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RELATIVE INJECTIVITY AS COCOMPLETENESS
FOR A CLASS OF DISTRIBUTORS

Dedicated to Walter Tholen on the occasion of his sixtieth birthday

MARIA MANUEL CLEMENTINO AND DIRK HOFMANN

Abstract. Notions and techniques of enriched category theory can be used to study
topological structures, like metric spaces, topological spaces and approach spaces, in
the context of topological theories. Recently in [D. Hofmann, Injective spaces via ad-
junction, arXiv:math.CT/0804.0326] the construction of a Yoneda embedding allowed to
identify injectivity of spaces as cocompleteness and to show monadicity of the category
of injective spaces and left adjoints over Set. In this paper we generalise these results,
studying cocompleteness with respect to a given class of distributors. We show in par-
ticular that the description of several semantic domains presented in [M. Escardó and B.
Flagg, Semantic domains, injective spaces and monads, Electronic Notes in Theoretical
Computer Science 20 (1999)] can be translated into the V-enriched setting.

Introduction

This work continues the research line of previous papers, aiming to use categorical tools in
the study of topological structures. Indeed, the perspective proposed in [3, 7] of looking
at topological structures as (Eilenberg-Moore) lax algebras and, simultaneously, as a
monad enrichment of V-enriched categories, has shown to be very effective in the study of
special morphisms – like effective descent and exponentiable ones – at a first step [4, 5],
and recently in the study of (Lawvere/Cauchy-)completeness and injectivity [6, 12, 11].
The results we present here complement this study of injectivity. More precisely, in
the spirit of Kelly-Schmitt [13] we generalise the results of [11], showing that injectivity
and cocompleteness – when considered relative to a class of distributors – still coincide.
Suitable choices of this class of distributors allow us to recover, in the V-enriched setting,
results on injectivity of Escardó-Flagg [8].

The starting point of our study of injectivity is the notion of distributor (or bimodule,
or profunctor), which allowed the study of weighted colimit, presheaf category, and the
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Yoneda embedding. It was then a natural step to ‘relativize’ these ingredients and to con-
sider cocompleteness with respect to a class of distributors Φ. Namely, we introduce the
notion of Φ-cocomplete category, we construct the Φ-presheaf category, and we prove that
Φ-cocompleteness is equivalent to the existence of a left adjoint of the Yoneda embedding
into the Φ-presheaf category. Furthermore, the class Φ determines a class of embeddings
so that the injective T-categories with respect to this class are precisely the Φ-cocomplete
categories. This result links our work with [8], where the authors study systematically
semantic domains and injectivity characterisations with the help of Kock-Zöberlein mon-
ads.

1. The Setting

The topological structures we study throughout are those which are describable as lax
(Eilenberg-Moore) algebras, or as (T,V)-enriched categories, for a suitable (thin) category
V and a suitable monad T in Set, with a lax extension to V-Rel. Recall from [1] that
topological spaces viewed as convergence structures provide the prime example of such
a situation, where T = U is the ultrafilter monad and V = 2 the two-element Boolean
algebra. Our study could be based on the setting described by Clementino-Tholen in
[7], but we chose to use the slightly different approach of Hofmann [10] – the so-called
topological theories –, which encodes the lax extension of T in a T-algebra structure on
V.

Throughout this paper we consider a (strict) topological theory as introduced in [10].
Such a theory T = (T,V, ξ) consists of:

(1). a cocomplete monoidal closed ordered set V, with tensor ⊗ and unit k, and we
denote by hom the right adjoint to ⊗ (that is, the internal hom),

(2). a Set-monad T = (T, e,m), where T and m satisfy (BC); that is, T sends pullbacks
to weak pullbacks and each naturality square of m is a weak pullback, and

(3). a T-algebra structure ξ : TV −→ V on V such that:

(a) ⊗ : V × V −→ V and k : 1 −→ V, ∗ 7−→ k, are T-algebra homomorphisms
making (V, ξ) a monoid in SetT; that is, the following diagrams

T1

!
��

Tk // TV

ξ
��

1
k
// V

T (V × V)
T (⊗) //

〈ξ·Tπ1,ξ·Tπ2〉
��

TV

ξ

��
V × V ⊗

// V

are commutative;

(b) For each set X, ξX : VX −→ VTX , (X
ϕ−→ V) 7−→ (TX

Tϕ−→ TV
ξ−→ V), defines

a natural transformation (ξX)X : P −→ PT : Set −→ Ord.
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Here P : Set −→ Ord is the V-powerset functor defined as follows. We put PX = VX

with the pointwise order. Each map f : X −→ Y defines a monotone map Vf : VY −→
VX , ϕ 7−→ ϕ · f . Since Vf preserves all infima and all suprema, it has a left adjoint Pf .
Explicitly, for ϕ ∈ VX we have Pf(ϕ)(y) =

∨
{ϕ(x) | x ∈ X, f(x) = y}.

1.1. Examples. Throughout this paper we will keep in mind the following topological
theories:

(1). The identity theory I = (1,V, 1V), for each quantale V, where 1 = (Id, 1, 1) denotes
the identity monad.

(2). U2 = (U, 2, ξ2), where U = (U, e,m) denotes the ultrafilter monad and ξ2 is essen-
tially the identity map.

(3). UP+
= (U,P+ , ξP+ ) where P+ = ([0,∞]op,+, 0) and

ξP+ : UP+ −→ P+ , x 7−→ inf{v ∈ P+ | [0, v] ∈ x}.

(4). The word theory (L,V, ξ⊗), for each quantale V, where L = (L, e,m) is the word
monad and

ξ⊗ : LV −→ V.

(v1, . . . , vn) 7−→ v1 ⊗ . . .⊗ vn
() 7−→ k

As we mentioned at the beginning of this section, every theory T = (T,V, ξ) encom-
passes several interesting ingredients.

I. The category V-Rel, with sets as objects and V-relations (also called V-matrices, see [2])
r : X × Y −→ V as morphisms, is a locally complete locally ordered bicategory. We use
the usual notation for relations, denoting the V-relation r : X × Y −→ V by r : X−→7 Y .
Since every map f : X −→ Y can be thought of as a V-relation f : X × Y −→ V through
its graph, there is an injective on objects and faithful functor

Set −→ V-Rel,

unless V is degenerate (that is, k is the bottom element). Moreover, V-Rel has an involution

(−)◦ : V-Rel −→ V-Rel,

assigning to r : X−→7 Y the V-relation r◦ : Y−→7 X, with r◦(y, x) := r(x, y). For each
V-relation r : X−→7 Y , the maps

(−) · r : V-Rel(Y, Z) −→ V-Rel(X,Z) and r · (−) : V-Rel(Z,X) −→ V-Rel(Z, Y )
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preserve suprema; hence they have right adjoints, the so-called extensions and liftings,
respectively,

(−) •− r : V-Rel(X,Z) −→ V-Rel(Y, Z) and r −• (−) : V-Rel(Z, Y ) −→ V-Rel(Z,X) :

X
�r //

_t
��

Z
>~~~~

t•−r~~~~~~

X
�r // Z

Y Y

_t

OO

�AAAAr−•t

``AAAA

II. The Set-functor T extends to a 2-functor T
ξ

: V-Rel −→ V-Rel . To each V-relation
r : X × Y −→ V, T

ξ
assigns a V-relation T

ξ
r : TX × TY −→ V, such that, for every

(order-preserving) map s : TX × TY −→ V,

ξ · Tr ≤ s · 〈Tπ1, Tπ2〉 ⇔ T
ξ
r ≤ s :

TX × TY

T
ξ
r

""

≤

T (X × Y )

〈Tπ1,Tπ2〉

OO

ξ·Tr
// V

In other words, regarding TX, TY and TX × TY as discrete ordered sets, T
ξ
r is the left

Kan extension in Ord of ξ · Tr along 〈Tπ1, Tπ2〉. Hence, for x ∈ TX and y ∈ TY ,

T
ξ
r(x, y) =

∨{
ξ · Tr(w)

∣∣∣ w ∈ T (X × Y ), Tπ1(w) = x, Tπ2(w) = y
}
.

This 2-functor T
ξ

preserves the involution in the sense that T
ξ
(r◦) = T

ξ
(r)◦ (and we write

T
ξ
r◦) for each V-relation r : X−→7 Y , m becomes a natural transformation m : T

ξ
T
ξ
−→ T

ξ

and e an op-lax natural transformation e : Id −→ T
ξ
, that is, eY · r ≤ T

ξ
r · eX for all

r : X−→7 Y in V-Rel.

III. A V-relation of the form α : TX−→7 Y , called a T-relation and denoted by α :
X −⇀7 Y , will play an important role here. Given two T-relations α : X −⇀7 Y and
β : Y −⇀7 Z, their Kleisli convolution β ◦ α : X −⇀7 Z is defined as

β ◦ α = β · T
ξ
α ·m◦X .

This operation is associative and has the T-relation e◦X : X −⇀7 X as a lax identity:

a ◦ e◦X = a and e◦Y ◦ a ≥ a,

for any a : X −⇀7 Y .
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IV. T-relations satisfying the usual unit and associativity categorical rules define T-
categories: a T-category is a pair (X, a) consisting of a set X and a T-relation a : X −⇀7 X
on X such that

e◦X ≤ a and a ◦ a ≤ a.

Expressed elementwise, these conditions become

k ≤ a(eX(x), x) and T
ξ
a(X, x)⊗ a(x, x) ≤ a(mX(X), x)

for all X ∈ TTX, x ∈ TX and x ∈ X. A function f : X −→ Y between T-categories
(X, a) and (Y, b) is a T-functor if f · a ≤ b · Tf , which in pointwise notation reads as

a(x, x) ≤ b(Tf(x), f(x))

for all x ∈ TX, x ∈ X. The category of T-categories and T-functors is denoted by

T-Cat.

V. In particular, the internal hom in V, combined with the T-algebra structure ξ, induces
a T-category structure in V,

homξ : TV × V −→ V, (v, v) 7−→ hom(ξ(v), v).

VI. The forgetful functor O : T-Cat −→ Set, (X, a) 7−→ X, is topological, hence it has a
left and a right adjoint. In particular, the free T-category on X is given by (X, e◦X).

VII. A V-relation ϕ : X −⇀7 Y between T-categories X = (X, a) and Y = (Y, b) is a
T-distributor, denoted as ϕ : X −⇀◦ Y , if ϕ ◦ a ≤ ϕ and b ◦ ϕ ≤ ϕ. Note that we always
have ϕ ◦ a ≥ ϕ and b ◦ ϕ ≥ ϕ, so that the T-distributor conditions above are in fact
equalities. T-categories and T-distributors form a 2-category, denoted by

T-Mod,

with Kleisli convolution as composition and with the 2-categorical structure inherited
from V-Rel.

VIII. Each T-functor f : (X, a) −→ (Y, b) induces an adjunction

f∗ a f ∗

in T-Mod, with f∗ : X −⇀7 Y and f ∗ : Y −⇀7 X defined as f∗ = b · Tf and f ∗ = f ◦ · b
respectively. In fact, these assignments are functorial and therefore define two functors:

(−)∗ : T-Catco −→ T-Mod and (−)∗ : T-Catop −→ T-Mod,
X 7−→ X∗ = X X 7−→ X∗ = X
f 7−→ f∗ = b · Tf f 7−→ f ∗ = f ◦ · b

A T-functor f : X −→ Y is called fully faithful if f ∗ ◦ f∗ = 1∗X , while it is called dense
if f∗ ◦ f ∗ = 1∗Y . Note that f is fully faithful if and only if, for all x ∈ TX and x ∈ X,
a(x, x) = b(Tf(x), f(x)).
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IX. For a T-distributor α : X −⇀◦ Y , the composition function − ◦ α has a right adjoint

(−) ◦ α a (−) ◦− α

where, for a given T-distributor γ : X −⇀◦ Z, the extension γ ◦− α : Y −⇀◦ Z is constructed
in V-Rel as the extension γ ◦− α = γ •− (T

ξ
α ·m◦X).

TX
�γ //

_m◦X
��

Z.

TTX

_T
ξ
α

��
TY

J

EE

The following rules are easily checked.

1.2. Lemma.

(1). If α is a right adjoint, then α ◦ (ϕ ◦− ψ) = (α ◦ ϕ) ◦− ψ.

(2). If γ a δ, then (α ◦− β) ◦ γ = α ◦− (δ ◦ β).

(3). If γ a δ, then (α ◦ γ) ◦− β = α ◦− (β ◦ δ).

X. It is also important the interplay of several functors relating these structures: Eilenberg-
Moore algebras, T-categories and V-categories. The inclusion functor SetT ↪→ T-Cat, given
by regarding the structure map α : TX −→ X of an Eilenberg-Moore algebra (X,α) as a
T-relation α : X −⇀7 X, has a left adjoint, constructed à la Čech-Stone compactification
in [3].

SetT � � ⊥ // T-Cat
uu

We denote by |X| the free Eilenberg-Moore algebra (TX,mX) considered as a T-category.
Making use of the identity e : Id −→ T of the monad, to each T-category X = (X, a)

we assign a V-category structure on X, a · eX : X−→7 X. This correspondence defines
a functor S : T-Cat −→ V-Cat, which has also a left adjoint A : V-Cat −→ T-Cat, with
A(X, a) := (X, e◦X · Tξr).

T-Cat ⊥
S

// V-Cat.

A
tt

Furthermore, making now use of the multiplication m : T 2 −→ T of the monad, one
can define a functor

T-Cat
M // V-Cat
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which sends a T-category (X, a) to the V-category (TX, T
ξ
a ·m◦X).

We can now define the process of dualizing a T-category as the composition of the
following functors

T-Cat

M
��

( )op

// T-Cat

V-Cat
( )op

// V-Cat

A

OO

that is, the dual of a T-category (X, a) is defined as

Xop = A(M(X)op),

which is a structure on TX. If T is the identity monad, then Xop is indeed the dual
V-category of X.

XI. The tensor product on V can be transported to T-Cat by putting

(X, a)⊗ (Y, b) = (X × Y, c),

with
c(w, (x, y)) = a(Tπ1(w), x)⊗ b(Tπ2(w), y),

where w ∈ T (X × Y ), x ∈ X, y ∈ Y . The T-category E = (1, k) is a ⊗-neutral
object, where 1 is a singleton set and k : T1 × 1 −→ V the constant relation with value
k ∈ V. For each set X, the functor |X| ⊗ (−) : T-Cat −→ T-Cat has a right adjoint
(−)|X| : T-Cat −→ T-Cat. Explicitly, the structure J−,−K on V|X| is given by the formula

Jp, ψK =
∧

q∈T (|X|×V|X|)
q7−→p

hom(ξ · T ev(q), ψ(mX · Tπ1(q))),

for each p ∈ TV|X| and ψ ∈ V|X|.

1.3. Theorem. [6] For T-categories (X, a) and (Y, b), and a T-relation ψ : X −⇀7 Y ,
the following assertions are equivalent.

(i). ψ : (X, a)−⇀◦ (Y, b) is a T-distributor.

(ii). Both ψ : |X| ⊗ Y −→ V and ψ : Xop ⊗ Y −→ V are T-functors.

XII. Hence, each T-distributor ϕ : X −⇀◦ Y provides a T-functor

pϕq : Y −→ V|X|

which factors through the embedding PX ↪→ V|X|, where

PX = {ψ ∈ V|X| | ψ : X −⇀◦ (1, e◦1)}
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is the T-category of contravariant presheafs on X:

Y
pϕq
//

pϕq
!!CCCCCCCC V|X|

PX
� ?

OO

In particular, for each T-category X = (X, a), the V-relation a : TX × X −→ V is a
T-distributor a : X −⇀◦ X, and therefore we have the Yoneda functor

y
X

= paq : X −→ PX.

1.4. Theorem. [11] Let ψ : X −⇀◦ Z and ϕ : X −⇀◦ Y be T-distributors. Then, for all
z ∈ TZ and y ∈ Y ,

JT pψq(z), pϕq(y)K = (ϕ ◦− ψ)(z, y).

1.5. Corollary. [11] For each ϕ ∈ X̂ and each x ∈ TX, ϕ(x) = JT y
X

(x), ϕK, that is,

(y
X

)∗ : X −⇀◦ X̂ is given by the evaluation map ev : TX × X̂ −→ V. As a consequence,

y
X

: X −→ X̂ is fully faithful.

XIII. Transporting the order-structure on hom-sets from T-Mod to T-Cat via the functor
(−)∗ : T-Catop −→ T-Mod, T-Cat becomes a 2-category. That is, for T-functors f, g :
X −→ Y we define

f ≤ g in T-Cat :⇔ f ∗ ≤ g∗ in T-Mod ⇔ g∗ ≤ f∗ in T-Mod.

We call f, g : X −→ Y equivalent, and write f ∼= g, if f ≤ g and g ≤ f . Hence, f ∼= g if
and only if f ∗ = g∗ if and only if f∗ = g∗. A T-category X is called separated (see [12] for
details) whenever f ∼= g implies f = g, for all T-functors f, g : Y −→ X with codomain
X. One easily verifies that the T-category V = (V, homξ) is separated, and so is each
T-category of the form PX for a T-category X. The full subcategory of T-Cat consisting
of all separated T-categories is denoted by

T-Catsep.

The 2-categorical structure on T-Cat allows us to consider adjoint T-functors: T-functor
f : X −→ Y is left adjoint if there exists a T-functor g : Y −→ X such that 1X ≤ g · f
and 1Y ≥ f · g. Considering the corresponding T-distributors, f is left adjoint to g if and
only if g∗ a f∗, that is, if and only if f∗ = g∗:

f a g in T-Cat ⇔ g∗ a f ∗ in T-Mod ⇔ f∗ = g∗.

A more complete study of this subject can be found in [10, 11].
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2. The results

In the sequel we consider a class Φ of T-distributors subject to the following axioms.

(Ax 1). For each T-functor f , f ∗ ∈ Φ.

(Ax 2). For all ϕ ∈ Φ and all T-functors f : A −→ X we have

f ∗ ◦ ϕ ∈ Φ, ϕ ◦ f ∗ ∈ Φ, f∗ ∈ Φ⇒ ϕ ◦ f∗ ∈ Φ;

whenever the compositions are defined.

(Ax 3). For all ϕ : X −⇀◦ Y ∈ T-Mod,

(∀y ∈ Y . y∗ ◦ ϕ ∈ Φ)⇒ ϕ ∈ Φ

where y∗ is induced by y : 1 −→ Y , ∗ 7−→ y.

Condition (Ax 2) requires that Φ is closed under certain compositions. In fact, in most
examples Φ will be closed under arbitrary compositions. Furthermore, there is a largest
and a smallest such class of T-distributors, namely the class P of all T-distributors and
the class R = {f ∗ | f : X −→ Y } of all representable T-distributors.

We call a T-functor f : X −→ Y Φ-dense if f∗ ∈ Φ. Certainly, if f is a left adjoint
T-functor, with f a g, then f∗ = g∗ ∈ Φ and therefore f is Φ-dense. A T-category X is
called Φ-injective if, for all T-functors f : A −→ X and fully faithful Φ-dense T-functors
i : A −→ B, there exists a T-functor g : B −→ X such that g · i ∼= f . Furthermore, X is
called Φ-cocomplete if each weighted diagram

Y
h //

◦ϕ
�

X

Z

with ϕ ∈ Φ has a colimit g ∼= colim(ϕ, h) : Z −→ X. A T-functor f : X −→ Y is
Φ-cocontinuous if f preserves all existing Φ-weighted colimits. Note that in both cases it
is enough to consider diagrams where h = 1X . We denote by

T-CocontΦ

the 2-category of all Φ-cocomplete T-categories and Φ-cocontinuous T-functors, and by
T-CocontΦ

sep its full subcategory of all Φ-cocomplete and separated T-categories.

If Φ is the class P of all T-distributors, then T-CocontΦ is the category of cocomplete
T-categories and left adjoint T-functors (as shown in [11, Prop. 2.12]).
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2.1. Lemma. Consider the (up to isomorphism) commutative triangle

X

f
��

h
∼=   @@@@@@@

Y g
// Z

of T-functors. Then the following assertions hold.

(1). If g and f are Φ-dense, then so is h.

(2). If h is Φ-dense and g is fully faithful, then f is Φ-dense.

(3). If h is Φ-dense and f is dense, then g is Φ-dense.

Proof. The proof is straightforward: (1) h∗ = g∗ ◦ f∗ ∈ Φ by (Ax 2), since g∗, f∗ ∈ Φ; (2)
f∗ = g∗ ◦ g∗ ◦ f∗ = g∗ ◦ h∗ ∈ Φ by (Ax 2), since h∗ ∈ Φ; (3) g∗ = g∗ ◦ f∗ ◦ f ∗ = h∗ ◦ f ∗ ∈ Φ
by (Ax 2), since h∗ ∈ Φ.

We put now
ΦX = {ψ ∈ PX | ψ ∈ Φ}

considered as a subcategory of PX. We have the restriction

yΦ
X

: X −→ ΦX

of the Yoneda map, and each ψ ∈ ΦX is a Φ-weighted colimit of representables (see [11,
Proposition 2.5]).

2.2. Lemma. The following assertions hold.

(1). yΦ
X

: X −→ ΦX is Φ-dense.

(2). For each T-distributor ϕ : X −⇀◦ Y , ϕ ∈ Φ if and only if pϕq : Y −→ PX factors
through the embedding ΦX ↪→ PX.

Proof. By the Yoneda Lemma (Corollary 1.5), for any ψ ∈ ΦX we have ψ∗ ◦ (yΦ
X

)∗ =
ψ ∈ Φ, therefore (yΦ

X
)∗ ∈ Φ by (Ax 3) and the assertion (1) follows. To see (2), just

observe that pϕq(y) = y∗ ◦ ϕ, and use again (Ax 3).

Our next result extends Theorem 2.6 of [11]. We omit its proof because it uses exactly
the same arguments.
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2.3. Theorem. The following assertions are equivalent, for a T-category X.

(i). X is Φ-injective.

(ii). yΦ
X

: X −→ ΦX has a left inverse SupΦ
X : ΦX −→ X.

(iii). yΦ
X

: X −→ ΦX has a left adjoint SupΦ
X : ΦX −→ X.

(iv). X is Φ-cocomplete.

Recall from [11] that, for a given T-functor f : X −→ Y , we have an adjoint pair of
T-functors Pf a f−1 where

Pf : PX −→ PY and f−1 : PY −→ PX.
ψ 7−→ ψ ◦ f ∗ ψ 7−→ ψ ◦ f∗

By (Ax 1) and (Ax 2), the T-functor Pf : PX −→ PY restricts to a T-functor

Φf : ΦX −→ ΦY.

On the other hand, f−1 : PY −→ PX restricts to f−1 : ΦY −→ ΦX provided that f is
Φ-dense.

2.4. Proposition. The following conditions are equivalent for a T-functor f : X −→
Y .

(i). f is Φ-dense.

(ii). Φf is left adjoint.

(iii). Φf is Φ-dense.

Proof. (i) ⇒ (ii): If f is Φ-dense, then Φf a f−1 : ΦY −→ ΦX defined above. (ii)
⇒ (iii): If Φf a g, then (Φf)∗ = g∗ ∈ Φ and Φf is Φ-dense. (iii) ⇒ (i): Consider the
diagram

X
yΦ
X //

f

��

ΦX

Φf

��
Y

yΦ
Y

// ΦY

If Φf is Φ-dense, then yΦ
Y
·f = Φf · yΦ

X
is Φ-dense, and so by 2.1(2) f is Φ-dense because

yΦ
Y

is fully faithful.
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In particular, for each T-category X, Φ yΦ
X

: ΦX −→ ΦΦX has a right adjoint, (yΦ
X

)−1.
We show next that (yΦ

X
)−1 has also a right adjoint, yΦ

ΦX
: ΦX −→ ΦΦX, so that:

Φ yΦ
X
a (yΦ

X
)−1 = SupΦ

ΦX a yΦ
ΦX

.

2.5. Proposition. For each T-category X, ΦX is Φ-cocomplete where SupΦ
ΦX = (yΦ

X
)−1.

Proof. Since yΦ
X

is Φ-dense, we may define SupΦ
ΦX := (yΦ

X
)−1. We have to show that

SupΦ
ΦX is a left inverse for yΦ

ΦX
; that is, (yΦ

X
)−1 · yΦ

ΦX
= 1ΦX : for each ψ ∈ ΦX, ((yΦ

X
)−1 ·

yΦ
ΦX

)(ψ) = ψ∗ ◦ (yΦ
X

)∗ = ψ.

In [11] we constructed Pf as the colimit Pf ∼= colim((y
X

)∗, y
Y
·f), and a straightfor-

ward calculation shows that also Φf ∼= colim((yΦ
X

)∗, yΦ
Y
·f), for each T-functor f : X −→

Y . To see this, we consider the commutative diagrams

X
yΦ
X //

f

��

yX

##
ΦX,

iX //

Φf

��

PX
Pf
��

Y
yΦ
Y

//

yY

;;ΦY
iY
// PY

and obtain

(Φf)∗ = i∗Y ◦ iY ∗ ◦ (Φf)∗

= i∗Y ◦ (Pf)∗ ◦ iX∗
= i∗Y ◦ ((y

Y ∗ ◦ f∗) ◦− y
X∗) ◦ iX∗ since Pf ∼= colim((y

X
)∗, y

Y
·f)

= (i∗Y ◦ y
Y ∗ ◦ f∗) ◦− (iX

∗ ◦ y
X∗) by Lemma 1.2

= (yΦ
Y ∗ ◦ f∗) ◦− yΦ

X∗.

2.6. Proposition. Let f : X −→ Y a T-functor where X and Y are Φ-cocomplete.

(1). The following assertions are equivalent.

(a) f is Φ-cocontinuous.

(b) We have f · SupΦ
X
∼= SupΦ

Y ·Φf .

ΦX
Φf //

SupΦ
X
��

∼=

ΦY

SupΦ
Y

��
X

f
// Y

(2). f is Φ-cocontinuous and Φ-dense if and only it is a left adjoint.
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Proof. (1) (a) ⇒ (b): Recall that

X
1X //

◦(yΦ
X)∗
�

X

ΦX
(SupΦ

X)∗=1X◦−(yΦ
X)∗

==

Hence
(f · SupΦ

X)∗ = f∗ ◦− (yΦ
X

)∗
= ((SupΦ

Y )∗ ◦ (yΦ
Y

)∗ ◦ f∗) ◦− (yΦ
X

)∗
= (SupΦ

Y )∗ ◦ ((yΦ
Y

)∗ ◦ f∗ ◦− (yΦ
X

)∗)
= (SupΦ

Y )∗ ◦ Φf∗.

(b)⇒ (a): Consider

X ◦
1∗X /

◦ϕ
�

X
f // Y

A
(SupΦ

X · pϕq)∗

>>

Then
(f · SupΦ

X · pϕq) = SupΦ
Y ·Φf · pϕq

= SupΦ
Y · pϕ · f ∗q

∼= colim(ϕ, f)

(2) If f is Φ-cocontinuous and Φ-dense, from the commutative diagram of (1)(b) we
have f a SupΦ

X ·f−1 · yΦ
Y

since f · SupΦ
X = SupΦ

Y ·Φf a f−1 · yΦ
Y

and SupΦ
X · yΦ

X
= 1X . The

converse is trivially true.

2.7. Corollary. ΦX is closed in PX under Φ-weighted colimits.

Proof. We show that the inclusion functor i : ΦX −→ PX is Φ-cocontinuous, which, by
the proposition above, is equivalent to the commutativity of the diagram

ΦΦX
Φi //

SupΦ
ΦX
��

ΦPX
SupΦ
PX

��
ΦX

i
// PX.

In Proposition 2.5 we observed SupΦ
ΦX = (yΦ

X
)−1, and from Theorem 2.3 and [11, The-

orem 2.8] follows that SupΦ
PX is the restriction of y−1

X
: PPX −→ PX to ΦPX. Let

Ψ ∈ ΦΦX. Then

i · (yΦ
X

)−1(Ψ) = Ψ ◦ (yΦ
X

)∗

and

y−1
X
·Φi(Ψ) = y−1

X
(Ψ ◦ i∗) = Ψ ◦ i∗ ◦ (y

X
)∗ = Ψ ◦ (yΦ

X
)∗,

and the assertion follows.
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Theorem 2.3 says in particular that, for each T-functor f : A −→ X, Φ-injective
T-category X and fully faithful Φ-dense T-functor i : A −→ B, we have a canonical
extension g : B −→ X of f along i, namely g ∼= colim(i∗, f), giving us an alternative
description of Φf .

2.8. Theorem. Composition with yΦ
X

: X −→ ΦX defines an equivalence

T-CocontΦ(ΦX, Y ) −→ T-Cat(X, Y )

of ordered sets, for each Φ-cocomplete T-category Y .

The series of results above tell us that T-CocontΦ
sep is actually a (non-full) reflective

subcategory of T-Cat, with left adjoint Φ : T-Cat −→ T-CocontΦ
sep. In fact, Φ is a 2-

functor and one verifies as in [11] that the induced monad IΦ = (Φ, yΦ, (yΦ)−1) on T-Cat
is of Kock-Zöberlein type. Theorem 2.3 and Proposition 2.6 imply that T-CocontΦ

sep is
equivalent to the category of Eilenberg-Moore algebras of IΦ.

Finally, we wish to study monadicity of the canonical forgetful functor

T-CocontΦ
sep

G−−−−→ Set.

Certainly,

(a) G has a left adjoint given by the composite

Set
disc−−−−−→ T-Cat

Φ−−−−→ T-CocontΦ
sep,

where disc(X) = (X, e◦X), and disc(f) = f .

In order to prove monadicity of G we will impose, in addition to (Ax 1)-(Ax 3),

(Ax 4). For each surjective T-functor f , f∗ ∈ Φ.

Hence, any bijective f : X −→ Y in T-CocontΦ
sep is Φ-dense and therefore left adjoint. By

[11, Lemma 2.16], f is invertible and we have seen that

(b) G reflects isomorphisms.

In order to conclude that G is monadic, it is left to show that

(c) T-CocontΦ
sep has and G preserves coequaliser of G-equivalence relations

(see, for instance, [15, Corollary 2.7]). To do so, let π1, π2 : R ⇒ X in T-CocontΦ
sep be an

equivalence relation in Set, where π1 and π2 are the projection maps, and let q : X −→ Q
be its coequaliser in T-Cat. The proof in [11, Section 2.6] rests on the observation that

PR
Pπ1 //

Pπ2

// PX
Pq // PQ
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is a split fork in T-Catsep. Naturally, we wish to show that, in our setting,

ΦR
Φπ1 //

Φπ2

// ΦX
Φq // ΦQ

gives rise to a split fork in T-Catsep as well. Since π1, π2 and q are surjective, the T-
functors π1, π2 and q are Φ-dense and therefore we have T-functors q−1 : ΦQ −→ ΦX and
π−1

1 : ΦX −→ ΦR. Furthermore, Φq · q−1 = 1ΦX = Φπ1 · π−1
1 . It is left to show that

q−1 · Φq = Φπ2 · π−1
1 ,

which can be shown with the same calculation as in [11], based on the following proposi-
tion.

2.9. Proposition. Consider the following diagram in T-Cat

R
π1 //
π2

// X
q // Q

with π1, π2 : R ⇒ X in T-CocontΦ
sep, (π1, π2) an equivalence relation in Set, and q : X −→

Q its coequaliser in T-Cat.

(1). If π1, π2 are left adjoints, then q is proper.

(2). The diagram

ΦR
Φπ1 //

Φπ2

// ΦX

π−1
1

�� Φq // ΦQ

q−1

��

is a split fork in T-Cat.

Proof. (1) As in [11, Lemma 2.19 and Corollary 2.20].
(2) Analogous to the proof presented in [11, Section 2.6].

Finally, we conclude that:

2.10. Theorem. Under (Ax 1)-(Ax 4), the forgetful functor G : T-CocontΦ
sep −→ Set is

monadic.

Proof. In order to show that T-CocontΦ
sep has andG preserves coequaliser ofG-equivalence

relations, consider again the first diagram of Proposition 2.9. We have seen that

ΦR
Φπ1 //

Φπ2

// ΦX

π−1
1

�� Φq // ΦQ

q−1

��

is a split fork and hence a coequaliser diagram in T-Cat. Since π1 and π2 are Φ-cocontinuous,
there is a T-functor SupΦ

Q : ΦQ −→ Q which, since q : X −→ Q is the coequaliser of
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π1, π2 : R ⇒ X in T-Cat, satisfies SupΦ
Q · yΦ

Q
= 1Q. The situation is depicted in the

following diagram.

R
π1 //
π2

//

yΦ
R

��

X
q //

yΦ
X

��

Q

yΦ
Q

��
1Q

yy

ΦR
Φπ1 //

Φπ2

//

SupΦ
R

��

ΦX
Φq //

SupΦ
X

��

ΦQ

SupΦ
Q

��
R

π1 //
π2

// X
q // Q

We conclude that Q is separated and Φ-cocomplete, and q : X −→ Q is Φ-cocontinuous.
Finally, to see that q : X −→ Q is the coequaliser of π1, π2 : R ⇒ X in T-CocontΦ

sep, let

h : X −→ Y be in T-CocontΦ
sep with h · π1 = h · π2. Then, since Φq is the coequaliser of

Φπ1,Φπ2 : ΦR ⇒ ΦX in T-CocontΦ
sep, there is a Φ-cocontinuous T-functor f : ΦQ −→ Y

such that f · Φq = h · SupΦ
X . Then

f · yΦ
Q
·q = f · Φq · yΦ

X
= h · SupΦ

X · yΦ
X

= h

and

SupΦ
Y ·Φf · Φ yΦ

Q
·Φq = f · SupΦ

ΦQ ·Φ yΦ
Q
·Φq = f · Φq = h · SupΦ

X

= f · yΦ
Q
·q · SupΦ

X = f · yΦ
Q
· SupΦ

Q ·Φq,

hence SupY ·Φ(f · yΦ
Q

) = f · yΦ
Q
· SupΦ

Q, that is, f · yΦ
Q

is Φ-cocontinuous.

3. The examples

3.1. All distributors. The class Φ = P of all distributors satisfies obviously all four
axioms. In fact, this is the situation studied in [11].

3.2. Representable distributors. The smallest possible choice is Φ = R being
the class of all representable T-distributors R = {f ∗ | f is a T-functor}. Clearly, R
satisfies (Ax 1), (Ax 2) and (Ax 3) but not (Ax 4). We have R(X) = {x∗ | x ∈ X},
each T-category is R-cocomplete and each T-functor is R-cocontinuous, and therefore
T-CocontRsep = T-Catsep. This case is certainly not very interesting; however, our results
tell us that the inclusion functor T-Catsep ↪→ T-Cat is monadic. In particular, the category
Top0 of topological T0-spaces and continuous maps is a monadic subcategory of Top.

3.3. Almost representable distributors. We can modify slightly the example
above and consider Φ = R0 the class of all almost representable T-distributors, where a
T-distributor ϕ : X −⇀◦ Y is called almost representable whenever, for each y ∈ Y , either
y∗ ◦ ϕ = ⊥ or y∗ ◦ ϕ = x∗ for some x ∈ X. As above, R0 satisfies (Ax 1), (Ax 2) and
(Ax 3) but not (Ax 4).
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By definition, for a T-category X we have

R0(X) = {ψ ∈ PX | ψ ∈ R0} = {x∗ | x ∈ X} ∪ {⊥},

with the structure inherited from PX. Furthermore, a T-functor f : (X, a) −→ (Y, b) is
R0-dense whenever, for each y ∈ Y ,

∃x ∈ TX . b(Tf(x), y) > ⊥ ⇒ ∃x ∈ X ∀x ∈ TX . b(Tf(x), y) = a(x, x).

Hence, with
Y0 = {y ∈ Y | ∃x ∈ TX . b(Tf(x), y) > ⊥}

we can factorise an R0-dense T-functor f : X −→ Y as

X
f−−→ Y0 ↪→ Y,

where Y0 ↪→ Y is fully faithful and X
f−→ Y0 is left adjoint. If we consider f : X −→

Y in Top, then Y0 = f(X) is the closure of the image of f , so that each R0-dense
continuous map factors as a left adjoint continuous map followed by a closed embedding.
Consequently, for a topological space X, the following assertions are equivalent:

(i). X is injective with respect to R0-dense fully faithful continuous maps.

(ii). X is injective with respect to closed embeddings.

Note that in this example we are working with the dual order, compared with [8,
Section 11].

3.4. Right adjoint distributors. Now we consider Φ = L the class of all right
adjoint T-distributors. This class contains all distributors of the form f ∗, for a T-functor
f , and it is closed under composition. Since adjointness of a T-distributor ϕ : X −⇀◦ Y
can be tested pointwise in Y , the axioms (Ax 1), (Ax 2) and (Ax 3) are satisfied. By
definition, L(X) = {ψ ∈ PX | ψ is right adjoint}, and a T-category is L-cocomplete
if each pair ϕ a ψ, ϕ : Y −⇀◦ X, ψ : X −⇀◦ Y , of adjoint T-distributors is of the form
f∗ a f ∗, for a T-functor f : Y −→ X. For V-categories, this is precisely the well-known
notion of Cauchy-completeness as introduced by Lawvere in [14] as a generalisation of the
classical notion for metric spaces. However, Lawvere never proposed the name “Cauchy-
complete”, and, while working on this notion in the context of T-categories in [6] and [12],
we used instead Lawvere-complete and L-complete, respectively. Furthermore, one easily
verifies that each T-functor is L-cocontinuous, that is, (right adjoint)-weighted colimits
are absolute, so that T-CocontLsep = T-Catcpl is the full subcategory of T-Cat consisting of
all separated and Lawvere complete T-categories.

On the other hand, for a surjective T-functor f , f∗ does not need to be right adjoint,
so that (Ax 4) is in general not satisfied. This is not a surprise, since natural instances
of this example fail Theorem 2.10. Indeed, in the category of ordered sets and monotone
maps, any ordered set is Lawvere-complete, hence the category of Lawvere-complete and



RELATIVE INJECTIVITY AS COCOMPLETENESS 227

separated ordered sets coincides with the category of anti-symmetric ordered sets. The
canonical forgetful functor from this category to Set is surely not monadic. Also, the
canonical forgetful functor from the category of Lawvere-complete and separated topo-
logical spaces (= sober spaces) and continuous maps to Set is also not monadic.

3.5. Inhabited distributors. Another class of distributors considered in [11] is Φ =
I the class of all inhabited T-distributors. Here a T-distributor ϕ : X −⇀◦ Y is called
inhabited if

∀y ∈ Y . k ≤
∨

x∈TX

ϕ(x, y).

(Ax 3) is satisfied by definition, and in [11] we showed already the validity of (Ax 1)
and (Ax 2). Furthermore, one easily verifies that (Ax 4) is satisfied. Hence, as already
observed in [11], all results stated in Section 2 are available for this class of distributors.
Let us recall that, specialised to Top, inhabited-dense continuous maps are precisely the
topologically dense continuous maps, and the injective spaces with respect to topologically
dense embeddings are known as Scott domains [9].

3.6. “closed” distributors. A further interesting class of distributors is given by

Φ = {ϕ : X −⇀◦ Y | ∀y ∈ Y, x ∈ TX .ϕ(x, y) ≤
∨
x∈X

a(x, x)⊗ ϕ(eX(x), y)},

that is, ϕ ∈ Φ if and only if ϕ ≤ ϕ · eX · a. Clearly, (Ax 3) is satisfied. For each T-functor
g : (Y, b) −→ (X, a) we have

g∗ · eX · a = g◦ · a · eX · a ≥ g◦ · a = g∗,

hence g∗ ∈ Φ. Furthermore, given T-distributors ϕ : X −⇀◦ Y and ψ : Y −⇀◦ Z in Φ, then

ψ ◦ ϕ = ψ · T
ξ
ϕ ·m◦X ≤ ψ · eY · b · Tξϕ ·m◦X = ψ · eY · ϕ ≤ ψ · eY · ϕ · eX · a

≤ ψ · T
ξ
ϕ · eTX · eX · a ≤ ψ · T

ξ
ϕ ·m◦X · eX · a = (ψ ◦ ϕ) · eX · a

and therefore also ψ ◦ϕ ∈ Φ. We have seen that this class of distributors satisfies (Ax 1),
(Ax 2) and (Ax 3). On the other hand, (Ax 4) is not satisfied.

By definition, a T-functor f : (X, a) −→ (Y, b) is Φ-dense whenever, for all x ∈ TX
and y ∈ Y ,

b(Tf(x), y) ≤
∨
x∈X

a(x, x)⊗ b(eY (f(x)), y).

Hence, each proper T-functor (see [4]) is Φ-dense. In fact, Φ-dense T-functors can be seen
as “proper over V-Cat”, and the condition above states exactly properness of f if the
underlying V-category SY of Y = (Y, b) is discrete. Furthermore, each surjective Φ-dense
T-functor is final with respect to the forgetful functor S : T-Cat −→ V-Cat. To see this,
let f : (X, a) −→ (Y, b) be a surjective Φ-dense T-functor, Z = (Z, c) a T-category and
g : SY −→ SZ a V-functor such that gf is a T-functor. We have to show that g is a
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T-functor. Let y ∈ TY and y ∈ Y . Since Tf is surjective, there is some x ∈ TX with
Tf(x) = y. We conclude

b(y, y) = b(Tf(x), y)

≤
∨
x∈X

a(x, x)⊗ b(eY (f(x)), y)

≤
∨
x∈X

c(T (gf)(x), gf(x)⊗ c(eZ(gf(x)), g(y))

≤ c(Tg(y), g(y)).

3.7. Further examples. A wide class of examples of injective topological spaces is
described in [8], where the authors consider injectivity with respect to a class of embed-
dings f : X −→ Y such that the induced frame morphism f∗ : ΩX −→ ΩY preserves
certain suprema. A similar construction can be done in our setting; to do so we assume
from now on T1 = 1. For a T-category X, the V-category of covariant presheafs VX is
defined as

VX = {α : 1−⇀◦ X | α is a T-distributor} = {α : X −→ V | α is a T-functor},

and the V-categorical structure [α, β] ∈ V is given as the lifting

X 1,◦
βo

◦
α(β=:[α,β]�

1

◦α

O

for all α, β ∈ VX . Since e1 : 1 −→ T1 is an isomorphism, this lifting of T-distributors
does exist and can be calculated as the corresponding lifting of V-distributors

X 1.◦
βoo

◦
~~

1

◦α
OO

Each T-distributor ϕ : X −⇀◦ Y induces a V-functor

ϕ ◦ (−) : VX −→ VY , α 7−→ ϕ ◦ α,

which is right adjoint if ϕ is a right adjoint T-distributor. Given now a class Ψ of V-
distributors, we may consider the class Φ of all those T-distributors ϕ for which ϕ ◦ (−)
preserves Ψ-weighted limits. This class of T-distributors is certainly closed under com-
position, and contains all right adjoint T-distributors, hence it includes all representable
ones. Finally, if Ψ-weighted limits are calculated pointwise in VX , then also (Ax 3) is
fulfilled. As particular examples we have the class Φ of all T-distributors ϕ : X −⇀◦ Y for
which ϕ ◦ (−) preserves
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(1). the top element of VX , that is, for which ϕ ◦ > = >. In pointwise notation, this
reads as

∀y ∈ Y .> =
∨

x∈TX

ϕ(x, y)⊗>.

If k = >, then this class of T-distributors coincides with the class of inhabited
T-distributors considered in 3.5.

(2). cotensors, that is, for each u ∈ V and each α ∈ VX , ϕ ◦ hom(u, α) = hom(u, ϕ ◦ α).

(3). finite infima (cf. [8, Section 6]).

(4). arbitrary infima (cf. [8, Section 7]).

(5). codirected infima (cf. [8, Section 8]).
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