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YONEDA REPRESENTATIONS OF FLAT FUNCTORS AND
CLASSIFYING TOPOSES

OLIVIA CARAMELLO

Abstract. We obtain semantic characterizations, holding for any Grothendieck site
(C, J), for the models of a theory classified by a topos of the form Sh(C, J) in terms
of the models of a theory classified by a topos [Cop,Set]. These characterizations arise
from an appropriate representation of flat functors into Grothendieck toposes based on
an application of the Yoneda Lemma in conjunction with ideas from indexed category
theory, and turn out to be relevant also in different contexts, in particular for addressing
questions in classical Model Theory.

1. Introduction

In [2] a bijection is established between the subtoposes of the classifying topos of a geo-
metric theory T and the quotients of T (i.e., geometric extensions of T over its signature),
considered up to the obvious notion of syntactic equivalence (i.e. the equivalence which
identifies two quotients of T precisely when they prove the same geometric sequents over
the signature of T); the subtopos corresponding via this duality to a given quotient of T
can be identified with its classifying topos (cf. Theorem 3.6 [2]).

In light of the methodologies introduced in [3], the fact that the notion of subtopos is
a topos-theoretic invariant admitting a ‘natural behaviour’ with respect to sites acquires
fundamental importance for using the duality to investigate different aspects of quotients
of geometric theories. Indeed, in most situations, a given representation for the classifying
topos of some theory naturally gives rise to a related representation for the classifying
topos of any quotient of the theory, and hence paves the way for effectively using the
classifying topos of the quotient as a ‘bridge’ to relate the syntactic properties of the
theory to properties of the alternative representations of its classifying topos. In fact,
these techniques are extensively exploited in [2] to transfer results from elementary topos
theory to geometric logic.

Working in the same spirit, in this paper we exploit the natural behaviour of the
notion of subtopos with respect to sites (recall that the subtoposes of a topos of the form
Sh(C, J) are in natural bijection with the Grothendieck topologies J ′ on C which contain
J) to achieve an entirely semantic characterization of the models (in any Grothendieck
topos) of a quotient T′ of a theory T classified by a presheaf topos [Cop,Set] in terms
of the models of T and of the Grothendieck topology J on C defined by saying that the
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subtopos Sh(C, J) ↪→ [Cop,Set] corresponds to T′ via the duality of Theorem 3.6 [2].
In fact, we introduce the notion of J-homogeneous T-model (in a given Grothendieck
topos) and show that, up to equivalence, the models of T′ (in any Grothendieck topos)
can be characterized among the models of T as precisely the J-homogeneous ones. If
C satisfies the right Ore condition and J is the atomic topology on it then the notion
of J-homogeneous model specializes essentially to the notion of homogeneous model in
Model Theory. In fact, this connection with classical Model Theory has already produced
a number of useful insights; specifically, it has been exploited in [1] to derive a topos-
theoretic interpretation of Fräıssé’s construction leading to new results on homogeneous
models and countably categorical theories.

Notation and terminology: The notation used in this paper is standard and borrowed
from [5], if not otherwise specified.

2. Yoneda representations of flat functors

In this section, we introduce a technique, based on ideas from indexed category theory,
for representing flat functors into arbitrary Grothendieck toposes; this technique will be
applied in the following sections of the paper to obtain insights in the theory of classifying
toposes.

2.1. Preliminary facts. We start by introducing the terminology and recalling the
facts from the theory of indexed categories that will be useful for our analysis. We refer
the reader to [5] (especially sections B1.2, B2.3 and B3.1) and to [8] for the background.
As an introduction to Topos Theory, we recommend [7].

We will generally denote indexed categories by underlined letters, to distinguish them
from their underlying categories which will be denoted by the corresponding simple letters;
so for example the underlying category of an indexed category D will be denoted by D.
The indexed category corresponding to a cartesian category S will be denoted by S.
Internal categories will be denoted by letters C,D, etc., and the corresponding indexed
categories will be denoted by C,D, etc.

By a topos (defined) over Set we mean an elementary topos E such that there exists
a (necessarily unique up to isomorphism) geometric morphism γE : E → Set; we denote
by γ∗E the inverse image functor and by ΓE its right adjoint, that is the “global sections”
functor. A topos is defined over Set if and only if it is locally small and has arbitrary
set-indexed copowers of 1; in particular every locally small cocomplete topos (and hence
every Grothendieck topos) is defined over Set.

Given a small category C and a topos E defined over Set, we can always internalize C
into E by means of γ∗E ; the resulting internal category in E will be denoted by C.

Every topos E (over Set) gives rise to a E-indexed category E obtained by indexing
E over itself; the inverse image functor γ∗E then induces an indexing of E over Set, which
coincides with the canonical indexing of E provided that E is cocomplete and locally small.
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For a topos E and an internal category C in E , we have a E-indexed category [C, E ],
whose underlying category is the category [C, E ] of diagrams of shape C in E and mor-
phisms between them. [C, E ] is equivalent (naturally in E) to the category of E-indexed
functors C→ E and indexed natural transformations between them (by Lemma B2.3.13
[5]).

The E-indexed category [C, E ] is locally small (by Lemma B2.3.15 [5]); from this it
follows that there exists a E-indexed hom functor

HomE[C,E] : [C, E ]op × [C, E ]→ E

whose underlying functor

HomE[C,E] : [C, E ]op × [C, E ]→ E

assigns to a pair of diagrams F and G in [C, E ] an object HomE[C,E](F,G) of E , which we
call the object of morphisms from F to G in [C, E ]; also, there is a Yoneda E-indexed
functor Y : C→ [Cop, E ], which plays in this context the same role as that of a Yoneda
functor in ordinary category theory (cf. [8]).

If C is a small category and C is its internalization in a cocomplete and locally small
topos E (by means of the functor γ∗E) then the category [C, E ] is equivalent to the category
[C, E ] (by Corollary B2.3.14 [5]). For this reason, we will restrict our attention to locally
small cocomplete toposes; we will occasionally loosely refer to them simply as toposes.
The equivalence between [C, E ] and [C, E ] restricts to an equivalence between the full
subcategories Tors(Cop, E) of Cop-torsors in E (as in section B3.2 of [5]) and Flat(C, E)
of flat functors C → E (as in chapter VII of [7]). Given a functor F ∈ [C, E ], the internal
diagram that corresponds to it via the natural equivalence [C, E ] ' [C, E ] will be called the
internalization of F and denoted by F i; of course, this is defined only up to isomorphism.

We denote by E∗ : E → E/E the pullback functor along the unique arrow E → 1,
that is the (logical) inverse image functor of the local homeomorphism E/E → E . Then,
since [C, E ] ' [C, E ], we have a hom functor HomE[C,E] : [C, E ]op × [C, E ]→ E , which assigns

to each pair of functors F and G in [C, E ] an object HomE[C,E](F,G) of E such that for

each E ∈ E the morphisms E → HomE[C,E](F,G) in E are in natural bijection with the

morphisms in [C, E/E] from E∗ ◦ F to E∗ ◦ G, that is with the natural transformations
E∗ ◦F⇒E∗ ◦G. We remark that, since Flat(C, E) is a full subcategory of [C, E ], we may
use the objects HomE[C,E](F,G) for F,G ∈ Flat(C, E) as the objects of morphisms from F

to G, so to obtain a locally small E-indexed category Flat(C, E).
Given an S-indexed category D and an object I ∈ S, we have an S/I-indexed category

D/I (defined in the obvious way), which is called the localization of D at I. If D and E are
two S-indexed categories, we denote by [D,E] the category of S-indexed functors from D
to E and indexed natural transformations between them. The assignment I → [D/I,E/I]
is pseudofunctorial in I ∈ S and makes [D,E] into an S-indexed category.



YONEDA REPRESENTATIONS OF FLAT FUNCTORS AND CLASSIFYING TOPOSES 541

2.2. Yoneda representations. It is well known that, by Yoneda, for each F ∈
[Cop,Set] there is a natural isomorphism of functors

F ∼= HomSet
[Cop,Set](Y (−), F ),

where HomSet
[Cop,Set](Y (−), F ) is the functor given by the composite

Cop Y op×∆F // [Cop,Set]op × [Cop,Set]
HomSet

[Cop,Set] // Set .

Thanks to the remarks in the last section we are able to generalize this result to the
case of functors with values in an arbitrary topos. In fact, the following result holds.

2.3. Theorem. Let C be a small category and E be a locally small cocomplete topos. Then
for every functor F : Cop → E, there is a natural isomorphism of functors

F ∼= HomE[Cop,E](Y (−), F ),

where Y : C → [Cop, E ] is the functor given by the composite

C Y // [Cop,Set]
γ∗E◦− // [Cop, E ]

and HomE[Cop,E](Y (−), F ) is the functor given by the composite

Cop Y
op×∆F // [Cop, E ]op × [Cop, E ]

HomE[Cop,E] // E .

Moreover, the isomorphism above is natural in F .

Proof. One can observe that the internal Cop-diagram in E given by the composite

Cop Y op×∆F i // [Cop, E ]op × [Cop, E ]
HomE[Cop,E] // E

is on one hand equal to F i (by an internal version of Yoneda Lemma) and on the other
hand equal to the internalization of the functor

HomE[Cop,E](Y (−), F ) .

The verifications are easy and left to the reader.
One may also proceed as follows. We want to prove that F (c) ∼= HomE[Cop,E](Y (c), F ),

naturally in c ∈ C (and in F ). It suffices to observe that we have the following sequence
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of natural bijections:
E −→ HomE[Cop,E](Y (c), F )

E∗ ◦ Y (c) =⇒ E∗ ◦ F

γ∗E/E ◦ Y (c) =⇒ E∗ ◦ F

Y (c) =⇒ ΓE/E ◦ E∗ ◦ F

element of (ΓE/E ◦ E∗ ◦ F )(c)

E −→ F (c) .

In the case of flat functors, the theorem specializes to the following result.

2.4. Corollary. Let C be a small category and E be a locally small cocomplete topos.
Then for every flat functor F : Cop → E, there is a natural isomorphism of functors

F ∼= HomEFlat(Cop,E)(Y (−), F ),

where Y : C → Flat(Cop, E) is the functor given by the composite

C Y // Flat(Cop,Set)
γ∗E◦− // Flat(Cop, E)

and HomEFlat(C,E)(Y (−), F ) is the functor given by the composite

Cop Y
op×∆F // Flat(Cop, E)op × Flat(Cop, E)

HomEFlat(Cop,E) // E .

Proof. This immediately follows from the theorem and the remarks in section 2.1.

From now on we will refer to this result as to the Yoneda representation of flat functors.

2.5. Representation problems. In this section we introduce the notion of representa-
tion problem in the general context of locally small indexed categories. This concept will
lead to a universal characterization of the Yoneda embeddings, which will be employed in
the next section to derive a criterion for a theory to be of presheaf type.

2.6. Definition. Let S be a cartesian category and D be a locally small S-indexed cat-
egory. We say that a S-indexed functor F : Dop → S is S-representable if there exists an
object A ∈ D such that F is isomorphic in [Dop,S] to the composite

Dop 1D×∆A
// Dop × D

HomS
D // S

We denote this composite by HomS
D(−, A).
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If D is the underlying category of a locally small S-indexed category D then we say
that a functor F : Dop → S is S-representable if it is the underlying functor of an indexed
functor of the form HomS

D(−, A).

2.7. Definition. Let S be a cartesian category, D a locally small S-indexed category
and K a S-indexed full subcategory of [Dop,S]. A locally small S-indexed category F
together with S-indexed functors i : D→ F and r : K→ F is said to be a solution to the
1-representation problem for K if

HomS
F(−, r(F )) ◦ iop ∼= F

canonically in F ∈ K:

Dop

iop

��

F // S

Fop
HomS

F(−,r(F ))

>>

The triple
(F, i : D→ F, r : K→ F)

is said to be a solution to the representation problem for K if for each I ∈ S the triple

(F/I, i/I : D/I → F/I, r/I : K/I → F/I)

is a solution to the 1-representation problem for the S/I-indexed category K/I.
A solution (F, i : D→ F, r : K→ F) to the representation problem for K is said to be

universal if for any other solution (F′, i′ : D→ F′, r′ : K→ F′) to the same problem there
exists a unique (up to canonical isomorphism) S-indexed functor z : F→ F′ such that
z ◦ r ∼= r′ and z ◦ i ∼= i′ canonically. Of course, if such a solution exists, it is unique up
to canonical isomorphism by the universal property.

2.8. Proposition. Let S a cartesian category, D a locally small S-indexed category
and K a S-indexed full subcategory of [Dop,S]. If Y : D→ [Dop,S] factors as Y′ : D→ K
through the full embedding K ↪→ [Dop,S], then the triple

(K,Y′ : D→ K, 1K : K→ K)

is the universal solution to the representation problem for the S-indexed category K.

Proof. This follows as an immediate consequence of the indexed version of the Yoneda
lemma ([8], 1.5.1).
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So, if C is an internal category in S, the embedding Y : C→ [Cop,S] can be charac-
terized not only, as it is well known, as the free S-cocompletion of C, but also as the
universal solution to the representation problem for the S-indexed category [Cop, S].

2.9. Corollary. Let C be an internal category in a topos E. Then the factorization
Y′ : C→ Tors(C, E) of the Yoneda indexed functor

Y : C→ [Cop, E ]

through the full embedding
Tors(C, E) ↪→ [Cop, E ]

is the universal solution to the representation problem for the E-indexed category Tors(C, E).

2.10. Theories of presheaf type.

2.11. Definition. A geometric theory T is said to be of presheaf type if it is classified
by a presheaf topos.

2.12. Remark. The class of theories of presheaf type contains all the cartesian, and in
particular all the finitary algebraic, theories, and also many other interesting mathematical
theories (for example, the theory of linear orders, cf. [7] and [6] and the geometric theory
of finite sets, cf. [6]).

A theory T is of presheaf type if and only if it is classified by the topos [C,Set], where
C := f.p.T-mod(Set) is the category of (representatives of isomorphism classes of) finitely
presentable T-models in Set i.e. (a skeleton of) the full subcategory of T-mod(Set) on
the finitely presentable objects (recall that an object c of a finitely accessible category
C is said to be finitely presentable if the representable functor HomC(c,−) : C → Set
preserves filtered colimits). To prove this recall that, by Diaconescu’s theorem, we have
an equivalence of categories T-mod(Set) ' Flat(Cop,Set) = Ind-C. Hence the category
T-mod(Set) is finitely accessible and the Cauchy completion Č of the category C is re-
coverable (up to equivalence) from Ind-C as the full subcategory Č ' f.p.T-mod(Set)
of finitely presentable objects (cf. Proposition C4.2.2 [6]); but [C,Set] and [Č,Set] are
naturally equivalent (cf. Corollary A1.1.9 [5]), from which our claim follows.

Let us now proceed to give a semantic characterization of the (geometric) theories of
presheaf type based on the ideas in the last section.

We observe that, if T is a geometric theory, we can regard it informally as a category
T-mod indexed by the (meta)category of Grothendieck toposes via the pseudofunctor
T-mod (which assigns to every topos E the category of T-models in E); in particular, for
each Grothendieck topos E , by ‘restricting’ this pseudofunctor to the slices of E , we obtain
a E-indexed category T-modE , which is locally small as a E-indexed category. Indeed, it is
well known that T is Morita-equivalent (that is, has the same category of models - up to
natural equivalence - into every Grothendieck topos E naturally in E , equivalently has the
same classifying topos) to the theory of flat functors on a category C which are continuous
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with respect to a Grothendieck topology J on C, and the categories of such functors are
all full subcategories of the corresponding categories of functors on C (cf. the remarks in
section 2.1).

By Diaconescu’s theorem, any theory (of presheaf type) T classified by a topos [Č,Set]
comes equipped with a Morita-equivalence ξE : Flat(Čop, E) → T-mod(E) to the the-
ory of flat functors on the category Čop. Via this equivalence, the Yoneda embedding
Y : Č → Flat(Čop, E) corresponds to the embedding of f.p.T-mod(Set) into T-mod(E)
given by the inverse image functor γ∗E . Notice that the image in T-mod(E) of this em-
bedding can be thought as the subcategory of ‘constant T-models which are finitely pre-
sentable in Set’.

As we have remarked, for each Grothendieck topos E T-modE is locally small, so it
does make sense to ask if γ∗E(−) : f.p.T-mod(Set)→ T-mod(E) (regarded here as a E-
indexed functor to T-modE) is the universal solution to the representation problem for
the E-indexed category

Flat(f.p.T-mod(Set)op, E) .

If this holds for every E naturally in E then we may conclude by Corollary 2.9 that T is
of presheaf type. More concretely, we have the following criterion for a theory to be of
presheaf type.

2.13. Theorem. Let T a geometric theory. Then T is of presheaf type if and only if for
each Grothendieck topos E, every flat functor

F : f.p.T-mod(Set)op → E

can be extended to a E-representable along

γ∗E(−)op : f.p.T-mod(Set)op → T-mod(E)op

and conversely every E-representable T-mod(E)op → E arises up to isomorphism in this
way, naturally in F and E.

Proof. This is immediate from the discussion above.

2.14. Quotients of theories of presheaf type. Let us suppose we have a geo-
metric theory T classified by a presheaf topos [Cop,Set] and wish to understand what the
quotient of T classified by a subtopos Sh(C, J) of [Cop,Set] via the duality of Theorem
3.6 [2] looks like, in terms of T, and without any reference to flat functors. The technique
of the Yoneda representation for flat functors provides us with a means for solving this
problem. Specifically, we will succeed in describing in terms of the T-models and of the
Grothendieck topology J the T′-models in any Grothendieck topos E .

We denote by Č the Cauchy completion of the category C. Recall that Č can al-
ternatively be characterized as the full subcategory of Ind-C consisting of the finitely
presentable objects and also as the closure of C under retracts in Ind-C.
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Now, we have already observed that the toposes [Cop,Set] and [Čop,Set] are naturally
equivalent. It follows (from the theory of elementary toposes) that there exists a unique
Grothendieck topology J̌ on Č such that subtopos

Sh(Č, J̌) ↪→ [Čop,Set]

corresponds to the subtopos
Sh(C, J) ↪→ [Cop,Set]

under the equivalence
[Čop,Set] ' [Cop,Set] .

We describe it explicitly in the theorem below.
Let us adopt the following conventions: if S is a sieve in C, we denote by S the sieve

in Č generated by the members of S; if R is a sieve in Č, we denote by R ∩ arr(C) the
sieve in C formed by the elements of R which are arrows in C. Moreover, given an arrow
g : d→ c in C and sieves S and R on c respectively in C and Č, we denote by g∗C(S) and
g∗Č(R) the sieves obtained by pulling back S and R along g respectively in the categories

C and Č.

2.15. Theorem. Let C be a category and Č its Cauchy completion. Given a Grothendieck
topology J on C, there exists a unique Grothendieck topology J̌ on Č that induces J on
C, which is defined by: for each sieve R on d ∈ Č, R ∈ J̌(d) if and only if there exists a

retract d
i
↪→ a

r→ d with a ∈ C and a sieve S ∈ J(a) such that R = i∗(S). Furthermore, if
d ∈ C then R ∈ J̌(d) if and only if there exists a sieve S in C on d such that R = S.

Proof. Since the full embedding C ↪→ Č is (trivially) dense with respect to every
Grothendieck topology on Č, it follows from the Comparison Lemma (Theorem C2.2.3
[6]) and the remarks above that there is at most one Grothendieck topology on Č that
induces J on C. Therefore, it will be enough to prove that the coverage J̌ in the statement
of the theorem is a Grothendieck topology that induces J on C. This, as well as the second
part of the thesis, can be easily proved by using the following easy fact (whose proof is
left to the reader): given an object c ∈ C, the assignments R→ R∩arr(C) and S → S are
inverse to each other and define a bijection between the set of sieves in C on c and the set
of sieves in Č on c. Moreover, these bijections are natural with respect to the operations
of pullback of sieves along an arrow in C.

By way of example, we provide the details of the proof that J̌ satisfies the ‘stability
axiom’ for Grothendieck topologies. Given R ∈ J̌(d) and g : e→ d in Č, we want to prove

that g∗(R) ∈ J̌(e). Since R ∈ J̌(d), there exists a retract d
i
↪→ a

r→ d with a ∈ C and

a sieve S ∈ J(a) such that R = i∗(S). There exists a retract e
j
↪→ b

z→ e with b ∈ C.
Now, g∗(R) = g∗(i∗(T )) = (i ◦ g)∗(T ) = ((i ◦ g ◦ z) ◦ j)∗(T ) = j∗((i ◦ g ◦ z)∗(T )) =
j∗((i ◦ g ◦ z)∗Č(S)) = j∗((i ◦ g ◦ z)∗C(S)). Our thesis then follows at once from the stability
axiom for J .
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2.16. Theorem. Let C be a category and J a Grothendieck topology on C.
If J is the trivial topology then J̌ is the trivial topology.
If J is the dense (respectively, the atomic) topology on C, then J̌ is the dense (respec-

tively, the atomic) topology on Č.

Proof. All can be easily proved by using the ‘retract technique’ employed in the proof
of the previous theorem. We omit the details.

Coming back to our original problem, we have seen that it is natural to replace the
topos Sh(C, J) with Sh(Č, J̌). The advantage for us of this replacement is that the
category Č, being Cauchy complete, can be recovered from Flat(Čop,Set) as the full
subcategory of finitely presentable objects. Hence, if T is a theory classified by [Č,Set]
then the Morita-equivalence ξSet : Flat(Čop,Set) ' T-mod(Set) restricts to a natural
equivalence τ ξ : Č ' f.p.T-mod(Set), as in the following diagram:

Č

Y
��

f.p.T-mod(Set)∼
τξoo

i

��
Flat(Čop,Set) ∼

// T-mod(Set)

Now we want to rewrite the Yoneda representation

F ∼= HomE[Čop,E](Y (−), F ),

of a flat functor F : Č → E (given by Corollary 2.4) in terms of T, regarded here as a
E-indexed category. We recall that T-modE is locally small, with

HomET-mod(E)(M,N)

object of morphisms in T-modE from M to N in T-mod(E). The naturality in E of

the Morita-equivalence between T and the theory of flat functors on Čop implies the
commutativity of the following diagram:

Flat(Čop,Set) ∼ //

γ∗E◦−
��

T-mod(Set)

γ∗E(−)

��
Flat(Čop, E) ∼

// T-mod(E)

¿From the commutativity of the two diagrams above we deduce the following representa-
tion for F ◦ τ :

F ◦ τ ξ ∼= HomET-mod(E)(γ
∗
E(i(−)),MF ),

where MF is the T-model in E corresponding to F ∈ Flat(Čop, E) via the Morita-
equivalence.
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We note that, given a Morita-equivalence ξ for a theory of presheaf type T classified
by the topos [f.p.T-mod(Set),Set] (as in 2.10 above), we can modify ξ so that τ ξ(c) ∼= c
naturally in c ∈ f.p.T-mod(Set). Indeed, composing with (τ ξ)−1 gives rise to an equiva-
lence

((−) ◦ (τ ξ)−1)E : Flat(f.p.T-mod(Set)op, E)→ Flat(f.p.T-mod(Set)op, E)

natural in E ∈ Btop, and it easily follows from the Yoneda representation and the
Yoneda Lemma that the composite equivalence ξ′ := ξ ◦ ((−) ◦ (τ ξ)−1) is such that
τ ξ
′ ∼= 1f.p.T-mod(Set). In fact, given a theory of presheaf type T, we will assume below

that T comes equipped with an equivalence ξ satisfying the condition τ ξ
′ ∼= 1f.p.T-mod(Set);

we will call such an equivalence canonical, and, accordingly, we will say that an equivalence

χE : T-mod(E) ' Geom(E , [f.p.T-mod(Set),Set])

natural in E ∈ Btop is canonical if it is induced by a canonical equivalence

ξE : Flat(f.p.T-mod(Set)op, E)→ T-mod(E)

by composition with Diaconescu’s equivalence.
This motivates the following definition.

2.17. Definition. Let E be a locally small cocomplete topos, T a theory of presheaf type
and J a Grothendieck cotopology on C := f.p.T-mod(Set). A model M ∈ T-mod(E) is
said to be J-homogeneous if for each cosieve S ∈ J(c) the family of all the arrows

HomET-mod(E)(γ
∗
E(cod(f)),M)

HomET-mod(E)(γ
∗
E(f),M)

// HomET-mod(E)(γ
∗
E(c),M)

for f ∈ S, is epimorphic in E.

2.18. Remark. It is clear (from the definition of atomic topology) that if J is the atomic
cotopology on C then a model M ∈ T-mod(E) is J-homogeneous if and only if for each
arrow f : c→ d in C, the arrow

HomET-mod(E)(γ
∗
E(cod(f)),M)

HomET-mod(E)(γ
∗
E(f),M)

// HomET-mod(E)(γ
∗
E(c),M)

is an epimorphism in E . In this case we will simply say ‘homogeneous’ instead of ‘J-
homogeneous’.

We observe that if the Morita-equivalence ξ for T is canonical then the model MF is
J-homogeneous if and only if F is J-continuous.

We thus obtain the following theorem.
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2.19. Theorem. Let T be a theory of presheaf type and J a Grothendieck topology on
f.p.T-mod(Set)op. Then the topos Sh(f.p.T-mod(Set)op, J) classifies the J-homogeneous
T-models; that is, for any quotient T′ of T, the T′-models are exactly the J-homogeneous
T-models in any Grothendieck topos if and only if

� T′ is classified by the topos Sh(f.p.T-mod(Set)op, J) and
� the diagram in Cat

T′-mod(E) ' //

iET′
��

Geom(E ,Sh(f.p.T-mod(Set)op, J))

i◦−
��

T-mod(E) '
χE

//Geom(E , [f.p.T-mod(Set),Set])

commutes (up to invertible natural equivalence) naturally in E ∈ BTop, where χ is a
canonical Morita-equivalence for the theory T,

i : Sh(f.p.T-mod(Set)op, J) ↪→ [f.p.T-mod(Set),Set]

is the canonical geometric inclusion and

iET′ : T′-mod(E) ↪→ T-mod(E)

are the obvious inclusions for the quotient T′.

Specializing the theorem to the case of the atomic topology gives the following result.

2.20. Corollary. Let (C, J) be an atomic site and T a theory classified by the topos
[Cop,Set]. Then the topos Sh(C, J) classifies the homogeneous T-models.

Proof. This follows immediately from the theorem in view of Theorem 2.16.

Now we want to rephrase in more explicit terms what it means for a model to be
J-homogeneous; this will be particularly important for the applications. To this end, we
first express the condition that a given family of arrows as in Definition 2.17 is epimorphic
as a logical sentence in the internal language of the topos, then we use the Kripke-Joyal
semantics to spell out what it means for that sentence to be valid in the topos.

Recall that if E is a cocomplete topos and (fi : Ci → C | i ∈ I) is a family of arrows
in it indexed by a set I, then this family is epimorphic if and only if the logical formula

(∀y ∈ C)(∨
i∈I

(∃x ∈ Ci(fix = y))) holds in E . Given a class of generators G for E , the

validity in E of this sentence is in turn equivalent, by the Kripke-Joyal semantics, to the
following statement:
for each E ∈ G and y : E → C there exists an epimorphic family (ri : Ei → E | i ∈ I)
and generalized elements (xi : Ei → Ci | i ∈ I) such that y ◦ ri = fi ◦xi for each i ∈ I. By
applying this to the families of arrows in Definition 2.17 and by recalling that the objects
HomET-mod(E)(γ

∗
E(i(d)),M) are the objects of morphisms from γ∗E(i(d)) to M in T-modE , we

obtain the following characterization.
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2.21. Theorem. Let E be a locally small cocomplete topos with a class of generators G and
T be a theory of presheaf type. Given a Grothendieck cotopology J on C := f.p.T-mod(Set),
a model M ∈ T-mod(E) is J-homogeneous if and only if for each cosieve S ∈ J(c),
object E ∈ G and arrow y : E∗(γ∗E(i(c))) → E∗(M) in T-mod(E/E) there exists an
epimorphic family (pf : Ef → E, f ∈ S) and for each arrow f : c → d in S an arrow
uf : E∗f (γ

∗
E(i(d)))→ E∗f (M) in T-mod(E/E) such that p∗f (y) = uf ◦ E∗f (γ∗E(i(f))).

Notice that if E is the topos Set then by taking as class of generators of Set the class
having as its unique element the singleton 1Set we obtain the following result.

2.22. Corollary. Let T be a theory of presheaf type. Given a Grothendieck cotopology
J on C := f.p.T-mod(Set), a model M ∈ T-mod(Set) is J-homogeneous if and only if
for each cosieve S ∈ J(c) and arrow y : i(c) → M in T-mod(Set) there exists an arrow
f : c→ d in S and an arrow uf : i(d)→M in T-mod(Set) such that y = uf ◦ i(f).

By specializing the theorem and the corollary to the case of the atomic topology one
immediately obtains the following results.

2.23. Corollary. Let E be a locally small cocomplete topos with a class of generators
G and T be a theory of presheaf type. If C := f.p.T-mod(Set)op satisfies the right Ore
condition then a model M ∈ T-mod(E) is homogeneous if and only if for each arrow
f : c → d in Cop, object E ∈ G and arrow y : E∗(γ∗E(i(c))) → E∗(M) in T-mod(E/
E), there exists an object Ef ∈ E, an epimorphism pf : Ef � E and an arrow uf :
E∗f (γ

∗
E(i(d)))→ E∗f (M) in T-mod(E/E) such that p∗f (y) = uf ◦ E∗f (γ∗E(i(f))).

2.24. Corollary. Let T be a theory of presheaf type. If f.p.T-mod(Set)op satisfies the
right Ore condition then a model M ∈ T-mod(Set) is homogeneous if and only if for each
arrow f : c → d in f.p.T-mod(Set) and arrow y : i(c) → M in T-mod(Set) there exists
an arrow uf : i(d)→M in T-mod(Set) such that y = uf ◦ i(f):

i(c)

i(f)
��

y //M

i(d)

uf

>>

¿From this corollary it is clear that our notion of homogeneous model essentially
specializes to that of (weakly) homogeneous model arising in the context of classical
Model Theory (cf. [4]); in fact, this link has already been exploited in [1] to obtain a
topos-theoretic interpretation of Fräıssé’s construction leading to a variety of new results
on homogeneous models and countably categorical theories.
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2.25. Remark. We observe that, under the hypotheses of Definition 2.17, for each topos
E and object E ∈ E there is an isomorphism

E∗(HomET-mod(E)(γ
∗
E(i(c)),M)) ∼= Hom

E/E
T-mod(E/E)(γ

∗
E/E(i(c)), E∗(M))

natural in c ∈ C. Hence, if M ∈ T-mod(E) is J-homogeneous then E∗(M) ∈ T-mod(E/E)
is also J-homogeneous. This implies that, while dealing with theories T′ that one wants to
prove to satisfy the conditions of Theorem 2.21, one can restrict to argue with generalized
elements defined on 1, by the localizing principle. This is illustrated in the following
example.

2.26. An example. As an application of Corollaries 2.20 and 2.23, we recover the well-
known representation of the classifying topos for the theory of dense linearly ordered
objects without endpoints as the atomic topos Sh(Ordop

fm, J), where Ordfm is the cate-
gory of finite ordinals and order-preserving injections between them and J is the atomic
cotopology on it (cf. Example D3.4.11 [5]).

The theory L′ of dense linearly ordered objects without endpoints is defined over a one-
sorted signature having one relation symbol < apart from equality, and has the following
axioms:

(((x < y) ∧ (y < x)) `x,y ⊥),

(> `x,y ((x = y) ∨ (x < y) ∨ (y < x))),

((x < y) ∧ (y < z) `x,y,z (x < z)),

(> `[ ] (∃x)>),

((x < y) `x,y (∃z)((x < z) ∧ (z < y))) and

(x `x (∃y, z)((y < x) ∧ (x < z))) .

The first three axioms give the theory L of (decidably) linearly ordered objects. It is
well-known that this theory is of presheaf type, and it is easy to see that Ordfm can
be identified with the category of finitely presentable L-models in Set; the classifying
topos of L is thus equivalent to the functor category [Ordfm,Set]. Notice also that the
category Ordop

fm satisfies the right Ore condition, and hence we can equip it with the
atomic topology J .

A model M ∈ L-mod(E) is given by a pair (I, R) where I is an object of E and R is
a relation on I satisfying the diagrammatic forms of the first two axioms above. We will
prove that for each topos E , a model M = (I, R) ∈ L-mod(E) is homogeneous if and only
if it is a model of L′, that is if (I, R) is non-empty, dense and without endpoints; this will
imply (by the corollaries) our thesis.

In one direction, let us prove that if M is homogeneous then (I, R) is dense. For
each object E ∈ E , we denote by <E is the order induced by R on HomE(E, I). By the
localizing principle (cf. Remark 2.25), it is enough to prove that if x, y : 1 → I are two
generalized elements of I with x <1 y then there exists an object E ∈ E , an epimorphism
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p : E � 1 and an arrow z : E → I such that x ◦ p <E z <E y ◦ p. Consider the arrow
f : 2 → 3 in Ordfm defined by f(0) = 0 and f(1) = 2; the arrows x and y induce, via
the assignment (0 → x, 1 → y) and the universal property of the coproduct γ∗E(2), an
arrow ψ : γ∗E(2) → I in L-mod(E). From the homogeneity of M we obtain the existence
of an object E ∈ E , an epimorphism p : E � 1 and an arrow χ : E∗(γ∗E(3)) → E∗(I) in
L-mod(E/E) such that χ ◦ E∗(γ∗E(f)) = E∗(ψ). Then the composite arrow

E ∼= E∗(γ∗E(1))
E∗(γ∗E(u))
−→ E∗(γ∗E(3))

χ→ E∗(I)
πI→ I,

where u : 1→ 3 is the arrow in Ordfm which picks out the element 1 ∈ 3, gives an arrow
z : E → I with the required properties. The verifications that (I, R) is non-empty and
without endpoints are similar and left to the reader.

Conversely, we prove that if M ∈ L′-mod(E) then M is homogeneous. Again, by
the localizing principle, this amounts to proving that given an arrow f : n → m in
Ordfm and an arrow ψ : γ∗E(n) → I in L-mod(E), there exists an object E ∈ E , an
epimorphism p : E � 1 and an arrow χ : E∗(γ∗E(m)) → E∗(I) in L-mod(E/E) such that
χ ◦ E∗(γ∗E(f)) = E∗(ψ). The arrow ψ can be identified, via the universal property of the
coproduct γ∗E(n), with a family (hi : 1→ I | i ∈ n) of generalized elements of I. To find
the required arrow χ, we inductively use the fourth or the fifth axioms to obtain, starting
from the hi, an object E ∈ E , an epimorphism p : E � 1 and m generalized elements
(zj : E → I | j ∈ m) such that for each i ∈ n zf(i) = hi ◦ p and for each j, j′ ∈ m
((j < j′)⇒ (zj <E zj′)). The family (zj : E → I | j ∈ m) then gives rise to an arrow
χ : E∗(γ∗E(m))→ E∗(I) in L-mod(E/E) with the required property.

Acknowledgements: I am grateful to the anonymous referee for his useful sugges-
tions, which have helped improve the readability of this paper.
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