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A NOTE ON THE EXACT COMPLETION OF A REGULAR
CATEGORY, AND ITS INFINITARY GENERALIZATIONS

STEPHEN LACK
Transmitted by Walter Tholen

ABSTRACT. A new description of the exact completion Cex/reg of a regular category
C is given, using a certain topos Shv(C) of sheaves on C; the exact completion is then
constructed as the closure of C in Shv(C) under finite limits and coequalizers of equiv-
alence relations. An infinitary generalization is proved, and the classical description of
the exact completion is derived.

1. Introduction

A category C with finite limits is said to be regular if every morphism factorizes as a strong
epimorphism followed by a monomorphism, and moreover the strong epimorphisms are
stable under pullback; it follows that the strong epimorphisms are precisely the regular
epimorphisms, namely those arrows which are the coequalizer of their kernel pair. Every
kernel pair is an equivalence relation; a regular category is said to be exact if every
equivalence relation is a kernel pair. Thus a regular category is a category with finite
limits and coequalizers of kernel pairs, satisfying certain exactness conditions; while an
exact category is a category with finite limits and coequalizers of equivalence relations,
satisfying certain exactness conditions. Regular and exact categories were introduced by
Barr [1], but the definition given here is due to Joyal.

A functor between regular categories is said to be regular if it preserves finite limits and
strong (=regular) epimorphisms. There is a 2-category Reg of regular categories, regular
functors, and natural transformations, and it has a full sub-2-category Ex comprising the
exact categories. The inclusion of Ex into Reg has a left biadjoint, and the value of this
biadjoint at a regular category C is what we mean by the exact completion of the regular
category C.

Free regular and free exact categories have received a great deal of attention. A
syntactic description of the free exact category on a category with finite limits was given
by Carboni and Celia Magno in [2]. It was then observed that the same construction could
be carried out starting with a category not with finite limits, but only with weak finite
limits; this construction, along with its universal property, was described by Carboni and
Vitale in [3]. The same paper also contained a description of the free regular category on
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a category with weak finite limits. Meanwhile, a quite different account of the free exact
category on a finitely complete one was given by Hu in [10], namely as the full subcategory
of the functor category [Lex(C,Set),Set] comprising those functors which preserve finite
products and filtered colimits, where Lex(C,Set) is the category of finite-limit-preserving
functors from C to Set. Finally, Hu and Tholen described in [11] the free exact category,
and the free regular category, on a category C with weak finite limits, as full subcategories
of the presheaf category [Cop,Set]: the free exact category was constructed as the closure
of C in [Cop,Set] under coequalizers of equivalence relations, while the free regular category
was constructed as the closure of C in [Cop,Set] under coequalizers of kernel pairs.

In a different line, the exact completion of a regular category had already been de-
scribed by Lawvere in [14], and more fully by R. Succi Cruciani [5]; see also the account of
Freyd and Scedrov in [7]. It was also used in [3] in constructing the free exact category on
a category with weak finite limits. The construction is conceptually attractive: one forms
the (bi)category Rel(C) of relations in the regular category C, and then freely splits those
idempotents which correspond to equivalence relations in C; this gives the (bi)category of
relations, Rel(Cex/reg), in the exact completion Cex/reg of the original regular category, and
one can extract Cex/reg as the category of maps in the bicategory Rel(Cex/reg), that is, as
the category of those arrows which have a right adjoint in the bicategory.

The purpose of this note is to provide an alternative description of Cex/reg, analogous to
the description in [11] of the exact and regular completions of a category with weak finite
limits, in which Cex/reg is seen as a full subcategory of the presheaf category [Cop,Set].

A disadvantage of this approach is that it applies only to small regular categories, but
in fact this is less serious than it might seem. When we speak of small sets, we mean
sets whose cardinality is less than some inaccessible cardinal ∞. A small category is then
a category with a small set of objects and small hom-sets. Given a regular category C
which is not small, it will suffice to choose an inaccessible cardinal ∞′ greater than the
cardinality of each of the hom-sets of C and that of the set of objects of C; for we may
then write SET for the category of sets whose cardinality is less than ∞′, and redefine
small to mean “ of cardinality less than ∞′”. The exact completion of C can now be
constructed as a full subcategory of [Cop,SET], just as in Section 3 below.

A joint paper with Kelly, still in preparation, will describe the precise sense in which
all of the constructions described above are free cocompletions with respect to certain
classes of colimits “in the lex world”.

2. Sheaves on a regular category

Say that a diagram

K
k ��

l
�� A

p �� B

in a regular category is an exact fork if p is the coequalizer of k and l, and (k, l) is the
kernel pair of p.
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We shall, as promised, construct the free exact category on the regular category C as
a full subcategory of the presheaf category [Cop,Set], but it is not in fact the presheaf
category with which we mostly work, for in passing from C to Cex/reg we wish to preserve
coequalizers of kernel pairs in C, and the Yoneda embedding does not preserve such
coequalizers. We therefore consider only those presheaves F for which, if

K
k ��

l
�� A

p �� B

is an exact fork in C, then any arrow u : yA → F which coequalizes k and l must
factor uniquely through p. By the Yoneda lemma, these are precisely the presheaves
F : Cop → Set which preserve the equalizers of those pairs which are in fact cokernel
pairs. We write Shv(C) for the full subcategory of [Cop,Set] given by these presheaves;
clearly it contains the representables, and moreover is reflective by [6, Theorem 5.2.1].

The reason for the name Shv(C) is of course that the objects of Shv(C) are the sheaves
for a (Grothendieck) topology on C. Since C is regular, there is a pretopology [12] (or
basis for a topology [15]) on C for which the covering families of B are the singleton
families (p : A → B) with p a strong epimorphism. This generates a topology on C, called
the regular epimorphism topology [1, Section I.4], for which the sheaves are precisely the
objects of Shv(C). We conclude that Shv(C) is a Grothendieck topos, and in particular an
exact category. The inclusion Y : C → Shv(C) preserves whatever limits exist in C, since
the Yoneda embedding preserves any limits which exist in C, and the inclusion of Shv(C)
in the presheaf category [Cop,Set] preserves and reflects all limits. Thus Y : C → Shv(C)
preserves finite limits; by construction it preserves coequalizers of kernel pairs, and so is
a regular functor. This full regular embedding of C in the topos Shv(C), was described
already in [1], as was the reflectivity of Shv(C) in [Cop,Set].

We shall need the following characterization of strong epimorphisms in Shv(C) as “local
surjections”; since it is a (well-known) special case of [15, Corollary III.7.5], we only sketch
the proof.

2.1. Lemma. An arrow α : F → G in Shv(C) is a strong epimorphism if and only if
for every v : Y B → G, there exists a strong epimorphism p : A �� �� B in C and a
factorization v.Y p = α.u.

Proof. Suppose that α is strong epi; for each object B of C, define HB to be the set
{x ∈ GB | (Gp)x = (αA)w for some w ∈ FA and some strong epi p : A �� �� B in C},
and write mB : HB → GB for the inclusion. This is easily seen to be functorial in B,
giving a functor H : Cop → Set, and a natural transformation m : H → G all of whose
components are monomorphisms; clearly α factorizes through m. One now shows that
H is in fact a sheaf, so that the strong epimorphism α in Shv(C) factors through the
subobject m, which must therefore be invertible. It follows that α satisfies the conditions
of the lemma.

Suppose, conversely, that α : F → G satisfies the conditions of the lemma. If α
factorizes (in Shv(C)) as α = m.β with m : H → G monic, then for any v : Y B → G we
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have a commutative diagram

Y A
Y p �� ��

u

��

Y B

v

��
F

β
�� �� H ��

m
�� G

in Shv(C) with Y p strong epi and m mono, and so a factorization of v through m. Since
the representables form a strong generator for Shv(C), it follows that m is invertible, and
so that α is a strong epimorphism.

We also need the following description of geometric morphisms into Shv(C); once again
it is a special case of a well-known result.

2.2. Lemma. Let E be a Grothendieck topos. Composition with Y : C → Shv(C) induces
an equivalence between Reg (C, E) and the category Geom (E , Shv(C)) of geometric
morphisms from E to Shv(C); the inverse image S∗ of the geometric morphism corre-
sponding to S : C → E is given by the (pointwise) left Kan extension LanY S of S along
Y : C → Shv(C).

Proof. There is a well-known equivalence between Geom(E ,[Cop,Set]) and the category
Lex(C,E) of finite-limit-preserving functors from C to E ; it is a special case, for example,
of [15, Theorem VII.7.2]. By a special case of [15, Lemma VII.7.3], a geometric morphism
from E to [Cop,Set] factors through Shv(C) if and only if the corresponding finite-limit-
preserving functor S : C → E maps strong epimorphisms in C to epimorphisms in E ; but,
since E is a topos, all epimorphisms are strong, and so this just says that S is a regular
functor.

Finally the inverse image S∗ of the geometric morphism corresponding to a regular
functor S : C → E satisfies S∗L ∼= LanJY S, where L : [Cop,Set] → Shv(C) is the reflection,
and so S∗ ∼= S∗LJ ∼= (LanJY S)J ∼= (LanJLanY S)J ∼= LanY S.

3. The exact completion of a regular category

We now write Cex/reg for the full subcategory of Shv(C) comprising those objects which
are coequalizers in Shv(C) of equivalence relations in C. We write Z : C ↪→ Cex/reg and
W : Cex/reg ↪→ Shv(C) for the inclusions.

3.1. Lemma. If p : Y A �� �� F is a strong epimorphism and mi : F → Gi is a finite
jointly-monic family in Shv(C), then F lies in C if each Gi does; thus in particular C is
closed in Cex/reg under subobjects.

Proof. Since p is strong epi, it is the coequalizer of its kernel pair. Since the mi are
jointly monic, the induced arrow m : F → ΠiGi is monic, and so the kernel pair of p is
also the kernel pair of mp. If each Gi is in C, then since C has finite products, ΠiGi is in
C; and since C has pullbacks, the kernel pair of mf lies in C; and so F lies in C since C
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has coequalizers of kernel pairs. The second statement follows from the first: if F lies in
Cex/reg then there is a strong epimorphism Y A �� �� F ; if also F is a subobject of some
Y B then we conclude that F lies in C.

3.2. Proposition. Cex/reg is closed in Shv(C) under finite limits and coequalizers of
equivalence relations; thus Cex/reg is an exact category, the inclusions Z : C ↪→ Cex/reg and
W : Cex/reg ↪→ Shv(C) are fully faithful regular functors, and Cex/reg is the closure of C in
Shv(C) under finite limits and coequalizers of equivalence relations.

Proof. Shv(C) is exact, the inclusion of C into Shv(C) is regular, and every object of Cex/reg

is the coequalizer in Shv(C) of an equivalence relation in C; thus it will suffice to prove the
first statement: that Cex/reg is closed under finite limits and coequalizers of equivalence
relations.

Step 1: Cex/reg is closed in Shv(C) under finite products. Of course the terminal
object of Shv(C) lies not just in Cex/reg but in C. Given a finite non-empty family (Fi)i∈I

of objects of Cex/reg, we have exact forks

Y Ri
��
�� Y Ai

p �� Fi

and so, since Shv(C) is exact, an exact fork

ΠiY Ri
��
�� ΠiY Ai

�� ΠiFi ;

but C has finite products, and so ΠiY Ri and ΠiY Ai are both in C, whence ΠiFi is in
Cex/reg.

Step 2: If

P
p2 ��

p1

��

Y B

v

��
Y A u

�� G

is a pullback in Shv(C), and G is in Cex/reg, then P is in C. For since G is in Cex/reg, we
have an exact fork

Y R
r ��

s
�� Y C

p �� G

in Shv(C), and so, by Lemma 2.1, a diagram

Y A′ u′
��

a
����

Y C

p
����

Y B′v′
��

b
����

Y A u
�� G Y Bv

��

with a and b strong epis.
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We can therefore form diagrams of pullbacks

Y D ��

��

Y RB
��

��

Y B′

v′
��

Y D
a′′

�� ��

b′′
����

PB
��

b′
����

Y B′

b
����

Y RA
��

��

Y R
s ��

r

��

Y C

p

��

PA
a′

�� ��

��

P
p2 ��

p1

��

Y B

v

��
Y A′

u′
�� Y C p

�� G Y A′
a

�� �� Y A u
�� G

in Shv(C), giving

Y D
b′a′′

�� �� P ��
(p1

p2
)

�� Y A× Y B ;

and now P lies in C by Lemma 3.1.
Step 3: Cex/reg is closed in Shv(C) under pullbacks. If

P
p2 ��

p1

��

F ′

v

��
F u

�� G

is a pullback in Shv(C) with F , F ′, and G in Cex/reg, we have strong epis q : Y A �� �� F

and q′ : Y A′ �� �� F ′ , and so a diagram

Q
q2 �� ��

q′2 ����

P ′
1

��

q′1
����

Y A′

q′
����

P1 q1

�� ��

��

P

p1

��

p2 �� F ′

v

��
Y A q

�� �� F u
�� G

of pullbacks in Shv(C). Thus we have

Q
q′1q2 �� �� P ��

(p1
p2

)
�� F × F ′

with Q in C by Step 2, and F × F ′ in Cex/reg by Step 1. Now q′1q2 is strong epi, and so
must be the coequalizer of its kernel pair. But

(
p1

p2

)
is monic, and so the kernel pair of

q′1q2 is the kernel pair of
(

p1

p2

)
q′1q2, which, by Step 2, must lie in C. We conclude that P is

the coequalizer of an equivalence relation in C, and so lies in Cex/reg.
Step 4: Cex/reg is closed in Shv(C) under coequalizers of equivalence relations. Let

F
r ��

s
�� G

q �� H
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be an exact fork in Shv(C), with both F and G in Cex/reg. Then we have a diagram

P
p′1 �� ��

p′2 ����

FB
s′ �� ��

p2

����

Y B

p
����

FA
p1 �� ��

r′
����

F
s �� ��

r
����

G

q
����

Y B p
�� �� G q

�� �� H

of pullbacks in Shv(C), in which Y B, F , and G are in Cex/reg, and so FA and FB are in

Cex/reg, and so P is in Cex/reg. Thus there is a strong epi q′ : Y D �� �� P ; but also there

is a mono
(

s′p′1
r′p′2

)
: P → Y B × Y B, and so, by Lemma 3.1, we conclude that P is in C.

Finally

P
s′p′1 ��

r′p′2
�� Y B

qp �� H

is an exact fork in Shv(C) with P and Y B in C, and so we conclude that H is in Cex/reg.

We now prove the universal property of Cex/reg; the proof is reminiscent of [13]:

3.3. Theorem. If D is an exact category, then composition with Z : C → Cex/reg induces
an equivalence of categories Reg(Z,D) : Reg(Cex/reg,D) → Reg(C,D) to which the in-
verse equivalence is given by (pointwise) left Kan extension along Z; thus Cex/reg is the
exact completion of C.

Proof. Let S : C → D be a regular functor; then the composite Y S : C → Shv(D) of S
with Y : D → Shv(D) is regular, and so by Lemma 2.2 induces a geometric morphism
from Shv(D) to Shv(C), whose inverse image we call S∗ : Shv(C) → Shv(D).

Consider now the full subcategory C1 of Shv(C) containing those objects F for which
S∗F lies in D; it is the pseudopullback of Y : D → Shv(D) along S∗. Since S∗ preserves
finite limits and coequalizers of equivalence relations, and since D is closed in Shv(D)
under finite limits and coequalizers of equivalence relations, it follows that C1 is closed in
Shv(C) under finite limits and coequalizers of equivalence relations. Clearly C1 contains
C, and so, by Proposition 3.2, C1 must contain Cex/reg; thus S∗ restricts to a functor
S̄ : Cex/reg → D. Since S∗ and W preserve finite limits and coequalizers of equivalence
relations, and since Y : D → Shv(D) reflects them, we deduce that S̄ is a regular functor.
(It follows that Reg(Z,D) : Reg(Cex/reg,D) → Reg(C,D) is essentially surjective on
objects.)

By Lemma 2.2 we have S∗ ∼= LanY (Y S), and so Y S̄ ∼= S∗W ∼= LanY (Y S)W ∼=
(LanW LanZ(Y S))W ∼= LanZ(Y S). This says precisely that Cex/reg(Z, F ) ∗ Y S ∼= Y S̄F
for each object F of Cex/reg, where Cex/reg(Z, F ) ∗ Y S denotes the colimit of Y S : C →
Shv(D), weighted by the functor Cex/reg(Z, F ) : Cop → Set taking an object C of C to
Cex/reg(ZC,F ). But Y is fully faithful and so reflects colimits, giving C(Z, F ) ∗ S ∼= S̄F ;
which is to say that LanZ(S) ∼= S̄.
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Thus we obtain a functor LanZ : Reg(C,D) → Reg(Cex/reg,D), with the composite
Reg(Z,D).LanZ naturally isomorphic to the identity, since Z is fully faithful. It remains
to show that the canonical map η : LanZ(TZ) → T is invertible, for any regular functor
T : Cex/reg → D. Now LanZ(TZ) and T both preserve coequalizers of equivalence relations,
and ηC is invertible for objects of C, hence by Proposition 3.2 must be invertible for all
objects of Cex/reg.

4. Infinitary generalizations

In [11], the more general case of κ-regular and κ-exact categories was considered, for
a regular cardinal κ. We recall that a κ-regular category is a regular category with κ-
products, such that the strong epimorphisms are closed under κ-products; and that a
κ-exact category is a κ-regular category that is exact. These classes of categories were
introduced by Makkai [16] and further studied by Hu [9]; in the additive context, κ-regular
categories were already considered by Grothendieck in [8].

We write κ-Reg for the 2-category of κ-regular categories, functors preserving κ-limits
and strong epimorphisms, and natural transformations; and we write κ-Ex for the full
sub-2-category of κ-Reg comprising the κ-exact categories. The value at a κ-regular
category C of a left biadjoint to the inclusion of κ-Ex in κ-Reg is called the κ-exact
completion of the κ-regular category C.

If C is a κ-regular category, and (Fi)i∈I is a κ-small family of objects of Cex/reg, then
for each i there is an exact fork

Y Ri
��
�� Y Ai

�� Fi

in Shv(C), and so, since Shv(C) is κ-exact, an exact fork

ΠiY Ri
��
�� ΠiY Ai

�� ΠiFi

in Shv(C); but since C has κ-products, it follows that ΠiY Ri and ΠiY Ai are in C, and
so that ΠiFi is in Cex/reg. Thus Cex/reg is closed in Shv(C) under κ-products, and so is
κ-exact, since Shv(C) is so. Thus Cex/reg is a κ-exact category, and Z : C → Cex/reg is a
κ-regular functor.

Moreover, if D is a κ-exact category, and S : C → D a κ-exact functor, then it is
clear by the construction of κ-products in Cex/reg that LanZS : Cex/reg → D preserves
κ-products, and so we have:

4.1. Theorem. If C is κ-regular, and D is κ-exact, then composition with Z : C → Cex/reg

induces an equivalence of categories κ-Reg(Z,D) : κ-Reg(Cex/reg,D) → κ-Reg(C,D) to
which the inverse equivalence is given by (pointwise) left Kan extension along Z; thus
Cex/reg is the κ-exact completion of C.
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5. A concrete description of the exact completion

We can now apply Theorem 3.3 to derive a concrete description of the exact completion,
using the language of relations in a regular category. For further details on the calculus of
relations see [7, 4]; in fact all that we need is summarized in [3]. We write R : A �→ B for
a relation from A to B, by which we mean an equivalence class of subobjects of A × B.
We further write S ◦R : A �→ C for the composite of relations R : A �→ B and S : B �→ C,
and R◦ : B �→ A for the opposite relation of R. Recall that an equivalence relation is a
relation R satsifying R ◦R = R, R = R◦, and 1 ≤ R.

We shall construct a category E equipped with a functor Φ : E → Cex/reg which is
fully faithful and essentially surjective on objects, and so an equivalence. We take the
objects of E to be the equivalence relations in C, and define Φ on objects to take such
an equivalence relation to its coequalizer in Cex/reg. Since every object of Cex/reg is the
coequalizer of an equivalence relation in C, the functor Φ, once defined, will be essentially
surjective on objects.

Given an equivalence relation R : A �→ A, recall that the coequalizer r : A → A/R
of R satisfies r◦ ◦ r = R and r ◦ r◦ = 1, and so r � r◦. If S : B �→ B is another
equivalence relation, and s : B → B/S is its coequalizer, an arrow in Cex/reg from A/R to
B/S determines a relation from A to B as follows. We form the pullback

D
f ��

g
����

B

s
����

A r
�� �� A/R α

�� B/S

in Cex/reg; of course this is a relation in Cex/reg, but since D is a subobject of A × B, it
follows by Lemma 3.1 that D is in fact in C, and so f and g are the legs of a relation
from A to B in C. Since g and r are strong epimorphisms, there is clearly at most one
α : A/R → B/S giving rise in this way to a particular relation U : A �→ B, but not every
U does so arise.

To say that a relation U : A �→ B arises, as in the previous paragraph, from α :
A/R → B/S, is precisely to say that U = s◦ ◦ α ◦ r. Since s ◦ s◦ = 1 and r ◦ r◦ = 1, it
then follows that α = s ◦ s◦ ◦ α ◦ r ◦ r◦ = s ◦ U ◦ r◦. Thus U arises from a (necessarily
unique) α if and only if U = s◦ ◦s◦U ◦ r◦ ◦ r and s◦U ◦ r◦ is a map (rather than a general
relation).

The first condition says that U = S ◦U ◦R, which, since S and R are idempotents, is
equivalent to the two conditions:

U = S ◦ U

U = U ◦R.

It remains to express the condition that α = s ◦ U ◦ r◦ be a map; that is, that α ◦ α◦ ≤ 1
and 1 ≤ α◦ ◦ α. Now α ◦ α◦ = (s ◦ U ◦ r◦) ◦ (s ◦ U ◦ r◦)◦ = s ◦ U ◦ r◦ ◦ r ◦ U◦ ◦ s◦ =
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s ◦ U ◦ R ◦ U◦ ◦ s◦ = s ◦ U ◦ U◦ ◦ s◦; and, since s � s◦, the inequality s ◦ U ◦ U◦ ◦ s◦ ≤ 1
is equivalent to U ◦ U◦ ◦ s◦ ≤ s◦ and so to U ◦ U◦ ≤ s◦ ◦ s = S; whence α ◦ α◦ ≤ 1 is
equivalent to

U ◦ U◦ ≤ S.

On the other hand α◦ ◦ α = (s ◦ U ◦ r◦)◦ ◦ (s ◦ U ◦ r◦) = r ◦ U◦ ◦ s◦ ◦ s ◦ U ◦ r◦ =
r ◦ U◦ ◦ S ◦ U ◦ r◦ = r ◦ U◦ ◦ U ◦ r◦; and 1 ≤ r ◦ U◦ ◦ U ◦ r◦ implies that R = r◦ ◦ r ≤
r◦ ◦ r ◦U◦ ◦U ◦ r◦ ◦ r = R◦ ◦U◦ ◦U ◦R = (U ◦R)◦ ◦ (U ◦R) = U◦ ◦U , while R ≤ U◦ ◦U
implies that 1 = r ◦ r◦ ◦ r ◦ r◦ = r ◦R ◦ r◦ ≤ r ◦U◦ ◦U ◦ r◦; and so 1 ≤ α◦α is equivalent to

R ≤ U◦ ◦ U.

We now define an arrow in E from R to S to be a relation U : A �→ B in C satisfying the
three conditions S ◦ U ◦ R = U , U ◦ U◦ ≤ S, and R ≤ U◦ ◦ U ; and define Φ : E(R,S) →
Cex/reg(A/R,B/S) be the bijection taking U to s ◦ U ◦ r◦.

Composition in Cex/reg now induces a composition in E making E into a category and Φ
an equivalence of categories from E to Cex/reg; to complete the description of E it remains
only to calculate the induced composition and identities.

Suppose then that T : C �→ C is another equivalence relation in C, and t : C → C/T
is its coequalizer. Let β : B/S → C/T be an arrow in Cex/reg, and V = t◦ ◦ β ◦ s the
corresponding relation. Then V ◦U = t◦◦β◦s◦s◦◦α◦r = t◦◦β◦α◦r, which is the relation
corresponding to βα; thus composition in E is just composition of relations. On the other
hand, the identity arrow 1 : A/R → A/R corresponds to the relation R : A �→ A, which
is therefore the identity arrow in E at the object R. Thus E is now seen to be precisely
the exact completion as described in [3].
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