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FROBENIUS OBJECTS IN CARTESIAN BICATEGORIES

R.F.C WALTERS AND R.J. WOOD

Abstract. Maps (left adjoint arrows) between Frobenius objects in a cartesian bicat-
egory B are precisely comonoid homomorphisms and, for A Frobenius and any T in B,
Map(B)(T,A) is a groupoid.

1. Introduction

The notion of locally ordered cartesian bicategory was introduced by Carboni and Walters
[C&W] for the axiomatization of the bicategory of relations of a regular category. The
notion has since been extended by Carboni, Kelly, Walters, and Wood [CKWW] to the
case of a general bicategory, to include examples such as bicategories of spans, cospans,
and profunctors.

A crucial further axiom introduced by Carboni and Walters in that paper was the
so-called discreteness axiom, now known as the Frobenius axiom, since it was recognized
to be equivalent to Lawvere’s equational version [LAW] of Frobenius algebra. With this
axiom one can define the notion of Frobenius object in a monoidal category, the Frobenius
axiom being an equation satisfied by monoid and comonoid structures on the object.

The Frobenius axiom has found a large variety of uses. For example, the 2-dimensional
cobordism category has been shown to be the symmetric monoidal category with a generic
commutative Frobenius object. (For a presentation of this result see J. Kock [Ko].) Re-
lated results are the characterization of the symmetric monoidal category of cospans of
finite sets in [LACK] and the characterization of the symmetric monoidal category of
cospans of finite graphs in [RSW]. Another example is that, in the algebra of quantum
measurement [Co&P], classical data types are Frobenius objects. In [G&H] the Frobenius
equation is a crucial equation in an algebraic presentation of double pushout graph rewrit-
ing, and in [KaSW] the equation is one of the main equations in a compositional theory
of automata. The 2-dimensional version of Frobenius algebra has also been introduced in
the characterization of a certain monoidal 2-category in [MSW].

There is a rather obvious way of extending the notion of Frobenius object to the
context of a monoidal bicategory: instead of requiring equations between operations,
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certain canonical 2-cells are required to be invertible. This paper develops properties of
such 2-dimensional Frobenius objects, for the canonical monoid and comonoid structure
on each object which is part of the cartesian bicategory structure. The two principal
results are (i) that maps (left adjoint arrows) between Frobenius objects are the same as
comonoid homomorphisms, and (ii) that if A is a Frobenius object then, for any object
T in the cartesian bicategory B, Map(B)(T,A) is a groupoid. This second result was
noticed for the special case of Profunctors at the time of the Carboni-Walters paper by
Carboni and Wood, independently, but has never been published. We develop in this
paper techniques in a general cartesian bicategory which enable us to lift the profunctor
proof.

The results of this paper will be used in a following paper [W&W] characterizing
bicategories of spans.

We thank Bob Paré for his helpful comments when these results were presented at the
ATCAT seminar in Halifax, Canada.

2. Preliminaries

2.1. We recall from [CKWW] that a bicategory B is cartesian if the subbicategory of
maps (by which we mean left adjoint arrows), M = MapB, has finite products (−×−, 1)
with projections denoted p :X oo X × Y // Y :r; each hom-category B(X,A) has finite
products (−∧−, >) with projections denoted π:R oo R∧S // S :ρ; and an evident derived
tensor product on B, (−⊗−, I) extending the product structure of M, is functorial. It
was shown that the derived tensor product of a cartesian bicategory underlies a symmetric
monoidal bicategory structure. Throughout this paper, B is assumed to be a cartesian
bicategory and, as in [CKWW], we assume, for ease of notation, that B is normal, meaning
that the identity compositional constraints of B are identity 2-cells.

2.2. If f is a map of B, an arrow of M, we will write ηf , εf : f a f ∗ for a chosen
adjunction in B that makes it so. As in [CKWW], we write

M M

G

M

∂0

����
��

��
��

��
��

�
G

M

∂1

��?
??

??
??

??
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??

for the Grothendieck span corresponding to

Mop ×M
iop×i //Bop ×B

B(−,−) //CAT
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where i:M //B is the inclusion. A typical arrow of G, (f, α, u):(X,R,A) // (Y, S,B) can
be depicted by a square in B

A Bu
//

X

A

R

��

X Y
f // Y

B

S

��

α // (1)

in which f and u are maps, and such arrows are composed by pasting. A 2-cell (φ, ψ) :
(f, α, u) // (g, β, v) in G is a pair of 2-cells φ : f // g, ψ : u // v in M which satisfy the
obvious equation.

2.3. In part of this and subsequent work it will be useful to revisit certain of the arrows
of G from another point of view. Consider

X Y
R

//

T

X

x

��

T T
1T // T

Y

y

��

ρ

��

On the one hand it is just an arrow from 1T to R in G but each of the three reformulations
of ρ that result from taking mates have their uses.

X Y
R

//

T

X

x

��

T T
1T // T

Y

OO

y∗bρ
��

X Y
R

//

T

X

OO

x∗

T T
1T // T

Y

OO

y∗ρ∗

��

X Y
R

//

T

X

OO

x∗

T T
1T // T

Y

y

��

eρ
��

In the first of these, ρ̂ : 1T
// y∗Rx, it is sometimes convenient to write R(y, x) = y∗Rx

and regard ρ̂ as a 1T -element of R(y, x). In the special case where R is 1X :X //X we
write X(y, x) = y∗x (invoking normality of B). (This hom-notation is similar to that
employed first in [S&W]. It was adapted for this compositional context in [Wd].) The
second we will use without further comment except to say that, for R = 1X , ρ∗ is the usual
way of making the process of taking right adjoints functorial. The third will appear in
our discussion of tabulations in the forthcoming [W&W]. Note that the R(y, x) notation
extends to 2-cells so that, for η:y′ // y and ξ:x // x′, we have R(η, ξ):R(y, x) //R(y′, x′).

The chief purpose of the notation R(y, x) is to guide intuition so that constructions
in such cartesian bicategories as that of categories, profunctors, and equivariant 2-cells
(which we call prof) can be usefully generalized. Observe that if τ : R // S is a 2-
cell in B and ξ :x // x′ then we have automatically such identities as τ(y, x′).R(y, ξ) =
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S(y, ξ).τ(y, x), both providing the horizontal composite τξ whiskered with y∗ as below.

T X

x

��
T X

x′

CCX Y

R

��
X Y

S

CCξ
��

τ

��
Y T

y∗ //

For the most part, we will use such calculations with little comment.
If

X Y
R

//

T

X

x

��

T T
1T // T

Y

OO

y∗bρ
��

and

Y Z
S

//

T

Y

y

��

T T
1T // T

Z

OO

z∗bσ
��

are 1T -elements of R(y, x) and S(z, y) respectively then it is easy to see that ρ̂2σ, where
ρ2σ is the paste composite of ρ and σ, is a 1T -element of (SR)(z, x). The 1T -element ρ̂2σ
can be given in several ways. We will have occasion to give it via the pasting composite

X

T

X

x

��

T T
1T // T

X Y
R

//

ρ

��

T

Y

y

��/
//

//
//

//
/T T

1T // T

Y

GG

y∗

��
��
��
��
��

ηy

��

Z

TT T
1T // T

Z

OO

z∗

Y Z
S

//

σ∗

��

We note that a paste composite such as ρ2σ as below

X Y
R

//

T

X

x

��

T T
1T // T

Y

y

��

ρ

��

Y Z
S

//

T

Y

y

��

T T
1T // T

Z

z

��

σ

��

may result from several different y:T // Y . For example, in

X Y
R

//

T

X

x

��

T T
1T // T

Y

y

##

ρ

��

Y Z
S

//

T

Y

y′

{{

T T
1T // T

Z

z

��

ηoo σ

��

we have (ρ2η)2σ = ρ2(η2σ) suggesting that some of the 1T -elements of (SR)(z, x) are
given by an obvious coend over y in the category M(T, Y ).
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However, our prof -like notation has its limitations. For fixed T we can associate
to X the category X̃ = M(T,X) and to R :X // Y the profunctor R̃ : X̃ // Ỹ where

R̃(y, x) = B(T, T )(1T , y
∗Rx) but we see no reason why a general 1T -element of (SR)(z, x)

in a general cartesian bicategory should arise from pasting a 1T -element of S(z, y) to a

1T -element of R(y, x) for some y :T // Y . In short, while there is a 2-cell S̃R̃ // S̃R in
prof there seems to be no reason why it should have surjective components. That said,
S̃R̃ // S̃R is an isomorphism in case B = SpanE , for any category E with finite limits,
and for any cartesian B we have isomorphisms 1 eX // 1̃X in prof , for any X in B. So
there is always a normal lax functor

(̃−):B // prof

which in some cases is a pseudofunctor. Fortunately, we have no need for invertibility of
the S̃R̃ // S̃R.

2.4. Quite generally, an arrow of G as given by the square (1) will be called a commuta-
tive square if α is invertible. The arrow (1) of G will be said to satisfy the Beck-Chevalley
condition if the mate of α under the adjunctions f a f ∗ and u a u∗, as given in the square
below (no longer an arrow of G), is invertible.

A Boo
u∗

X

A

R

��

X Yoo f∗

Y

B

S

��

α∗ //

Thus Proposition 4.8 of [CKWW] says that projection squares of the form p̃R,1Y
and r̃1X ,S

satisfy the Beck-Chevalley condition. (Also, Proposition 4.7 of [CKWW] says that the
same projection squares are commutative. In general, neither commutative nor Beck-
Chevalley implies the other.) If R and S are also maps and α is invertible then α−1

gives rise to another arrow of G which may or may not satisfy the Beck-Chevalley con-
dition. The point here is that a commutative square of maps gives rise to two, generally
distinct, Beck-Chevalley conditions. It is well known that, for bicategories of the form
SpanE and RelE all pullback squares of maps satisfy both Beck-Chevalley conditions. A
[bi]category with finite products has automatically a number of pullbacks which we might
call product-absolute pullbacks because they are preserved by all [pseudo]functors which
preserve products.

3. Frobenius Objects in Cartesian Bicategories

For any object A in B, we have the following two G arrows:
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A⊗ A A⊗ (A⊗ A)
1⊗d

//

A

A⊗ A

d

��

A A⊗ Ad // A⊗ A

A⊗ (A⊗ A)

A⊗ A

(A⊗ A)⊗ A

d⊗1��
(A⊗ A)⊗ A

A⊗ (A⊗ A)

a��

//

A⊗ A A⊗ (A⊗ A)

A

A⊗ A

d

��

A A⊗ Ad // A⊗ A

A⊗ (A⊗ A)

1⊗d

��
A⊗ A (A⊗ A)⊗ A

d⊗1
// (A⊗ A)⊗ A A⊗ (A⊗ A)a

//

//

obtained from the same equality of arrows in MapB. (With a suitable choice of conventions
we have equality rather than a mere isomorphism.) For each square, observe that the data
regarded as a square in M provide an example of a product-absolute pullback.

3.1. Definition. An object A is said to be Frobenius if both of the G arrows above
satisfy the Beck-Chevalley condition. This is to demand invertibility both of δ0:d.d

∗ // 1A⊗
d∗.a.d ⊗ 1A, the mate of the first equality above, and of δ1 :d.d∗ // d∗ ⊗ 1A.a

∗.1A ⊗ d, the
mate of the second equality above.

3.2. Lemma. The Beck-Chevalley condition for either square implies the condition for
the other.

Proof. Explicitly, in notation suppressing ⊗, δ0 and δ1 are given by

δ0 =

AA

A

d∗

��?
??

??
??

??
??

??
AA AA

1 // AA

A

??

d

��
��

��
��

��
��

�
AA (AA)AdA // (AA)A A(AA)a //

A AA
d

// AA AA
1

//

A(AA)

AA

??

Ad

��
��

��
��

��
��
A(AA)

AA

Ad∗

��?
??

??
??

??
??

?

ε

OO

|

OO

Aη

OO

and

δ1 =

AA

A

d∗

��?
??

??
??

??
??

??
AA AA

1 // AA

A

??

d

��
��

��
��

��
��

�
AA A(AA)Ad // A(AA) (AA)Aa∗ //

A AA
d

// AA AA
1

//

(AA)A

AA

??

dA

��
��

��
��

��
��
(AA)A

AA

d∗A

��?
??

??
??

??
??

?

ε

OO

|

OO

ηA

OO

Assume that δ0 is invertible and paste at its top and right edges the following pasting
composite at its bottom edge.

AA AA
1 // AA (AA)AdA // (AA)A A(AA)a //AA

AA

s

OO

AA

AA

s

OO

(AA)A

A(AA)

s

OO

A(AA)

(AA)A

s

OO
AA AA1 // AA A(AA)Ad // A(AA)

A(AA)
As 77oooooo

A(AA) (AA)Aa∗ // (AA)A

(AA)A

sA
''OO

OOO
O

∼= ∼= ∼=

A(AA) AA
Ad∗ //

(AA)A AAd∗A //

AA

AA

s

OO

∼=
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The squares are pseudonaturality squares for symmetry as in 4.5 of [CKWW] and the
hexagon bounds an invertible modification constructed from those relating the associa-
tivity equivalence a and the symmetry equivalence s. Next, observe that we have sd ∼= d
and, since s is an equivalence with s∗A,B

∼= sB,A, d∗s ∼= d∗. By functoriality of ⊗ we have
also (As)(Ad) ∼= Ad and (d∗A)(sA) ∼= d∗A. Noting the compatibility of the pseudonatural
transformation s with the 2-cell ηA, the large pasting composite is seen to be δ1. The
derivation of invertibility of δ0 from that of δ1 is effected in a similar way.

3.3. Axiom. Frobenius A cartesian bicategory B is said to satisfy the Frobenius axiom
if, for each A in B, A is Frobenius.

3.4. Proposition. In a cartesian bicategory B, the Frobenius objects are closed under
finite products.

Proof. Consider a Frobenius object A so that we have invertible δ0 = δ0(A) in

A⊗ A A⊗ (A⊗ A)oo
1⊗d∗

A

A⊗ A

d

��

A A⊗ Aoo d∗ A⊗ A

A⊗ (A⊗ A)

A⊗ A

(A⊗ A)⊗ A

d⊗1��
(A⊗ A)⊗ A

A⊗ (A⊗ A)

a��

δ0 //

For B also Frobenius, form the tensor product of the diagrams for δ0(A) and δ0(B), noting
that δ0(A)⊗δ0(B) is also invertible. The diagram for δ0(A⊗B) is easily formed from that of
δ0(A)⊗δ0(B) by pasting to its exterior the requisite permutations of the A and B and using
such isomorphisms as m(dA⊗dB) ∼= dA⊗B, where m:(A⊗A)⊗(B⊗B) // (A⊗B)⊗(A⊗B)
is the middle-four interchange equivalence. Thus A⊗B is Frobenius when A and B are so.
Invertibility of δ0(I) follows easily since dI is an equivalence, showing that I is Frobenius.

Write FrobB for the full subbicategory of B determined by the Frobenius objects. It
follows immediately from Proposition 3.4 that

3.5. Proposition. For a cartesian bicategory B, the full subbicategory FrobB is a
cartesian bicategory which satisfies the Frobenius axiom.

In any (pre)cartesian bicategory we have, for each object X, the following arrows:

NX = I
t∗X //X

dX //X ⊗X and EX = X ⊗X
d∗X //X

tX // I

Since the cartesian bicategory B is a (symmetric) monoidal bicategory it can be seen as
a one-object tricategory, so that pseudo adjunctions N,E :X a A, where X and A are
objects of B (and N and E are arrows of B), are well defined. (We note that, especially
since B is symmetric, it is customary to speak of such X and A as duals.)

3.6. Proposition. For a Frobenius object X in a cartesian bicategory, NX and EX

provide the unit and counit for a pseudo-adjunction X a X.
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Proof. (Sketch) We are to exhibit isomorphisms

(EX ⊗X)a∗(X ⊗NX) ∼= sX,I and (X ⊗ EX)a(NX ⊗X) ∼= sI,X

subject to two coherence equations. Consider:

X ⊗ I X ⊗X
X⊗t∗X// X ⊗X X ⊗ (X ⊗X)

X⊗dX // X ⊗ (X ⊗X) (X ⊗X)⊗Xa∗ // (X ⊗X)⊗X

X ⊗X

d∗X⊗X

��

X ⊗X

X

d∗X

��
X X ⊗X

dX

//

X ⊗ I

X

r

��?
??

??
??

??
??

??

X ⊗X

I ⊗X

tX⊗X

��

X

I ⊗X

l

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

δ1' //
∼=

∼=

I ⊗X X ⊗X
t∗X⊗X

// X ⊗X (X ⊗X)⊗X
dX⊗X // (X ⊗X)⊗X X ⊗ (X ⊗X)a // X ⊗ (X ⊗X)

X ⊗X

X⊗d∗X

��

X ⊗X

X

d∗X

��
X X ⊗X

dX

//

I ⊗X

X

l

��?
??

??
??

??
??

??

X ⊗X

X ⊗ I

X⊗tX

��

X

X ⊗ I

r

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

δ0
−1

'oo
∼=

∼=

For the coherence requirements let us abbreviate ⊗ by juxtaposition, as we have before,
but now work as if the bicategory constraints of B and those of the monoidal structure
(B,⊗, I) are strict. (In general, this is not acceptable because a monoidal bicategory
is not tri-equivalent to a one-object 3-category. However, our monoidal structure, being
given by universal properties, is less problematical.) Temporarily, write N : I //X◦X
and E : XX◦ // I, just to mark the role of the X’s. Write α : 1X

// (EX)(XN) and
β :(X◦E)(NX◦) // 1X◦ for the isomorphisms built from those above, with the simplifying
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assumptions. The coherence requirements of α and β are the pasting equations

1E =

XX◦ I
E

//

XX◦XX◦

XX◦

EXX◦

��

XX◦XX◦ XX◦XX◦E// XX◦

I

E

��

XX◦

XX◦XX◦

XNX◦
??

??
??

?

��?
??

??
??

XX◦

XX◦

XX◦

''

XX◦

XX◦

XX◦

��
αX◦

//

Xβ //

∼=

X◦X X◦XX◦X
X◦XN

//

I

X◦X

N

��

I X◦XN // X◦X

X◦XX◦X

NX◦X

��

∼=

X◦X

X◦X

X◦X

��

X◦X

X◦XX◦X 22

X◦XX◦X

X◦X

X◦EX

??
??

??
?

��?
??

??
??

X◦α //

βX //

1N =

where the unlabelled isomorphisms in the squares are given by pseudofunctoriality of ⊗.
We will verify the first of these equations, verification of the second being similar, now
using X◦ = X but continuing to suppress the constraints both for B and for the monoidal
structure. Thus we must show that the composite on the left below

XXX XX
Xd∗

//

XXXX

XXX

d∗XX

��

XXXX XXXXXd∗// XXX

XX

d∗X

��

∼=

XXX

XXXX

XdX

???

��?
??

XXX

XX

d∗X

��

XXX XX
Xd∗ // XX

XXX

Xd

��?
??

??
??

?

XX

XXX

dX ��?
??

??
??

?
δ1X //

Xδ−1
0 //

XX

XXX

Xt∗X

???

��?
??

XX

I

tt
???

?

��?
???

=

XX

XXX

Xt∗X

???

��?
??

XX X
d∗

//

XXX

XX

d∗X

��

XXX XX
Xd∗ // XX

X

d∗

��

∼=

X

XX

d
???

?

��?
???

XX

XXX

dX ��?
??

??
??

?

XX

XXX

Xd

��?
??

??
??

?

XXX XX
Xd∗

//

XXX

XX

d∗X

��
XX

I

tt
???

?

��?
???

δ1 //

δ−1
0 //

is 1E. Again using pseudofunctoriality of ⊗, we have the equality shown and finally the
diagram on the right can be shown to be 1E from the definitions of δ0 and δ1.

3.7. If R:X // A is an arrow in B then given pseudo adjunctions X a X◦ and A a A◦

we should expect that adaption of the calculus of mates found in [K&S] will enable us
to define R◦ :X◦ // A◦ by the usual formula. In fact, if every object of B has a dual one
should expect (−)◦ to provide a pseudofunctor (−)◦ :Boprev //B between tricategories,
where (−)rev denotes dualization with respect to objects of B composed via ⊗, while
as usual (−)op denotes dualization with respect to the 1-cells of B. In particular, one
should expect (X ⊗ Y )◦ ' Y ◦ ⊗X◦. The point of this paragraph is that the (−)◦ of the
following proposition arises from the properties already under consideration and is not a
new structure as in the similarly denoted operation of [F&S].
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3.8. Proposition. For a cartesian bicategory B in which every object is Frobenius,
there is an involutory pseudofunctor

(−)◦:Bop //B

which is the identity on objects.

Proof. With X◦ = X we define

(−)◦A,X :Bop(A,X) = B(X,A) //B(A,X)

by the evidently functorial formula

R◦ = (X ⊗ EA)(X ⊗R⊗ A)(NX ⊗ A)

In terms of the one object tricategory (B,⊗, I) with single object ∗, we can express R◦

by the pasting

∗

∗
A

��?
??

??
??

??
?∗ ∗// ∗

∗

??

A
��

��
��

��
��

EA

OO

∗ ∗
I

// ∗

∗

X

??����������

∗ ∗I //

R

OO

∗ ∗
I

//

∗

∗

??

X
��

��
��

��
��
∗

∗
X

��?
??

??
??

??
?

NX

OO

For R:X // A, along with S :A // Y , to give (̃−)◦:R◦S◦ // (SR)◦ we consider

∗

∗
Y

��?
??

??
??

??
?

∗

∗

Y

??����������
∗ ∗

I
//

EY

OO
∗ ∗I //

∗

∗??����������

∗ ∗I //

S

OO

∗ ∗
I

//

∗

∗

??

A
��

��
��

��
��
∗

∗
A

��?
??

??
??

??
?

NA

OO
∗

∗
��?

??
??

??
??

?∗ ∗I // ∗

∗

??

A
��

��
��

��
��

EA

OO

∗ ∗
I

// ∗

∗

X

??����������

∗ ∗I //

R

OO

∗ ∗
I

//

∗

∗

??

X
��

��
��

��
��
∗

∗
X

��?
??

??
??

??
?

NX

OO

in which the pasting composite displays R◦S◦. The required (̃−)◦ is obtained as the
collapsing of the centre triangles using α−1 : (EA ⊗ A)(A ⊗ NA) ∼= sA,I of the pseudo

adjunction NA, EA :A a A. Evidently, (̃−)◦ is invertible. We give the identity constraint
for (−)◦ as β−1 : 1X

// (X ⊗ EX)(NX ⊗ X) which is again invertible. Finally, having
observed that the mate description of R◦ = (X ⊗EA)(X ⊗R⊗A)(NX ⊗A) was given by
expanding R :X // A as R :X ⊗ I // I ⊗ A we see by writing R :I ⊗X // A ⊗ I that we
have equally

R◦ ∼= (EA ⊗X)(A⊗R⊗X)(A⊗NX)

Thus we may as well give
((−)◦)op:B //Bop

by the formula

(A S //X)| // (EX ⊗ A)(X ⊗ S ⊗ A)(X ⊗NA)
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so that R◦◦ is the pasting

∗ ∗
I

//

∗

∗

??
A

��
��

��
��

��
∗

∗

A

��?
??

??
??

??
?

NA

OO
∗

∗
��?

??
??

??
??

?∗ ∗I // ∗

∗

??

A
��

��
��

��
��

EA

OO

∗ ∗
I

// ∗

∗
X

??����������

∗ ∗I //

R

OO

∗ ∗
I

//

∗

∗

??
X

��
��

��
��

��
∗

∗
��?

??
??

??
??

?

NX

OO
∗

∗
X

��?
??

??
??

??
?∗ ∗I // ∗

∗

??

X
��

��
��

��
��

EX

OO

and we have a canonical isomorphism R ∼= R◦◦, again using the α and β constraints of
the pseudo adjunctions NX , EX :X a X of Proposition 3.6.

3.9. Proposition. For an arrow R :X // A in a cartesian bicategory, with X and A
Frobenius, if the d̃R and t̃R of the units

A A⊗ A
dA

//

X

A

R

��

X X ⊗X
dX // X ⊗X

A⊗ A

R⊗R

��

d̃R
//

A I
tA

//

X

A

R

��

X I
tX // I

I

>

��

t̃R
//

are invertible then we can construct squares NR and ER

X AR //

I

X

t∗X

��

I I
1I // I

A

t∗A

��

t̃∗R
//

X ⊗X A⊗ A
R⊗R
//

X

X ⊗X

dX

��

X AR // A

A⊗ A

dA

��

d̃−1
R
//

I

X ⊗X

NX

��

I

A⊗ A

NA

��

NR =

X AR //

X ⊗X

X

d∗X

��

X ⊗X A⊗ A
R⊗R// A⊗ A

A

d∗A

��

d̃∗R
//

I I
1I

//

X

I

tX

��

X AR // A

I

tA

��

t̃−1
R
//

X ⊗X

I

EX

��

A⊗ A

I

EA

��

ER =

X AR //

X

X

X

��

X A
R // A

A

A

��

R //

where t̃∗R is the mate of t̃R and d̃∗R is the mate of d̃R, which when tensored with the identity
square R, above, satisfy the following equations (in which ⊗ is suppressed):

XXX AAARRR //

X

XXX

NXX

��

X A
R // A

AAA

NAA

��

NRR //

X A
R

//

XXX

X

XEX

��

XXX AAARRR // AAA

A

AEA

��

RER //

X

X

X

  

∼=

A

A

A

~~

∼= XXX AAARRR //

X

XXX

XNX

��

X A
R // A

AAA

ANA

��

RNR //

X A
R

//

XXX

X

EXX

��

XXX AAARRR // AAA

A

EAA

��

ERR //

X

X

X

  

∼=

A

A

A

~~

∼=

R = = R

(2)
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Proof. The vertical edges of the diagrams have been clarified in Proposition 3.6. For the
rest it suffices for each equation to expand NR and ER, verify the following equalities

X XXX

XX

X

d∗

����
��

�
XX

XXX

dX

��?
??

??

X

XX
d ��?

??
??

X XXXXXX

XX
Xd∗����

��
�

δ0 //

XX AARR //

d̃−1
R R //

XXX AAARRR //

Rd̃∗R
//

XX AA
RR

//

AA

AAA

dA

��?
??

??

AAA

AA
Ad∗����

��
�

=

XX AA
RR //

d̃∗R
//

X AR //

d̃−1
R
//

XX AA
RR //

XX

X

d∗

����
��

�
AA

AAA

dA

��?
??

??

AAA

AA
Ad∗����

��
�

AA

A

d∗

����
��

�

δ0 //A

AA
d ��?

??
??

X

XX
d ��?

??
??

X XXX

XX

X

d∗

����
��

�
XX

XXX

Xd

��?
??

??

X

XX
d ��?

??
??

X XXXXXX

XX
d∗X����

��
�

δ1 //

XX AA
RR //

Rd̃−1
R
//

XXX AAARRR //

d̃∗RR //

XX AA
RR

//

AA

AAA

Ad

��?
??

??

AAA

AA
d∗A����

��
�

=

XX AA
RR //

d̃∗R
//

X AR //

d̃−1
R
//

XX AARR //

XX

X

d∗

����
��

�
AA

AAA

Ad

��?
??

??

AAA

AA
d∗A����

��
�

AA

A

d∗

����
��

�

δ1 //A

AA
d ��?

??
??

X

XX
d ��?

??
??

and use such further equalities as

XX AA
RR //

X

XX

d

��

X AR // A

AA

d

��

d̃−1
R //

X A
R

//

XX

X

Xt

��

XX AA
RR // AA

A

At

��

Rt̃−1
R //

X

X

X

  

∼=

A

A

A

~~

∼= XX AARR //

X

XX

t∗X

��

X A
R // A

AA

t∗A

��

t̃∗RR
//

X A
R

//

XX

X

d∗

��

XX AA
RR // AA

A

d∗

��

d̃∗R //

X

X

X

  

∼=

A

A

A

~~

∼=

R = R =

3.10. Every object X of a bicategory with finite products is, essentially uniquely, a
pseudo comonoid via dX and tX . It follows that every object X in a cartesian bicategory
B is a (pseudo) comonoid (via dX and tX) since M has finite products and the inclusion
functor i:M //B is strongly monoidal. (It is the identity on objects and we observe from

Proposition 3.24 of [CKWW] that f × g ' // f ⊗ g in B.) Similarly, for R:X // A in B, R
has an essentially unique comonoid structure in G, via (dX , d̃R, dA) and (tX , t̃R, tA), since
G has finite products. In fact, given dX and dA, d̃R is uniquely determined and given tX
and tA, t̃R is uniquely determined. This fact can be reinterpreted to say that R :X // A
has an essentially unique lax comonoid homomorphism structure via dR = (dX , d̃R, dA)
and tR = (tX , t̃R, tA) which is then a comonoid homomorphism if and only if the 2-cells d̃R

and t̃R are invertible. Thus being a comonoid homomorphism is a property of an arrow in
a cartesian bicategory.
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3.11. Theorem. For an arrow R : X // A in a cartesian bicategory, with X and A
Frobenius, the following are equivalent:

(1) R is a map;

(2) R is a comonoid homomorphism;

(3) R a R◦.

Proof. (1) implies (2) follows from the fact that d and t are pseudonatural on maps
and (3) implies (1) is trivial. So, assuming (2), that R is a comonoid homomorphism,
construct NR and ER as in Proposition 3.9 and define (suppressing ⊗ as usual)

ηR =

X

XXX

NXX

��
XXX

XXA

XXR
���

??���

XXX

XAA

XRR

???

��?
??

XXX

X

XEX

��

A

XXA

NXA

��
XXA

XAA

XRA

��
XAA

X

XEA

��

X

A
R

??��������

X

X

X ��?
??

??
??

?

NXR
//

∼=

XER//

X

X

X

  

∼= εR =

A

XXA

NXA

��
XXA

XAA

XRA

��
XAA

X

XEA

��

A

A

A

��?
??

??
??

?

XXA

AAA

RRA

???

��?
??

XAA

AAA

RAA
���

??���

X

A

R

??��������

A

AAA

NAA

��
AAA

A

AEA

��

A

A

A

~~

NRA
//

∼= ∼=

REA//

where we note that both three-fold vertical composites are the arrow R◦, NXR = 1NX
⊗1R

and REA = 1R ⊗ 1EA
are isomorphisms while XER = 11X

⊗ ER and NRA = NR ⊗ 11A
.
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When ηR and εR are pasted at R◦ the result is

X

XXX

NXX

��
XXX

XXA

XXR
���

??���

XXX

XAA

XRR

???

��?
??

XXX

X

XEX

��

A

XXA

NXA

��

XAA

X

XEA

��

X

A
R

??��������

X

X

X ��?
??

??
??

?

NXR
//

∼=

XER//

X

X

X

  

∼=

A

A

A

��?
??

??
??

?

XXA

AAA

RRA

???

��?
??

XAA

AAA

RAA
���

??���

X

A

R

??��������

A

AAA

NAA

��
AAA

A

AEA

��

A

A

A

~~

NRA
//

REA//

∼= = XXX AAARRR //

X

XXX

NXX

��

X A
R // A

AAA

NAA

��

NRR //

X A
R

//

XXX

X

XEX

��

XXX AAARRR // AAA

A

AEA

��

RER //

X

X

X

  

∼=

A

A

A

~~

∼= = R

the first equality from functoriality of ⊗, the second equality being the first equation of
(2) of Proposition 3.9. To complete the proof that we have an adjunction ηR, εR :R a R◦

we must show that when ηR is pasted to εR at R the result is R◦. To aid readability we
draw as commutative as many regions as possible. Consider:

A XXA
NXA

//A

A

A

GG����������

A AAA
NAA //

NRA

OO

XXA XAA
XRA

//

AAA

XXA

GG

RRA

��
��
��
��
��
AAA

XAA

WW

RAA

//
//

//
//

//

XAA X
XEA

//

AAA A
AEA //

X

A

R////

WW////

A X

R◦

;;

A A

A

��

X XXX
NXX

//

A XXA
NXA // XXA

XXX

WW

XXR

//
//

//
//

//
XXA XAA

XRA // XAA

XXX

GG

XRR

��
��
��
��
��

XXX X
XEX

//

XAA X
XEA //

X

X

X

GG����������

XER

OO

X X

X

@@

A X

R◦

##
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(which is the requisite pasting rotated 90 degrees counterclockwise). Rearrange it as
below:

XXA AAA
RRA

//

A

XXA

NXA

��

A AA // A

AAA

NAA

��

NRA //

AAA XXAAA
NXAAA

//

A

AAA

NAA

��

A XXA
NXA // XXA

XXAAA

XXNAA

��
XXAAA XAAAA

XRAAA
//

XXA

XXAAA

XXNAA

��

XXA XAAXRA // XAA

XAAAA

XANAA

��

XXXXA XXXAAXXXRA//

XXAAA

XXXXA

OO

XXRRA

XXAAA XAAAA
XRAAA

// XAAAA

XXXAA

OO

XRRAA

XXA XAA
XRA

//

XXXXA

XXA

XEXXA

��

XXXXA XXXAAXXXRA// XXXAA

XAA

XEXAA

��
XAA X

XEA

//

XXXAA

XAA

XEXAA

��

XXXAA XXX
XXXEA // XXX

X

XEX

��
X X

X
//

XXX

X

XEX

��

XXX XAAXRR // XAA

X

XEA

��

XER //

XXXXA

XAAAA

XRRRAttttttt

::ttttttt

XXA

XXXXA

NXXXA
RRRRRRRRRR

))RRRRRRRRRR

XXA

XXA

XXA

EE
EE

EE
EE

EE
EE

EE
EE

""E
EE

EE
EE

EE
EE

EE
EE

E

XAAAA

XAA

XAAEA

RRRRRRRRRR

))RRRRRRRRRR

XAA

XAA

XAA

EE
EE

EE
EE

EE
EE

EE
EE

""E
EE

EE
EE

EE
EE

EE
EE

E

(3)
The following prism commutes:

XXA AAA
RRA

//

A

XXA

NXA

��

A AA // A

AAA

NAA

��

NRA //

XXXXA XXAAA
XXRRA

//

XXA

XXXXA

XXNXA

��

XXA XXA
XXA // XXA

XXAAA

XXNAA

��

XXNRA//

A

XXA
NXA **TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT A

XXA

NXA

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

XXA

XXXXA

NXXXA

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTT AAA

XXAAA

NXAAA

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

XAA

XAAAA

XANAA

��

XXA

XAA

XRA

$$J
JJJJJJJJJJJJJJJXXA

XAA
XRA **TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

XXAAA

XAAAA

XRAAA

$$J
JJJJJJJJJJJJJJJXXXXA

XAAAA

XRRRA

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

XRNRA//
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Replace the top three squares of (3) above by the two front faces of the prism. Employ a
similar commuting prism to replace the bottom three squares of (3) and obtain:

XXA XXXXA
NXXXA //

A

XXA

NXA

��

A XXA
NXA // XXA

XXXXA
��

XXA

XXA

XXA

$$J
JJJJJJJJJJJJJJJ XXXXA XAAAA

XRRRA//

XXA

XXXXA

XXNXA

��

XXA XAAXRA // XAA

XAAAA

XANAA

��

XRNRA//

XXA XAA
XRA

//

XXXXA

XXA

XEXXA

��

XXXXA XAAAA
XRRRA// XAAAA

XAA

XEAAA

��

XERRA//

XAA X
XEA

//

XAAAA

XAA
��

XAAAA XAA
XAAEA // XAA

X

XEA

��

XAA

XAA

XAA

$$J
JJJJJJJJJJJJJJJ

=

A XXA
NXA

//

A

A

A

��

A XXA
NXA // XXA

XXA

XXA

��
XXA XAA

XRA
//

XXA

XXA

XXA

��

XXA XAAXRA // XAA

XAA

XAA

��
XAA X

XEA

//

XAA

XAA

XAA

��

XAA X
XEA // X

X

X

��

= R◦

where the penultimate equality is obtained from the second equation of (2) of Proposi-
tion 3.9 by tensoring it on the left by X and on the right by A and applying the result to
the two middle squares of the penultimate pasting.

3.12. From Theorem 3.11 it follows that for a map f :X // A, withX and A Frobenius in
a cartesian bicategory, we have f ∗ ∼= f ◦ and we may as well write f ∗ = f ◦ for our specified
right adjoints in this event and use the explicit formula for f ◦ when it is convenient to do
so.

3.13. Theorem. If A is a Frobenius object in a cartesian bicategory B, then, for all T
in B, the hom-category M(T,A) is a groupoid.

We will break the proof of Theorem 3.13 into a sequence of lemmas and employ the
notation of 2.3.

3.14. Lemma. With reference to the 2-cell δ1 in Definition 3.1,

dd∗
' // (p∗ ∧ r∗)(p ∧ r) and (d∗ ⊗X)(X ⊗ d) ' // p∗p ∧ p∗r ∧ r∗r

and these canonical isomorphisms identify δ1 with (ππ, πρ, ρρ). Here the components are
horizontal composites of the local product projection 2-cells. For example, πρ is

A⊗ A A

p∧r

��
A⊗ A A

r

DDA A⊗ A

p∗∧r∗

��
A A⊗ A

p∗

CC
ρ

��
π

��
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We will write

δ = (ππ, πρ, ρρ):(p∗ ∧ r∗)(p ∧ r) // p∗p ∧ p∗r ∧ r∗r:A⊗ A // A⊗ A (4)

Proof. We have
p ∧ r ∼= d∗(p⊗ r)d ∼= d∗(p, r) ∼= d∗1A⊗A = d∗

and
p∗ ∧ r∗ ∼= d∗(p∗ ⊗ r∗)d ∼= d∗(p⊗ r)∗d ∼= (p, r)∗d ∼= 1∗A⊗Ad = d

so that dd∗ ∼= (p∗ ∧ r∗)(p ∧ r). To exhibit the other isomorphism of the statement we
will write d3 :A ⊗ A // (A ⊗ A) ⊗ (A ⊗ A) ⊗ (A ⊗ A) for the three-fold diagonal map
(1A⊗A, 1A⊗A, 1A⊗A) and then

p∗p∧ p∗r ∧ r∗r ∼= d∗3(p
∗p⊗ p∗r⊗ r∗r)d3

∼= d∗3(p
∗ ⊗ p∗ ⊗ r∗)(p⊗ r⊗ r)d3

∼= (d∗ ⊗A)(A⊗ d)

Of course δ = (ππ, πρ, ρρ) in (4) of the Lemma is invertible if and only if A is Frobenius.
We will write

ν = ρπ:(p∗ ∧ r∗)(p ∧ r) // r∗p:A⊗ A // A⊗ A

for the “other” horizontal composite of projections and for A Frobenius we define µ as
the unique 2-cell (ν.δ−1) making commutative

(p∗ ∧ r∗)(p ∧ r)

r∗p

ν

��?
??

??
??

??
??

?
(p∗ ∧ r∗)(p ∧ r) p∗p ∧ p∗r ∧ r∗rδ // p∗p ∧ p∗r ∧ r∗r

r∗p

µ

����
��

��
��

��
��

(5)

We remark that a local product of maps is not generally a map. (In the case of the
bicategory of relations a local product of maps is a partial map.) Observe though that
if A is such that the maps d :A // A ⊗ A and t :A // I have right adjoints in M then
A is a cartesian object in M in the terminology of [CKW] and [CKVW]. In this case
p ∧ r:A⊗ A // A is the map that provides “internal” binary products for A.

For maps f, g :T // // A we write, as in 2.3, A(f, g) for the composite f ∗g and observe
that the following three kinds of 2-cells are in natural bijective correspondence

T A

f

��
α

��
T A

g

CC T T

1T

��bα
��

T T

A(f,g)

CC T A

g∗

��
α∗

��
T A

f∗

CC

We have
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3.15. Lemma. The hom-category M(T,A) can be equivalently described as the category
whose objects are the maps f : T // A and whose hom-sets M(T,A)(f, g) are the sets
M(T, T )(1T , A(f, g)) with composition given by pasting composites of the form

T T

1T

��bα
��

T T

A(f,g)

DDT T

1T

��bβ
��

T T

A(g,h)

DDT T

A(f,h)

HH

f∗εgh

��

Proof. It is a simple exercise with mates to show that the pasting composite displayed
is β̂α. We note that 1̂f = ηf .

3.16. Lemma. For objects f, h, g, k of M(T,A), the whisker composite

T A⊗ A
(g,k) // A⊗ A A⊗ A

(p∗∧r∗)(p∧r)

$$
A⊗ A A⊗ A

p∗p∧p∗r∧r∗r

::A⊗ A T
(f,h)∗ //δ=(ππ,πρ,ρρ)

��

being in the notation of 2.3

(p∗ ∧ r∗)(p ∧ r)((f, h)(g, k)) δ((f,h)(g,k)) // (p∗p ∧ p∗r ∧ r∗r)((f, h)(g, k))
is

T A
g∧k // A T

f∗∧h∗ //T T

A(f,g)∧A(f,k)∧A(h,k)

;;

(ππ,πρ,ρρ)
��

In fact, (p ∧ r)(g, k) ∼= g ∧ k and (f, h)∗(p∗ ∧ r∗) ∼= f ∗ ∧ h∗.
Proof. We have

(p ∧ r)(g, k) ∼= d∗(p⊗ r)d(g, k) ∼= d∗(p⊗ r)((g, k)⊗ (g, k))d ∼= d∗(g ⊗ k)d ∼= g ∧ k
while

(f, h)∗(p∗ ∧ r∗) ∼= (f, h)∗d∗(p∗ ⊗ r∗)d ∼= ((p⊗ r)d(f, h))∗d ∼= ((f ⊗ h)d)∗d ∼= f ∗ ∧ h∗

On the other hand, precomposing with maps and postcomposing with right adjoints pre-
serves local products so that we have

(f, h)∗(p∗p ∧ p∗r ∧ r∗r)(g, k) ∼= (f, h)∗(p∗p)(g, k) ∧ (f, h)∗(p∗r)(g, k) ∧ (f, h)∗(r∗r)(g, k)

∼= f ∗g ∧ f ∗k ∧ h∗k
Assembling these results in hom-notation gives the statement.
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The whisker composite in Lemma 3.16 should be thought of as the instantiation of δ at
((f, h)(g, k)) and we have been deliberately selective in mixing our notations in the con-
cluding diagram of the statement; (ππ, πρ, ρρ) being more informative than δ((f, h)(g, k)).
If we instantiate the rest of diagram (5) at ((f, h)(g, k)), which is to say whisker with
(f, h)∗(−)(g, k), then the result is clearly the lower triangle below.

(f ∗ ∧ h∗)(g ∧ k)

A(h, g)

ρπ

$$J
JJJJJJJJJJJJJJ

(f ∗ ∧ h∗)(g ∧ k) A(f, g) ∧ A(f, k) ∧ A(h, k)
(ππ,πρ,ρρ) // A(f, g) ∧ A(f, k) ∧ A(h, k)

A(h, g)

µ((f,h),(g,k)

zzttttttttttttttt
(f ∗ ∧ h∗)(g ∧ k) A(f, g) ∧ A(f, k) ∧ A(h, k)//

1T

(f ∗ ∧ h∗)(g ∧ k)

Ξ

zztttttttttttttttt
1T

A(f, g) ∧ A(f, k) ∧ A(h, k)

(α,β,γ)

$$J
JJJJJJJJJJJJJJJ

(6)

In the top triangle above it is clear that a 1T -element of A(f, g) ∧ A(f, k) ∧ A(h, k) is
exactly an “S” shaped configuration in M(T,A) of the form

f g
α //f

k

β
??

??
??

��?
??

??
?

h kγ
//

For A Frobenius we will be interested in lifting 1T -elements of A(f, g)∧A(f, k)∧A(h, k)
though the isomorphism

(ππ, πρ, ρρ):(f ∗ ∧ h∗)(g ∧ k) // A(f, g) ∧ A(f, k) ∧ A(h, k)

As we discussed in 2.3, we do not have precise knowledge of general 1T -elements Ξ of

(f ∗ ∧ h∗)(g ∧ k) = ((p∗ ∧ r∗)(p ∧ r))((f, h)(g, k))

but those obtained by pasting a 1T -element of (p∗ ∧ r∗)((f, h), x) to a 1T -element of
(p∧ r)(x, (g, k)), for some x:T // A present no difficulty. (Here, p∗ ∧ r∗ is the S and p∧ r
is the R of 2.3.) Since

(p∗ ∧ r∗)((f, h), x) = (f, h)∗(p∗ ∧ r∗)x ∼= (f ∗ ∧ h∗)x ∼= f ∗x ∧ h∗x = A(f, x) ∧ A(h, x)

and

(p ∧ r)(x, (g, k)) = x∗(p ∧ r)(g, k) ∼= x∗(g ∧ k) ∼= x∗g ∧ x∗k = A(x, g) ∧ A(x, k)
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(where we have used Lemma 3.16 in each derivation) we see that these special 1T -elements
of (f ∗ ∧ h∗)(g ∧ k) are given by (equivalence classes of)“X” shaped configurations in
M(T,A) of the form

f

x

ξ

��?
??

??

h

x
ζ ??�����

x

g

η

??������
x

k
ω ��?

??
??

It is convenient to write such a 1T -element of (f ∗ ∧ h∗)(g ∧ k) as the following pasting
composite

T A
g∧k

//

T

T

1T

����
��

��
��

��
��

�
T

A

x
??

??
??

��?
??

??
?

T

A

x
??

??
??

��?
??

??
?

T T
1T // T

A

??

x∗
��

��
��

��
��

��

A T
f∗∧h∗

//

T

A

??

x∗
��

��
��

��
��

��

T

T

1T

��?
??

??
??

??
??

??

(η,ω)

��

ηx

��
(ξ∗,ζ∗)

��

(7)

Invertibility of δ = (ππ, πρ, ρρ):(f ∗∧h∗)(g∧k) //X(f, g)∧X(f, k)∧X(h, k) tells us that,
for every “S” configuration (α, β, γ), there is a unique 1T -element Ξ of (f ∗ ∧ h∗)(g ∧ k)
such that δΞ = (α, β, γ). When, as in several classical situations, every 1T -element Ξ
comes from an “X” configuration we have motivation for the colloquial name “S”=“X”
for the Frobenius condition. (In fact one says “S”=“X”=“Z” when the second “equation”
is not derivable from the first but we have Lemma 3.2.)

3.17. Lemma. For a 1T -element Ξ (see (6)) arising from an “X”configuration as in (7),
δΞ = (ηξ, ωξ, ωζ) and νΞ = ηζ.

Proof. For δΞ we treat the components separately. For the first, we paste

T A

g∧k

��
T A

g

CCA T

f∗∧h∗

��
A T

f∗

CCπ

��
π

��

to (7) and obtain the 1T -element

T Ag
//

T

T

1T

����
��

��
��

��
��

�
T

A

x
??

??
??

��?
??

??
?

T

A

x
??

??
??

��?
??

??
?

T T
1T // T

A

??

x∗
��

��
��

��
��

��

A T
f∗

//

T

A

??

x∗
��

��
��

��
��

��

T

T

1T

��?
??

??
??

??
??

??

η

��

ηx

��
ξ∗

��
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of A(f, g). To see this as a 2-cell f // g paste onto it

A T
f∗

// T A
f //A A

1A

@@
εf

��

(at f ∗) which is the “unhatting” bijection and observe that the result is ηξ :f // g. For
the second, first paste (π, ρ) and then paste εf . For the third, first paste (ρ, ρ) and then
paste εh. For νξ, paste (ρ, π) to (7) and then paste εh (at h∗).

The 2-cell µ of (5) when instantiated as in (6) provides a completion of “S” configu-
rations, as by the dotted arrow below. (It ultimately has the air of a Malcev operation.)

f g//f

k
��?

??
??

??
??

??
??

h k//h

g??

In particular, given a 2-cell α : f // g we have the “S” configuration (1f , α, 1g) and we
write α† = µ(1, α, 1).

3.18. Lemma. α† = α−1

Proof. Using the hom-notation of 2.3 it is easy to see that the following diagram com-
mutes and that the clockwise composite is αα†:1T

// A(g, g).

1T

A(f, g) ∧ A(f, g) ∧ A(g, g)

(α,α,1)

��?
??

??
??

??
??

?

A(f, f) ∧ A(f, g) ∧ A(g, g)

1T

??

(1,α,1)

��
��

��
��

��
��

A(f, f) ∧ A(f, g) ∧ A(g, g)

A(f, g) ∧ A(f, g) ∧ A(g, g)

A(f,α)∧A(f,g)∧A(g,g)

��
A(f, g) ∧ A(f, g) ∧ A(g, g) A(g, g)µ

//

A(f, f) ∧ A(f, g) ∧ A(g, g)

A(f, g) ∧ A(f, g) ∧ A(g, g)

A(f,α)∧A(f,g)∧A(g,g)

��

A(f, f) ∧ A(f, g) ∧ A(g, g) A(g, f)
µ // A(g, f)

A(g, g)

A(g,α)

��

(8)

Let Ξ be the “X” configuration
f

g

α

��?
??

??

g

g
1g

??������

g

g

1g

??������
g

g
1g ��?

??
??

?
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From Lemma 3.17 it is clear that δΞ = (α, α, 1). Thus the anti-clockwise composite of
diagram (8) is

µ(α, α, 1) = µδΞ = νΞ = 1g

where the last equality is also from Lemma 3.17, so that αα† = 1g.
Similarly, the composite α†α is the clockwise composite in the commutative diagram.

1T

A(f, f) ∧ A(f, g) ∧ A(f, g)

(1,α,α)

��?
??

??
??

??
??

?

A(f, f) ∧ A(f, g) ∧ A(g, g)

1T

??

(1,α,1)

��
��

��
��

��
��

A(f, f) ∧ A(f, g) ∧ A(g, g)

A(f, f) ∧ A(f, g) ∧ A(f, g)

A(f,f)∧A(f,g)∧A(α,g)

��
A(f, f) ∧ A(f, g) ∧ A(f, g) A(f, f)µ

//

A(f, f) ∧ A(f, g) ∧ A(g, g)

A(f, f) ∧ A(f, g) ∧ A(f, g)

A(f,f)∧A(f,g)∧A(α,g)

��

A(f, f) ∧ A(f, g) ∧ A(g, g) A(g, f)
µ // A(g, f)

A(f, f)

A(α,f)

��

Notice that (1, α, α) is obtained by applying δ to the “X” configuration

f

f

1f

��?
??

??

f

f
1f

??�����

f

f

1f

??�����
f

g
α ��?

??
??

The rest of the proof proceeds as above.

This completes the proof of Theorem 3.13.
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