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ON THE DUALITY BETWEEN TREES AND DISKS

DAVID OURY

Abstract. A combinatorial category Disk was introduced by André Joyal to play
a role in his definition of weak ω-category. He defined the category Θ to be dual to
Disks. In the ensuing literature, a more concrete description of Θ was provided. In this
paper we provide another proof of the dual equivalence and introduce various categories
equivalent to Disk or Θ, each providing a helpful viewpoint.

1. Introduction

André Joyal in order to define weak n-categories introduced Θ which was naturally
filtered with the simplicial category ∆ being the first term of the filtration. In [Jo97]
he defined Θ as the dual of a category Disk of disks. He also suggested a more explicit
description of Θ involving the trees of Michael Batanin in [BS00]. Michael Makkai and
Marek Zawadowski in [MZ01] and Clemens Berger in [Be02] gave explicit proofs that the
two version of Θ are equivalent. In this paper we give a third proof which is a conceptual
lifting of the duality between ordinals and intervals. In the process, several categories are
introduced, each turning out to be equivalent to Θ or Disk, and so each providing us
with useful new perspectives on Joyal’s definitions.

The category ∆+ is known as the augmented simplicial category and contains a single
object (the empty ordinal) in addition to those of ∆. Primarily, we work with augmented
categories which contain a unique trivial object and are more suitable for inductive argu-
ments. Four of these augmented categories have reduced counterparts which are equivalent
to the categories Disk or Θ.

In Section 2 we recall the definitions of ordinals and intervals and define functors which
witness that they are dual. The section ends with two simple results which are used in
the proof of Theorem 6.2. In Section 3 we define augmented categories iI+ and i∆+,
inductively built from I+ and ∆+ (respectively), and prove that they are dual. Their
reduced counterparts are denoted iI and i∆ (respectively). In Section 4 we recall the
definition of Joyal’s category Disk and demonstrate an equivalence between Disk and
iI.

In Section 5.2 we recall Street’s definition of globular cardinal and define restriction
and suspension operations on them. In Section 5.9 we define so called ordinal graphs which
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are inductively defined counterparts to globular cardinals and demonstrate an equivalence
between the category of globular cardinals and the category of ordinal graphs. In Section
5.18 we recall the definition of ω-category and define free functors on globular cardinals
and on ordinal graphs. We then demonstrate that the free ω-category on a globular
cardinal is isomorphic to the free ω-category on the corresponding ordinal graph. The
objects of Θ are, by definition, the free ω-categories on globular cardinals. In Section 6
we demonstrate an equivalence between Θ and the inductively defined category i∆.

In the remaining two sections we provide a more categorical description of the cate-
gories Disk and Θ by defining so called labeled trees which satisfy specific requirements
relevant to our purposes. Two categories of labeled trees, named tI+ and t∆+, are defined
and easily shown to be dual. Their reduced counterparts are shown to be equivalent to
the categories Disk and Θ (respectively).

Restriction and suspension operations are defined on labeled trees with the goal of
working with them inductively and constructing equivalences between these two cate-
gories of labeled trees and their inductively defined counterparts. The proofs that iI+

is equivalent to tI+ (Proposition 8.2) and that i∆+ is equivalent to t∆+ (Proposition
8.4) are essentially the same; however, we give all the details for clarity.

A disk of dimension ≤ N is defined in [Jo97] as a sequence of length N of bundles of
intervals with extra conditions. If we had been dealing with families, rather than those
bundles, of intervals we could have made use of known properties of the finite coproduct
completion functor FamΣ. In particular, if we have an equivalence Aop ' B, it lifts to
an equivalence FamΣ(A)op ' FamΠ(B) where FamΠ is the finite product completion
functor. Our replacements tI and t∆ for Disk and Θ are modifications of FamΣ(I+)
and FamΠ(∆+). Instead of finite families we have labeled trees.

2. The ordinal/interval duality

The category ∆+, called the algebraist’s ∆, has objects [n] = {0, .., n} for n in
{−1, 0, ...} where [−1] = {} and morphisms which are order preserving functions. The
category I+ is the sub-category of ∆+ whose objects, called intervals, are non-empty
ordinals, i.e. [0], [1], [2], . . . , and whose morphisms preserve the greatest and least
elements, i.e. morphism f : [n] → [m] has f(0) = 0 and f(n) = m. Collectively, the
greatest and least elements of [n] are its end points.

2.1. Definition. We define contravariant functors

( )∨ : I+ → ∆+ ( )∧ : ∆+ → I+

: [n] 7→ [n− 1] : [n] 7→ [n+ 1]

: f 7→ f∨ : g 7→ g∧

on morphisms as follows. Given a morphism f : [n] → [m] of I+ there is a function
f∨ : [m− 1]→ [n− 1] in ∆+ defined by

f−1{0, 1, . . . , j} = {0, 1, . . . , f∨(j)}
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where

i ≤ f∨(j) if and only if f(i) ≤ j. (1)

Given a morphism g : [n− 1]→ [m− 1] of ∆+ there is a function g∧ : [m]→ [n] in I+

defined by
g−1{i, i+ 1, . . . ,m− 1} = {g∧(i), g∧(i) + 1, . . . , n− 1}

where

g∧(i) ≤ j if and only if i ≤ g(j). (2)

2.2. Theorem. The functor
( )∨ : Iop

+ → ∆+

is an isomorphism of categories with inverse ( )∧ : ∆op
+ → I+.

Proof. Given a morphism f : [n]→ [m] of I+ and an integer i in [m], then by applying
1 to f(i) ≤ f(i) we obtain i ≤ f∨f(i) and by applying 2 to this inequality obtain
(f∨)∧(i) ≤ f(i). Hence (f∨)∧ = f . Likewise, we have (g∨)∧ = g for a morphism g of
∆+.

2.3. Observation. Let γ : [m] → [n] be an ordinal morphism. The fiber of γ∧ over
0 < j ≤ n is

{γ(j − 1) + 1, γ(j − 1) + 2, . . . , γ(j)}.

This fact is used in Theorem 6.2.

2.4. Observation. If γ : [m] → [n] is an ordinal map with m ≥ 0 then γ∧(i) is an
endpoint when either i ≤ min imγ or i > max imγ. This fact is also used in Theorem 6.2.

3. Induction on intervals and ordinals

In this section we introduce inductively defined augmented categories iI+ and i∆+ and
demonstrate that they are dual.

3.1. Definition. We define the category iI+ inductively, with objects filtered by height.
The object of height 0 (zero) is the interval [0] and is trivial. An object H of height
n is an interval H∗ and for each i in H∗ an object H(i) of height strictly less than n
which is trivial if and only if i is an endpoint of H∗. The object H with H∗ = [0] is
identified with the trivial object.

For every object H there is a unique morphism H → [0]. Hence [0] is terminal. In
addition, there are no non-identity morphisms with codomain [0]. A morphism g : H →
K, for H and K with non-zero height, consists of an interval map g : H∗ → K∗ and for
all i in H∗ a morphism g(i) : H(i)→ K(gi).
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Define composition using induction as follows. Let f : H → K and g : K → L be
composable morphisms. The object map of g ◦ f is the composite of the object maps of
g and f . For i ∈ H∗ then the composite (g ◦ f)(i) : H(i) → L(gfi) is g(fi) ◦ f(i).
We have the category iI+. The category iI is the full subcategory of iI+ containing the
non-trivial objects.

3.2. Definition. We define the category i∆+ inductively, with objects filtered by height.
The object of height 0 (zero) is the ordinal [−1] and is trivial. An object K of height
n is an ordinal K∗ and for each j ∈ (K∗)

∧ an object K(j) of height strictly less than n
which is trivial if and only if j is an endpoint of (K∗)

∧. The object H with H∗ = [−1]
is identified with the trivial object.

For every object K there is a unique morphism [−1]→ K. Hence [−1] is initial. In
addition, there are no non-identity morphisms with domain [−1]. A morphism g : H →
K, for H and K of non-zero height, consists of an ordinal map g : H∗ → K∗ and for
all j ∈ (K∗)

∧ a morphism g(j) : H(g∧j)→ K(j).
Define composition using induction as follows. Let f : H → K and g : K → L be

composable morphisms. The object map of g ◦f is the composite of the object maps of g
and f . For i ∈ L∗ then the composite (g ◦ f)(i) : H((g ◦ f)∧i)→ L(i) is g(i) ◦ f(g∧i).
We have the category i∆+. The category i∆ is the full subcategory of i∆+ containing
the non-trivial objects.

3.3. Definition. We define functors

∨ : iI+
op → i∆+

and
∧ : i∆+

op → iI+

using the functors ( )∨ and ( )∧ of the equivalence between ordinals and intervals.
Define ∨ on objects using induction on their height. Send the trivial object [0] of iI+

to the trivial object [−1] of i∆+. Assume ∨ is defined for objects of height n and let H
be an object of height n+ 1. Define ∨H as ((H∗)

∨,∨H(i)).
Define ∨ on morphisms using induction on the height of their codomain. Send each

unique morphism of iI+ into the trivial object [0] to the corresponding unique morphism
of i∆+ out of the trivial object [−1]. Assume ∨ is defined on morphisms with codomain
of height n and let g be a morphism of iI+ with codomain of height n+ 1. Define ∨g
as (g∨,∨g(i)) as each morphism g(i) has codomain of height n.

Similarly, define ∧ on objects (respectively morphisms) using induction on their height
(respectively on the height of their domains). Send the trivial object of i∆+ to the trivial
object of iI+. Send morphisms of i∆+ out of the trivial object to morphisms of iI+ into
the trivial object. Let g be a morphism of i∆+. Define ∧g as (g∧,∧g(i)).

3.4. Theorem. The functors ∨ and ∧ are mutually inverse isomorphisms.

The proof uses induction and follows directly from the mutually inverse functors of
the duality between ordinals and intervals.
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3.5. Corollary. The categories iI and i∆ are dual.

4. Equivalence between iI and Disk

In Section 3 we showed that the categories iI and i∆ are dual. Here we demonstrate
that the category iI and Joyal’s category Disk are equivalent. To do so we construct
the category Disk+, the augmented counterpart to Disk, and show that it is equivalent
to the category iI+. We begin by defining forests and trees, and then define operations
of restriction and suspension on trees in order to work with them inductively.

4.1. Definition. A forest is a functor A : ωop → Set

· · · p2 // A2
p1 // A1

p0 // A0.

A tree A is a forest such that A0
∼= {∗}. The vertices of height n are the elements of

An. The unique vertex of height 0 (zero) of a tree is called the root. We often denote
the root of a tree A as ∗. We can regard a tree as a directed graph. There is an edge
from vertex x to vertex y when pn(x) = y for some n ∈ N. We denote the above forest
by (A, p) or A. Define pn,m : An+m → An as the composite ◦n+m−1

i=n pi which is

An+m
pn+m−1 // · · · pn // An.

A forest has degree n when pn,m is a bijection for all m ≥ 1 and has finite degree when
it has degree n for some n ∈ N.

4.2. Definition. A forest map is a natural transformation of forests and so is a se-
quence of set maps

· · · B2q2
//

· · ·

· · ·

···

· · · A2
p2 // A2

B2

f2

��
B2 B1q1

//

A2

B2

f2

��

A2 A1
p1 // A1

B1

f1

��
B1 B0q0

//

A1

B1

f1

��

A1 A0
p0 // A0

B0

f0

��

such that the squares commute. This map is denoted by f : (A, p)→ (B, q) or f : A→ B.
A tree map is a natural transformation between trees. We have the category Forest and
its full subcategory Tree.

4.3. Definition. We define a restriction operation on trees in order to work with trees
as inductive or recursive objects. Let un : ω → ω be the functor defined by un(i) = i+n.
Let A be a forest and x an element of An. The restriction of A by x denoted A(x) is
the largest subfunctor of A ◦un : ωop → Set such that A(x)0 = {x}. We sometimes refer
to A(x) as a subtree of A.
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The restriction of f by x denoted f(x), where f : A → B is a forest map, is the
lifting in

A ◦ un B ◦ unf ·un
//

A(x)

A ◦ un
incl

��

A(x) B(fnx)
f(x) //_____ B(fnx)

B ◦ un
incl

��

of f · un along the inclusions A(x)→ A ◦ un and B(fnx)→ B ◦ un.

4.4. Definition. Define a suspension functor

su : Forest→ Tree

as follows. Given a forest A then its suspension suA is

· · · p1 // A1
p0 // A0

// {∗}.

Given a map f : A→ B of forests then its suspension su f is

· · · B1
//

· · ·

· · ·

···

· · · A1
// A1

B1

f1

��
B1 B0

//

A1

B1

f1

A1 A0
// A0

B0

f0

��
B0 {∗}.//

A0

B0

f0

A0 {∗}// {∗}

{∗}.
��

4.5. Observation. The coproduct of a collection of trees is a forest and its suspension
is a tree. The subtrees of the suspension given by vertices of height 1 (one) are isomorphic
to the trees of the original collection. We provide the details below.

Let (A(i), p(i)) be a tree with A(i)0 = {xi} for each i in a set I. Let A′ = su
∑
A(i)

and let copr(i) : A(i)→
∑
A(i) be coprojections for each i ∈ I. The fiber of p(i)0,n over

xi is A(i)n. The fiber of [
∑
p(i)]0,n over xi lying in

∑
A(i)0 is A′(xi)n. The coproduct

in Set requires that the former is sent by the left coprojection of

∑
A(i)n

∑
A(i)0.∑

p(i)0,n

//________

A(i)n

∑
A(i)n

copr

��

A(i)n A(i)0

p(i)n0 // A(i)0

∑
A(i)0.

copr

��

onto the latter. As the coprojections are monomorphisms then A(i) and A′(xi) are
isomorphic by copr(i).
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4.6. Definition. A disk as defined by Joyal in [Jo97] is a tree (A, p) of finite degree

1. such that the fibers of pn : An+1 → An have interval structure (for n ∈ N)

2. with sections d0, d1 : An → An+1 of pn where p∗n(x) = [d0(x), .., d1(x)]

3. such that the equalizer of d0, d1 : An → An+1 is d0(An−1) ∪ d1(An−1).

The equalizer of condition 3 is the singular set of An. All fibers are non-empty by condition
2 and the interval p∗0(x) is strict by condition 3, where x is the single element of A0.

A morphism of disks f : (A, p)→ (B, q) as defined by Joyal in [Jo97] as a sequence of
set maps fn : An → Bn which commute with the projections pn and qn, respect the order
of the interval fibers and preserve the endpoints (first and last elements) of the interval
fibers. This defines the category Disk.

In addition, we define the augmented category Disk+. An object of Disk+ is a tree
of finite degree satisfying 1 and 2 above, but we relax 3 to allow the fiber over the root to
be the unique non-strict interval [0]. Hence Disk+ contains, in addition to the objects
of Disk, trees of degree 0 (zero). These additional objects are terminal. The morphisms
of Disk+ are defined identically to those of Disk.

4.7. Definition. We define a functor

Φ: Disk+ → iI+.

Define Φ on objects using induction on the degree of disks. Send disks of degree 0 (zero)
to [0] the trivial object of iI+. Assume that Φ is defined on disks of degree n and let
(A, p) be a disk of degree n+ 1. We define an object H of iI+ from the data of (A, p).
Let H∗ = p∗0(x), the fiber over the unique element x of A0, and let H(i) = ΦA(i) for
each i ∈ H∗ where A(i) is the restriction of A by i. Note that H∗ is an interval as fibers
have interval structure, that A(i) is a disk of degree at most n for each i ∈ H∗ and that
A(i) is trivial when i is an endpoint by condition 3. Define ΦA as H.

We define Φ on disk morphisms using induction on the degree of their codomain. The
disks of degree 0 (zero) are terminal objects. As Φ preserves the terminal object then
disk morphisms with codomain of degree 0 (zero) are sent to the unique morphism into
the trivial object of iI+. Assume Φ is defined on morphisms with codomain of degree n
and let f : (A, p)→ (B, q) be a disk morphism with codomain of degree n+1. We define
a morphism g of iI+ from the data of f . Let g = f1 which is an interval morphism as
f preserves order and endpoints. Let g(i) = Φf(i) where f(i) is the restriction of f by
i for each i ∈ A1. Define Φf as g.

4.8. Theorem. The category Disk+ is equivalent to the category iI+ by

Φ: Disk+ → iI+

which is surjective on objects.
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Proof. Surjective. We show that Φ is surjective on objects using induction on the
height of objects of iI+. The trivial disks are sent to the trivial object [0] and so Φ is
surjective on objects of height 0 (zero). Assume Φ is surjective on objects of height n
and let H be an object of height n + 1. By induction there exists a disk A(i) with
ΦA(i) = H(i) for each i in H∗. Let A′ = su

∑
A(i) where the coproduct is indexed

over the elements of H∗. Give the fiber over ∗ an interval structure from that of H∗.
For each element x in A′n with n > 0 give the fiber over x an interval structure by
pulling back along the coprojections. By Observation 4.5 then A′(i) ∼= A(i). Define
ΦA′ as H ′. As Φ is constant on isomorphism classes then we have ΦA′(i) = ΦA(i),
equivalently H ′(i) = H(i). By construction H ′∗ = (p′0)∗(∗) is isomorphic to H∗ and is
in fact identically H∗ as ∆ is skeletal. Hence Φ is surjective on objects.

Faithful. We show that Φ is faithful using induction on the height of the codomain
of morphisms of iI+. As Φ reflects the terminal object it is faithful on morphisms with
codomain of height 0 (zero). Assume that Φ is faithful on morphisms with codomain of
height n and let f, f ′ : (A, p)→ (B, q) be parallel disk morphisms such that Φf = Φf ′

has codomain of height n + 1. Then, by induction, f(i) = f ′(i) for each i ∈ A1. As
f(i) and f ′(i) are defined by liftings on inclusions which are jointly surjective it follows
that f = f ′ and Φ is faithful.

Full. We show Φ is full using induction on the height of the codomain of morphisms of
iI+. As Φ preserves the terminal object it is full on morphisms of height 0 (zero). Assume
that Φ is full on morphisms with codomain of height n and let g : Φ(A, p) → Φ(B, q)
have codomain of height n+1. We have an interval morphism g and a morphism g(i) of
iI+ for each i ∈ Φ(A, p). By induction there exist disk morphisms f(i) : A(i) → B(gi)
such that Φf(i) = g(i). In the following diagram

A(i)n

An+1

incl

zzvvvvvvvvvvvvvvv
A(i)n

∑
A(i)n

copr

��

A(i)n B(gi)n
f(i)n // B(gi)n

∑
B(gi)n

copr

��

B(gi)n

Bn+1

incl

$$HHHHHHHHHHHHHHH

An+1

∑
A(i)n//_____

∑
A(i)n

∑
B(gi)n//_______

∑
B(gi)n Bn+1

//____

the left triangle commutes as the inclusions into An+1 are jointly surjective and the other
regions commute by coproduct. Define f ′ by setting f ′n+1 to the lower composite for each
n ∈ N. Then f ′(i) is (by definition) the upper horizontal morphism and so f(i) = f ′(i).
The inclusions and commutativity of the diagram imply that f1 as defined is identically
g as required. Hence Φf ′ = g.

4.9. Corollary. The category Disk is equivalent to the category iI.

5. Objects of Θ

From [BS00], an object of Θ is defined as the free ω-category on a non-empty globular
cardinal. We define the augmented counterpart to Θ, named Θ+, as containing objects
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which are free ω-categories on possibly empty globular cardinals.
In Section 5.2 we recall the definition of globular cardinal and define restriction and

suspension operations on them. In Section 5.9 we define ordinal graphs, which are induc-
tively defined counterparts of globular cardinals. An equivalence is demonstrated between
the categories of globular cardinals and ordinal graphs. The section closes with the defi-
nition of a map that sends objects of i∆+ to ordinal graphs. In Section 5.18 we recall the
definition of ω-category and adapt Michael Batanin’s construction of the free ω-category
on a globular set. In addition we define the free ω-category on an ordinal graph and show
that it is isomorphic to the free ω-category of the corresponding globular cardinal.

In this and following sections we will use the following shorthand with the intention
of providing an uncluttered presentation. In the sequel often indices are given over all
elements of a known finite linearly ordered set except the first. In some cases the previous
element to the index is also used. Our shorthand is designed to simplify the presentation
in these instances.

5.1. Notation. Let FinOrd+ denote the full subcategory of Ord with objects finite
linearly ordered sets and let FinOrd denote the full subcategory containing the non-empty
finite linearly ordered sets. Define

( ) \f : ObFinOrd→ ObFinOrd+

: {x0, x1, . . . , xp} 7→ {x1, x2, . . . , xp}.

which returns its argument without the first element. The “\f” is intended to indicate that
the first element is removed. The operator p( ) takes arguments which are elements of
finite linearly ordered sets with cardinality at least 2 (two) and returns their predecessor.
For example given a finite linearly ordered set I = {x0, x1, . . . , xp} then p(xi) = xi−1

for all xi ∈ I \f.

5.2. Globular cardinals. Globular cardinals were defined by Ross Street in [St00]
Section 1. We collect here the definitions and notation related to this concept, as relevant
for our purposes. In addition, we define restriction and suspension operations.

5.3. Definition. We begin by quoting the definition of globular object from [St00]. Let
G be the category with objects the natural numbers and non-identity arrows

σm, τm : m→ n for m < n

such that

k

n

βk

��??????????????k m
βk // m

n

αk

����������������
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commutes for all k < m < n and all α, β ∈ {σ, τ}. A globular object in C is a functor
X : Gop → C. A morphism of globular objects is a natural transformation between globular
objects. Hence a globular set is a pair of sequences of set maps

· · ·
s2 //
t2

// X2

s1 //
t1

// X1

s0 //
t0

// X0

such that snsn+1 = sntn+1 and tnsn+1 = tntn+1 for all n ∈ N. The maps of the sequence
s are source maps and the maps of the sequence t are target maps. The set Xn contains
the n-vertices of X.

A globular set X has dimension n when n is the smallest integer such that Xm is
empty for all m > n. The empty globular set has dimension -1 (minus one). A globular
set has finite dimension when it has dimension n for some n ≥ −1.

A morphism f : X → Y of globular sets is a sequence f of set maps

· · · Y2

s //

· · ·

· · ·

···

· · · X2

s //
X2

Y2

f2

��
Y2 Y1

s //

X2

Y2

f2

X2 X1

s //
X1

Y1

f1

��
Y1 Y0

s //

X1

Y1

f1

X1 X0

s //
X0

Y0

f0

��
· · · Y2

t
//

· · ·

· · ·

···

· · · X2
t

// X2

Y2

f2

��
Y2 Y1

t
//

X2

Y2

f2

X2 X1
t

// X1

Y1

f1

��
Y1 Y0

t
//

X1

Y1

f1

X1 X0
t

// X0

Y0

f0

��

which commute with the source and target maps. We have the category of globular sets.
A globular set X has a partial order J generated from the relation

x ≺ y when x = s(y)

or y = t(x)

for x ∈ Xn and either y ∈ Xn+1 or y ∈ Xn−1 (respectively). When x J y there exists a
(possibly trivial) sequence x0, ..., xn of vertices in X with x0 = x, xn = y and xi−1 ≺ xi
for all i ∈ {1, .., n}. A globular cardinal is a globular set with a finite set of vertices
and where the order given above is linear. We have GlobCard the category of globular
cardinals.

5.4. Definition. Vertices x and y in a globular cardinal X are consecutive in Y
(with Y a subset of X) when {z ∈ Y : x J z J y} = {x, y}.

5.5. Observation. Let f : X → Y be a morphism of globular cardinals and let x and
y be consecutive in Xn. There exists an element z either in Xn+1 or Xn−1 such that
s(z) = x and t(z) = y or such that s(y) = z and t(x) = z. In either case fnx and fny
are consecutive in Yn as f preserves source and target. Hence fn is injective and the
image of fn is an interval.

5.6. Definition. A map g : A→ B of finite linearly ordered sets that is injective and
whose image is an interval is called incremental.
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5.7. Definition. We define a restriction operation on globular cardinals. Given two
consecutive n-vertices of a globular cardinal X the operation returns the globular cardinal
which we might call the hom-set determined by the two n-vertices. Let un : G → G
be the functor defined by un(i) = i + n. Let X be a globular cardinal with y and z
consecutive vertices of Xn. Define the restriction of X by y, z denoted X(y, z) as the
largest subfunctor of X ◦ un+1 such that y J x J z for all x ∈ X(y, z). Notice that
X(σ)x = y and X(τ)x = z for all x ∈ X(y, z)0 ⊆ Xn+1.

We have an inclusion ιy,z : X(y, z)→ X◦un+1 of functors for every pair of consecutive
vertices y, z ∈ Xn. The restriction of f : X → Y by y, z denoted f(y, z) is the lifting in

X ◦ un+1 Y ◦ un+1f ·un+1

//

X(y, z)

X ◦ un+1

��

X(y, z) Y (fn y, fn z)
f(y,z) //_____ Y (fn y, fn z)

Y ◦ un+1

��

of f · un+1 along the inclusions ιy,z and ιfny,fnz.

5.8. Definition. We define a suspension operation on collections of globular cardinals.
Let A = {x0, x1, . . . , xp} be a finite linearly ordered set and let X(i) be a globular cardinal
for each i ∈ A \f. We refer to A and the X(i) collectively as a matched set below.
Define the suspension of X(i) over A denoted su(X(i), A) as follows. Define set maps
s(i), t(i) : X(i)0 → A by s(i)(y) = pi and t(i)(y) = i for y ∈ X(i)0 and for each
i ∈ A \f. Then the suspension su(X(i), A) is

· · ·
∑
s1(i) //∑
t1(i)

//
∑

X(i)1

∑
s0(i) //∑
t0(i)

//
∑

X(i)0

∑
s(i) //∑
t(i)

// A

where the coproducts are indexed over all i ∈ A \f. Notice that s(i)s0(i) = s(i)t0(i)
as s(i) is constant. In addition as the required identities hold for each X(i) then the
universal property of coproduct in Set implies that∑

s(i)n
∑

s(i)n+1 =
∑

s(i)n
∑

t(i)n+1

for n > 0. Likewise for the target maps. Hence the source and target identities required
of globular cardinals are satisfied by the suspension. The linear order given by the source
and target maps is

{x0, X(1), x1, X(2), x2, . . . , xn−1, X(n), xn}.

Hence su(X(i), A) is a globular cardinal.
Similarly, we define a suspension operation on collections of morphisms of globular

cardinals. Let X(i), A and Y (j), B be matched sets and let X and Y be their suspensions
as defined above. Let f : A → B be an incremental morphism of ordered sets and let
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f(i) : X(i) → Y (fi) be a morphism of globular cardinals for each i ∈ A \f. Define the
suspension of f(i) over f denoted su(f(i), f) as

· · · Y2
//

· · ·

· · ·

···

· · · X2
//
X2

Y2

∑
f(i)1

��
Y2 Y1

//

X2

Y2

∑
f(i)1

X2 X1
//
X1

Y1

∑
f(i)0

��
Y1 B

//

X1

Y1

∑
f(i)0

X1 A
//
A

B

f

��
· · · Y2//

· · ·

· · ·

···

· · · X2// X2

Y2

∑
f(i)1

��
Y2 Y1//

X2

Y2

∑
f(i)1

X2 X1// X1

Y1

∑
f(i)0

��
Y1 B//

X1

Y1

∑
f(i)0

X1 A// A

B

f

��

where the coproducts are indexed over A \f. The squares commute by universal property
of coproduct in Set and the suspension su(f(i), f) is a morphism of globular cardinals.

5.9. Ordinal graphs. The purpose of this section is to define the concept of an en-
riched graph called a V-graph to allow an inductive definition equivalent to that of
globular cardinals. An equivalence is demonstrated between the categories of globular
cardinals and ordinal graphs. The section closes with the definition of a map that sends
objects of i∆+ to ordinal graphs.

5.10. Definition. A V-graph G, for a category V, consists of a set of vertices G∗ and
an edge-object G(x, y) in ObV for every pair of vertices x, y. A morphism of V-graphs
f : G → H is a set map f : G∗ → H∗ and for every edge-object G(x, y) of G a morphism

f(x, y) : G(x, y)→ H(fx, fy)

of V. We have the category V-Gph of V-graphs, graphs enriched over V.

5.11. Definition. Suppose V has initial object 0 and U is a subset of ObV containing
0. A U ordinal V-graph G consists of a finite linearly ordered set G∗, objects G(x, y)
in U of V for all pairs x, y in G∗, and such that G(x, y) 6= 0 if and only if y is the
successor of x. We have the category (U ,V)-Gphord of U ordinal V-graphs. Notice that
the object maps are incremental.

5.12. Definition. We define two categories GraphN and OGraph of enriched graphs.
Let Graph0 denote the category {∅}-Gph and let Graphn+1 denote the category Graphn-Gph
for each n ∈ N. Define GraphN as the colimit of the diagram

Graph0 → Graph1 → · · · → Graphn → · · ·

of inclusions. The empty graph ∅ has dimension -1 (minus one). A graph of Graphn
has dimension n.

We define OGraph the category of ordinal graphs, a subcategory of GraphN, which
we demonstrate in Theorem 5.15 is equivalent to the category of globular cardinals. Let
OGraph0 denote the category (∅, ∅)-Gphord and let OGraphn+1 denote the category
(OGraphn, Graphn)-Gph for n ∈ N. Define OGraph as the colimit of the diagram

OGraph0 → OGraph1 → · · · → OGraphn → · · ·

of inclusions.
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5.13. Definition. We define a functor

Γ: GlobCard→ OGraph

using induction on the dimension of globular cardinals. Let X be a globular cardinal of
dimension -1 (minus one). Then X is empty and so an initial object. Define ΓX as the
empty ordinal graph. Assume Γ is defined on globular cardinals of dimension n and let
X have dimension n+ 1. Define ΓX as G where G∗ = X0 and G(px, x) = ΓX(px, x)
for each x ∈ X0 \f.

Define Γ on morphisms using induction on the dimension of their domain. Let
f : X → Y be a morphism with domain of dimension -1 (minus one). Define Γf as
∅ → ΓY the unique morphism out of the empty graph. Assume Γ is defined on morphisms
with domain of dimension n and let f : X → Y be a morphism with domain of dimension
n+ 1. Define Γf as g with object map f0 : X0 → Y0 and g(px, x) = Γf(px, x) for each
x ∈ X0 \f.

5.14. Definition. We define a functor

Γ′ : OGraph→ GlobCard

using induction on the dimension of ordinal graphs. Let G be an ordinal graph of di-
mension -1 (minus one). Then G is empty and so is initial. Define Γ′G as the initial
globular cardinal. Assume Γ′ is defined on ordinal graphs of dimension n and let G have
dimension n+ 1. Define Γ′G as su(Γ′G(px, x),G∗) where G(px, x) is the collection of
non-empty ordinal graphs of G indexed by x ∈ G∗ \f.

Define Γ′ on morphisms using induction on the dimension of their domain. Let
g : G → H be a morphism with domain of dimension -1 (minus one). Define Γ′g as
∅ → Γ′H the unique morphism out of the empty ordinal graph. Assume Γ′ is defined
on morphisms with domain of dimension n and let g be a morphism with domain of
dimension n + 1. Define Γ′g as the suspension su(Γ′g(px, x), g) where g(px, x) is the
collection of morphisms of ordinal graphs of g indexed by x ∈ G∗ \f.

5.15. Theorem. The category GlobCard is equivalent to the category OGraph by

Γ: GlobCard→ OGraph

and its equivalence inverse Γ′.

Proof. We construct natural isomorphisms η : Id⇒ Γ′Γ and ε : ΓΓ′ ⇒ Id using induc-
tion on the dimension of globular cardinals (respectively ordinal graphs). Let X be a
globular cardinal of dimension -1 (minus one). Then X and Γ′ΓX are both empty glob-
ular cardinals. Assume η is a natural isomorphism for globular cardinals of dimension
n and let X have dimension n + 1. Let X ′ = Γ′ΓX which is su(Γ′ΓX(px, x), X0). We
construct an isomorphism f : X → Γ′ΓX. Define f0 as IdX0 and fn as the unique map
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out of the coproduct in

∑
Γ′ΓX(px, x)n Xn+1

//______

Γ′ΓX(px, x)n

∑
Γ′ΓX(px, x)n

copr

��

Γ′ΓX(px, x)n X(px, x)n
∼= // X(px, x)n

Xn+1

incl

��

for each n > 0. Then f is a bijection as the coprojections are monomorphisms and the
composites with the inclusions are monomorphisms and are jointly epi. Naturality arises
from the universal property of coproduct.

Let G be an ordinal graph of dimension -1 (minus one). Then G and ΓΓ′G are both
empty ordinal graphs. Assume ε is a natural isomorphism for ordinal graphs of dimension
n and let G have dimension n+ 1. Define X as

Γ′G = su(Γ′G(xi−1, xi),G∗).

The globular cardinal X(px, x) is the largest subfunctor of X satisfying the requirements
of Definition 5.7. The coprojection

Γ′G(px, x)→
∑

Γ′G(px, x)

is also such a functor and so is identically X(px, x). Then G ′ = ΓX = ΓΓ′G has G ′∗ = G∗
and G ′(px, x) = ΓΓ′G(px, x) which by induction is naturally isomorphic to G(px, x).
Hence ε is a natural isomorphism since for any ordinal graph G then εG consists of an
identity and components which are natural isomorphisms.

5.16. Definition. We define a map

Υ: Ob i∆+ → ObOGraph

by induction on the height of objects of i∆+. Send the initial object [−1] to the empty
ordinal graph. Assume Υ is defined on objects of height n and let H have height n+1.
Let ΥH be the ordinal graph G with G∗ = H∗ and

G(i− 1, i) = ΥH(i)

for i which are not endpoints of (H∗)
∧. Recall H(i) is trivial when i is an endpoint

of (H∗)
∧. Notice that objects of i∆+ of height n are sent to ordinal graphs of dimension

n− 1.
Define Υ′ : ObOGraph→ Ob i∆+ by induction on the dimension of ordinal graphs.

Send the initial ordinal graph to the trivial object [−1]. Assume Υ′ is defined on ordinal
graphs of dimension n and let G have dimension n+ 1. Suppose G∗ = {x0, x1, . . . , xp}.
Define Υ′G as the object H with H∗ = [p], with H(0) and H(p+ 1) the trivial object of
i∆+ and with H(i) = Υ′G(xi−1, xi)) for each x ∈ [p] \f. Notice that the ordinal graphs
of dimension n are sent to objects of i∆+ of height n+ 1.
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5.17. Theorem. The object map Υ is surjective.

Proof. Clearly Υ is surjective on ordinal graphs of dimension -1 (minus one). Assume
that Υ is surjective on ordinal graphs of dimension n, let G be an ordinal graph of
dimension n+ 1 and let G ′ = ΥΥ′G. Then G∗ = G∗′ and, by induction, for each i ∈ G∗ \f
we have G(pi, i) = G ′(pi, i). Hence G = G ′ and Υ is surjective.

5.18. ω-categories. We start by recalling the definition of ω-category. Definition
5.21 is adapted from Michael Batanin’s construction in [Ba98] of the free ω-category on
a globular set. In addition we define the free ω-category on an ordinal graph and show
that it is isomorphic to the free ω-category on the corresponding globular cardinal.

5.19. Definition. A 1-category is an ordinary category and a 0-category is a discrete
1-category. An n-category is a category enriched over (n−1)-categories for n > 0. Then
ωCat, the category of ω-categories, is the colimit of the diagram

0-Cat→ 1-Cat→ 2-Cat→ · · · → n-Cat→ · · ·

of inclusions. The initial ω-category has dimension -1 (minus one). The ω-categories of
n-Cat have dimension n.

5.20. Definition. Let Y be a globular cardinal with x and y consecutive n-vertices.
Define Y [x, y] as the largest subfunctor of Y such that Y [x, y]n = {x, y}. We have the
inclusion ι[x, y] : Y [x, y]→ Y . Let γ be a morphism of globular cardinals. Define γ[x, y]
as the composite γ ◦ ι[x, y].

5.21. Definition. We define a functor

F : GlobCard→ ωCat.

Let X be a globular cardinal. The n-cells of FX are isomorphism classes of objects of
GlobCard/X which are globular morphisms γ : Y → X where Y has dimension n.

Let Y be a globular cardinal. We define the m-source of Y denoted sm Y (respectively
the m-target of Y denoted tm Y ) for m ∈ N. Define s0 Y (respectively t0 Y ) as the
smallest subfunctor of Y containing the least (respectively greatest) element of Y . For
m ≥ 1 define sm Y (respectively tm Y ) as the smallest subfunctor of Y containing Y`
for all ` < m and containing the least (respectively greatest) element of Y [py, y]m for all
y in Ym−1 \f. Given an n-cell γ (representing an isomorphism class) then domm (γ)
is (the isomorphism class of) the composite

sm Y
incl // Y

γ // X.

Likewise for codn (γ).
Composition in FX is given by pushout. Let α : Y → X and β : Z → X be n-cells

with domm (β) = codm (α). There is a unique isomorphism δ : sm Z → tm Y such that



ON THE DUALITY BETWEEN TREES AND DISKS 433

domm β = codm α ◦ δ where composition and equality is of globular morphisms. Define

β
m◦ α as the unique morphism in

sm Z Zincl //sm Z

Y

δ

��

Z

P
��

Y P//Y

X
α --

Z

X

β

��

P

X
��?

?
?

out of the pushout P which is defined as Z\sm Z+Y . Specifically, we have P` = Y` = Z`
for ` < m, Pm = Zm\(sm Z)m + Ym and P` = Y` + Z` for ` > m where the +
operation is the ordered union of linearly ordered sets. Let ◦ denote 0-composition.

An n-cell γ is indecomposable when the cardinality of Y [py, y]m is 2 (two) for all
m < n and is 1 (one) when m = n. An n-cell γ is 0-indecomposable when the cardinality
of Y0 is less than or equal to 2 (two). An n-cell γ is m-indecomposable (for m ≥ 1)
when the cardinality of Y [py, y]m is less than or equal to 2 (two) for all y ∈ Ym−1 \f.

Observations 5.22, 5.23 and 5.24 are referred to in Definition 5.30.

5.22. Observation. We identify an arbitrary n-cell of FX with a canonical 0-compos-
ition of 0-indecomposable n-cells. Let γ : Y → X be an n-cell where Y0 is {y0, y1, . . . , yp}.
We have

γ = γ[yp−1, yp] ◦ . . . ◦ γ[y0, y1].

We denote this composite as ◦yγ[py, y]. and understand that y is an index over Y0 \f.

5.23. Observation. We show (domm γ)(py, y) = domm−1 γ(py, y) for an n-cell γ of
FX where m < n and y ∈ Y0 \f. The lifting in

sm Y ◦ u1 Y ◦ u1
//

(sm Y )(py, y)

sm Y ◦ u1

��

(sm Y )(py, y) Y (py, y)//____ Y (py, y)

Y ◦ u1

��
Y ◦ u1 X ◦ u1γ·u1

//

Y (py, y)

Y ◦ u1

Y (py, y) X(pγy, γy)
γ(py,y) //_______ X(pγy, γy)

X ◦ u1

��

along the vertical arrows is (domm γ)(py, y) where the inclusions are described in Defi-
nition 5.7. The composite

sm−1 Y (py, y) incl // Y (py, y)
γ(py,y) // X(py, y)

is domm−1 γ(py, y). It remains to show that (sm Y ) (py, y) and sm−1 (Y (py, y)) are
identical. Let x be an element of (sm Y ) (py, y). Then py J x J y and either

x ∈ Y` for 1 < ` < m
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or
x is the least element of Y [pz, z]m for some z ∈ Ym−1 \f.

Given the first condition then they can be rewritten as

x ∈ Y (py, y)` for ` < m− 1

or
x is the least element of Y (py, y)[pz, z]` for some z ∈ Y (py, y)m−2 \f.

Jointly these rewritten conditions state that x is in sm−1 (Y (py, y)). The converse is also
true. We have that (domm γ)(py, y) and domm−1 γ(py, y) are identical.

5.24. Observation. We show (β
m◦ α)(py, y) = β(py, y)

m−1◦ α(py, y) for m-composable
n-cells α and β of FX where m < n and y ∈ Y0 \f. Let α : Y → X and β : Z → X

be m-composable n-cells. Their composition β
m◦ α is given the unique morphism out of

the pushout in

sm Z Z
incl //sm Z

Y

δ

��

Z

P
��

Y P//Y

X
α --

Z

X

β

��

P

X
��?

?
?

where P = Z\sm Z + Y . Let y be an element of P . By Observation 5.23 then
(sm Z)(py, y) and sm−1 Z(py, y) are identical. Note that Z(py, y)\(sm Z)(py, y) is
Z(py, y)\sm Z and further that Z(py, y)\sm Z + Y (py, y) is (Z\sm Z + Y )(py, y). Then
P (py, y) is the pushout of

sm−1 Z(py, y) Z(py, y)//sm−1 Z(py, y)

Y (py, y)
��

Z(py, y)

P (py, y)
��

Y (py, y) P (py, y)//Y (py, y)

X(py, y)α(py,y) ,,

Z(py, y)

X(py, y)

β(py,y)

��

P (py, y)

X(py, y)
��?

?

which is the lifting of the above diagram determined by the element y ∈ P . As all
horizontal and vertical maps above are monomorphisms we avoid unnecessary notation
by labeling all restrictions with (py, y). Hence the unique map of the second pushout is

(β
m◦ α)(py, y) from the lifting and β(py, y)

m◦ α(py, y) by definition.
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5.25. Definition. We define a functor

F : GraphN → ωCat

inductively on the dimension of ordinal graphs. Let G be the enriched graph of dimension
-1 (minus one) which is the empty graph. Define FG as the empty ω-category. Assume
F is defined on enriched graphs of dimension n and let G have dimension n+ 1. Define
the object set of FG as the object set of G. Its hom-sets are defined by induction for
distinct objects x and y as

(FG) (x, y) =
∑

x0,...,xn∈G∗

F (G (xn−1, xn))× ...× F (G (x0, x1))

where x = x0 and y = xn. For all x ∈ G∗ then (FG)(x, x) is defined as

CT +
∑

x0,...,xn∈G∗

F(G(xn−1, xn))× ...× F(G(x0, x1))

where CT is the terminal ω-category.
Define F on morphisms as follows. Let g : G → H be a morphism of enriched graphs

with domain of dimension -1 (minus one). Define Fg as the unique ω-functor ∅ → FH.
Assume F is defined for morphisms with domain of dimension n and let g : G → H
be a morphism of enriched graphs with domain of dimension n + 1. Let x0, x1, . . . , xp
denote the objects of G. The morphisms of hom-objects are defined for distinct objects x
and y as

(Fg)x,y =
∑

x0,...,xn∈G∗

F (g (xn−1, xn))× ...× F (g (x0, x1))

where x = x0 and y = xn. For all x ∈ G∗ then (Fg)x,x is defined as

gT +
∑

x0,...,xn∈G∗

F(g(xn−1, xn))× ...× F(g(x0, x1))

where gT : CT → CT .

5.26. Definition. We define a forgetful functor

U : ωCat→ GraphN

using induction on the dimension of ω-categories. Let C be the ω-category of dimension
-1 (minus one) which is the empty ω-category. Define UC as the empty ordinal graph.
Assume U is defined on ω-categories of dimension n and let C have dimension
n + 1. Define UC as the ordinal graph with object set Ob C and with edge-object
(UC)(x, y) = U(C(x, y)) determined by induction for each pair of objects x and y.

Define U on morphisms as follows. Let F : C → A be an ω-functor with domain of
dimension -1 (minus one). Define UF as the unique morphism ∅ → UA of enriched
graphs. Assume U is defined on ω-functors with domain of dimension n and let F have
domain of dimension n+ 1. Define UF as the ordinal graph with object set morphism
identical with that of F and with edge-object morphism (UF)(x, y) = U(F(x, y))
determined by induction for each pair of objects x and y.
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5.27. Theorem. The functor F is left adjoint to U.

Proof. We define, given an ordinal graph G and an ω-category C, a bijection

φ : GraphN(G,UC)→ ωCat(FG, C)

using induction on the dimension of ordinal graphs. Let g : G → UC be a morphism
of ordinal graphs with domain of dimension -1 (minus one). Define φg as the unique
ω-functor FG → C. Assume φ is defined and is a bijection on morphisms of ordinal
graphs with domain of dimension n and let g be such a morphism with domain of
dimension n + 1. Define φg = F : FG → C as follows. The object morphism of F is
that of g. Define, using the induction assumption, the morphism F(x, y) of hom-sets
as φg(x, y) for each pair of objects x, y of G.

Suppose that g and g′ are morphisms of ordinal graphs such that φg = φg′. Then
the object maps of g and g′ are identical and by the induction assumption the morphisms
of edge-objects are identical. Hence φ is injective.

Let F : FG → C be an ω-functor. Define a morphism g of ordinal graphs as follows.
The object map of g is that of F . The morphisms of edge-objects are defined using the
induction assumption. Hence φ is surjective and F is left adjoint to U.

5.28. Observation. In the sequel we restrict F of Definition 5.25 to the category of
ordinal graphs. Recall that an ordinal graph G has G(x, y) non-empty if and only if y
is the successor of x. Let G be an ordinal graph. For all objects x of G we have the
hom-object (FG) (x, x) = CT . For every pair x, y of distinct objects then

(FG)x,y = F (G (xn−1, xn))× ...× F (G (x0, x1)) .

Given a morphism g : G → H we have

(Fg)x,y = F (g (xn−1, xn))× ...× F (g (x0, x1))

where x = x0, y = xn and xi is the successor of xi−1 for i = 1, .., n.

5.29. Observation. We describe here the n-cells, domain, codomain and composition
operations of FG for an ordinal graph G with objects x0, x1, . . . , xp. A 0-cell of FG is
an object of G. An n-cell y of FG is a sequence (yi)

k
i=h+1 of (n−1)-cells, one from each

factor, of the product
∏k

j=h+1 F (G(xi−1, xi)) for h ≤ k in {0, 1, . . . , p}. The 0-domain
of y is xh and the 0-codomain of y is xk. Composition (0-composition) is denoted
by ◦ and is given by concatenation of sequences. Hence every n-cell is identified with a
unique 0-composition.

The m-domain and m-codomain of an n-cell y denoted domm y and codm y are
the 0-compositions ◦ki=h+1domm−1 yi and ◦ki=h+1codm−1 yi (respectively) for m < n. The
m-composition of n-cells y and z is defined

(yi)
k
i=h+1

m◦ (zi)
k
i=h+1 = ◦ki=h+1

(
yi

m−1◦ zi

)
for m < n where the (m− 1)-composition is in FG(xi−1, xi).
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5.30. Definition. We have two free functors both denoted F, one for globular cardinals
and one for ordinal graphs and the functor Γ: GlobCard → OGraph of Definition 5.13.
Let X be a globular cardinal. We define an ω-functor

L : FX → FΓX

using induction on the dimension of globular cardinals.
Let X be a globular cardinal of dimension -1 (minus one). Then FX and FΓX are

both the empty ω-category. Assume that L is defined for globular cardinals of dimension
n and let X have dimension n+ 1. Define L by induction on m-cells. Let γ : Y → X
be a 0-cell of FX. Define L on γ as γ0(y) where y is the unique element of Y
(and so of Y0). Assume L is defined on m-cells and let γ be an (m + 1)-cell of FX.
By Observation 5.22 we have ◦yγ[py, y] the unique 0-decomposition of γ. Using the
induction assumption define Lγ as

(Lγ(py, y))y∈Y0 \f in
∏

y∈γ(Y0 \f)

F (ΓX(γpy, γy)) .

Note that γ is an m-cell if and only if Lγ is.
We show using induction that L preserves the `-domain and `-codomain operations

for ` < m. The 0-domain of Lγ is γy0 and the 0-codomain is γy` where y0 is the
first element, respectively y` is the last element, of Y0. Hence L preserves dom0

and cod0 .
Assume that L preserves the `-domain operation. The following derivation begins by

replacing γ with its 0-decomposition, uses a basic property of ω-categories to proceed
from line 1 to line 2, uses Observation 5.23 to proceed from line 3 to line 4 and uses the
induction assumption to proceed from line 4 to line 5. We have

L dom`+1 γ = L dom`+1 ◦y γ[py, y]

= L ◦y dom`+1 γ[py, y]

= (L (dom`+1 γ[py, y]) (py, y))y

= (L dom` (γ[py, y](py, y)))y

= (dom` Lγ[py, y](py, y))y

= dom`+1 (Lγ(py, y))y

= dom`+1 Lγ

and L preserves the domain operations. Likewise for the codomain operations.
We show by induction that L preserves `-composition for ` < m. By construc-

tion L preserves 0-composition. Assume that L preserves `-composition. Let α and
β be (` + 1)-composable n-cells. Then each has 0-decomposition ◦yα[y] and ◦yβ[y]
(respectively). The following derivation begins by replacing α and β with their 0-
decompositions, uses a basic property of ω-categories to proceed from line 1 to line 2,



438 DAVID OURY

uses Observation 5.24 to proceed from line 3 to line 4 and uses the induction assumption
to proceed from line 4 to line 5. We have

L (β
`+1◦ α) = L (◦yβ[py, y]

`+1◦ ◦yα[py, y])

= L (◦y(β[py, y]
`+1◦ α[py, y]))

= (L (β[py, y]
`+1◦ α[py, y])(py, y))y

= (L (β[py, y](py, y)
`◦ α[py, y](py, y)))y

= (Lβ(py, y)
`◦ Lα(py, y))y

= (Lβ(py, y))y
`+1◦ (Lα(py, y))y

= Lβ
`+1◦ Lα

and L preserves composition.

5.31. Lemma. The ω-functor L : FX → FΓX is an isomorphism.

Proof. The object set of FX is isomorphic to X0 and the object set of FΓX is X0.
Faithful. We show that L is faithful using induction on the n-cells of FΓX.

Consider morphisms γ : Y → X and γ′ : Y ′ → X of FX. Suppose that Lγ = Lγ′ is a
0-cell of FΓX. Then Y and Y ′ are singletons, γ and γ′ have identical image and so
are isomorphic in GlobCard/X. Hence they are identical in FX.

Assume that L is faithful on n-cells and let Lγ = Lγ′ be an (n+1)-cell. We construct
an isomorphism α : Y → Y ′. By Observation 5.22 then γ and γ′ have canonical
0-decompositions ◦yγ(y) and ◦y′γ′(y′) for y ∈ Y0 \f and y′ ∈ Y ′0 \f respectively. By the
construction of these compositions and by definition of L then Y0 Y ′0 are isomorphic.
Such an isomorphism is unique and we have α0 : Y0 → Y ′0 as Y0 and Y ′0 are linear
orders.

Uniqueness of the 0-decompositions in FΓX implies that Lγ(y) = Lγ′(δ0y) for each
y ∈ Y0 \f. By definition of L then (Lγ(y)(py, y)) and (Lγ′(δ0y)(pδ0y

′, δ0y
′)) are iden-

tical and by induction the restrictions γ(y)(py, y) and γ′(δ0y)(pδ0y, δ0y) are identical.
Then there is a (unique) isomorphism Y (py, y) ∼= Y ′(pδ0y, δ0y) for each y ∈ Y0 \f. As
the corresponding inclusions into Y ◦ u1 and Y ′ ◦ u1 (respectively) are jointly epi then
we have isomorphisms δn : Yn ∼= Y ′n for n ≥ 1. The source and target operations are
preserved and we have δ : Y ∼= Y ′. Hence γ = γ′ and L is faithful.

Full. We show that L is full using induction on the n-cells of FΓX. Let x be a
0-cell. Then x is an element of X0. Let Y be a globular cardinal with a single element
y and define a globular morphism γ : Y → X by γ0 y = x. Then Lγ = x.

Assume that L is full on n-cells and let x = (xi)
k
i=h+1 be an (n + 1)-cell. By

induction we have n-cells γ(i) such that xi = Lγ(i). Then as L preserves composition
we have L (◦ki=h+1γ(i)) = ◦ki=h+1xi which is (xi)

k
i=h+1.

Hence L : FX → FΓX is an isomorphism.
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6. Equivalence between i∆ and Θ

Michael Makkai and Marek Zawadowski demonstrate, in [MZ01], a duality between the
category Disk as defined by André Joyal in [Jo97] and the category, denoted S in
[MZ01], of simple ω-categories. We refer the reader to [MZ01] for the details, but quote
their definition below. Note that [G] is the free ω-category on G an ω-graph which we
call a globular set.

Let G be an ω-graph. Let us call an element (cell) a of [G] maximal
if it is proper, that is, not an identity cell, and if the only monomorphisms
m : H → G for which a belongs to the image of [m] are isomorphisms.
Intuitively, an element is maximal if it is proper, and the whole graph G is
needed to generate it. We call G composable if [G] has a unique maximal
element; in that case, the maximal element may be called the composite of the
graph.

. . .

An ω-category is simple if it is of the form [G] for a composable ω-graph.
The category S is defined as the full subcategory of ωCat on the simple
ω-category as objects.

In Proposition 4.8 of [MZ01] they demonstrate that an ω-graph is composable if and
only if it is a globular cardinal. Hence the objects of S are ω-categories which are
isomorphic to the free ω-category FX for some globular cardinal X.

6.1. Definition. We define a functor

Ψ: i∆+ → ωCat.

Define Ψ on objects as the composite F◦Υ. See Definitions 5.16 and 5.25 and Observation
5.28, but we make it more explicit here. Let H be an object of i∆+. Let G = ΥH.
Then the objects of G are those of H and the edge-object G (pi, i) is ΥH(i) for each
i ∈ G∗ \f. The remaining edge-objects are empty ordinal graphs. Let A = FG. Then A is
an ω-category with object set G∗ and hom-objects

A(i, j) =

j∏
k=i+1

F ΥH(k)

when i < j in G∗. For all i ∈ G∗ then A(x, x) is the terminal ω-category. For i > j
then A(i, j) is the empty ω-category. Notice that the trivial object [−1] of i∆+ is sent
to the empty ω-category which is also initial.

We define Ψ on morphisms by induction on the height of their domain. Send mor-
phisms with domain of dimension -1 (minus one) to the unique morphism out of the empty
ω-category. Assume that Ψ is defined on morphisms with domain of height n and let
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g : H → K have domain of height n + 1. We construct an ω-functor F : ΨH → ΨK
from the data of g. Let C = ΨH and A = ΨK. Then C has object set H∗ and A
has object set K∗. Define the object map of F as the object map of g. We construct
an ω-functor Fpi,i : C (pi, i)→ A (F(pi),F(i)) for each i ∈ Ob C \f. From the definition
of Ψ on objects we have C (pi, i) = FΥH(i) and

A (F (pi) ,F (i)) =

F(i)∏
j=F(pi)+1

FΥK(j)

where Ji = {F (pi) + 1, ...,F (i)} is the index set of the product. From Observation
2.3 we have Ji = (g∧)∗ (i) and so g∧(j) = i for all j ∈ Ji. We have a morphism
g(j) : H(i) → K(j) of i∆+ with domain of height n for each j ∈ Ji by definition of
g. By induction, there are ω-functors Ψg(j) : FΥH(i)→ FΥK(j) which by the universal
property of the product give the required morphism

Fpi,i : FΥH(i)→
F(i)∏

i=F(pi)+1

FΥK(j). (3)

We have Fi,j =
∏j

k=i+1Fpk,k by Definition 5.25 and Observation 5.28 for i < j. For i
an object of C then Fi,i is the unique morphism into the terminal ω-category. For i > j
then Fi,j has domain the initial (empty) ω-category.

Preserves composition. Let g′ : H → K and g′′ : K → L be composable mor-
phisms of i∆+. Put F ′ = Ψ(g′), F ′′ = Ψ(g′′) and F = Ψ(g) where g = g′′ ◦ g′.
Let i be an element of H∗, let Ji =

(
g′∧
)∗

(i) and let Lj =
(
g′′∧
)∗

(j). Then

Li =
(
g′′ ◦ g′∧

)∗
(i) is identically

⋃
j∈Ji Lj.

We show F = F ′′ ◦ F ′ by showing that the upper horizontal composite of

FΥH(i)
∏

j=Ji
FΥK(j)

F ′pi,i //FΥH(i)

FΥK(j)

Ψg′(j)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQ

∏
j=Ji

FΥK(j)

FΥK(j)

pr

��
FΥK(j)

∏
`=Lj

FΥL(`)
F ′′pj,j //

∏
j=Ji

FΥK(j)

FΥK(j)

pr

��

∏
j=Ji

FΥK(j)
∏

`=Li
FΥL(`)

∏
j F ′′pj,j //

∏
`=Li

FΥL(`)

∏
`=Lj

FΥL(`)

pr

��
FΥK(j)

∏
`=Lj

FΥL(`)
F ′′pj,j //FΥK(j)

FΥL(`)

Ψg′′(`)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQ

∏
`=Lj

FΥL(`)

FΥL(`)

pr

��

is identically Fpi,i. For each l in L∗ then g(`) : H(g∧`) → L(`) is g′′(`) ◦ g′(j) by
definition of composition in i∆+ where j = g

′′∧`. By induction then Ψg(`) is the
diagonal composite. The construction ending at line 3 gives Fpi,i as the unique map
FΥH(i)→

∏
`=Li

FΥL(`) which is
∏

j F ′′pj,j ◦ F ′pi,i as required.
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6.2. Theorem. The category i∆+ is equivalent to the category Θ+ by

Ψ: i∆+ → Θ+.

Proof. The functor Ψ is essentially surjective by Lemma 5.31.

Faithful. We show Ψ is faithful using induction on the dimension of the domain of ω-
functors. As the initial object of i∆+ is sent to the initial ω-category then Ψ is faithful on
morphisms with domains of dimension -1 (minus one) as their domain is the initial object.
Assume Ψ is faithful on morphisms with domain of dimension n and that g, g′ : H → K
are parallel morphisms of i∆+ with domains of dimension n+ 1 such that F = Ψg and
F ′ = Ψg′ are identical. Then g = g′ as the object maps of F and F ′ are identical.

Let C = ΨH. For each i ∈ Ob C \f the construction ending at line 3 gives

Fpi,i = F ′pi,i : FΥH(i)→
F(i)∏

j=F(pi)+1

FΥK(j)

where the index set of the product is Ji = {F (pj) + 1,F (pj) + 2, . . . ,F (j)}. By
construction, composition with the projections out of the product gives

Ψg(j) = Ψg′(j) : FΥH(i)→ FΥK(j)

and by the induction assumption g(j) = g′(j) for each j ∈ Ji. Let J =
⋃
i∈Ob C \f Ji.

It remains to show for j 6∈ J that the morphisms g(j) and g′(j) determined by j are
identical.

For j 6∈ J then g∧j is an endpoint by Observation 2.4. Hence H(g∧j) is trivial and
g(j), g′(j) : H(g∧j)→ K(j) are identical. Therefore Ψ is faithful.

Full. We show that Ψ is full using induction on the dimension of the domain of ω-
functors. Let F : ΨH → ΨK be an ω-functor where C = ΨH. We construct a morphism
g of i∆+ from the data of F such that Ψg = F . Define the object map of g as the
object map of F .

Let F be an ω-functor with domain of dimension -1 (minus one). Then F has
domain an initial ω-category and so g is the unique morphism [−1]→ K. Assume that
Ψ is full for ω-functors with domain of dimension n and suppose F has domain of
dimension n+ 1. We have for each object j ∈ Ob C \f morphisms (ω-functors)

Fpi,i : C(pi, i)→ A(F(pi),F(i))

with domains of dimension n which are identically

Fpi,i : ΨH(i)→
F(i)∏

j=F(pi)+1

ΨK(j).
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The product has index set Ji = {F (pj) + 1,F (pj) + 2, . . . ,F(i)}. Composition with the
projections of the product gives for each j ∈ Ji an ω-functor

F(i, j) : ΨH(i)→ ΨK(j).

By induction there is a morphism g(i, j) such that Ψg(i, j) = F(i, j) for each j ∈ Ji and
each i ∈ Ob C \f. Let J =

⋃
Ji where the union is indexed over Ob C \f. It remains

to define, for each j 6∈ J , morphisms g(j) : H(g∧j)→ K(j). For such j then g∧j is an
endpoint by Observation 2.4. Hence H(g∧j) is initial and g(i) is determined. Therefore
Ψ is full.

6.3. Corollary. The category i∆ is equivalent to the category S.

We have demonstrated that the categories Disk and Θ are dual using the well-known
equivalence between intervals and ordinals. The category iI has been shown equivalent
to Disk and provides a description of disks as inductively defined intervals. Similarly i∆
has been shown equivalent to Θ and provides a description of Θ in terms of inductively
defined ordinals.

7. Labeled trees

In this section we define dual categories, named tI and t∆, which are equivalent to the
category Disk and the category Θ (respectively). To do so we construct categories
named tI+ and t∆+, which are augmented counterparts to tI and t∆ and show that
they are dual using the equivalence between ordinals and intervals. They are constructed
from trees whose vertices are labeled with intervals and ordinals (respectively) and which
satisfy certain conditions.

We begin by defining the concept of labeled tree with appropriate restriction and
suspension operations. After defining the concept of constrained tree we state and prove
a general theorem which gives mild conditions which allow an equivalence of categories
to be lifted to an equivalence between certain categories of constrained trees labeled by
the categories of the original equivalence.

We then define dual categories of constrained trees labeled by I+ and ∆+ which satisfy
the conditions of the general theorem. After defining the concept of cropped tree the above
equivalence is then restricted to the full subcategories with objects the cropped trees of
positive degree.

7.1. Definition. A forest (A,F ) labeled in a category C is a forest equipped with
functors Fn : An → C for all n ∈ N where An is considered a discrete category. A tree
(A,F ) labeled in a category C has A a tree.

7.2. Definition. A forest morphism (f, α) : (A,F ) → (B,G) in C is given by a tree
map f : A→ B of trees and a set of natural transformations

αn : Fn ⇒ Gn ◦ fn : A→ C
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for all n ∈ N. A tree morphism (f, α) : A→ B in C has both A and B labeled trees.
Identity morphisms are given by an identity set map and identity natural transfor-

mations. Let (f : A → B,α : F ⇒ Gf) and (g : B → C, β : G ⇒ Hg) be composable
morphisms. Then (g, β) ◦ (f, α) is defined as

(g ◦ f : A→ C, βf ◦ α : F ⇒ Hgf).

A forest op-morphism (f, α) : (B,G) → (A,F ) in C is a tree morphism in Cop and
so is a tree map f : A→ B and a set of natural transformations

αn : Gn ◦ fn ⇒ Fn : A→ C

for all n ∈ N. Let (g : B → C, β : Hg ⇒ G) and (f : A→ B,α : Gf ⇒ F ) be composable
op-morphisms. Then (f, α) ◦ (g, β) is defined as

(g ◦ f : A→ C, α ◦ βf : Hgf ⇒ F ).

We have the category Forest(C) of labeled forests and morphisms in C and its full
subcategory Tree(C) with objects labeled trees in C.

7.3. Definition. We define a restriction operation on labeled trees. The restriction of
(A,F ) by x is denoted (A(x), F (x)) where (A,F ) is a labeled forest and x is an element
of An has A(x) given by Definition 4.3 and F (x)m defined as the composite

A(x)m
incl. // An+m

Fn+m // C.

The restriction of (f, α) by x is denoted (f(x), α(x)) where (f, α) : A→ B is a forest
morphism in C and x is an element of An has f(x) given by Definition 4.3 and α(x)m
given by the composite pasting diagram

αn+m
⇒

An+m Bn+m
fn+m //

A(x)m

An+m

incl
��

A(x)m B(fnx)m
f(x)m // B(fnx)m

Bn+m

incl
��

C C
1

//

An+m

C
Fn+m

��

An+m Bn+m
fn+m // Bn+m

C
Gn+m

��

where the two vertical composites are F (i)m and G(fnx)m (respectively).
The restriction of (f, α) by x is denoted (f(x), α(x)) where (f, α) is a forest op-

morphism (with f : A → B and α : Gf ⇒ F ) and x is an element of An has f(x)
given by Definition 4.3 and has α(x)m given by the composite pasting diagram

αn+m
⇒

Bn+m An+m
oo fn+m

B(fnx)m

Bn+m

incl
��

B(fnx)m A(x)moo f(x)m
A(x)m

An+m

incl
��

C C
1

//

Bn+m

C
Gn+m

��

Bn+m An+m
oo fn+m

An+m

C
Fn+m

��
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where the two vertical composites are G(fnx)m and F (x)m (respectively).

7.4. Definition. Define a suspension functor

su : Forest(C)× C → Tree(C)

as follows. Given a forest (A,F ) in C and an object c in C then the suspension of A over
c denoted su(A, c) is (A′, F ′) where A′ = suA and F ′ is defined by F ′0(∗) = c and
F ′n+1 = Fn for n ∈ N.

Given a forest morphism (f, α) : (A,F ) → (B,G) and a morphism g : c → d of C
then the suspension of f, α over g denoted su(f, g) is (f ′, α′) : su(A, c)→ su(B, d) where
f ′ = su f and α′ is defined by α′0(∗) = g and α′n+1 = αn for n ∈ N.

7.5. Observation. This is the “labeled” counterpart to Observation 4.5. The coproduct
of a collection of labeled trees is a labeled forest and its suspension is a labeled tree. The
labeled subtrees of the suspension are isomorphic to the trees of the original collection.
We provide the details below.

Let c be an object of C and (A(i), F (i)) be a labeled tree in C with A(i)0 = {xi}
for each i in a set I. Let (A′, F ′) be the suspension of (

∑
A(i),

∑
F (i)) over c. By

Observation 4.5 then copr(i) : A(i) ∼= A′(xi) and the left triangle of

A′(xi)n
∑
A(i)nincl.

//
∑
A(i)n C//____

A(i)n

A′(xi)n

∼=

||zzzzzzzzzzzzz
A(i)n

∑
A(i)n

copr

��

A(i)n

C

F (i)n

""DDDDDDDDDDDDDD

commutes. The lower composite is F ′(xi)n and we have an isomorphism

(copr(i), Id : F (i)⇒ F ′(xi) ◦ copr(i))

between (A(i), F (i)) and (A′(xi), F
′(xi)).

7.6. Definition. A labeled forest (A, p, F ) in C is said to be constrained by the functor
U : C → Set when for each n ∈ N we have an isomorphism

λn : An+1
∼= el(UFn)

such that λnx ∈ UFn(pnx) where el(UFn) is the category of elements of UFn and consists
of pairs (y, ξ) with y ∈ An and ξ ∈ UFn(y). Then λnx = (y, ξ) where y = pn(x).
The set An+1 of (n + 1)-dimensional vertices of A is determined by the labels on its
n-dimensional vertices.
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7.7. Definition. A morphism (f, α) : (A, p, F )→ (B, q,G) between labeled trees in C
is said to be constrained by U : C → Set when for each n ∈ N

Bm+1 el(UGn)ηn
//

An+1

Bm+1

fn+1

��

An+1 el(UFn)
λn // el(UFn)

el(UGn)

el(U·αn)

��

commutes where the horizontal arrows are the isomorphisms of Definition 7.6. An op-
morphism (f : A → B,α : Gf ⇒ F ) : (B, q,G) → (A, p, F ) between labeled trees in C
constrained by U : Cop → Set also has that the above diagram commutes. As the horizontal
maps above are isomorphisms, the set map fn+1 is determined by the data from lower
dimensions. We have the category Con (C,U) of labeled forests in C constrained by U .

7.8. Definition. The 2-category Cat/Set is the 2-category of small categories over
Set. We define a 2-functor

Con : Cat/Set → Cat

as follows. Let U : C → Set be an object of Cat/Set, which we also write as (C,U),
and define Con (C,U) as the category with objects and morphisms given by Definitions
7.6 and 7.7 (respectively). Let F : C → A be a morphism of Cat/Set and define

ConF : Con (C,UC)→ Con (A,UA)

: (A,H) 7→ (A,F ◦H)

: (f, α) 7→ (f, F · α)

by post-composition with F . Let (A,H) be a constrained tree. Then An+1 is isomorphic
to el(UCHn) which is identically el(UAFHn) by the commutativity required of morphisms
in comma categories, in this case UC = UAF . Then (A,FH) is a constrained tree.
Let (f, α) be a constrained morphism. Then el(UC · α) is identically el(UAF · α) and
Con (F ) is well-defined.

Let γ : F → G be a 2-cell (natural transformation) of Cat/Set and define

Con γ : ConF ⇒ ConG : Con (C,UC)→ Con (A,UA)

: (A,H) 7→ (1A, γH )

by post-composition with γ. Naturality of Con (α) follows directly from that of α.
It is easy to see that Con preserves identities and composition of 1-cells and of

2-cells.

7.9. Theorem. Let F : C → A and G : A → C be 1-cells of Cat/Set. If F and G
are an adjoint pair then so are ConF and ConG. Moreover, if F and G are mutual
inverse equivalences (respectively isomorphisms) then ConF and ConG are mutual
inverse equivalences (respectively isomorphisms).
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Proof. Since Con is a 2-functor, it preserves adjunctions, equivalences and isomor-
phisms.

Two cases of labeled trees are of interest here: labeling by ∆+ and by I+. In the case
of ∆+ we constrain by the functor U = U ◦ ( )∧ and for I+ by U = U where U is the
underlying set functor. We define an additional requirement on such trees and call the
trees satisfying this additional requirement cropped.

7.10. Definition. Let (A, p, F ) be a labeled tree in ∆+, respectively a labeled tree
in I+, constrained as stated above. An end element x ∈ An+1 is one for which λn,x is
either a greatest or least element of Fn(pnx)∧ (respectively Fn(pnx)). We call (A, p, F )
cropped when, for all n ∈ N,

x is an end element of An+1 if and only if UFn+1(x) is a singleton.

If (A, p) is a tree of degree 0 (zero), so that all the pn are bijections, then the labeling F
of a cropped tree (A, p, F ) is unique. We call these the trivial cropped trees.

7.11. Definition. The category tI+ is the full subcategory of Con(I+, U) whose objects
are cropped labeled trees in I+ of finite degree. The category tI is the full subcategory
of tI+ containing the trees of positive degree.

7.12. Definition. The category t∆+ is the full subcategory of Con(∆+, U( )∧) whose
objects are cropped labeled trees in ∆op

+ of finite degree. The category t∆ is the full
subcategory of t∆+ containing the trees of positive degree.

7.13. Observation. An object (A,F ) of tI+ is trivial if and only if F0(∗) = [0]. An
object (A,F ) of t∆+ is trivial if and only if F0(∗) = [−1].

7.14. Observation. We provide an example of an object of tI+ of degree 3 (three).

[0]

[2]
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[2]
��

[0]

[2]
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[0]

[0]
��
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[3]
��?????

[2]

[3]
�������

[0]
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wwoooooooooooo [0]

[0]
��

[0]

[0]
��

[0]

[0]
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[1]
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7.15. Corollary. The categories tI+ (resp. tI) and t∆+ (resp. t∆) are dual.
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Proof. The functors ( )∧ and ( )∨ of the ordinal/interval equivalence and the con-
straining functors of tI+ and t∆+ satisfy the hypothesis of Theorem 7.9.

The categories tI+ and t∆+ of labeled trees were designed for their similarity with
the categories FamΣ(I+) and FamΠ(∆+) (respectively). The objects of tI+ and t∆+

are trees of intervals, respectively of ordinals, with extra structure and their morphisms
are essentially tree morphisms which respect the additional structure.

8. Equivalence of new definitions

In this last section we demonstrate an equivalence between tI+ and iI+ and, in a parallel
proof, between t∆+ and i∆+.

8.1. Observation. A constrained tree is a labeled tree with the requirement (see Def-
inition 7.6) that the fiber of a vertex and the underlying set of its label are isomorphic.
The restriction operation reflects the fibers of all vertices. Hence the restriction of a con-
strained (respectively cropped) tree is constrained (respectively cropped) and the restriction
of a constrained morphism is constrained.

We show that the coproduct of constrained trees is constrained. Given a collection
of constrained trees (A(i), F (i)) with comma objects λ(i) then, by the universal prop-
erty of coproduct,

∑
λn :

∑
An+1 →

∑
el(UF (i)n) is an isomorphism. As the functor

el( ) preserves coproducts then
∑

el(UF (i)n) is isomorphic to el(
∑
UF (i)n). Hence∑

A(i)n+1
∼=
∑

el(UF (i)n) and
∑
A(i) is constrained.

We show that the coproduct of constrained morphisms is constrained. Given a collec-
tion (f(i), α(i)) of constrained morphisms then in

∑
B(j)n+1

∑
el(UG(j)n)

∼= //

∑
A(i)n+1

∑
B(j)n+1

∑
f(i)n+1

��

∑
A(i)n+1

∑
el(UF (i)n)

∼= //
∑

el(UF (i)n)

∑
el(UG(j)n)

∑
el(U·αn)

��∑
el(UG(j)n) el(

∑
UF (i)n)∼=

//

∑
el(UF (i)n)

∑
el(UG(j)n)

∑
el(U·αn)

��

∑
el(UF (i)n) el(

∑
UF (i)n)

∼= // el(
∑
UF (i)n)

el(
∑
UF (i)n)

el(
∑
U·αn)

��

the left square commutes by functoriality of coproduct and the right square commutes
by naturality. Hence the coproduct of constrained morphisms (and constrained trees) is
constrained. The coproduct of cropped trees is cropped as the coprojections in Set are
jointly surjective monomorphisms.

The suspension su(A, c) is constrained by U if A0
∼= Uc and A is constrained by U .

The suspension su((f, α), g) is constrained by U if f0
∼= Ug and (f, α) is constrained

by U . Similarly, su(A, c) is cropped if A is cropped and A(i) is trivial when i is an
endpoint of Uc.

8.2. Proposition. The category tI+ is equivalent to the category iI+ by a functor

ΞI : tI+ → iI+

which is surjective on objects.
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Proof. Let (A,F ) be a cropped tree of height n in tI+. Then we have an object C = F0(∗)
of I+ and a set map

H : U(C)→ ObCon(I+, U)

: i→ A(i)

such that H(i) is trivial if and only if i is an endpoint of C. Hence a tree of height n in
tI+ has an alternative description as a pair (C,H) consisting of an object C of I+ and
function H : U(C)→ ObCon(I+, U) such that H(i) is trivial if only if i is an endpoint of
C and has height strictly less than n, for all i ∈ U(C). Similarly, a morphism of tI+ has
an alternative description as a pair (γ, h) : (C,H) → (C ′, H ′) consisting of a morphism
γ : C → C ′ of I+ and function h : U(C)→ ArCon(I+, U) with h(i) : H(i)→ H ′(γi).

This data is, by design, that required by Definition 3.1 for the objects and morphisms
of iI+. We define a functor

ΞI : tI+ → iI+

by sending the trivial tree of tI+ to the trivial object of iI+, and by sending morphisms
into the trivial tree to morphisms into the trivial object. The rest follows by induction.

8.3. Corollary. The category tI is equivalent to the category iI.

The proofs of propositions 8.2 and 8.4 are nearly identical. We include both and list
here the two ways in which the categories iI+ and i∆+ differ which affect the details of
the two proofs. First, the trivial object of iI+ is the terminal object [0] and the trivial
object of i∆+ is the initial object [−1]. Second, the subtrees of an object H of iI+ are
indexed by the elements of H∗ where the subtrees of an object K of i∆+ are indexed
by the elements of (K∗)

∧.

8.4. Proposition. The category t∆+ is equivalent to the category i∆+ by

Ξ∆ : t∆+ → i∆+

which is surjective on objects.

Proof. Let (A,F ) be a cropped tree of height n in t∆+. Then we have an object
C = F0(∗) of ∆+ and a set map

H : U(C∧)→ ObCon(∆+, U( )∧)

: i→ A(i)

such that H(i) is trivial if and only if i is an endpoint of C∧. Hence a tree of height n
in t∆+ has an alternative description as a pair (C,H) consisting of an object C of ∆+

and function H : U(C∧) → ObCon(∆+, U( )∧) such that H(i) is trivial if only if i is
an endpoint of C∧ and has height strictly less than n, for all i ∈ U(C∧). Similarly,
a morphism of t∆+ has an alternative description as a pair (γ, h) : (C ′, H ′) → (C,H)
consisting of a morphism γ : C ′ → C of ∆+ and function h : U(C∧) → ArCon(∆+, U)
with h(i) : H ′(γ∧i)→ H(i).
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This data is, by design, that required by Definition 3.2 for the objects and morphisms
of i∆+. We define a functor

Ξ∆ : t∆+ → i∆+

by sending the trivial tree of t∆+ to the trivial object of i∆+, and by sending morphisms
out of the trivial tree to morphisms out of the trivial object. The rest follows by induction.

8.5. Corollary. The category t∆ is equivalent to the category i∆.

The category tI provides a description of disks as trees with vertices labeled by
intervals. Similarly t∆ provides a description of Θ in terms of trees with vertices labeled
by ordinals.
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