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GENERALIZED CONGRUENCES —
EPIMORPHISMS IN Cat
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ABSTRACT. The paper generalizes the notion of a congruence on a category and
pursues some of its applications. In particular, generalized congruences are used to
provide a concrete construction of coequalizers in Cat. Extremal, regular and various
other classes of epimorphic functors are characterized and inter-related.

1. Introduction

The results presented here hinge on a construction that leads to a generalization of the
notion of a congruence on a category. According to the usual definition, (cf. e.g. [3, 6]),
a congruence on a category is an equivalence relation on morphisms. However, it allows
only morphisms from the same homset to be related. Such a notion is rather weak. Our
programme here is to define generalized congruences so that they capture the essence
of functor’s operation on its domain in the way homomorphisms are characterized by
congruences in Algebra.

In section 3 this programme is initiated. We show that every functor induces a general-
ized congruence. Conversely, each generalized congruence is induced by an appropriately
defined quotient functor . Then, the generalized congruence induced by the quotient func-
tor coincides with the original generalized congruence.

Moving from congruences to generalized congruences bears a price — instead of equiv-
alences on morphisms one has to consider partial equivalences on non-empty sequences of
morphisms.

Generalized congruences which are fully determined by equivalences on morphisms are
called regular. Thus, the congruences considered in the literature until now give rise to a
subclass of regular congruences.

Section 4 contains the main result of the paper, the one which motivated our study.
Namely, we show that coequalizers in Cat, the category of small categories, are exactly
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those extremal epimorphisms which induce regular congruences.

Extremal and regular epimorphisms are characterized in section 3 and section 4, re-
spectively. In section 5 several other classes of epimorphisms in Cat are also studied and
related to each other.

From another perspective, as a by-product, this paper offers an elementary character-
ization of colimits in Cat. The construction of coproducts in Cat is elementary. Hence,
a concrete construction of coequalizers presented in section 4 does the job. Yet, despite
the fact that cocompleteness of Cat is well-known, most authors do not provide a direct
and elementary proof of the fact (cf. e.g. [1, 4, 6, 7]). The only place we have found
where an elementary construction of co-equalizers in Cat is presented is [5]. There, a two
stage construction is presented as a digression in the section on categories of fractions.
In comparison, generalized congruences can be seen as a way of simplifying Borceux’s
construction. Their extra potential, e.g., to characterize the regular epimorphisms, comes
as an additional bonus.

Acknowledgments: Remarks of Michael Barr and Marcelo Fiore prompted our in-
vestigations. Only after this work was accomplished Gavin Wraith directed our attention
to categories of fractions. Special thanks to Michael Barr and Andrzej Tarlecki for their
comments and support throughout.

2. Preliminaries

We study Cat — the category of all small categories. Cat is the only non-small category
considered in the paper. Hence, when we say “category” we mean “small category”.
Categories in Cat are ranged over by A, B, etc., while functors are ranged over by F , G,
and so on. All the functors appearing in the paper are morphisms of Cat, and hence are
also small.

The sets of arrows and objects of a category A are denoted MorA and ObA, and
ranged over by f , g, h, and a, b, c, respectively. The domain and codomain of an
arrow f is denoted dom(f) and cod(f), respectively. Given arrows f and g such that
cod(f) = dom(g), their composition is denoted diagrammatically as f ; g. The same
notation is used for composition of functors in Cat.

Let F : A → B be a functor.

Usually, the images of objects and morphisms of A in B via F , denoted F (A), do not
form a subcategory of B, cf. example 3.8. There is always, however, the least subcategory
of B which contains F (A). This subcategory, denoted Im F , is called the image of A in B
via F . Clearly, ObIm F = F (ObA) while MorIm F consists of all compositions of morphisms
from F (MorA) possible in B. A functor satisfying F (A) = B is called surjection.

It is easy to show that F is an epimorphism whenever its image spans its codomain,
viz., Im F = B. As a consequence a corestriction |F | : A → Im F of F is an epimorphism.
The corestriction is defined by |F |(a) =̂ F (a) and |F |(f) =̂ F (f).
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Not all epimorphisms, however, span their codomains. For example, consider an em-
bedding of a category with two objects and one non-identity arrow f between them,
into the same category augmented with a formal inverse of f . This idea generalizes to a
well-known example of the injection of the additive monoid of natural numbers N (qua
category) into the additive monoid Z of integers, (cf. e.g. [4]).

3. Functors versus generalized congruences

This section starts with the notion of a generalized congruence induced by a functor. Then,
we introduce the notion of a generalized congruence in an axiomatic manner. Generalized
congruences give rise to quotient categories and quotient functors. The latter induce the
original, underlying congruence, thus closing the circle.

3.1. Generalized congruences induced by functors. According to the standard
definition, (cf. e.g. [3, 6], or [4, 7]—for a slightly different but equivalent formulation), a
congruence on a category A is an equivalence relation ∼ on MorA which satisfies the
following two conditions:

• f ∼ f ′ implies dom(f) = dom(f ′) and cod(f) = cod(f ′), and

• f ∼ f ′ and g ∼ g′ and cod(f) = dom(g) implies f ; g ∼ f ′; g′.

For our programme to characterize functors by means of congruences to work it is nec-
essary that congruences capture the functor’s ability to identify objects. Since this is
forbidden by the first condition above, the notion of congruence must be refined.

Let A be a category, and let Mor+
A, ranged over by φ, ψ, χ, etc., be the set of all

non-empty finite sequences of morphisms of A.

3.2. Definition. Let F : A → B be a functor. The generalized congruence induced by
F on A, denoted �F , is an equivalence relation on objects of A, and a partial equivalence
relation on non-empty sequences of morphisms of A defined as follows.

a �F a′ iff F (a) = F (a′)

φ �F ψ iff F (φ) = F (ψ), i.e., F (φ) and F (ψ) are both defined and equal

where F (f1 . . . fn) =̂ F (f1); . . . ;F (fn), provided the latter composition is defined in B.

The following characterization of the domain of �F is immediate. Let φ =̂ (f1 . . . fn),
n ≥ 1. Then the following holds.

φ �F φ iff cod(fi) �F dom(fi+1), for i = 1, . . . , n − 1. (1)

Now, the commutativity of diagrams has a simple characterization in terms of induced
generalized congruences.
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3.3. Theorem. Let F : A → B and G : A → C be two functors in Cat.
If there exists J : B → C such that F ; J = G then �F ⊆ �G. Moreover, if J is a

monomorphism, then �F = �G.
On the other hand, if �F ⊆ �G and Im F = B, then there exists a unique J making

the diagram commute. Moreover, J is a monomorphism iff �F = �G.

A
F ��

G
���

��
��

��
��

� B

J
��

C

Proof. Assume J : B → C with F ; J = G and let φ, ψ ∈ Mor+
A. Then

φ �F ψ iff F (φ) = F (ψ) implies (F ; J)(φ) = (F ; J)(ψ) iff φ �G ψ

The implication above can be reversed if J is a monomorphism. The same works for
objects.

To prove the second part, define J(F (a)) =̂ G(a) for a ∈ ObA and J(F (φ)) =̂ G(φ)
for φ ∈ Mor+

A such that φ �F φ. We claim the correctness of this definition. For, let
F (a) = F (a′), i.e. a �F a′. Then also G(a) = G(a′). In the same manner, if F (φ) = F (ψ)
then G(φ) = G(ψ). Now, J is well-defined for all objects and morphisms of B because
Im F = B. Clearly, the definition of J is the only one which could make the diagram
commute.

If J is a monomorphism then, by the first part of the theorem, the generalized con-
gruences involved are equal. For the converse implication it is enough to show that J is
injective on morphisms. From Im F = B it follows that each morphism of B is of the form
F (φ), for some φ ∈ Mor+

A. So, assume J(F (φ)) = J(F (ψ)) where φ, ψ ∈ Mor+
A. Because

G = F ; J , we have φ �G ψ, and hence φ �F ψ by assumption. That is, F (φ) = F (ψ), as
required.

We have already mentioned that F is an epimorphism whenever Im F = B. In fact, a
stronger property holds.

3.4. Theorem. Let F : A → B in Cat. Then, Im F = B iff F is an extremal epimor-
phism.

Proof. Suppose Im F = B. We show a stronger property then required. Suppose F ; G =
H; M , M being a monomorphisms. From theorem 3.3 it follows that �H;M = �H and
�F ⊆ �F ;G. Thus, �F ⊆ �H . Now, by theorem 3.3 again, there exists a unique J
such that F ; J = H. We have F ; G = H; M = F ; J ; M . We know already that F is
an epimorphism, so G = J ; M . Thus, we have shown that F is a strong epimorphism.
Hence, it is extremal.

On the other hand, assume that F : A → B is an extremal epimorphism. Consider
the factorization of F into a corestriction |F | : A → Im F followed by an inclusion of Im F
into B. Since F is extremal, it follows that the inclusion is surjective. Thus, Im F = B
follows.
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3.5. Generalized congruences. The definition of a generalized congruence induced
by a functor suggests how to define a generalized congruence in an axiomatic way. First,
let us extend the domain and codomain operations to non-empty sequences of morphisms
as follows.

dom(f1 . . . fn) =̂ dom(f1) cod(f1 . . . fn) =̂ cod(fn)

3.6. Definition. A generalized congruence on a category A is an equivalence relation �
on ObA and a partial equivalence relation � on Mor+

A satisfying the following conditions.

1. φχ � ψ implies cod(φ) � dom(χ),

2. φ � ψ implies dom(φ) � dom(ψ) and cod(φ) � cod(ψ),

3. a � b implies ida � idb,

4. φ � ψ and χ � ξ and cod(φ) � dom(χ) implies φχ � ψξ,

5. cod(f) = dom(g) implies fg � (f ; g).

Henceforth, non-empty sequences of morphisms φ and χ that satisfy condition cod(φ) �
dom(χ) are called �-composable. Sequences f1 . . . fn ∈ Mor+

A, where n ≥ 1, and such that
cod(fi) � dom(fi+1), for i = 1, . . . , n−1 are called �-paths. Obviously, two �-composable
�-paths can be concatenated to form a new �-path. From condition 3.6(5) it follows that
f idb � f , for f : a �→ b. So, f � f follows by symmetry and transitivity of �. Together
with condition 3.6(4) it ensures that every �-path φ is in the domain of �, i.e. φ � φ.
Condition 3.6(1) is responsible for the converse implication, hence φ � φ iff φ is a �-path.
Thus � restricted to the set of �-paths is an equivalence.

Due to condition 3.6(2), one of the pairs in condition 3.6(4) is �-composable iff the
other pair is �-composable too. The converse to condition 3.6(3) holds by condition 3.6(2).
The converse to condition 3.6(1) was already discussed above.

Symbols denoting congruences are overloaded by convention already used for functors.

The following result was to be expected.

3.7. Proposition. The generalized congruence induced by a functor is a generalized
congruence.

Proof. Elementary verification.

Its converse, saying that every generalized congruence is induced by a functor, is the
topic of the next section, cf. proposition 3.10.

Let us close this section with an example which shows how the ability to compare
paths rather than single morphisms allows to distinguish different functors.



Theory and Applications of Categories, Vol. 5, No. 11 271

3.8. Example. Consider two categories and functors F and G between them depicted
below. For simplicity sake, only non-identity morphisms are shown.

•
f

��
h

���
��

��
��

��
��

��
��

��
��

• •
g

��

G ��

F
��

•

•

G(h)

��

F (h)=F (f);F (g)

��

F (f)G(f)

��•
F (g)G(g)

��•
In the category on the left-hand side there are no non-trivial compositions. In the right-
hand side category there is one. The object parts of F and G are equal, and both identify
the “middle” objects only. Both functors do not identify any morphisms from the domain,
apart from the identity on the objects glued together. Hence, the generalized congruences
induced by F and G coincide on single morphisms. The difference becomes apparent only
at the level of paths. There, it becomes possible to say that (via F ) morphisms f and g
become composable with their composition identified (via F ) with h, formally, fg �F h.
Considering functor G, f and g do become composable, but no identification of that sort
takes place.

G is an extremal epimorphism, by theorem 3.4. F is not an epimorphism. Since
�G ⊂ �F , it follows from theorem 3.3 that F uniquely factors through G, but not vice
versa.

3.9. Quotients. Here we show that every generalized congruence is induced by a func-
tor.

A quotient of a small category A with respect to a generalized congruence � on A,
denoted A/�, is a category that consists of equivalence classes of objects and �-paths.
Formally,

Objects. ObA/� =̂ {[a] | a ∈ ObA}
Morphism. MorA/� =̂

{
[φ]

∣∣ φ ∈ Mor+
A, φ � φ

}

Operations. Defined on representatives, with concatenation of paths as a composi-
tion.

– id[a] = [ida].

– dom([φ]) = [dom(φ)] and cod([φ]) = [cod(φ)].

– [φ]; [ψ] = [φψ] whenever cod([φ]) = dom([ψ]).

A quotient functor of a generalized congruence �, Q� : A → A/�, maps objects and
morphisms to their �-equivalence classes, formally,

Quotient functor. Q�(a) =̂ [a] and Q�(f) =̂ [f ].
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3.10. Proposition. A/� is a category and Q� : A → A/� is a functor such that
�Q� = �.

Proof. It is easy to show that the operations in A/� are well-defined.

Now, dom(id[a]) = dom([ida]) = [dom(ida)] = [a] in A/�, and similarly cod(id[a]) = [a].

Somewhat more involved argument is required to show that [ida] is the identity on
[a]. Given f : a′ �→ b′ and a � a′ it follows that idaf � ida′f � ida′ ; f = f . Hence, by
induction on the length of �-path φ it follows that idaφ � φ whenever dom(φ) � a. Thus,
id[a]; [φ] = [ida]; [φ] = [idaφ] = [φ] whenever [a] = dom([φ]).

It is easy to verify that the other conditions of a small category are satisfied by A/�
as well.

By construction, Q� maps ida to [ida], as required. Also, fg � f ; g when f and g are
composable in A. So, [f ; g] = [fg] = [f ]; [g]. Thus, Q� is a functor. And by construction
again, the generalized congruence induced by Q� equals �.

From theorem 3.4 it follows that each quotient functor is in fact an extremal epimor-
phism since the image of A via Q/� equals A/�. The following corollary of theorem 3.3
relates functors with quotient functors defined on the common category.

3.11. Corollary. Let F : A → B be a functor, and let � be a generalized congruence
on A such that � ⊆ �F . Then there exists a unique J : A/� → B such that the diagram
below commutes. Moreover, J is a monomorphism iff � = �F .

A
Q� ��

F

���
��

��
��

��
� A/�

J

		
B

3.12. Regular congruences. A relation R on A is a pair R = (Ro, Rm) with Ro ⊆
ObA and Rm ⊆ Mor+

A. Generalized congruences are examples of relations on a category.
Ordered by componentwise inclusion they form a complete lattice with componentwise
intersections as meets. The total relation which identifies all objects and all non-empty
sequences of morphisms in A is a generalized congruence.

Thus, for an arbitrary relation R there is a least generalized congruence containing R.
It is called the principal congruence generated by R.

The following example shows that the principal congruence generated by an equiva-
lence on objects and an equivalence on single morphisms only may result in new morphisms
being related.

3.13. Example. Consider a relation R defined on the category depicted on the left
hand side of figure 1. Equivalent morphisms are joined by dotted lines. Two objects are
equivalent iff they are both either domains or codomains of two equivalent morphisms.
Then, the principal congruence generated by R forces morphisms f and g to be related.
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•
✂

✂
✂

✂
✂
✂✌

❄

f

•
❅

❅❘•

•
✂

✂
✂

✂
✂
✂✌

❅
❅❘•
�

�
�

�✠•

•

❄

g

❅
❅❘•

✂
✂

✂
✂

✂
✂✌•

•
✂

✂
✂

✂
✂
✂✌

�
�

�
�✠•
❅

❅❘•

F ��

•

❄

✂
✂

✂
✂

✂
✂

✂✂✌

❅
❅❅❘•
�

�
�

�
�✠•

✂
✂

✂
✂

✂
✂

✂✂✌
❅

❅❅❘•

Figure 1: A principal congruence can be non-trivial

This generalized congruence is induced by the functor which ‘glues’ equivalent mor-
phisms together to form the category depicted on the right hand side of figure 1.

Often, important examples of generalized congruences are principal congruences gen-
erated by a relation on single morphisms only. A canonical example is a restriction of a
generalized congruence � to singleton sequences of morphisms . The restriction, denoted
by |�|, is defined formally by a |�| a′ iff a � a′, and f |�| f ′ iff f � f ′. The principal
congruence generated by |�| is, obviously, contained in �, it is called the regular part of

� and denoted
r�.

Generalized congruences equal to their regular parts deserve a formal definition.

3.14. Definition. A generalized congruence is called regular if it is equal to its regular
part.

In terms of example 3.8, generalized congruence �G is regular while �F is not — its

regular part equals �G, in symbols,
r�F = �G =

r�G while �F �= �G.

A principal congruence generated by a relation, the morphism part of which is defined
on singletons only, is regular.

3.15. Proposition. Let R = (Ro, Rm) be a relation on a category A such that Rm ⊂
MorA × MorA. Then the principal congruence generated by R is regular.

Proof. Let � be the principal congruence generated by R. Then, from the assumption

it follows R ⊆ |�|. Thus, � ⊆ r� since the operation of taking a principal congruence is

monotone. Hence, � =
r�, as required.

The following result gives a sufficient condition for regularity.

3.16. Proposition. Let the object part of a generalized congruence � on A be the iden-
tity. Then � is regular. Moreover, the morphism part of |�| is a classical congruence.
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Proof. Assume that the object part of � is the identity relation. Then, the equivalence
class of a morphism f : a �→ b is contained in MorA(a, b) and two morphisms, f and g,

are �-composable iff they are composable in the usual way. So, fg � fg iff fg
r� f ; g. It

follows now by induction on the length of a �-path f1 . . . fn that f1 . . . fn
r� f1; . . . ; fn.

Now, let g1 . . . gm � f1 . . . fn. Firstly, it follows that g1; . . . ; gm |�| f1; . . . ; fn. Sec-
ondly,

g1 . . . gm
r� g1; . . . ; gm

r� f1; . . . ; fn
r� f1 . . . fn

This shows that � =
r�, i.e. � is regular.

Finally, consider the morphism part of |�|. Let f |�| g and f ′ |�| g′ where f and f ′

are composable. Then, f ; f ′ � ff ′ � gg′ � g; g′, so f ; f ′ |�| g; g′ follows.

From the above it follows that each generalized congruence � on A with a trivial
object part is uniquely determined by a congruence in the textbook sense. The converse
also holds. Given a classical congruence ∼, take it as a morphism part of a relation with
the identity as an object part. Then the principal congruence � generated by the relation
fulfills a � a′ iff a = a′ and f1 . . . fm � g1 . . . gn iff both f =̂ f1; . . . ;fm and g =̂ g1; . . . ;gn

are defined and f ∼ g. It is immediate that |�| = ∼.
Thus, definition 3.6 conservatively extends the original textbook definition of a con-

gruence.

4. Coequalizers and regular epimorphisms

Here, we start by showing that coequalizers in Cat can be constructed as quotient functors.
Then we go on to show that the regular epimorphisms in Cat are those functors which
induce regular generalized congruences.

The construction of coequalizers in a category is a step towards showing its cocomplete-
ness. In case of Cat the remaining step, i.e. the construction of coproducts, is elementary.
We believe that the explicit construction of coequalizers is also of independent interest.

Consider F,G : A → B. Let F =G be a relation on B defined by F (a) F =G G(a) and
F (f) F =G G(f) on objects and morphisms, respectively.

4.1. Proposition. Let F,G : A → B in Cat. Define � to be the principal congruence
on B generated by F =G. Then the quotient functor Q� : B → B/� is the coequalizer of
F and G.

Proof. Firstly, note that a functor H on B coequalizes F and G iff F =G is contained in the
generalized congruence induced by H. In particular, Q� coequalizes F and G. Since � is,
by definition, the least such generalized congruence, the result follows by corollary 3.11.

A regular epimorphism is a morphism which is a coequalizer of a pair of morphisms. It
is easy to show that every regular epimorphism is an epimorphism. In fact, every regular
epimorphism is a strong epimorphism. In many categories the reverse is also true, but
not in Cat. The corestriction |F | : A → Im F of a functor considered in example 3.8 is a
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surjection, and hence a strong epimorphism (theorem 3.4). We will show, that it is not
regular.

The definition of a generalized congruence � on a category refers to the notion of
a �-path. We have seen that in some cases paths were necessary to express the non-
trivial amalgamations performed by a functor. Sometimes, however, paths are introduced
“passively”, and a generalized congruence is completely determined by its restriction |�|
to singleton paths. In anticipation of the results presented here, the latter were termed
regular generalized congruences in section 3. Indeed, the regular congruences are those
induced by regular epimorphisms in Cat. This is the content of theorem 4.3, the main
result of this section.

We can specialize the notion of a kernel pair of an epimorphism, i.e. the pullback with
itself, (cf. e.g. [7]), to Cat. Let F : B → C be a functor. Its kernel pair is a category A
and a pair of morphisms π1, π2 : A → B defined as follows.

ObA = {(a, b) | a, b ∈ ObB, a �F b}
MorA = {(f, g) | f, g ∈ MorB, f �F g}

Categorical operations in A are defined coordinatewise, e.g., id(a,b) = (ida, idb). Functors
π1 and π2 are projections to the first and the second coordinate, respectively.

In terms of generalized congruences, we notice that π1=π2 is equal to |�F |. Hence the
principal congruence generated by π1=π2 is equal to the regular part of �F .

4.2. Lemma. A functor in Cat is a coequalizer of its kernel pair if it is an extremal
epimorphism and its induced generalized congruence is regular.

Proof. Let F : B → C be an extremal epimorphism inducing a regular generalized
congruence �F . Consider the coequalizer of the kernel pair of F . By construction, this

is the quotient functor of the regular part of �F . But in this case
r�F = �F . By

construction, π1; F = π2; F , hence there exists a mediating functor J : B/�F → C, such
that the following diagram commutes.

A
π1





π2

�� B
Q�F ��

F

���
��

��
��

��
� B/�F

J
��

C

By corollary 3.11, J is a monomorphism, and since F is extremal, J must be an isomor-
phism. Thus, F is a coequalizer of π1 and π2 too.

Now, a characterization of regular epimorphisms in Cat is straightforward.

4.3. Theorem. A functor in Cat is a regular epimorphism iff it is an extremal epimor-
phism and its induced generalized congruence is regular.
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Proof. Without loss of generality, we can assume that a regular epimorphism is a quotient
functor of the principal congruence generated by a relation defined on single morphisms
only. Such generalized congruences are regular by proposition 3.15. Of course, a regular
epimorphism is extremal. The converse follows from lemma 4.2.

Now it is clear that |F | of example 3.8 is not regular. The other epimorphism consid-
ered there, called G, is regular, although it is not a surjection.

Yet another example, see [2, sec. 7], demonstrates that regular epimorphisms are not
closed under composition.

4.4. Example. Consider category A with two objects and one non-identity morphism
� between them. Let N be the additive monoid of natural numbers qua category. Then
a functor F : A → N is completely determined by letting, say, F (�) = 1. Let B be the
multiplicative submonoid {0, 1} of Z qua category, and let G : N → B be defined by
G(0) =̂ 1, G(n) =̂ 0, n ≥ 1.

Now, it can be readily seen that both functors are regular epimorphisms. Their com-
position F ; G : A → B is an extremal epimorphism, even a surjection, but it is not regular
since there is a non-trivial identification: �� �F ;G �.

The above example is an instance of a general construction.

4.5. Proposition. Every extremal epimorphism in Cat factors as a composition of two
regular epimorphisms.

Proof. Let F : A → B be an extremal epimorphism and let � =
r�F be the regular part

of the congruence induced by F . Then Q� : A → A/� is regular, by theorem 4.3.

Now, F factors through Q� by theorem 3.3. The mediating functor J : A/� → B
induces a regular congruence by proposition 3.16. With the help of theorem 3.4 it is easy
to verify that J is extremal whenever F is extremal. Thus, by theorem 4.3, J is a regular
epimorphism.

5. The hierarchy of epimorphisms

This final section collects our present knowledge on the relationship between classes of
epimorphisms in Cat.

We have already given characterizations of the classes of extremal epimorphisms and
regular epimorphisms. The former are exactly those functors whose images span their
codomains. The latter are exactly those which induce regular congruences. We have also
discussed examples of epimorphisms which are not extremal, and extremal but non-regular
epimorphisms. The discussion of strong and strict epimorphisms was omitted as these
classes in Cat are equal to the classes of extremal and regular epimorphisms, respectively.

The above are the main results of the paper. In the remaining part some other classes
of epimorphisms are studied. We end by presenting a general picture of inclusions between
classes of epimorphisms studied here.
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There exist regular, non-surjective epimorphisms in Cat. On the other hand, split
epimorphisms are surjective. So, there is a gap between the classes of split epimorphisms
and regular epimorphisms. Because there are also non-regular, surjective epimorphisms,
the correspondence between classes of regular, surjective and split epimorphisms is more
intricate.

A functor F : A → B is said to reflect composition iff the following holds:

For all f, g ∈ MorA such that F (f); F (g) is defined in B there exist f ′, g′ ∈
MorA such that F (f) = F (f ′), F (g) = F (g′) and f ′; g′ is defined in A.

Obviously, a split epimorphism reflects composition. Less obvious is the following
property.

5.1. Proposition. An extremal epimorphism reflecting composition is surjective and
regular.

Proof. Let F : A → B reflects composition. First, let us show that F is surjective. By
theorem 3.4 every morphism g in B is a composition of images of morphisms from A via
F , g = F (f1); . . . ; F (fn). If F reflects composition then the composition F (f); F (f ′) in
B of two images of morphisms under F is an image of a single morphism from A. Thus,
by induction on n, g is an image, which proves that F is surjective.

To prove the regularity of F suppose φ �F ψ, φ, ψ ∈ Mor+
A. We have to show that

φ
r�F ψ. Recall that

r�F stands for the regular part of �F , i.e. the part generated by the
relation on single morphisms only. F is surjective, hence we can choose f, g ∈ MorA such

that F (f) = F (φ) and F (g) = F (ψ). Then, by definition, f
r�F g. It is sufficient now

to show that f
r�F φ and g

r�F ψ. Without loss of generality, it is sufficient to prove the
first relation only.

The proof goes by induction on the length of φ. If φ is a single morphism we are done.
Suppose φ = hχ. Then F (h); F (χ) exists in B. F is a surjection, hence F (χ) ∈ MorB is
an image of a single morphism. We use the assumption to find h′, h′′ ∈ MorA such that
F (h′) = F (h), F (h′′) = F (χ) and h′; h′′ defined in A. Now, F (h′; h′′) = F (h′); F (h′′) =

F (h); F (χ) = F (φ) = F (f). We have h′ r�F h by definition, and h′′ r�F χ by inductive

hypothesis. Thus, f �F hχ
r�F h′h′′ r�F h′; h′′, and so f

r�F h′; h′′ again by definition. It

follows now that f
r�F h′; h′′ r�F h′h′′ r�F φ, hence the claim holds.

Given a property P of morphisms one often considers its universal version: F is
universally P provided every pullback of F belongs to P. For example, if P denotes the
class of all epimorphisms, universally P coincides with the notion of stable morphism (cf.
e.g. [2]). Both, being surjective and reflecting composition are easily seen to be universal
properties.

Regularity itself is not a universal property. To see this consider the regular G from
example 3.8. Then the result of pulling back G along an embedding of the category
with two objects and one non-identity morphism � used in the example 4.4 is not even
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Figure 2: Surjective and regular epimorphism need not reflect composition

an epimorphism. The embedding to take is the one that maps � to the composition
G(f); G(g).

In fact, in the same manner one can prove a less obvious part of the following statement.

5.2. Proposition. A functor is a stable morphism in Cat iff it is surjective.

Proof. Surjectivity is a universal property, hence every surjective epimorphism is a stable
morphism.

Suppose a functor F : A → B is not surjective. If it is not an epimorphism, it is not a
stable morphism. If it is an epimorphism, there must exist a morphisms f in B which is
not an image under F but whose source and target are images of A-objects. Then pull-
back F along an inclusion of the single morphism subcategory f of B into B. The result
is an embedding of a discrete category into a non-discrete one, i.e., not an epimorphism.
Hence, F is not a stable morphism.

We end this section by discussing again the example 3.13. In view of proposition 5.1,
reflecting composition (plus extremality) implies universal regularity. The functor F
depicted on figure 1 does reflect composition. But it does not satisfy a stronger property
of reflecting compositions of three morphisms. In fact, there is a whole hierarchy of
extremal epimorphisms reflecting the composition of n morphisms. Even the intersection
of the classes in that hierarchy properly includes the class of split epimorphisms.

A minor modification of example 3.13 presented in figure 2 shows that the converse
to proposition 5.1 does not hold. In this example, F (f); F (g) = F (h) holds, but this
composition cannot be reflected in the source category, since the appropriate triangle
has been deliberately left out. Moreover, F is not even a universally regular. To see
this consider the embedding of the missing triangle. The pullback of the two functors is
isomorphic to a copy of f, g, h in the left hand side category being put together to form
a triangle f ′, g′, h′ in the right side category. It is not a regular epimorphism — while

〈f, f ′〉 〈g, g′〉 �π2 〈h, h′〉, the similar relation with
r�π2 does not hold.

One can see that F is still both surjective and a regular epimorphism, in particular
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fg
r�F h.
Again, the trick of embedding the missing triangle can be used in a more general

setting to prove, together with the previous remarks, the following result.

5.3. Proposition. A functor is a universally regular epimorphism iff it is extremal and
reflects composition.

Proof. An extremal epimorphism reflecting composition is surjective and regular, cf. propo-
sition 5.1. Surjections are extremal epimorphisms. Both, surjectivity and reflecting com-
position are universal properties. Hence, an extremal epimorphism which reflects compo-
sition is universally regular.

Suppose that a functor F : A → B is not an extremal and reflecting composition
epimorphism. If F is not surjective it follows from proposition 5.2 that it is not even
stable, let alone universally regular. So, assume F is surjective but does not reflect
composition. Then, one can find a commuting triangle in B which is not reflected in A.
The pullback of F along an embedding of the ,,triangle” subcategory into B is a non-
regular epimorphism. Hence, in neither case is F a universally regular epimorphism.

It is immediate that an extremal bimorphism is an isomorphism. We have already
seen enough examples of non-iso extremal epimorphisms. Two examples of a non-iso
bimorphism have already been briefly discussed in section 2.

Factorization of any functor F : A → B in Cat into its corestriction followed by an
inclusion, viz.,

A
|F | �� Im F

� � J �� B

narrows the problem of characterizing epimorphisms to the problem of characterizing
epimorphic inclusions. Indeed, F is an epimorphism iff J is. Hence, an epimorphism is
either extremal, or a composition of an extremal epimorphism followed by a non-trivial
bimorphism.

Characterization of bimorphisms and epimorphisms is still missing.

Figure 3 summarizes our knowledge about proper inclusions between classes of epi-
morphisms in Cat. Proper inclusions between the classes are drawn as arrows.
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isomorphisms

❄

����������	
split

❄
extremal & reflecting composition =

universally regular

❄
surjective & regular

◗
◗

◗
◗◗�

✟✟✟✟✟✙
surjective = stable =

universally extremal
regular

❍❍❍❍❍❥

✑
✑

✑
✑✑✰bimorphisms

❍❍❍❍❍❍❍❍❍❍❍❥

extremal

❄
epimorphisms

Figure 3: Classes of epimorphisms in Cat.
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