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SYMMETRY OF REGULAR DIAMONDS, THE GOURSAT
PROPERTY, AND SUBTRACTIVITY

MARINO GRAN, ZURAB JANELIDZE, DIANA RODELO AND ALDO URSINI

Abstract. We investigate 3-permutability, in the sense of universal algebra, in an
abstract categorical setting which unifies the pointed and the non-pointed contexts in
categorical algebra. This leads to a unified treatment of regular subtractive categories
and of regular Goursat categories, as well as of E-subtractive varieties (where E is the set
of constants in a variety) recently introduced by the fourth author. As an application,
we show that “ideals” coincide with “clots” in any regular subtractive category, which
can be considered as a pointed analogue of a known result for regular Goursat categories.

Introduction

The concept of a category equipped with an idealN of morphisms in the sense of C. Ehres-
mann [6], which was used by M. Grandis in [9] in his “categorical foundation of homolog-
ical and homotopical algebra”, turns out to have yet another interesting use in modern
categorical algebra, where it gives a suitable general context for comparing and unifying
results from pointed and non-pointed contexts. The pointed context is captured by choos-
ing N to be the class of zero morphisms of a pointed category, while the non-pointed
context, which we call the total context, is given when N is the class of all morphisms of a
category. In [7] it was shown that the notion of an ideal determined category [12] can be
conveniently extended from the pointed context to the context of a general N , so that in
the total context it becomes the notion of a Barr exact [2] Goursat category [5, 4]. Such
an extension is based on replacing the notion of a kernel from the pointed context, not
with the standard notion of a kernel with respect to a class N (used in e.g. [9]), which
trivializes in the total context, but with the notion of a “star-kernel” introduced in [7]
(which was called a “kernel star” there), which in the total context becomes the notion
of a kernel pair.

In the present paper we study the Goursat property beyond Barr exactness and show
that its pointed counterpart is precisely subtractivity [15]. In this process we establish a
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unified characterization theorem for regular Goursat and regular subtractive categories.
In particular, it gives the following equivalent reformulation of the Goursat property: in
a commutative diagram

X
e
������
��

� f

�� ��?
??

??

Y

g������
��

�
W

d �� ��?
??

??

Z

of regular epimorphisms, if the e-image of the kernel pair of f is the kernel pair of d,
then symmetrically, the f -image of the kernel pair of e must be the kernel pair of g (in
our terminology, if the above regular diamond is left saturated, then it is right saturated)
— we call this the symmetric saturation property. We also observe that requiring the
class of left saturated regular diamonds to coincide with the class of pushouts of regular
epimorphisms gives a characterization of Barr exact Goursat categories. In the pointed
case this distinction corresponds to the one between regular subtractive categories and
ideal determined categories.

One of the properties of an ideal determined category is that in it kernels coincide with
“ideals”, i.e. direct images of kernels along regular epimorphisms, which also coincide with
“clots”, i.e. those ideals which appear as “0-classes” of reflexive relations (see [14] and the
references there). In the present paper we show that the symmetric saturation property
still implies the coincidence of clots and ideals.

We also show that in the case of a variety of universal algebras, where N is chosen
to be the class of homomorphisms whose image is generated by constants, the symmetric
saturation property becomes “E-subtractivity” (where E is the set of constants of the
variety) introduced in [21].

1. Preliminaries

Let C denote a category with finite limits, and N a distinguished class of morphisms that
forms an ideal, i.e. for any diagram

X
f // Y

g // Z

in C, if either f ∈ N or g ∈ N , then gf ∈ N . The class N is often referred to as the class
of null morphisms. An N -kernel of a morphism f : X → Y is defined as a morphism
k : K → X such that fk ∈ N and k is universal with this property, i.e. for any other
morphism k′ with fk′ ∈ N there is a unique morphism u such that ku = k′; notice that an
N -kernel is a monomorphism. A pair of morphisms, written as σ = (σ1, σ2) : S ⇒ X and
with σ1 ∈ N , is called a star ; it is called a monic star when σ1, σ2 are jointly monomorphic
(i.e. when σ = (σ1, σ2) : S ⇒ X is a relation from X to X).
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A commutative diagram of stars and morphisms

S
σ ////

g

��

X

f

��
T //

τ
// Y

(where the commutativity fσ = τg means that fσ1 = τ1g and fσ2 = τ2g) is called a
star-pullback when given another such commutative (outer) diagram

S ′
σ′

%%%%
g′

��

h

��
S //

σ
//

g

��

X

f

��
T //

τ
// Y

there exists a unique morphism h : S ′ → S such that gh = g′ and σh = σ′.
Given a relation % = (%1, %2) : R ⇒ X on an object X, by %∗ we denote the biggest

subrelation of % which is a (monic) star, provided it exists; it indeed exists when N -
kernels exist, and can be constructed as %∗ = (%1k, %2k), where k is the N -kernel of
%1. In particular, ∆∗X = (kX , kX) where ∆X denotes the discrete (equivalence) relation
∆X = (1X , 1X) : X ⇒ X on an object X, and kX denotes the N -kernel of 1X . When
% = (%1, %2) is a kernel pair, we get the following notion: the star-kernel of a morphism
f : X → Y is a universal (monic) star κ = (κ1, κ2) : K ⇒ X with the property fκ1 = fκ2;
it can be equivalently defined as the star κ∗f of the kernel pair of f , which we denote by
κf : Kf ⇒ X.

In the pointed context, the first morphism σ1 in a star σ = (σ1, σ2) : S ⇒ X is the
unique null morphism S → X and hence a star σ can be identified with a morphism (its
second component σ2); then, N -kernels and star-kernels become the usual kernels. In
the total context stars are pairs of parallel morphisms, N -kernels are isomorphisms and
star-kernels are kernel pairs.

1.1. Convention. Throughout the paper we work in a regular category C equipped with
an idealN such that every morphism admits anN -kernel. Following the terminology used
in [7], such a category will be called a regular multi-pointed category with kernels.

1.2. Definition. [7] A regular multi-pointed category C with kernels is said to be star-
regular when every regular epimorphism in C is a coequalizer of a star.

In the total context a star-regular category is precisely a regular category. In the
pointed context a star-regular category is the same as a normal category [17], i.e. a
regular category in which any regular epimorphism is a normal epimorphism.
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By a diamond we mean a commutative diagram

X
e

����
��

� f

��?
??

??

Y

g����
��

�
W

d ��?
??

??

Z.

(1)

We say that the diamond (1) is

• left saturated if the direct image e〈κ∗f〉 along e of the star-kernel κ∗f of f is the
star-kernel of d:

e〈κ∗f〉 = κ∗d;

• right saturated if, symmetrically, f〈κ∗e〉 = κ∗g;

• saturated if it is both left and right saturated;

• a regular diamond if all morphisms in the diamond are regular epimorphisms.

1.3. Theorem. A regular multi-pointed category C with kernels is star-regular if and
only if the following conditions hold:

(a) C admits coequalizers of star-kernels;

(b) every left saturated regular diamond in C is a pushout.

Proof. Suppose that C is star-regular. Consider a star-kernel κ∗f of a morphism f .
Decompose f = me as a regular epimorphism e followed by a monomorphism m. Then,
κ∗f is a star-kernel of e. By star-regularity, e is a coequalizer of a star, which implies
that it is a coequalizer of its own star-kernel. Now consider a regular diamond (1). By
Theorem 2.14 in [7], such a diamond is a pushout if and only if d is a coequalizer of e〈κ∗f〉.
If the diamond is left saturated, then e〈κ∗f〉 is a star-kernel of d. Since d is a regular
epimorphism, star-regularity gives that d is a coequalizer of its star-kernel.

Now suppose star-kernels have coequalizers and every left saturated regular diamond
is a pushout. For a regular epimorphism d : X � Z, consider the following commutative
diagram

X
1X
������
��

� f

�� ��?
??

??

Y

g������
��

�
X

d �� ��?
??

??

Z

where f is the coequalizer of the star-kernel κ∗d of d and g is the canonical morphism arising
from the universal property of f . The above regular diamond is trivially left saturated
(κ∗d is a star-kernel of f), and hence must be a pushout. Then, g must be an isomorphism,
which implies that d is a coequalizer of κ∗d.
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2. 3-star-permutability and the symmetric saturation property

Given a morphism f : X → Y , by f+ we denote the relation from X to Y

X
1X

~~||
||

| f

  A
AA

AA

X Y

and by f− the opposite relation from Y to X

X
f

~~}}
}}

} 1X

!!C
CC

CC

Y X.

In particular, 1+
X = 1−X = ∆X .

For the results of this section we need to develop a calculus of (star) relations. This
follows from the usual calculus of relations which also involves special (star) relations ∆∗Z ,
for some object Z. First of all we note that for any relation % : R⇒ X we have

%∗ = % ◦∆∗X .

Inspired by this formula, for any relation % from X to an object Y , we define %∗ as %◦∆∗X ,
and we define ∗% as ∆∗Y ◦ %. Note that associativity of composition yields

∗(%∗) = (∗%)∗

and so we can write ∗%∗ for the above. For any relation σ (from some object Z to X), the
associativity of composition also gives

(%∗) ◦ σ = % ◦ (∗σ),

which suggests to write
% ∗ σ

for the above equal composites. It is easy to verify that for any morphism f : X → Y we
have

(f+)∗ = ∗(f+)∗,

∗(f−) = ∗(f−)∗.

These “techniques” can be used to establish the following basic properties of direct and
inverse images

f〈%∗〉 = f+ ◦ % ∗ f− = f+ ◦ % ∗ (f−)∗ = f〈%∗〉∗,

f−1〈%〉∗ = f− ◦ % ◦ (f+)∗ = f− ◦ % ∗ (f+)∗ = f−1〈%∗〉∗.
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For any span
X

e

~~~~||
||

||
|| f

    A
AA

AA
AA

W Y

(2)

of regular epimorphisms, we have

κe ◦ κf ∗ κ∗e = (e− ◦ e+ ◦ κf ∗ e− ◦ e+)∗ = e−1〈e〈κ∗f〉〉∗,

and, symmetrically,
κf ◦ κe ∗ κ∗f = f−1〈f〈κ∗e〉〉∗.

If κe = (ε1, ε2), then κe = ε+2 ◦ ε−1 = ε+1 ◦ ε−2 and so we get

κe ◦ κf ∗ κ∗e = (ε+1 ◦ ε−2 ◦ κf ∗ ε+2 ◦ ε−1 )∗ = ε1〈ε−12 〈κ∗f〉〉∗.

We write κ̇e for
κ̇e = ε+2 ∗ ε−1 .

Then, similarly as above, we get

κe ◦ κf ◦ κ̇e = ε+1 ◦ ε−2 ◦ κf ◦ ε+2 ∗ ε−1 = ε1〈ε−12 〈κf〉∗〉.

Notice that we have
κ̇e = ∗(κ̇e)

∗

and, since κ̇e 6 κe, we get

κe ◦ κf ◦ κ̇e = κe ◦ κf ∗ κ̇∗e 6 κe ◦ κf ∗ κ∗e. (3)

2.1. Definition. A regular multi-pointed category C with kernels is said to be

(a) 2-star-permutable if for any span (2) of regular epimorphisms, we have

κe ◦ κ∗f = κf ◦ κ∗e;

(b) 3-star-permutable if for any span (2) of regular epimorphisms, we have

κe ◦ κf ∗ κ∗e 6 κf ◦ κe ∗ κ∗f

(and, consequently, the equality holds) or equivalently,

e−1〈e〈κ∗f〉〉∗ 6 f−1〈f〈κ∗e〉〉∗

(and, consequently, the equality holds);

(c) nearly 3-star-permutable if for any span (2) of regular epimorphisms, we have

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ∗f .
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2.2. Remark. In the total context we always have

κe ◦ κf ◦ κ̇e = κe ◦ κf ◦ κe = κe ◦ κf ∗ κ∗e

and so both the 3-star-permutability and the near 3-star-permutability become the usual
3-permutability which defines Goursat categories, while 2-star-permutability defines pre-
cisely the Mal’tsev categories [5]. In the pointed context we always have

κe ◦ κf ◦ κ̇e = κe ◦ κ∗f = κe ◦ κf ∗ κ∗e

and so 3-star-permutability and near 3-star-permutability coincide with 2-star-permut-
ability. Pointed categories having these equivalent properties are precisely the regular
subtractive categories (this follows easily from the characterization of subtractivity given
in Theorem 6.9 in [16]).

As in the total and pointed contexts, in general we have:

2.3. Proposition. For any regular multi-pointed category with kernels, 2-star-permut-
ability implies 3-star-permutability, which in turn implies near 3-star-permutability.

Proof. The following calculation shows that 2-star-permutability implies 3-star-permut-
ability:

κe ◦ κf ∗ κ∗e 6 κe ◦ κf ◦ κ∗e = κe ◦ κ∗f = κf ◦ κ∗e = κf ◦ κe ∗∆∗ 6 κf ◦ κe ∗ κ∗f .

3-star-permutability implies near 3-star-permutability by (3).

2.4. Remark. We do not have an example which would show that near 3-star-permut-
ability is strictly weaker than 3-star-permutability.

The aim of the rest of this section is to examine intermediate properties between
3-star-permutability and near 3-star-permutability, which, in view of Remark 2.2, yield
characterizations of regular subtractive and of Goursat categories.

2.5. Lemma. In a regular multi-pointed category with kernels, for a saturated regular
diamond (1) we have

κe ◦ κf ∗ κ∗e = κf ◦ κe ∗ κ∗f ,

or equivalently,
e−1〈e〈κ∗f〉〉∗ = f−1〈f〈κ∗e〉〉∗.

Proof. Suppose a regular diamond (1) is saturated. Then

e−1〈e〈κ∗f〉〉∗ = e−1〈κ∗d〉∗ = e−1〈κd〉∗,

f−1〈f〈κ∗e〉〉∗ = f−1〈κ∗g〉∗ = f−1〈κg〉∗.

By the commutativity of the diamond we see that e−1〈κd〉∗ = f−1〈κg〉∗.
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A diamond (1) is said to be

• left split if e and g are split epimorphisms with right inverses e′ and g′ such that
fe′ = g′d;

• right split if, symmetrically, f and d are split epimorphisms having right inverses f ′

and d′ satisfying ef ′ = d′g.

2.6. Lemma. In a regular multi-pointed category with kernels, a diamond (1) which is
left split is always left saturated.

Proof. The splittings of the diamond obviously induce a splitting between the kernel
pairs of f and d, thus between their star-kernels.

If a regular diamond is left split, then it is a pushout. In [8], in the total context, such
a left split pushout of regular epimorphisms was called a “Goursat pushout” when it is
right saturated, inspired by the following result: a regular category is a Goursat category
if and only if every left split pushout of regular epimorphisms is right saturated (and hence
saturated, due to the above lemma). We revisit this result in our more general context
(see Theorem 2.12 below), where we use the same construction of a left split regular
diamond from a span, which was used in [8] for the proof of the above characterization
of Goursat categories. Namely, any span (2) gives rise to a left split regular diamond as
follows: consider the “right slice” of the diagram which specifies the image of κe = (ε1, ε2)
under f

Ke
ε2
������
��

�� ϕ

�� ��?
??

??
?

f〈Ke〉

γ2������
��

�
X

f �� ��?
??

??
?

Y.

(4)

The diamond (4) will be called the right derived diamond of the span (2) (the left derived
diamond is defined symmetrically). A right derived diamond is always left split, and
hence it is always left saturated by Lemma 2.6 (similarly, a left derived diamond is always
right split and hence right saturated).

2.7. Proposition. In a regular multi-pointed category with kernels, for any span (2)
whose right derived diamond is right saturated, we have:

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ∗f .

Proof. The right saturation of the right derived diamond (4) of the span (2) is the
identity

κ∗γ2 = ϕ〈κ∗ε2〉.
Taking the inverse image along ϕ followed by direct image along ε1, of both sides of the
above equality, we get

ε1〈ϕ−1〈κ∗γ2〉〉 = ε1〈ϕ−1〈ϕ〈κ∗ε2〉〉〉.
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We are going to show that we always have the following, which will complete the proof:

κe ◦ κf ◦ κ̇e 6 ε1〈ϕ−1〈κ∗γ2〉〉
∗,

ε1〈ϕ−1〈ϕ〈κ∗ε2〉〉〉
∗ 6 κf ◦ κe ∗ κ∗f .

We begin by proving the first inequality:

κe ◦ κf ◦ κ̇e = ε1〈ε−12 〈κf〉∗〉
= ε1〈ϕ−1〈κγ2〉∗〉
= ε1〈ϕ−1〈κ∗γ2〉

∗〉∗

6 ε1〈ϕ−1〈κ∗γ2〉〉
∗.

Now, the second inequality:

ε1〈ϕ−1〈ϕ〈κ∗ε2〉〉〉
∗ = (ε+1 ◦ ϕ− ◦ ϕ〈κ∗ε2〉 ◦ ϕ

+ ◦ ε−1 )∗

6 (ε+1 ◦ ϕ− ◦ ϕ〈κ∗ε2〉 ◦ γ
−
1 ◦ f+)∗

= (ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ϕ− ◦ γ−1 ◦ f+)∗

= (ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ε−1 ◦ f− ◦ f+)∗

= ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ε−1 ∗ κ∗f
6 ε+1 ◦ ϕ− ◦ ϕ+ ◦ ε−1 ◦ ε+1 ◦ κε2 ◦ ε−1 ∗ κ∗f
= ε+1 ◦ ϕ− ◦ ϕ+ ◦ ε−1 ◦ κe ∗ κ∗f
6 ε+1 ◦ ϕ− ◦ γ−1 ◦ f+ ◦ κe ∗ κ∗f
= ε+1 ◦ ε−1 ◦ f− ◦ f+ ◦ κe ∗ κ∗f
= κf ◦ κe ∗ κ∗f .

2.8. Definition. A morphism f : X → Y is said to be saturating if the following
condition holds: the right derived diamond

X
1X

����
��

� f

��?
??

??

Y

1Y����
��

�
X

f ��?
??

??

Y

associated to the span
X

1X

~~}}
}}

}}
}} f

  A
AA

AA
AA

X Y
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is right saturated.

In other words, f is saturating when the induced morphism from the N -kernel of 1X
to the N -kernel of 1Y is a regular epimorphism.

In the pointed context, all morphisms are saturating. In the total context, any regular
epimorphism is saturating.

The proof of the following result is straightforward:

2.9. Lemma. For a regular epimorphism f : X � Y the following conditions are equiva-
lent:

(a) f is saturating.

(b) ∆∗Y = (f+ ∗ f−)∗.

(c) For any relation % : R⇒ Y we have f〈f−1〈%〉∗〉 = %∗.

2.10. Proposition. In a regular multi-pointed category with kernels, a left saturated
regular diamond (1) with saturating f is saturated if and only if κe ◦κf ∗κ∗e = κf ◦κe ∗κ∗f ,
or, equivalently, if and only if

e−1〈e〈κ∗f〉〉∗ = f−1〈f〈κ∗e〉〉∗.

Proof. The “only if” part is exactly Lemma 2.5 (which does not require the fact that f
is saturating). To prove the “if” part, suppose that for a left saturated regular diamond
(1) we have the 3-star-permutability property. Then, the following calculation shows that
the diamond is right saturated:

f〈κ∗e〉 = f〈κ∗e〉∗

= f〈f−1〈f〈κ∗e〉〉∗〉
= f〈e−1〈e〈κ∗f〉〉∗〉
= f〈e−1〈κ∗d〉∗〉
= f〈e−1〈κd〉∗〉
= f〈f−1〈κg〉∗〉
= κ∗g

(we use Lemma 2.9(c) in the second and last equalities).

2.11. Definition. We say that C has the symmetric saturation property if the following
equivalent conditions hold:

(a) any left saturated regular diamond is right saturated;

(b) any right saturated regular diamond is left saturated;

(c) left/right saturated regular diamonds are the same as the saturated ones.
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2.12. Theorem. For a regular multi-pointed category C with kernels, each of the condi-
tions below implies the subsequent one:

(a) C is 3-star-permutable and has saturating regular epimorphisms;

(b) C has the symmetric saturation property;

(c) any left split regular diamond in C is saturated;

(d) C is nearly 3-star-permutable and has saturating regular epimorphisms.

Both in the pointed and total contexts these conditions are equivalent and characterize
regular subtractive and Goursat categories, respectively.

Proof. (a)⇒(b) follows from Proposition 2.10.
(b)⇒(c) follows from Lemma 2.6.
(c)⇒(d) follows from Proposition 2.7.
The final claim in the theorem follows from Remark 2.2.

Recall from [7] that a proto-pointed context refers to the context of a regular multi-
pointed category where null morphisms w : W → X are precisely those whose regular
image is the smallest subobject of X. When the category is a variety of universal algebras
such morphisms are those whose image is the subalgebra of constants of the algebra X
(by a “constant” we mean a nullary operation/term): this latter situation will be referred
to as the algebraic proto-pointed context. In this context, an N -kernel of a morphism
f : X → Y is given by the subalgebra of X consisting of those elements x ∈ X which are
mapped by f to a constant in Y . In particular, if the set E of constants of the variety is
empty, then N -kernels are empty subalgebras; in this case, stars are parallel morphisms
whose domain is the empty algebra and the conditions in Theorem 2.12 hold trivially. In
the case when E is non-empty, any regular epimorphism (i.e. a surjective homomorphism)
is still trivially saturating, since saturating morphisms are those homomorphisms which
are surjective on constants. The conditions of Theorem 2.12 are then still equivalent and
define E-subtractive varieties in the sense of [21], as we are now going to prove:

2.13. Theorem. In the algebraic proto-pointed context, each of the conditions 2.12(a)-
(d) is equivalent to 2-star-permutability and is also equivalent to the following syntactic
condition: for every constant c, there exists a binary term sc such that sc(x, x) = c and
sc(x, c) = x.

Proof. Suppose that near 3-star-permutability holds. For a given constant c, we apply
the inequality

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ∗f
in the case when e and f are the following algebra homomorphisms

e : Fr{x, y} → Fr{x}, x 7→ x, y 7→ x
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and
f : Fr{x, y} → Fr{x}, x 7→ x, y 7→ c,

where Fr{x} and Fr{x, y} are the free algebras over one and two generators, respectively.
Then the chain

c
κ̇e // c

κf // y κe // x

must give rise to a chain

c
κ∗f // c′

κ∗e // s(x, y)
κf // x

where each arrow yields, respectively, the equalities c = c′, s(x, x) = c′, and s(x, c) = x.
It follows that sc = s is the required binary term.

Suppose now that the syntactic condition given in the theorem holds. To deduce from
it 2-star-permutability we observe that every chain

c
κ∗f // x

κe // y

of elements of an algebra X, where c is a constant, produces the chain

c = sc(x, x)
κ∗e // sc(y, x)

κf // sc(y, c) = y.

Since 2-star-permutability implies 3-star-permutability (see Proposition 2.3), and any
regular epimorphism is saturating, Theorem 2.12 completes the proof.

3. Some remarks on clots and ideals

The notion of an ideal has been extended from varieties of universal algebras [11, 19, 20]
to pointed regular categories (with finite coproducts) in [14] (see also [13]). First recall
that a subobject c : C � X is a clot when it is the “0-class” of a reflexive relation,
i.e. there exists an internal reflexive relation

R
%2
//

%1 //
Xoo

such that c = %2 ◦ ker(%1) (see [1, 14, 18]). As proposed in [13], in a categorical setting
an ideal should be defined as a direct image of a clot along a regular epimorphism: a
subobject i : I � Y is an ideal when there exists a commutative square

C
q // //

��
c

��

I
��
i
��

X p
// // Y

with p and q regular epimorphisms and c a clot. It was later observed in [14] that ideals
can be equivalently defined as those subobjects which are direct images of kernels along
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regular epimorphisms; indeed, as clots themselves are a particular type of direct images of
kernels along regular epimorphisms, direct images of clots along regular epimorphisms will
coincide with those of kernels. Writing N(X), C(X) and I(X) for the classes of kernels,
clots and ideals of an object X, respectively, the inclusions

N(X) ⊂ C(X) ⊂ I(X)

are strict, in general. A crucial axiom in the definition of an ideal determined category [12]
states that these inclusions are, in fact, equalities. More precisely, an ideal determined
category is a normal category with finite colimits, in which every ideal is a kernel. Recall
also that ideal determined varieties [10] were introduced in [20] under the name of BIT
(for “Buona Teoria degli Ideali”) varieties. This explains the choice of the term “category
with a good theory of ideals” for the notion we are now going to recall.

The wish of unifying the pointed and non-pointed contexts led the authors of [7] to
introduce a more general notion of ideal in the context of a regular multi-pointed category
C, which in the pointed case gives the one recalled above. Since in a regular multi-pointed
category the role of kernels is played by star-kernels, it is natural to say that a monic star
% : R⇒ Y is an ideal when there exists a commutative diagram

K

��
κ

��

q // // R

%

����
X p

// // Y

with κ : K ⇒ X a star-kernel, and p, q regular epimorphisms (thus, % = p〈κ〉). Now,
a star-regular category C (with coequalizers of ideals) has a good theory of ideals if any
ideal is a star-kernel [7]. From what we said above it is then evident that, in the pointed
context, this gives precisely the notion of an ideal determined category (under the further
assumption of the existence of finite colimits, since this is required in the definition of
an ideal determined category given in [12]). In the total context, categories with a good
theory of ideals are precisely the Barr exact Goursat categories, since these latter ones
can be characterized as those regular categories in which the direct image of an effective
equivalence relation (i.e. of a kernel pair) along a regular epimorphism is an effective
equivalence relation (see [4]).

We observe that in view of Theorem 1.3 above, Theorem 3.8 of [7] can be refined as
follows:

3.1. Theorem. C has a good theory of ideals if and only if the following conditions hold:

(a) C admits coequalizers of ideals;

(b) pushouts of regular epimorphisms in C are the same as left saturated regular dia-
monds.
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As it follows from this theorem, any category with a good theory of ideals has the
symmetric saturation property.

We now extend the notion of a clot to an arbitrary regular multi-pointed category
with kernels:

3.2. Definition. A monic star β : B ⇒ X is said to be a clot if there is a reflexive
relation % = (%1, %2) : R⇒ X in C such that β = %2〈κ∗%1〉.

Thus, any star-kernel is a clot, and any clot is an ideal.
In the pointed context, the above notion of a clot becomes the one recalled earlier.
In the total context, a clot is the same as a relation β which has the form β = % ◦ %◦

for some reflexive relation % (where %◦ denotes the opposite relation of %). In particular,
any equivalence relation ε is a clot since ε = ε ◦ ε◦. Observe that in general a clot is
always reflexive and symmetric. By Theorem 3.5 in [4], the coincidence of equivalence
relations and clots (which is equivalent to every clot being transitive) is equivalent to 3-
permutability and hence to the symmetric saturation property by Theorem 2.12. At the
same time, by Theorem 6.8 in [4], it is further equivalent to the stability of equivalence
relations under direct images along regular epimorphisms, and hence to the coincidence
of equivalence relations and ideals. This readily gives that, in the total context, the
symmetric saturation property implies the coincidence of clots and ideals. More generally,
we have:

3.3. Proposition. If C is a regular multi-pointed category with kernels satisfying 2.12(c),
then clots are stable under direct images along regular epimorphism in C, i.e. clots coin-
cide with ideals: for any object X in C,

C(X) = I(X).

Proof. Consider a clot β : B ⇒ X and a reflexive relation % = (%1, %2) : R ⇒ X
such that β = %2〈κ∗%1〉. We are going to show that its direct image p〈β〉 along a regular
epimorphism p : X � Y is a clot. For this, consider a regular-image decomposition (the
bottom square in the following diagram), and the induced square of star-kernels (the top
square in the same diagram):

K1

��
κ∗%1
��

q // K2

κ∗π1
����

R

��
%

��

r // // R′

p〈%〉=(π1,π2)
����

X p
// // Y.
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Since % is reflexive it follows that p〈%〉 is reflexive, and further, the regular diamond

R
%1
������
��

� r
�� ��?

??
??

R′

π1������
��

�
X

p �� ��?
??

??

Y

is left split. Then it is right saturated by the assumption on C, and consequently, q is a
regular epimorphism. This implies

π2〈κ∗π1〉 = (p%2)〈κ∗%1〉 = p〈%2〈κ∗%1〉〉 = p〈β〉

which shows that p〈β〉 is a clot, as desired.

In the pointed context the above result says that clots and ideals coincide in any
regular subtractive category. This result extends a well known one for subtractive varieties
(see [1]). Note however that, unlike subtractive varieties where kernels, clots and ideals
coincide, in general a regular subtractive category may have ideals which are not kernels.
In fact, there are regular subtractive categories where every monomorphism is an ideal,
but not every ideal is a kernel: any non-abelian regular additive category is such. Indeed,
as shown in [3], a regular subtractive category in which every monomorphism is a kernel
is the same as an abelian category. Consequently, suitable counterexamples are given here
by the category of torsion-free abelian groups, as already pointed out in [12], and by the
category of topological abelian groups.

3.4. Remark. As mentioned in [7], a multi-pointed category can be seen as a category
enriched in the category of “multi-pointed sets”. We are grateful to Steve Lack for pointing
out to us the alternative of conveniently developing the theory of multi-pointed categories
through the language of enriched categories.
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