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A NOTE ON DISCRETE CONDUCHÉ FIBRATIONS

PETER JOHNSTONE
Transmitted by Ieke Moerdijk

ABSTRACT. The class of functors known as discrete Conduché fibrations forms a
common generalization of discrete fibrations and discrete opfibrations, and shares many
of the formal properties of these two classes. F. Lamarche [7] conjectured that, for any
small category B, the category DCF/B of discrete Conduché fibrations over B should
be a topos. In this note we show that, although for suitable categories B the discrete
Conduché fibrations over B may be presented as the ‘sheaves’ for a family of coverings
on a category Btw constructed from B, they are in general very far from forming a topos.

Introduction

J. Giraud [4] was the first to investigate the question of exponentiability in slice categories
of Cat; his results were rediscovered some years later by F. Conduché [3], and the class
of functors concerned is now commonly called the class of Conduché fibrations. A functor
p : C → B is called a Conduché fibration if, given f : c → d in C and a factorization pf =
u ◦ v in B, there exists a factorization f = g ◦ h in C with pg = u and ph = v, and
this factorization is unique up to equivalence, where two factorizations g ◦ h = g′ ◦ h′

are declared equivalent if there exists k : cod h → dom g′ such that k ◦ h = h′, g′ ◦ k = g
and pk is an identity morphism. (That is, equivalence of factorizations is the equivalence
relation generated by the set of all pairs for which there exists k as above.) The Giraud–
Conduché result asserts that a functor p : C → B between small categories is exponentiable
as an object of Cat/B if and only if it is a Conduché fibration.

In this note we shall be concerned entirely with the class of discrete Conduché fi-
brations, which are those in which the lifting of a factorization is unique ‘on the nose’,
and not just up to equivalence. Equivalently, they are the Conduché fibrations which
reflect identity morphisms. (To see that a discrete Conduché fibration necessarily has the
latter property, observe that if pf is an identity morphism but f is not then the factor-
ization pf = pf ◦ pf has (at least) two distinct liftings f = f ◦ 1 = 1 ◦ f .) Just as the
class of all Conduché fibrations includes all (Grothendieck) fibrations and opfibrations,
so the discrete Conduché fibrations include all discrete fibrations and discrete opfibra-
tions. Moreover, they have similar factorization properties to discrete fibrations: given a
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commutative triangle

D q ✲ C
❅

❅
❅

❅
❅

r
❘

B
❄

p

of categories and functors, where p is a discrete Conduché fibration, then q is a discrete
Conduché fibration if and only if r is. (The proofs are immediate from the definition.)

It follows that small categories and discrete Conduché fibrations form a lluf subcate-
gory DCF of Cat (that is, one containing all the objects but only some of the morphisms),
and that DCF/B is a full subcategory of Cat/B for any small category B. Since DCF/B
further contains full subcategories (of discrete opfibrations and discrete fibrations respec-
tively) equivalent to the functor categories [B,Set] and [Bop,Set], it is of some potential
interest as a ‘single universe’ in which both covariant and contravariant functors on B
enjoy equal status — and since its objects are all exponentiable in Cat/B, it is at least
reasonable to hope that it might be cartesian closed (though we shall eventually see that
it is not, in general). In fact F. Lamarche [7] conjectured that it might be a topos. A proof
of this conjecture was recently announced by M. Bunge and S. Niefield, but turned out to
contain an error. The present note began life (in a preprint version written in July 1998)
as a simple presentation of a counterexample to Lamarche’s conjecture; but — prompted
in part by the comments of two anonymous referees — we have since extended it to con-
tain a proof of the conjecture in a special case, which appears to be best possible, as well
as a second counterexample to show that in general DCF/B is not even representable as
a category of sheaves. (The conjecture has also been proved in the special case by Bunge
and Niefield in the revised version of their paper [2], and by Bunge and Fiore [1]; but
their proof is less direct than ours.)

1. Discrete Conduché Fibrations

We begin with some simple observations about the categories DCF and DCF/B, which
may also be found in [2].

1.1. Lemma. The inclusion DCF → Cat creates simply connected limits.

Proof. By [9], it suffices to consider wide pullbacks. Let (pi : Ci → B | i ∈ I) be a family
of discrete Conduché fibrations with common codomain, and let p : C → B be their wide
pullback (i.e. their product in Cat/B). Given a morphism f = (fi | i ∈ I) in C and a
factorization pf = u◦v in B, since pf = pifi for all i we can uniquely lift the factorization
to fi = gi ◦ hi in Ci for each i, and then g = (gi | i ∈ I) and h = (hi | i ∈ I) give the
required unique factorization of f . Thus p is a discrete Conduché fibration. It now follows
from Lemma 1.1(ii) that the projections C → Ci are all in DCF; and a similar application
of Lemma 1.1 shows that a cone over the original diagram in Cat lies in DCF if and only
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if its unique factorization through C does so. Thus the limiting cone in Cat is still a limit
in DCF.

It follows that, for any B, DCF/B is closed under arbitrary limits in Cat/B, and in
particular that it is complete. It also has a generating set: given a morphism f in B, let [[f ]]
be the category whose objects are all factorizations of f = g◦h in B and whose morphisms
(g, h) → (g′, h′) are morphisms k : cod h → dom g′ in B satisfying k◦h = h′ and g′◦k = g.
There is an obvious functor [[f ]] → B sending an object (g, h) to dom g = cod h and a
morphism k to itself, and this is clearly a discrete Conduché fibration. Moreover, for
any discrete Conduché fibration p : C → B, morphisms [[f ]] → C over B are easily seen to
correspond to morphisms f̃ of C satisfying pf̃ = f , from which it follows easily that the
collection of all [[f ]] forms a generating set for DCF/B.

Since the inclusion DCF → Cat preserves and reflects monomorphisms, we know that
monomorphisms in DCF are just those injective functors which are (necessarily discrete)
Conduché fibrations. Up to isomorphism, the subobjects of B in DCF thus correspond to
Conduché subcategories of B, that is subcategories which are closed under factorization.
In particular, we see that DCF (and hence DCF/B for any B) is well-powered. Rather
more alarmingly, we have

1.2. Lemma. The category DCF is not well-copowered.

Proof. Let C denote the category with four objects a, b, c, d and just two non-identity
morphisms a → b, c → d. For each ordinal α > 0, let Dα denote the poset obtained from
the ordinal α+1 by adding a new element ∗ satisfying 0 ≤ ∗ ≤ α (but incomparable with
all other elements of α+1). Let fα : C → Dα be the order-preserving map sending a, b, c, d
to 0, ∗, ∗, α respectively: it is readily checked that fα is a discrete Conduché fibration
(since there are no nontrivial factorizations to be lifted), and that it is an epimorphism
in DCF — in fact a strong epimorphism, since its image is not contained in any proper
Conduché subcategory of Dα. But it is clear that Dα and Dβ are not isomorphic unless
α = β; so C has a proper class of non-isomorphic quotients of this form.

However, this problem disappears when we pass from DCF to DCF/B. The point
is that, if a category C admits a discrete Conduché fibration to B, each morphism in
C has exactly as many factorizations as its image in B, and thus the phenomenon of
‘unboundedly many factorizations’ which we observed in the proof of Lemma 1.2 cannot
occur. So it is possible to put a bound on the cardinalities of categories which appear as
epimorphic images of a given object of DCF/B, and hence this category is well-copowered.
Similarly, we may show that, for any functor p : C → B, there is an upper bound on the
cardinalities of categories Ĉ which can appear in diagrams

C r ✲ Ĉ
❅

❅
❅

❅
❅

p
❘ ✠�

�
�

�
�

q

B
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such that q is a discrete Conduché fibration and r does not factor through any proper
Conduché subcategory of Ĉ; thus we obtain a solution-set which allows us to conclude

1.3. Proposition. For any small category B, DCF/B is a reflective subcategory of
Cat/B.

In the original version of [2], it was claimed that DCF/B is also coreflective in Cat/B.
As we shall see in 3.4 below, that claim is incorrect.

2. Discrete Conduché Fibrations as Sheaves

Given a category B, the twisted morphism category Btw has the morphisms of B as
its objects, and morphisms f → g in Btw are pairs of morphisms (u : dom g → dom f,
v : cod f → cod g) such that

• ✛ u •

•❄
f

v ✲ •❄
g

commutes. (Note that this is the dual of the twisted morphism category as defined
in [2]: the direction which we have chosen for its morphisms is more convenient for our
purposes.) We remark in passing that if B is a partially ordered set, then so is Btw, and
the latter may be identified with the set of (nonempty) intervals in B (that is, subsets
[a, b] = {c ∈ B | a ≤ c ≤ b} with a ≤ b in B), ordered by inclusion.

It is not hard to see that the construction (−)tw is functorial on Cat, and that it
preserves limits as a functor Cat → Cat — in fact it is easy to construct a left adjoint
for it.

Of particular interest to us is the following result, first observed by Lamarche [7]:

2.1. Lemma. A functor p : C → B is a discrete Conduché fibration if and only if
ptw : Ctw → Btw is a discrete fibration.

Proof. Suppose p is a discrete Conduché fibration; let f be an object of Ctw, and let
(u, v) : g → pf a morphism of Btw with codomain pf . Then the factorization pf = v◦g◦u
lifts uniquely to a factorization f = ṽ ◦ g̃ ◦ ũ, yielding a unique morphism (ũ, ṽ) : g̃ → f
lying over (u, v). So ptw is a discrete fibration. Conversely, if ptw is a discrete fibration, we
observe first that p must reflect identity morphisms; for if pf is an identity morphism but
f is not, we have (at least) three different liftings of (pf, pf) : pf → pf with codomain f .
Now, given an arbitrary morphism f of C and a factorization pf = v◦u, the unique lifting
of (u, v) : 1dom v → pf with codomain f yields the required factorization of f in C.
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It is easy to see that (−)tw is a faithful functor Cat/B → Cat/Btw: it is not full in
general, but it becomes so when restricted to the subcategory DCF/B. For if p : C → B
and q : D → B are discrete Conduché fibrations and we are given a functor r : Ctw → Dtw

over Btw, then the effect of r on objects of Ctw defines a mapping r0 : mor C → mor D; we
need to verify that this is functorial. But if (g, f) is a composable pair of morphisms in C,
then applying r to the morphisms (f, 1) : g → g ◦ f and (1, g) : f → g ◦ f (and recalling
that q reflects identity morphisms) yields two factorizations r0(g ◦ f) = r0g ◦ x = y ◦ r0f
both lying over the factorization p(g◦f) = pg◦pf ; so these must coincide, and r0(g◦f) =
r0g ◦ r0f . Similar arguments show that r0 preserves identity morphisms, domains and
codomains, and that the effect of r on an arbitrary morphism of Ctw coincides with that
of (r0)tw.

Thus we may identify DCF/B with a full subcategory of the category of discrete
fibrations over Btw, or equivalently of functors Bop

tw → Set; it is closed under limits,
since (−)tw preserves them, and in fact it is not hard to see, by arguments similar to
those at the end of the last section, that it is reflective in [Bop

tw,Set]. We note also
that this subcategory contains all the representable functors, since the discrete fibration
corresponding to Btw (−, f) is just [[f ]]tw → Btw in the notation of the previous section.

Given an arbitrary discrete fibration q : E → Btw, it thus becomes of interest to ask
whether it can be ‘untwisted’ to a discrete Conduché fibration p : C → B. If so, then it is
easy to see that we may take ob C to be

{e ∈ ob E | qe is an identity morphism in B} ,

and mor C to be the set of all objects of E . Moreover, if e is an object of E (lying over
an object f of Btw, say), the domain and codomain of e as a morphism of C may be
obtained by lifting (1, f) : 1dom f → f and (f, 1) : 1cod f → f respectively to morphisms of
E with codomain e, and taking their domains. The problem is thus to define composition
in C. Suppose d and e are objects of E which (with the above definitions of domain and
codomain) should be composable as morphisms of C, and let qd = f, qe = g. In Btw, we
have a commutative square

1
(f, 1) ✲ f

g
❄

(1, g)

(f, 1)✲ g ◦ f
❄

(1, g) (1)

which is easily verified to be a pullback (and a pushout); the assertion that d and e are
composable means, in terms of the functor E : Bop

tw → Set corresponding to E , that they
are elements of E(f) and E(g) which agree when restricted to 1cod f , and we wish to say
that under these circumstances there should be a unique element of E(g ◦ f) restricting
to d and e. This is almost the assertion that E should satisfy the sheaf axiom for the
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cover generated by the morphisms

g
(f, 1)✲ g ◦ f and f

(1, g)✲ g ◦ f ; (2)

the only problem is that these two morphisms need not be monomorphisms in Btw, so the
assertion that d and e generate a compatible family relative to this cover would impose
further restrictions on d and e, which we do not want to do.

However, there is a class of categories for which this difficulty disappears. We shall
say that B is factorization preordered if, whenever we have a diagram

• f ✲ •
g ✲

h
✲ • k ✲ •

in B with g ◦ f = h ◦ f and k ◦ g = k ◦ h, we necessarily have g = h. Equivalently,
for every morphism l of B, the category [[l]] defined in the previous section is a preorder.
Note that this holds either if all morphisms of B are monic or if all morphisms are epic;
in particular, it holds whenever B is a preorder. Then we have

2.2. Lemma. Let B be a factorization preordered category. Then a morphism
(u, v) : f → g of Btw is monic provided either u is epic or v is monic in B.

Proof. Suppose u is epic, and suppose we have two morphisms (w1, x1) and (w2, x2) : h → f
having equal composites with (u, v). Then w1 ◦ u = w2 ◦ u, so w1 = w2 = w say. Now we
have v ◦ x1 = v ◦ x2 and x1 ◦ h ◦w = f = x2 ◦ h ◦w, so x1 = x2. The argument when v is
monic is similar.

2.3. Proposition. Let B be a factorization preordered category. Then DCF/B is equiv-
alent to the full subcategory of [Bop

tw,Set] consisting of functors which satisfy the sheaf
axiom for the coverings generated by (2), for all composable pairs (f, g) of morphisms of
B.

Proof. Given a discrete fibration q : E → Btw, corresponding to a functor
E : Bop

tw → Set, it is now easy to verify that the ‘untwisting’ of E , as defined above, forms
a category C precisely when E satisfies the sheaf axiom for the indicated covers, since
the morphisms (f, 1) : g → g ◦ f and (1, g) : f → g ◦ f are both monic by Lemma 2.2, and
their pullback is as given in (1). (The associativity of composition comes from the obser-
vation that, if (f, g, h) is a composable triple of morphisms of B, then E must satisfy the
sheaf axiom for the cover of h ◦ g ◦ f generated by (g ◦ f, 1), (f, h) and (1, h ◦ g), since this
may be obtained by composing two covers of the form (2).) Further, if this occurs, then
the obvious functor C → B is a discrete Conduché fibration, and E is isomorphic over Btw

to Ctw.

2.4. Example. To show that the ‘factorization preordered’ condition in Proposition 2.3
cannot be omitted, consider the following example. The category B has as objects all
ordinals less than ω + 2: there are no morphisms α → β in B if α > β, and there is one
morphism n → m for each finite n and m with n ≤ m. There are 2n morphisms n → ω
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for each n; we label these as f(n,a) where a ranges over all subsets of n. The composite
of n → m with f(m,b) is f(n,b∩n); thus each f(n,a) has exactly two factorizations through
n → n+ 1. Finally, ω + 1 is a (strict) terminal object of B.

Next, we define a directed graph C and a graph morphism p : C → B. C has just one
vertex lying over each of ω and ω+1, and 2n vertices lying over each finite n (as before, we
label these by pairs (n, a)). There is one arrow (n, a) → (m, b) iff n ≤ m and a = b∩n, and
one arrow (n, a) → ω (whose image under p is f(n,a)) for each (n, a). C also has one arrow
ω → ω + 1 (as well as ‘identity’ arrows on all its vertices), but no arrows (n, a) → ω + 1
for any (n, a). Clearly, C cannot be made into a category, since we cannot define the
composite of (n, a) → ω and ω → ω + 1. However, if we make C into a ‘partial category’
by defining composites wherever possible, we can form Ctw as usual, and it is an honest
category; moreover, ptw becomes a discrete fibration Ctw → Btw satisfying the sheaf axiom
for the system of covers (2). The point is that the arrows (n, a) → ω and ω → ω + 1
in C, considered as objects of Ctw, do not determine a compatible family relative to the
covering generated by

n ✛ 1
n ω ✛

f(n,a)
n

and

ω

f(n,a)

❄
✲ ω + 1

❄
ω + 1

❄ 1 ✲ ω + 1
❄

because the two morphisms

n ✛ 1
n

n+ 1
❄ f(n+1,a) ✲

f(n+1,a∪{n})
✲ ω

❄

f(n,a)

have the same composite with the first of these, but the ‘restrictions’ of (n, a) → ω along
them are different.

3. Stability Under Pullback

It appears from Proposition 2.3 that we have ‘almost’ proved DCF/B to be a topos,
in the case when B is factorization preordered. All we lack is the information that the
system of covers (2) is stable under pullback in Btw. However, this is unfortunately not
true, even in the case when B is a poset; and, as soon as it fails, DCF/B loses almost all
the familiar properties of a topos. We now embark on the investigation of the minimal
counterexample.
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For this, we shall take the base category B to be the ‘generic commutative square’
Q, i.e. the category whose objects and non-identity morphisms are represented by the
diagram

a
f ✲ b

❅
❅

❅
❅

❅
l

❘

c

h

❄

k
✲ d

❄

g

and the above notation will be standard for the rest of this section. We begin by observing

3.1. Lemma. For the above category Q, the system of covers (2) is not stable under
pullback. Moreover, its closure under pullback includes covers with respect to which the
‘untwistable’ discrete fibrations do not necessarily satisfy the sheaf axiom.

Proof. Consider the cover of l = g ◦ f generated by (f, 1) : g → l and (1, g) : f → l. It is
easy to see that the pullback of this cover along (h, k) : 1c → l is empty; but the empty
cover on 1c does not belong to the given system. Moreover, the initial discrete fibration
0 → Qtw is untwistable, and it does not satisfy the sheaf axiom for any empty cover.

Next, we note a result which shows that DCF/Q is very far from being a topos.

3.2. Lemma. The lattice of Conduché subcategories of Q is not modular.

Proof. For any set S of morphisms, let 〈S〉 denote the smallest Conduché subcategory
containing S (i.e. the intersection of all such subcategories). We note that 〈f, g〉 is the
whole of Q, since it contains l = g ◦ f and hence also h and k; but 〈f, h〉 is just the union
of 〈f〉 and 〈h〉, since the latter is a Conduché subcategory. It now follows easily that the
five subcategories Q, 〈f, h〉, 〈f〉, 〈g〉 and 〈1b〉 form a copy of the non-modular lattice N5

(cf. [5], p. 59).

3.3. Corollary.

(i) DCF/Q is not cartesian closed.

(ii) DCF/Q does not have a subobject classifier.

Proof. (i) In any cartesian closed category, the subobjects of 1 (being closed under prod-
uct and exponentiation in the ambient category) form a cartesian closed meet-semilattice.
Hence, if they actually form a lattice, it must be distributive. But we observed earlier
that the subobjects of 1 in DCF/Q (that is, the subobjects of Q in DCF) correspond to
Conduché subcategories of Q; and we have just seen that these form a non-distributive
lattice.

(ii) Similarly, in any category with finite limits and a subobject classifier, the subob-
jects of any object form a cartesian closed poset. (The proof is similar to that in a topos
— cf. [6], 3.51 — which does not use the cartesian closed structure.) Once again, we have
seen that this is not the case in DCF/Q.
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Next, we fulfil a promise made in section 1:

3.4. Lemma. The category DCF/Q is not closed under coequalizers in Cat/Q; in par-
ticular, it is not coreflective.

Proof. Let C be the disjoint union of the Conduché subcategories 〈f〉 and 〈g〉 of Q: then
C → Q is clearly a discrete Conduché fibration. But if we form the coequalizer in Cat/Q
of the two morphisms 1 ⇒ C which send the unique object of 1 to the codomain of f and
the domain of g respectively, we obtain the subcategory of Q consisting of f, g, l and the
appropriate identity morphisms, which is not a Conduché subcategory.

For completeness, we also note

3.5. Scholium. The category DCF/Q is not regular.

Proof. The coequalizer of the two morphisms 1 ⇒ C in DCF/Q exists, of course; it is
just the reflection in DCF/Q of the coequalizer described above. But this is the whole of
Q; so the morphism C → Q is regular epic in DCF/Q. However, if we pull it back along
the inclusion 〈h〉 → Q, we obtain a proper monomorphism; so regular epimorphisms are
not stable under pullback in DCF/Q.

Finally, we show that Q is indeed a minimal counterexample. We shall say that a
category B is factorization strongly connected if, for each morphism l of B, the category
[[l]] is strongly connected; that is, for every commutative square

a
f ✲ b

c

h

❄

k
✲ d

❄

g

in B′, we can find either x : b → c satisfying x ◦ f = h and k ◦ x = g or y : c → b satisfying
y ◦ h = f and g ◦ y = k.

3.6. Proposition. Let B be a factorization strongly connected category. Then the sys-
tem of covers (2) is stable under pullback in Btw. If B is also factorization preordered,
then DCF/B is a topos.

Proof. Consider the cover of an object l = g ◦ f of Btw generated by (f, 1) : g → l and
(1, g) : f → l, and a morphism (u, v) : h → l. The argument splits into three cases:

If there exists x satisfying x ◦ f = u and v ◦ h ◦ x = g, then (u, v) factors through
(f, 1), so the pullback of the cover along (u, v) contains the identity morphism on h.

Otherwise, there exists y satisfying y ◦ u = f and v ◦ h = g ◦ y. If now we have a
morphism z satisfying g ◦ z = v and z ◦ h = y, then (u, v) factors through (1, g), so again
the pullback of the cover contains 1h.
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In the remaining case, we have y as before and a morphism w satisfying v ◦ w = g
and w ◦ y = h. Now the composites (u, v) ◦ (y, 1) : w → l and (u, v) ◦ (1, w) : y → l factor
through (f, 1) and (1, g) respectively, so the pullback of the cover contains the cover of h
generated by the factorization h = w ◦ y.

This completes the proof of the first assertion; the second follows from it and Propo-
sition 2.3.

We remark that the revised version of [2] also contains a proof, albeit by substantially
different methods, that DCF/B is a topos whenever B is ‘factorization totally ordered’
(i.e. satisfies the two hypotheses of Proposition 3.6, plus the requirement that each [[l]]
should be skeletal). More recently, Bunge and Fiore [1] have extended this proof to cover
the case when B satisfies a condition (their (CFI)) equivalent to the conjunction of our
two conditions; they have also observed that this conjunction is equivalent to the ‘interval
glueing’ condition considered by Lawvere [8].

In particular, if B is any poset in which each interval is totally ordered, then DCF/B
is a topos. (However, a category satisfying the conditions of Proposition 3.6 need not be a
preorder: an interesting example, exploited by Lawvere [8], is provided by the monoid of
non-negative real numbers under addition.) On the other hand, over any poset containing
an interval which is not totally ordered (equivalently, containing a copy of Q as a full
subcategory), we can reproduce all the negative results of this section.
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réciproque” dans la catégorie des catégories, C. R. Acad. Sci. Paris 275 (1972), A891–
894.
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