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DESCENT FOR COMPACT 0-DIMENSIONAL SPACES

Dedicated to Walter Tholen on the occasion of his 60th birthday

GEORGE JANELIDZE1 AND MANUELA SOBRAL2

Abstract. Using the reflection of the category C of compact 0-dimensional topological
spaces into the category of Stone spaces we introduce a concept of a fibration in C. We
show that: (i) effective descent morphisms in C are the same as the surjective fibrations;
(ii) effective descent morphisms in C with respect to the fibrations are all surjections.

Introduction

Our original intention was to describe effective descent morphisms in the category C of
compact 0-dimensional topological spaces by combining the following well-known facts:

• A compact 0-dimensional space is nothing but a set equipped with a surjection into
a Stone space (see Theorem 2.1 for the precise formulation).

• The effective descent morphisms in the categories of sets and of Stone spaces are
just surjections.

It is still the main purpose of the paper, although it turned out that:

• Not all pullbacks exist in C. Therefore the definition of an effective descent morphism
p in C should include the requirement: all pullbacks along p must exist (see Definition
3.2).

• When p is surjective, that requirement holds if and only if p is a fibration in a
suitable sense (see Definition 2.2), which is very different from what is happening
in the situations studied by H. Herrlich [1], and which makes the descent problem
much easier. In a somewhat different situation, this is made clear in [3].

• The surjectivity requirement does not create any problem since it is independently
forced by the reflection of isomorphisms by the pullback functor along an effective
descent morphism.
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Received by the editors 2008-07-10 and, in revised form, 2008-11-12.
Published on 2008-11-15 in the Tholen Festschrift.
2000 Mathematics Subject Classification: 18B30, 18A25, 18A20.
Key words and phrases: comma categories, effective descent, effective F-descent.
c© George Janelidze1 and Manuela Sobral2, 2008. Permission to copy for private use granted.

182



DESCENT FOR COMPACT 0-DIMENSIONAL SPACES 183

• Therefore the problem of describing effective descent morphisms in C has an easy
solution: Theorem 3.3 says that they are the same as the surjective fibrations.

• However, this suggests a new question, namely, what are the effective descent mor-
phisms with respect to fibrations? Fortunately there is a complete answer again:
they are all surjections (Theorem 3.1).

• In particular, even though the spaces we consider are not necessarily Hausdorff
spaces, which prevents their convergence relations to be maps, our characterization
of their effective descent morphisms avoids using the Reiterman-Tholen characteri-
zation of effective descent morphisms in the category of all topological spaces [4].

Accordingly, the paper is organized as follows:
Section 1 contains preliminary categorical observations with no topology involved.

The ground category C there is constructed as a full subcategory in the comma category
(S ↓ U), where U : X → S is a pullback preserving functor between categories with
pullbacks, using also a distinguished class E of morphisms in S. This class is also used
to define what we call fibrations in C. The sufficient conditions for a morphism to be an
effective descent morphism (globally or with respect to the class of fibrations) given in
Section 1 will become also necessary in the topological context of Sections 2 and 3.

Section 2 begins by recalling relevant topological concepts, presents the category of
compact 0-dimensional spaces as a special case of C above, introduces fibrations of 0-
dimensional spaces accordingly, and ends by proving that a surjective morphism in C

admits all pullbacks along morphisms with the same codomain if and only if it is a
fibration.

The purpose of Section 3 is to formulate and prove the two main results, namely the
above mentioned Theorems 3.1 and 3.3.

1. Categorical framework

We fix the following data: categories S and X with pullbacks, a pullback preserving functor
U : X → S and a class E of morphisms in S that has the following properties:

• contains all isomorphisms;

• is pullback stable;

• is closed under composition;

• forms a stack (=coincides with its localization), which means that if

· //

u

��

·
v

��
· w

// ·
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is a pullback diagram with w being an effective descent morphism, then u ∈ E ⇒
v ∈ E.

Let C = C[X, S, U, E] be the full subcategory in the comma category (S ↓ U) with
objects all triples A = (A1, eA, A0), in which eA : A1 → U(A0) is in E; accordingly, a
morphism A → B in C is a pair f = (f1, f0), in which f1 : A1 → B1 and f0 : A0 → B0 are
morphisms in S and X respectively,

A1
eA //

f1

��

U(A0)

U(f0)
��

B1 eB

// U(B0)

such that U(f0)eA = eBf1.

1.1. Definition. A morphism f : A → B in (S ↓ U) is said to be a fibration if the
morphism

< f1, eA >: A1 → B1 ×U(B0) U(A0)

is in E.

1.2. Observation. If f : A → B is a fibration, and B is in C, then, since the class E
is pullback stable, A also is in C.

1.3. Proposition. Let

(1.1) D
q //

g

��

A

f

��
E p

// B

be a pullback diagram in (S ↓ U) with p : E → B in C. Then:
(a) If f is a fibration, then so is g.
(b) If g is a fibration, and p1 is an effective descent morphism in S, then f also is a

fibration.
(c) If p is a fibration and A is in C, then D is in C.
(d) If E has the (weak left) cancellation property (e′, e · e′ ∈ E ⇒ e ∈ E) and p1 and

U(p0) are in E and D is in C, then A is in C.
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Proof. Consider the diagram

D1
q1 //

g1

��

d
��4

44
44

44
4

eD

!!DD
DD

DD
DD

DD
DD

DD
DD

DD
A1

f1

��

a

��4
44

44
44

4

eA

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

S
h //

s′ ''OOOOOOOO

s

		��
��
��
��
��
��
�

T

t′
''OOOOOOO

t
		��
��
��
��
��
��
�

U(D0)
U(q0) //

U(g0)

��

U(A0)

U(f0)

��

E1
p1 //

eE

##GGGGGGGGGGGGGGGGG B1

eB

##GGGGGGGGGGGGGGGG

U(E0)
U(p0) // U(B0)

in which:

• the enveloping cube represents the diagram (1.1);

• eEs = U(g0)s
′ and eBt = U(f0)t

′ are pullbacks;

• d =< g1, eD >, a =< f1, eA >, and h = p1 × U(q0) are the suitable induced
morphisms.

Since the front square U(p0)U(g0) = U(f0)U(q0) and the quadrilaterals eEs = U(g0)s
′

and eBt = U(f0)t
′ are pullbacks, so is the quadrilateral p1s = th. Next, since p1g1 = f1q1

and p1s = th are pullbacks, so is hd = aq1. This proves (a).
(b): Since p1 is an effective descent morphism and p1s = th is a pullback, h also is an

effective descent morphism ([5], Theorem 3.1). Since hd = aq1 is a pullback, this proves
(b).

For (c) and (d), in order to use the same observations, let us “turn the diagram (1.1)
around the diagonal connecting D and B”, i.e. let us reformulate (c) and (d) as follows:

(c′) If f is a fibration and E is in C, then D is in C.
(d′) If f1 and U(f0) are in E and D is in C, then E is in C.

Proof of (c′):

• Since f is a fibration, a is in E.

• Since E is in C and eEs = U(g0)s
′ is a pullback, s′ is in E.

• Since a and s′ are in E, so is eD, i.e. D is in C.
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Proof of (d′):

• Since f1 and U(f0) are in E, so are g1 and U(g0).

• Since g1, U(g0) and eD are in E, the cancellation property of (d′) implies that eE is
in E, as desired.

From Observation 1.2 and Proposition 1.3(a) we obtain:

1.4. Corollary. The category C is closed in (S ↓ U) under pullbacks along fibrations;
that is, if (1.1) is a pullback diagram in (S ↓ U) with f in C and p being a fibration in C,
then it is a pullback diagram in C.

When S has coequalizers of equivalence relations, all effective descent morphisms in
S are regular epimorphisms. Using this fact it is easy to show that if p : E → B is a
morphism in (S ↓ U), for which p0 and p1 are effective descent morphisms in X and in S

respectively, then p itself is an effective descent morphism. After that, using Proposition
1.3 and Corollary 1.4, we obtain:

1.5. Proposition. If S has coequalizers of equivalence relations and p : E → B is
a morphism in C, for which p0 and p1 are effective descent morphisms in X and in S

respectively, then
(a) p is an effective F-descent morphism in C, where F is the class of all fibrations (in

C).
(b) if p is a fibration, then it is an effective descent morphism in C.

2. The category of compact 0-dimensional spaces

For a topological space A, we shall write Open(A) for the set of open subsets in A and
Clopen(A) for the set of those subsets in A that are clopen, i.e. closed and open at the
same time. Let us recall the definitions of the following full subcategories of the category
Top of topological spaces:

– Top0, the category of T0-spaces; a space A is a T0-space if, for every two distinct
points a and a′ in A, either there exists U ∈ Open(A) with a ∈ U and a′ /∈ U , or there
exists U ∈ Open(A) with a′ ∈ U and a /∈ U . Note that Top0 is a reflective subcategory in
Top, with the reflection given by

(2.1) A 7→ A0 = A/ ∼, where a ∼ a′ ⇔ ∀U∈Open(A)(a ∈ U ⇔ a′ ∈ U).

– 0-DimTop, the category of 0-dimensional spaces; a space is 0-dimensional if it has
a basis of clopen subsets, i.e. if every open subset in it can be presented as a union of
clopen subsets.
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– The category of compact 0-dimensional spaces, which is the category of interest in
this paper, will be simply denoted by C; hence

C = CompTop ∩ 0-DimTop

where CompTop is the category of compact spaces.
– Stone, the category of Stone spaces = spaces that occur as spectra of Boolean

algebras = spaces that occur as limits of finite discrete spaces = compact Hausdorff 0-
dimensional spaces = compact spaces A, such that for every two distinct points a and a′ in
A, there exists
U ∈ Clopen(A) with a ∈ U and a′ /∈ U . The T0-reflection (2.1) of course induces a
reflection

(2.2) C 7→ Stone,A 7→ A0.

The following theorem is a reformulation of well-known results (see also Example 3.3 in
[2] for the same result for arbitrary topological spaces, which, together with other similar
results was mentioned already in [1]):

2.1. Theorem. The category C of compact 0-dimensional spaces is equivalent to the
category C[X, S, U, E] (see Section 1), for X = Stone, S = Set, U : Stone → Set, U being
the usual forgetful functor into the category of sets and E being the class of all surjective
maps. Under this equivalence a space A corresponds to the triple (A1, eA, A0), in which
A1 is the underlying set of A, A0 is the T0-reflection of A, and eA : A1 → U(A0) is the
canonical map (and we write again A = (A1, eA, A0)). Conversely, the space corresponding
to a triple (A1, eA, A0) has A1 as its underlying set and the inverse eA-images of open sets
in A0 as its open subsets.

According to this theorem and Definition 1.1, we introduce:

2.2. Definition. A morphism f : A → B in C is said to be a fibration if so is the
corresponding morphism in C[X, S, U, E] of Theorem 2.1, i.e. if for every a in A and b in
B with f(a) ∼ b there exists a′ in A with a′ ∼ a and f(a′) = b.

After that Proposition 1.3 helps to prove:

2.3. Theorem. Let p : E → B be a morphism in C. If p is surjective, then the following
conditions are equivalent:

(a) every morphism f : A → B in C admits pullback along p;
(b) p is a fibration.

Proof. (a)⇒(b): Suppose p is not a fibration. This means that there are e in E and b
in B with

(2.3) p(e) ∼ b and (x ∈ p−1(b) ⇒ ∃Ux∈Clopen(E)(x ∈ Ux and e /∈ Ux)).

We choose Ux as in (2.3) for each x in p−1(b), and consider two cases:
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Case 1. There exists a finite subset Y in X, for which

p−1(b) ⊆
⋃
x∈Y

Ux.

Case 2. There is no such Y .
In Case 1 we take

V =
⋂
x∈Y

(E \ Ux),

and observe that since Y is finite, V is clopen; and of course V contains e and has empty
intersection with p−1(b). After that we take

A = {n−1|n = 1, 2, 3, · · · } ∪ {0}

with the topology induced from the real line, and define f : A → B by f(n−1) = b and
f(0) = p(e). Suppose the pullback of p and f does exist, and let us write it as the diagram
(1.1). Using the universal property of this pullback with respect to maps from a one-point
space, we easily conclude that it is preserved by the forgetful functor into the category of
sets. In particular, since V contains e and has empty intersection with p−1(b), we have

q(g−1(E \ V )) = {n−1|n = 1, 2, 3, · · · }.

This is a contradiction since g−1(E \ V ) being clopen in D must be compact in it,
while {n−1|n = 1, 2, 3, · · · } is not compact in A.

In Case 2 we take A = {a} to be a one-point space, and define f : A → B by f(a) = b.
Then, using (1.1) as above, we observe that g(D) = p−1(b) – which is again a contradiction
because now p−1(b) is not compact.

That is, whenever p is not a fibration, there exists a morphism f : A → B in C that
has no pullback along p.

(b)⇒(a) follows from Corollary 1.4 and Theorem 2.1.

3. F-Descent and global descent

Let C be as in Section 2.

3.1. Theorem. The following conditions on a morphism p : E → B in C are equivalent:
(a) p is an effective F-descent morphism in C;
(b) p is a surjective map.

Proof. (a)⇒(b): Suppose p is not surjective, and choose b ∈ B \ p(E). Let A be the
equivalence class of b with respect to the equivalence relation ∼ (see (2.1)). We take

A′ = (A \ {b}) ∪ {b} × {1, 2}

equipped with the indiscrete topology, and define α : A′ → A by α(a) = a, for a ∈ A, and
α(b, 1) = b = α(b, 2); then α becomes a morphism (A′, αf) → (A, f), where f : A → B is
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the inclusion map, in the category F(B) of fibrations over B (in C). Since the image of
this morphism under the pullback functor p∗ : F (B) → F (E) is an isomorphism, p cannot
be an effective F-descent morphism in C.

(b)⇒(a): Let (p1, p0) : (E1, eE, E0) → (B1, eB, B0) be the morphism in C[X, S, U, E]
corresponding to p under the category equivalence of Theorem 2.1, where X = Stone, S =
Set, U : Stone → Set being the usual forgetful functor into the category of sets, and E
being the class of all surjective maps. Then p1 is surjective and this makes p0 surjective
too. Since in both Stone and Set surjections are effective descent morphisms, this makes
p an effective F-descent morphism by Proposition 1.5(a).

Since C does not admit some pullbacks, we define effective (global-)descent morphisms
in C as follows:

3.2. Definition. A morphism p : E → B in C is said to be an effective descent mor-
phism if every morphism f : A → B in C admits pullback along p, and the pullback
functor

p∗ : (C ↓ B) → (C ↓ E)

is monadic.

3.3. Theorem. The following conditions on a morphism p : E → B in C are equivalent:
(a) p is an effective descent morphism;
(b) p is a surjective fibration.

Proof. (a)⇒(b): Surjectivity can be proved in the same way as in the proof of Theorem
3.1 (or even much simpler by considering the empty and one-point space instead of A′

and A there). The fact that p must be a fibration follows from the implication (a)⇒(b)
of Theorem 2.3.

(b)⇒(a) can be deduced from Proposition 1.5(b) and Theorem 2.1 with the same
arguments as in the proof of Theorem 3.1(b)⇒(a).
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