∗

i2
.

Since HXai1 is a summand, it admits clean split-images, and these are formed by
composition. Thus we may compute

[HXai1 · φHX[Ai1
]] = (HXai1 )∗(¬

∨
j∈J∗

i1

[HXb
i1
j ])

= [HXai1 ] ∧
(
¬(HXai1 )∗(

∨
j∈J∗

i

[HXb
i1
j ])

)

= [HXai1 ] ∧ ¬(
∨

j∈J∗
i

(HXai1 )∗[HXb
i1
j ])

= [HXai1 ] ∧ ∧
j∈J∗

i

¬[HXai1 · HXb
i1
j ]

= [HXai1 ] ∧ ∧
j∈J∗

i

¬[HXb
i1
j ·ai1 ]
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where we have applied lemma 4.11 to compute the direct image of a complement under a
summand, and used the fact that direct images preserve joins by corollary 4.7. Similarly,
we obtain:

[HXai2 · φHX[Ai2
]] = [HXai2 ] ∧ ∧

j∈J∗
i

¬[HXb
i2
j ·ai2 ]

Since H is A-separable, the pushout formed in diagram (17) yields a pullback in X ,
and thus we have [HXai1 ] ∧ [HXai2 ] = [HXai ]. We deduce that

[HXai1 · φHX[Ai1
]] ∧ [HXai2 · φHX[Ai2

]]

= [HXai1 ] ∧
( ∧

j∈J∗
i

¬[HXb
i1
j ·ai1 ]

)
∧ [HXai2 ] ∧

( ∧
j∈J∗

i

¬[HXb
i2
j ·ai2 ]

)

= [HXai ] ∧
( ∧

j∈J∗
i

¬[HXb
i1
j ·ai1 ]

)
∧

( ∧
j∈J∗

i

¬[HXb
i2
j ·ai2 ]

)

Since j1 ∈ J∗
i1

or j2 ∈ J∗
i2

, at least one of the terms ¬[HXb
i1
j1
·ai1 ] or ¬[HXb

i2
j2
·ai2 ] appears in

one of the familial meets in the preceding calculation. The isomorphisms in diagram (17)
show that each of these terms is equal to ¬[HXai ]. Thus the above meet is contained
in [HXai ] ∧ ¬[HXai ] = ⊥, and we have the claimed disjointness.

5.12. Lemma. In the context of lemma 5.11, we have
∨
i∈I

[HXai · φHX[Ai]] = �

Proof. We proceed by induction of the size of QuoE(I), noting this is finite by property (3)
of definition (2.1).

Suppose that #QuoE(I) = 1; then QuoE(I) has a unique element i∗, and recall that
Ai∗ = A and ai∗ = 1A. Also, in this case, I∗ is empty. Thus

∨
i∈I

[HXai · φHX[Ai]] = [HX1A · φHX[A]] = ¬ ∨
i∈I∗

[HXai ] = ¬⊥ = �

as claimed.
Suppose that #QuoE(I) > 1. We compute

∨
i∈I

[HXai · φHX[Ai]] = [HXai∗ · φHX[Ai∗ ]] ∨
( ∨

i∈I∗
[HXai · φHX[Ai]]

)

= [φHX[A]] ∨
( ∨

i∈I∗
[HXai · φHX[Ai]]

)

=
(
¬ ∨

i∈I∗
[HXai ]

)
∨

( ∨
i∈I∗

[HXai · φHX[Ai]]
)

To show that this equals �, it suffices to show that for each i1 ∈ I∗ we have

[HXai1 ] ≤ ∨
i∈I∗

[HXai · φHX[Ai]] (18)
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For each i ∈ I, write QuoE(Ai) = (Bi
j, b

i
j, Ji, j

i
∗) and J∗

i = Ji \ {ji
∗}. Inductively then,

∨
j∈J∗

i1

[HXb
i1
j · φHX[B

i1
j ]] = �

in (HXAi1 )
∗
, and taking direct images by HXai1 , we have

[HXai1 ] = (HXai1 )∗
( ∨

j∈J∗
i1

[HXb
i1
j · φHX[B

i1
j ]]

)

=
∨

j∈J∗
i1

(HXai1 )∗(HXb
i1
j )∗[φHX[B

i1
j ]]

=
∨

j∈J∗
i1

(HXb
i1
j ·ai1 )∗[φHX[B

i1
j ]]

using the formula of proposition 4.9(i) to compute the composed direct images. Now, for
each j ∈ J∗

i1
, since bi1

j · ai1 is an E , it is isomorphic as an E-quotient to ak for some k ∈ I.

Moreover, the arrow ak cannot be invertible – this would imply bi1
j · ai1 is invertible

and hence an M, and thus ai1 invertible by lemma 2.2(ii), which contradicts i1 ∈ I∗.
Hence k ∈ I∗, and each term in the above join decomposition of [HXai1 ] appears as a
term (HXak)∗[φHX[Ak]] in the right hand side of equation (18). The result follows.

We are now in a position to prove the claimed isomorphism HS ∼= H.

5.13. Proposition. Consider an A-separable functor H:P(A) → X . With ε the counit
of U � S (construction 2.13), the natural transformation Hε ·φHS: HS → H is invertible.

Proof. To show that Hε·φHS is invertible it suffices to check invertibility of the component
at XA for each A ∈ A. We have

HεXA · φHSXA = (|i HXai) · ∑
i∈I

φHX[Ai] = (|i HXai · φHX[Ai]) (19)

and thus this arrow is produced using the universal property of sums from a family of
summands HXai · φHX[Ai]. To show that this is invertible, we apply proposition 4.10, the
required conditions being the content of lemmas 5.11 and 5.12, to deduce that this family
of summands is a sum decomposition of HXA. It follows that the component HεXA·φHSXA

is invertible, and hence the result.

At this point, we have shown that for each A-separable functor H, the natural trans-
formation Hε ·φHS is invertible. It remains to show that this isomorphism is natural in H
– this is a consequence of the 2-categorical structure of Cat, on noting that diagram (16)
shows that the family of natural transformations φ is natural in H.

We now show that FS ∼= F natural in F for each F :SP(A) → X . We shall use the
natural family of boolean algebra maps obtained from F using construction 3.8. We begin
with a lemma giving naturality of families of comparison arrows constructed from natural
transformations.
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5.14. Lemma. Consider functors F , G, and H:X → Y and natural transformations
α: F → H and β: G → H in Ext. If each component of both α and β is a summand, and
for each X ∈ X

[αX] ≤ [βX] (20)

then there is a natural transformation γ: F → G such that β ·γ = α. Moreover, if equality
holds for all X in equation (20), then γ is invertible.

Proof. The components of γ are the comparison arrows FX → GX exhibiting equa-
tion (20). To see that γ so defined is natural at f : X → Y in X , consider the diagram:

FX
γX ✲ GX

❅
❅

❅αX ❘ ✠�
�

�

βX

HX

FY

Ff

❄ γY ✲

Hf

GY
❄

Gf

❅
❅

❅αY ❘ ✠�
�

�

βY

HY
❄

The square is the desired naturality – the parallelograms commute by naturality of
α and β, and the triangles commute by construction of γ. This gives commutativity
of the square postcomposed with βX. Since βX is a summand, it is monic, and hence
the desired naturality. With equality in equation (20), each component of γ is invertible,
and hence γ is invertible.

We shall use this lemma to construct the isomorphism FS ∼= F . The desired summand
equality is the image under F of the summand equality in SP(A) given by the following
lemma.

5.15. Lemma. For each A ∈ A, writing QuoE(A) = (Ai, ai, I, i∗)we have

¬ ∨
i∈I∗

[SXai ] = [inji∗ ] (21)

in the boolean algebra (SXA)
∗
.

Proof. Sums in a category of families, such as SP(A), are formed by by disjoint unions
of families. Thus to give a summand of an object of SP(A) is just to give a subset of
the Stirling monomials comprising the object, and complementation of summands is just
complementation of the subset of monomials comprising the summand.

With this in mind, let us examine the subset of monomials describing the left hand
side of equation (21), which we endeavour to show consists solely of X[A]. Note that this
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summand of SX[A] is indexed by the distinguished i∗ ∈ I, and is thus the right hand side
of equation (21).

Consider the join of summands appearing in this equation, and note that for any i ∈ I∗,
writing QuoE(Ai) = (Bi

j, b
i
j, Ji, j

i
∗), so Bi

j∗ = Ai, we have commutativity of

X[Ai]
injj∗✲ SXAi

X[Ai]

X[1Ai
]

❄

inji
✲ SXA

❄

SXai

from diagram (4), the definition of S on arrows, since

bi
j∗ · ai = 1Bi

j∗
· ai = 1Ai

· ai

is the unique factorization of the left hand term with 1Ai
an M. Collapsing the left hand

side identity, we see that inji ≤ SXAi , and hence X[Ai] occurs in the subset of monomials
making up the join on the left hand side of equation (21).

It remains to consider the monomial X[A], corresponding to i∗ ∈ I. Suppose by way of
contradiction this were included in the subset of monomials representing the join. Since
monomials are atomic in the boolean algebra of summands of SXA, there is some i ∈ I∗

for which inji∗ ≤ SXai . Consider the monomials of SXA comprising the summand SXai .
Writing QuoE(Ai) = (Bi

j, b
i
j, Ji, j

i
∗), the definition of S on arrows show that SXai maps

the summand X[Bi
j ] to the summand X[Ak] of SXA, where bi

j · ai = m · ak is the unique

factorization for some k ∈ I and m an M. To obtain the monomial X[A], we would require
k = i∗, and thus ak an identity. Thus bi

j · ai = m is an M. By lemma 2.2(ii), we would
have that ai is invertible, contrary to i ∈ I∗.

Thus we see that the subset of monomials of SXA making up the join appearing on
the left hand side of equation (21) is precisely all monomials except X[A]. It follows that
the complement is precisely the monomial X[A], which is the result of the lemma.

5.16. Lemma. Consider a functor F :SP(A) → X in Ext. With η the unit of U � S
(construction 2.12), for each A ∈ A we have

[φFSX[A]] = [FηX[A]]

Proof. We note that we may consider the distinct A-tuples of FS, as this functor is
A-separable by proposition 5.3. Using the natural transformation F∗ of construction 3.8,
and writing QuoE(A) = (Ai, ai, I, i∗), we observe that

[φFSX[A]] = ¬ ∨
i∈I∗

[FSXai ] = ¬ ∨
i∈I∗

(F∗SXA)[SXai ] = (F∗SXA)(¬ ∨
i∈I∗

[SXai ])

using the fact that the components of F∗ are boolean algebra maps. We also have

[FηX[A]] = (F∗SXA)[ηX[A]] = (F∗SXA)[inji∗ ]

The lemma follows by applying (F∗SXA) to the result of lemma 5.15.
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The desired natural isomorphism now follows:

5.17. Proposition. Consider a functor F :SP(A) → X in Ext. There is a natural
isomorphism FS ∼= F . Moreover, the collection of these transformations as F varies is
natural in F .

Proof. We may apply lemma 5.14 to the result of lemma 5.16 to produce the required
natural isomorphism from the comparison arrows of the summand equality of the lat-
ter lemma. Since we have equality in lemma 5.16, we indeed obtain a natural isomor-
phism FS ∼= F .

It remains to show that this isomorphism FS ∼= F is natural in F . Given a natural
transformation α: F → G for another G:SP(A) → X in Ext, we have the diagram:

FS
∼= ✲ F

❅
❅

❅φFS ❘ ✠�
�

�

Fη

FSU

GS

αS

❄ ∼= ✲

αSU

G
❄

α

❅
❅

❅φGS ❘ ✠�
�

�

Gη

GSU
❄

and wish to show commutativity of the square (the isomorphisms being those produced
by lemma 5.14). Each triangle commutes by the result of the lemma. The left parallel-
ogram is an instance of diagram (16), and 2-categorical properties of Cat give the right
parallelogram. A diagram chase gives the desired commutativity postcomposed with Gη.
Now G preserves summands, and every component of η is a summand, thus every com-
ponent of Gη is a summand. Since summands are monic in the extensive category X , we
have the desired commutativity.

Thus we have a proof of the claimed universal property of SP(A):

5.18. Theorem. Precomposing the functor S of construction 2.9 gives and equivalence

A-Sep(X ) � Ext[SP(A),X ]

Proof. This is precisely the content of propositions 5.13 and 5.17.

The equivalence of theorem 5.18 applies to extensive categories X , which do not nec-
essarily possess products. However, in the event A possesses sums, proposition 2.7 shows
that SP(A) possesses products, and corollary 2.15 shows that these products are preserved
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by S. It follows that, if the category X possesses products, the equivalence induced by
precomposition with S carries product preserving functors to product preserving functors.
We now aim to prove that in this case precomposition with S restricts to an equivalence
between the product preserving subcategories of A-Sep(X ) and Ext[SP(A),X ].

5.19. Lemma. Suppose that A admits sums and X admits products. Let H:P(A) → X
be an A-separable functor which preserves products. For A, B ∈ A, and with the notation
of construction 2.6 for the product X[A] × X[B] in SP(A), let

α: HXA × HXB → HXA+B

be the isomorphism arising from H preserving this product. Then

α · (HUp, HUq) = (|i∈I× HXci)

Proof. This is a routine calculation using the formulas

p · inji = X[ci·i]

q · inji = X[ci·j]

for the projections. The projections of the product HXA+B of HXA and HXB in X are
HXi and HXiB, and we observe

HXi · α · (HUp, HUq) · inji = HUp · inji = HXci·i = HXi · HXck

A similar calculation for j in place of i and the universal properties of sums and products
then yields the desired result.

Now, in the notation of this lemma and with H and φH as in construction 5.7, the
diagram

H(X[A] × X[B])
φH(X[A] × X[B]) ✲ HU(X[A] × X[B])

HX[A] × HX[B]

(Hp, Hq)

❄
φHX[A] × φHX[B]

✲ HUX[A] × HUX[B]

❄

(HUp, HUq) (22)

commutes. This follows directly from general facts about products. The square commutes
after postcomposing the projection p – paste the square defining p · (φHX[A] × φHX[B]) on
the bottom of the above square, and the exterior square is naturality of φH at p. Similarly,
the square commutes on postcomposition with q, and the desired commutativity follows
from properties of products.

For H to preserve products is precisely for the left arrow of diagram (22) to be invertible
(for all A and B). Using the formula of the previous lemma, we can show that the diagonal
of this square is a summand, and thus allow us to use the summand calculus in trying to
prove that (Hp, Hq) is invertible.
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5.20. Lemma. In the context of lemma 5.19, the arrow

(|i HXci) · φH(X[A] × X[B])

is a summand of HXA+B.

Proof. The arrow φH(X[A]×X[B]) is constructed by lifting the definition of φ on monomials
to sums of monomials by the universal property of the family construction. Thus

φH(X[A] × X[B]) =
∑
i∈I×

φX[Ci]

It follows the arrow in question may be rewritten as

(|i HXci · φX[Ci])

and we may then apply lemma 5.11 with C in place of A to see that the family of
summands

HXci · φX[Ci]

for i ∈ I is pairwise disjoint. Restricting to i ∈ I×, we still obtain a pairwise disjoint
family of summands. Applying proposition 3.5 yields the desired result.

Thus (Hp, Hq) is a comparison of the summand comprising the diagonal of dia-
gram (22) in the summand φX[A] × φX[B]. If we can show a reverse comparison, we
shall have proved the invertibility of (Hp, Hq).

5.21. Lemma. In the context of lemma 5.19, we have

¬
[
(|i HXci) · φH(X[A] × X[B])

]
∧

[
α · (φHX[A] × φHX[B])

]
= ⊥

in (HXA+B)
∗
.

Proof. We have that

(|i∈I× HXci) · φH(X[A] × X[B]) = (|i∈I× HXci · φHX[Ci]) (23)

To compute the complement of this summand, we consider the extension of the above
arrow to the sum over all i ∈ I. The arrow

(|i∈I HXci · φHX[Ci])

is invertible – this is precisely the result of proposition 5.13 on considering the calculation
of equation (19) in the proof. Thus the complement of the summand of equation (23) is

(|i∈I\I× HXci · φHX[Ci])

– we have restricted the arrow to those summands not included in the summand of
equation (23). This summand is a join in (HXA+B)

∗
of the summands HXci · φX[Ci]

for i ∈ I \ I×, and thus to show it disjoint from α · (φHX[A] × φHX[B]) it suffices to show

[HXci · φHX[Ci]] ∧ [α · (φHX[A] × φX[B])] = ⊥ (24)
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for each i ∈ I \ I×.
Given i ∈ I \ I× then, we observe that either ci · i or ci · j is not an M (from the

definition of I×). Without loss of generality we shall consider the case where ci · i is not
an M. Write QuoE(A) = (Aj, aj, J, j∗), and factor ci · i = m · aj for m an M and j ∈ J .
Now aj is not invertible (since ci · i is not an M). Considering equation (13), the definition
of φHX[A], we see that

[φHX[A]] ∧ [HXaj ] = ⊥ (25)

since HXaj is one of the summands included in the join which is the complement of φHX[A].
Consider the meet of HXci ·φHX[Ci] and α · (φHX[A]×φHX[B]) – that is, the pullback P

in the following diagram:

P ✲ HX[A] × HX[B]

✠�
�

�
�

φHX[A] × φHX[B] ❅
❅

❅
❅❘

HXA × HXB HX[A]

❅
❅

❅
❅❘ ✠�

�
�

�

φHX[A]

HXA

�
�

�
�

HXi

✒ �❅
❅

❅
❅

HXaj

HXC

α

❄
HXAj

�❅
❅

❅
❅HXci

�
�

�
�

HXm

✒

HX[Ci]
❄

φHX[Ci]
✲ HXCi

The upper diamond (whose unlabelled sides are product projections) commutes by defi-
nition of φHX[A] × φHX[B]. The lower diamond follows from ci · i = m · aj. The triangle
is the definition of the isomorphism α showing preservation of products by H (recall
that C = A + B). Thus we can use the pullback projections of P to obtain arrows
P → HX[A] and P → HXAj with commutativity so as to yield an arrow from P to the
pullback of φHX[A] and HXaj . Equation (25) shows these summands are disjoint, and
hence this pullback is initial. Thus P admits an arrow to an initial, and is hence initial.
This proves equation (24), and the result follows.

We now show the required preservation of products.

5.22. Proposition. Suppose that A admits sums and X admits products. For an
A-separable H:P(A) → X which preserves products, the functor H of construction 5.7
preserves products.
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Proof. The terminal object of P(A) is X0, where 0 is initial in A. Since S preserves
limits, the terminal object of SP(A) is SX0. Now HS ∼= H, and so preservation of the
terminal object by H follows from preservation of the terminal object by H.

For binary products, we need only check at monomials. Given A, B ∈ A, use notation
of construction 2.6 for their product. For H to preserve products is for the arrow (Hp, Hq)
given by properties of products to be invertible.

Consider the commutative square (22). The diagonal of this square is a summand,
being isomorphic via α to the summand of lemma 5.20. It follows (Hp, Hq) is a comparison
arrow, and thus to show it invertible we need only show the reverse comparison. It suffices
to do this in the summands of HXC , translating via the isomorphism α. That is, we need
only show

(|i HXci) · φH(X[A] × X[B]) ≤ α · (φHX[A] × φHX[B])

This follows using boolean algebra from the result of lemma 5.21.

We can thus state the universality of SP(A) for extensive categories with products:

5.23. Theorem. Suppose that A admits sums and X admits products. The equivalence
of theorem 5.18 restricts to an equivalence between the full subcategories of A-Sep(X )
and Ext[SP(A),X ] with objects the product preserving functors in each case.

Proof. That the restriction induces an equivalence between appropriate subcategories
follows from the fact S preserves products from corollary 2.15, and that the construc-
tion (–) of 5.10 takes product preserving functors to product preserving functors by propo-
sition 5.22.
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