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HOMOTOPY THEORIES OF DIAGRAMS

J.F. JARDINE

Abstract. Suppose that S is a space. There is an injective and a projective model
structure for the resulting category of spaces with S-action, and both are easily derived.
These model structures are special cases of model structures for presheaf-valued diagrams
X defined on a fixed presheaf of categories E which is enriched in simplicial sets.

Varying the parameter category object E (or parameter space S) along with the dia-
grams X up to weak equivalence requires model structures for E-diagrams having weak
equivalences defined by homotopy colimits, and a generalization of Thomason’s model
structure for small categories to a model structure for presheaves of simplicial categories.

Introduction

The work displayed in this paper arose from a preliminary study of the homotopy theory
of dynamical systems.

In general, a dynamical system consists of an action

X × S → X

of a parameter space S on a space X. These objects appear most often in the context
of manifolds, where S is some kind of time parameter which is a subobject of the real
numbers.

In this paper, a “space” is a simplicial set, and we consider dynamical systems within
the category of simplicial sets — I say that such objects are S-spaces. A morphism
X → Y of S-spaces is the obvious thing, namely an S-equivariant map between the
respective simplicial sets. One could reasonably ask if a framework for homotopy theory
exists in some form for S-spaces.

Some preliminary constructions can already be found in the literature, albeit in a
different language [6], within the context of local homotopy theory.

On a more down to earth level, say that a map f : X → Y of S-spaces is a weak
equivalence if the underlying simplicial set map is a weak equivalence, a cofibration of
S-spaces is a monomorphism, and that a map of S-spaces is an injective fibration if it has
the right lifting property with respect to all maps which are simultaneously cofibrations
and weak equivalences. “Dually” say that a map p : Z → W of S-spaces is a projective
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fibration if the underlying simplicial set map is a Kan fibration, and a map of S-spaces
is a projective cofibration if it has the left lifting property with respect to all maps which
are projective fibrations and weak equivalences. Then it is not hard to show directly that
there are two distinct Quillen model structures on S-spaces which reflect these defini-
tions: an injective structure with cofibrations, weak equivalences and injective fibrations,
and a projective structure with projective cofibrations, weak equivalences and projective
fibrations. This is a start — these model structures are much like the variants of naive
equivariant homotopy theory that one encounters for spaces with group actions.

The first step in the translation to the language of [6] is to observe that an S-space is
a module

X × F (S)→ X

over the free simplicial monoid F (S) associated to S, or equivalently an F (S)-diagram in
simplicial sets, where F (S) is identified with a simplicial category having one object. The
F (S)-diagram X is then a very particular case of an E-diagram in simplicial presheaves,
where E is a presheaf of categories enriched in simplicial sets. Definitions analogous to
those of the previous paragraph can be made relative to the injective model structure on
simplicial presheaves, and the corresponding injective and projective model structures for
E-diagrams are derived in [6].

Beyond this, Theorem 5.2 of this paper says that there is an infinite list of model
structures for the category of E-diagrams having the same weak equivalences, for a fixed
presheaf E of categories enriched in simplicial sets. Of these, the projective model struc-
ture has the fewest cofibrations and the injective model structure has the most. This
result specializes to give an infinite list of model structures for the category of S-spaces,
all having the same weak equivalences, and among which the projective and injective
model structures described above appear as extremal examples.

But we want more. All homotopy theoretic structures discussed so far are defined
relative to either a fixed choice of presheaf of simplicial categories E, or a fixed parameter
space S. The point of the remainder of the paper is to display a homotopy theory for
E-diagrams or S-spaces in which the parameter objects E or S can vary up to weak
equivalence. Further, the presheaves of simplicial categories E which have been considered
so far have had simplicially discrete objects, and we want to escape from this assumption.

There are essentially two preparatory steps:

1) develop an appropriate model structure for presheaves of simplicial categories E,
and

2) develop a “homotopy colimit” model structure for E-diagrams which is consistent
with the interpretation of an E-diagram as a bisimplicial set map X → BE.

The homotopy theory for presheaves of simplicial categories which appears here in The-
orem 4.1 is a generalization of Thomason’s model structure for small categories [11]. It is
Quillen equivalent to an “sd2,0-model structure” on the category of bisimplicial presheaves,
in which the weak equivalences are diagonal local weak equivalences, and the cofibrations
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are generated by taking double subdivisions of ordinary cofibrations in all vertical degrees.
This sd2,0-model structure for bisimplicial presheaves is Quillen equivalent to the diagonal
model structure of [10], but also gives a setting for the model structure for presheaves of
simplicial categories: a morphism f : C → D of such objects is a weak equivalence if the
map BC → BD of bisimplicial nerves is a diagonal weak equivalence, and f : C → D is
a fibration if the map BC → BD is an sd2,0-fibration.

The sd2,0-model structure on bisimplicial presheaves is just an example: there are
sdm,n-model structures for all m,n ≥ 0, all of which are Quillen equivalent to the diag-
onal model structure (Theorem 1.2). This is a generalization of a phenomenon which
one finds in simplicial presheaves: there are sdn-model structures for the category of sim-
plicial presheaves, all of which are Quillen equivalent to the injective model structure
(Theorem 1.1). The sd2-model structure is the setting for a generalization of Thomason’s
original result to a model structure for presheaves of categories, which model structure
is Quillen equivalent to the injective model structure for simplicial presheaves (Theorem
3.1). Thomason’s result depended on a theory of Dwyer maps, which are special types of
fully faithful imbeddings of small categories. Dwyer maps are discussed in Section 2 of
this paper.

The homotopy colimit model structure for E-diagrams appears in Theorem 5.4. In
this theory, the cofibrations are the monomorphisms, and a map X → Y of E-diagrams
is a weak equivalence if it induces a diagonal weak equivalence

holim−−−→ E X → holim−−−→ E Y

of bisimplicial presheaves. Unlike earlier results (Theorem 5.2 and Theorem 5.2) there
is no requirement for the object presheaf Ob(E) to be simplicially discrete — Theorem
5.4 is universal. The associated homotopy category for this model structure is equivalent
to homotopy category Ho(s2 Pre(C)/BE) for the diagonal model structure on bisimpli-
cial presheaves fibred over BE, so that we can now identify E-diagrams with maps of
bisimplicial presheaves Y → BE.

Morphisms of diagrams may then be defined as commutative diagrams

X
f //

��

Y

��
BE

Bg
// BF

in bisimplicial presheaves, and we can say that the map (f, g) is a weak equivalence
if f is a diagonal equivalence and g is a weak equivalence of presheaves of simplicial
categories. The map (f, g) is a cofibration if f is an sd2,0-cofibration and g is a cofibration
of presheaves of simplicial categories. Finally, the map (f, g) is a fibration if g is a fibration
of simplicial category objects and the induced map

X → BC ×BD Y
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is an sd2,0-fibration of bisimplicial presheaves. The resulting model structure, which is
easily derived, appears in Theorem 4.2.

There is an analogous model structure for diagrams defined on ordinary presheaves of
categories; the corresponding result is Theorem 3.3.

All of these results for presheaves specialize to set-based results in the realm of ordinary
homotopy theory. In that case, there are sdn-model structures for simplicial sets and
sdm,n-models for bisimplicial sets, all of which are models for standard homotopy category.
Theorem 4.1 specializes to a model structure for simplicial categories which is induced by
the sd2,0-structure for bisimplicial sets. We also have specializations of the various model
structures for diagram categories to the categories of A-diagrams for a simplicial category
A.

In particular, if the maps f : X → Y and g : S → T define a morphism of dynamical
systems in the sense that the diagram

X × S //

f×g
��

X

f
��

Y × T // Y

commutes, then the pair (f, g) defines a weak equivalence of dynamical systems if and
only if the induced commutative diagram

holim−−−→ F (S)X //

��

holim−−−→ F (T )Y

��
BF (S) // BF (T )

of bisimplicial sets is a weak equivalence of diagrams. This will certainly be so, for
example, if the maps f and g are themselves weak equivalences of simplicial sets, but this
is not the whole story.

The main results of this paper are much more general. They apply, for example,
to sheaves and presheaves of dynamical systems for arbitrary Grothendieck topologies.
Diagrams on a topological or simplicial category are generalized dynamical systems for
which the parameter space has more than one object, and we have a clear interpretation
of both the absolute and local homotopy theories of these more general objects as well.

I would like to thank Gunnar Carlsson for opening the discussion about the potential
existence of homotopy theories for dynamical systems, and for a series of stimulating
conversations as the results of this paper evolved.

I would also like to thank the referee for a collection of helpful comments.

1. Subdivision model structures

We begin by recalling some of the basic features of subdivisions [2], [5].
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Every simplicial set X has a poset NX of non-degenerate simplices, ordered by the
face relationship. The assignment X 7→ NX is functorial in X: if f : X → Y is a
simplicial set map and σ is a non-degenerate simplex of X, then f(σ) = s(τ) for some
unique iterated degeneracy s and non-degenerate simplex τ of Y , and the assignment
σ 7→ τ defines the functor f∗ : NX → NY .

The subdivision sd(X) of a simplicial set X is defined by the assignment

sd(X) = lim−→
∆n→X

BN∆n,

where the colimit is indexed over the category ∆/X of simplices ∆n → X. It follows
from the definition that there is an isomorphism

sd(∆n) ∼= BN∆n

which is natural in maps of simplices.
Define a polyhedral complex to be a subcomplex K ⊂ BP of the nerve of a poset P

such that the vertices of each non-degenerate simplex x of K are distinct.
There is a natural map π : sd(X) → BNX for all simplicial sets X, and the map

π : sd(K)→ BNK is an isomorphism for all polyhedral complexes K. In effect, if x is a
non-degenerate n-simplex of K, then the classifying map x : ∆n → K is a monomorphism,
and induces an isomorphism ∆n ∼= 〈x〉 onto the subcomplex of K which is generated by
x.

Remark: It is useful to compare the present definition of polyhedral complex K with
the one given in [5]. The older definition is not precise enough to imply that the map
π : sd(K)→ BNK is an isomorphism.

The last vertex map
γ : BNK = sd(K)→ K

for a polyhedral complex K is defined by sending the simplex σ : ∆n → K to the vertex
σ(n). The map γ is natural in polyhedral complexes K, and it follows that the maps
γ : sd(∆n)→ ∆n (which are weak equivalences) induce a natural map

γ∗ : sd(X)→ X (1)

for all simplicial sets X. An induction on skeleta shows that this map γ∗ is a weak
equivalence for all X.

The right adjoint Y 7→ Ex(Y ) of the subdivision functor sd is defined by setting
Ex(Y )n to be the collection of simplicial set maps sd(∆n)→ Y . Precomposition with the
last vertex maps γ : sd(∆n)→ ∆n induces a natural map

γ∗ : Y → Ex(Y ),

which map is a natural weak equivalence [2, III.4.6]. It follows that the functor Ex
preserves and reflects weak equivalences of simplicial sets.
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As usual, sdn and Exn denote the n-fold iterations of the subdivision and Ex functors,
respectively, and the functor sdn is left adjoint to Exn.

There is an isomorphism

lim−→
∆p→sdnX

sdm ∆p ∼=−→ sdm(sdnX) = sdm+nX (2)

which is natural in simplicial sets X, by adjointness.

Suppose that C is a small Grothendieck site, and let sPre(C) be the category of
simplicial presheaves on C. The category sPre(C) has a proper closed simplicial model
structure [3], [4], for which the cofibrations are the monomorphisms, the weak equivalences
are the local weak equivalences, and the fibrations are defined by a right lifting property
with respect to trivial fibrations. The fibrations for this model structure are usually
called injective fibrations. This model structure is cofibrantly generated, with generators
consisting of the α-bounded cofibrations and α-bounded trivial cofibrations, where α is
an infinite cardinal such that α > |Mor(C)|. Suppose henceforth that α is a fixed choice
of such a cardinal.

Say that a simplicial presheaf map p : X → Y is an Exn-fibration if the induced map
ExnX → Exn Y is an injective fibration. An sdn-cofibration is a map which has the left
lifting property with respect to all trivial sdn-fibrations. Examples of sdn-cofibrations
include all maps sdnA → sdnB which are induced by cofibrations A → B of simplicial
presheaves.

1.1. Theorem. Suppose that C is a small Grothendieck site.

1) The classes of sdn-fibrations, sdn-cofibrations and local weak equivalences satisfy the
axioms for a proper closed model structure on sPre(C).

2) The adjoint functors
sdn : sPre(C) � sPre(C) : Exn

define a Quillen equivalence between the injective model structure and the model
structure for simplicial presheaves on the site C which is given by part 1).

The model structure of Theorem 1.1 is called the sdn-model structure for simplicial
presheaves.

Proof. The functor sdn preserves cofibrations of simplicial sets. The presheaf-level func-
tor sdn therefore preserves cofibrations of simplicial presheaves. The functor sdn preserves
and reflects local weak equivalences, on account of the natural weak equivalences (1).

It follows that a map p : X → Y is an sdn-fibration if and only if it has the right
lifting property with respect to all maps sdnA→ sdnB which are induced by α-bounded
trivial cofibrations A → B. Similarly, a map q : Z → W is a trivial sdn-fibration if and
only if it has the right lifting property with respect to all maps sdnC → sdnD which are
induced by α-bounded cofibrations C → D.
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A small object argument shows that every simplicial presheaf map f : X → Y has
factorizations

Z
p

  
X

i

>>

f //

j   

Y

W

q

>>

in which

1) the map p is an sdn-fibration and i is a trivial sdn-cofibration which has the left
lifting property with respect to all sdn-fibrations,

2) the map q is a trivial sdn-fibration and j is an sdn-cofibration.

The factorization axiom CM5 is therefore proved. The lifting axiom CM4 follows in a
standard way: every trivial sdn-cofibration is a retract of a map which has the left lifting
property with respect to all sdn-fibrations, on account of statement 1) above. The other
closed model axioms are easily verified.

Suppose that

Z ×Y X
f∗ //

��

X

p

��
Z

f
// Y

is a pullback diagram such that p is an sdn-fibration and f is a local weak equivalence.
Then the induced diagram

Exn(Z ×Y X)
f ′∗ //

��

ExnX

p′

��
Exn Z

f ′
// Exn Y

is a pullback in which p′ is an injective fibration and f ′ is a local weak equivalence. It
follows that the map f∗ : Z ×Y X → X is a local weak equivalence.

Every sdn-cofibration is a cofibration (ie. a monomorphism) in the ordinary sense. In
effect, this is true of all maps sdnA → sdnB which are induced by cofibrations A → B,
and the class of maps which are sdn-cofibrations and monomorphism is closed under
pushout, composition and retraction. It follows that all maps j : X → W in the proof of
CM5 are monomorphisms as well as sdn-cofibrations. Any sdn-cofibration is a retract of
such a map j, and is therefore a monomorphism.

The left properness of the model structure in the statement of the Proposition is then a
consequence of the corresponding statement for the injective model structure on simplicial
presheaves.



276 J.F. JARDINE

The subdivision functor sdn and its right adjoint determine a Quillen adjunction

sdn : sPre(C) � sPre(C) : Exn .

The functor Exn preserves and reflects weak equivalences of simplicial sets. It follows
that Exn takes pushout diagrams of simplicial sets

A //

i
��

C

��
B // D

with i a cofibration to homotopy cocartesian diagrams. An induction on skeleta shows
that the unit map η : X → Exn sdnX for the adjunction is a natural weak equivalence
for all simplicial sets X. The counit ε : sdn Exn Y → Y is therefore a natural weak
equivalence for all simplicial sets Y , since the map Exn(ε) is a weak equivalence.

The maps η : X → Exn sdnX and ε : sdn Exn Y → Y are therefore sectionwise, hence
local weak equivalences for all simplicial presheaves X and Y .

A map X → Y of bisimplicial sets is said to be a diagonal weak equivalence if the
induced map d(X)→ d(Y ) of diagonal simplicial sets is a weak equivalence. The diagonal
weak equivalences are the weak equivalences for the diagonal model structure on the
category s2Set of bisimplicial sets [10]. The cofibrations of the diagonal model structure
are the monomorphisms.

The diagonal structure on bisimplicial sets is a special case of a diagonal model struc-
ture for the category s2 Pre(C) of bisimplicial presheaves, whose weak equivalences are
the diagonal (local) weak equivalences and whose cofibrations are the monomorphisms.
The fibrations for this structure on bisimplicial presheaves are defined by a right lifting
property with respect to trivial cofibrations, and are called injective fibrations.

If K and L are simplicial sets, then the external product K×̃L is the bisimplicial set
with

(K×̃L)p,q = Kp × Lq.

Suppose that X is a bisimplicial set and write

sdp,qX = lim−→
∆r,s→X

sdp ∆r×̃ sdq ∆s.

Here, p or q could be 0, so that, for example

sd0,qX = lim−→
∆r,s→X

∆r×̃ sdq ∆s,

and there is a natural isomorphism

sd0,0X ∼= X.
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It follows that there is an isomorphism

sdp,q ∆r,s ∼= sdp ∆r×̃ sdq ∆s

which is natural in bisimplices. There is, more generally, an isomorphism

sdp,q(K×̃L) ∼= sdpK×̃ sdq L (3)

which is natural in simplicial sets K and L.
There is an isomorphism

sdr,s(sdm,nX)
∼=−→ sdr+m,s+nX (4)

which is natural in bisimplicial sets X. To see this, it is enough to display the isomorphism
for bisimplices: there are isomorphisms

sdr,s(sdm,n ∆p,q) = lim−→
∆k→sdm ∆p,∆l→sdn ∆q

sdr ∆k×̃ sds ∆l

∼=−→ sdr+m ∆p×̃ sds+n ∆q

∼= sdr+m,s+n ∆p,q,

all of which are natural in bisimplices. The key points here are the natural isomorphism
(2) and the fact that the external product construction K×̃L commutes with colimits in
the simplicial sets K and L.

Suppose that X is a bisimplicial set, and let Xn = Xn,∗ be the vertical simplicial set
in horizontal degree n. Then there is an isomorphism of simplicial sets

(sd0,rX)n ∼= sdr(Xn). (5)

which is natural in bisimplicial sets. Again, it is enough to prove this for bisimplices, but
it’s clear that there is an isomorphism of simplicial sets

∆p
n × sdr ∆q ∼= sdr(∆p

n ×∆q)

since ∆p
n ×∆q is a finite disjoint union of copies of ∆q.

On account of the natural isomorphism(5), the bisimplicial set sd0,rX can be defined
in terms of vertical simplicial sets by

(sd0,rX)n = sdr(Xn). (6)

A similar observation obtains for horizontal simplicial sets and sds,0X. The natural
isomorphisms

sdr,sX ∼= sdr,0 sd0,sX ∼= sd0,s sdr,0X (7)

from (4) then lead to easy descriptions of sdr,sX. It follows (use the equivalence (1) twice)
that there are natural diagonal equivalences

sdr,sX ∼= sdr,0 sd0,sX
'−→ sd0,sX

'−→ X. (8)
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Suppose that Y is a bisimplicial set, and write Exp,q Y for the bisimplicial set with

Exp,q Yr,s = hom(sdp,q ∆r,s, Y ).

The resulting functor
Exp,q : s2Set→ s2Set

on bisimplicial sets is right adjoint to the functor sdp,q.
The natural isomorphisms (4) and (5) together imply that Ex0,q Y can be defined in

terms of vertical simplicial sets by the isomorphism

(Ex0,q Y )n ∼= Exq(Yn).

The object Exp,0 Y has a similar description in terms of horizontal simplicial sets. It
follows that there are natural diagonal equivalences

Y
'−→ Exp,0 Y

'−→ Ex0,q Exp,0 Y ∼= Exp,q Y (9)

in the category of bisimplicial sets.

Again, let C be a small Grothendieck site, and write s2 Pre(C) for the category of
bisimplicial presheaves on C.

Say that a map f : X → Y of bisimplicial presheaves is an sdp,q-fibration if the
map f∗ : Exp,qX → Exp,q Y is an injective fibration for the diagonal model structure on
bisimplicial presheaves. An sdp,q-cofibration is a map which has the left lifting property
with respect to all trivial sdp,q-fibrations.

If A → B is a cofibration of bisimplicial presheaves then the induced map sdp,q A →
sdp,q B is an sdp,q-cofibration.

1.2. Theorem. Suppose that C is a small Grothendieck site.

1) The category s2 Pre(C) of bisimplicial presheaves, together with the diagonal (local)
weak equivalences, the sdp,q-fibrations and the sdp,q-cofibrations, satisfies the axioms
for a cofibrantly generated proper closed model category.

2) The functors
sdp,q : s2 Pre(C) � s2 Pre(C) : Exp,q

define a Quillen equivalence between the diagonal model structure and the model
structure for bisimplicial presheaves given by part 1).

The model structure for bisimplicial presheaves of Theorem 1.2 is called the sdp,q-model
structure.
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Proof. The functor
sdp,q : s2Set→ s2Set

preserves cofibrations for the diagonal model structure on bisimplicial sets, since the maps

(sdp ∂∆n×̃ sdq ∆m) ∪ (sdp ∆n×̃ sdq ∂∆m)→ sdp ∆n×̃ sdq ∆m

are cofibrations. The functor

sdp,q : s2 Pre(C)→ s2 Pre(C)

therefore preserves cofibrations. The existence of the natural weak equivalences (8) also
implies that the functor sdp,q preserves and reflects diagonal equivalences.

Write sdp,q I and sdp,q J for maps sdp,q A→ sdp,q B which are induced by maps A→ B
in the set I of generators for the trivial cofibrations and the set J of generators for the
cofibrations, respectively, for the diagonal model structure on s2 Pre(C). Then a map
p : X → Y is an sdp,q-fibration (respectively trivial sdp,q-fibration) if and only if it has the
right lifting property with respect to all morphisms of the set sdp,q I (respectively sdp,q J).
The factorization axiom CM5 and the lifting axiom CM4 follow in the usual way, as in
the proof of Theorem 1.1. The remaining closed model axioms are easily verified.

All sdp,q-cofibrations are monomorphisms, since the functor sdp,q preserves monomor-
phisms, and so all members of the generating set sdp,q J are cofibrations — see also the
proof of Theorem 1.1. Left properness is then a consequence of left properness of the
diagonal model structure for bisimplicial presheaves. Right properness follows from the
fact that the functor Exp,q preserves pullbacks, and reflects weak equivalences on account
of the existence of the natural diagonal weak equivalences (9).

For statement 2), the functors

sdp,q : s2 Pre(C) � s2 Pre(C) : Exp,q (10)

define a Quillen adjunction.
Recall also that the functor X 7→ sd0,qX is isomorphic to the functor which is defined

by applying the functor sdq to all vertical simplicial sets. It follows from the proof of
Theorem 1.1 that the natural maps η : X → Ex0,q sd0,qX and ε : sd0,q Ex0,q Y → Y
are sectionwise diagonal equivalences for all bisimplicial presheaves X and Y . A similar
analysis in horizontal simplicial sets shows that the maps η : X → Exp,0 sdp,0X and
ε : sdp,0 Exp,0 Y → Y are sectionwise diagonal equivalences for all X and Y . It follows
that all composites

sd0,q sdp,0 Exp,0 Ex0,q Y
sd0,q ε−−−→ sd0,q Ex0,q Y

ε−→ Y and

X
η−→ Exp,0 sdp,0X

Exp,0 η−−−−→ Exp,0 Ex0,q sd0,q sdp,0X

are sectionwise diagonal equivalences. These composites are the counit and unit, respec-
tively, for the adjunction (10) up to natural isomorphism.
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2. Dwyer maps

Say that a functor j : A → B between small categories is a sieve if it is an imbedding
(on objects and morphisms), and every morphism b→ a of B with a ∈ A must be in A.
Every sieve j : A→ B is, in particular, a fully faithful imbedding of categories.

The functor j : A → B is a cosieve if it is an imbedding, and every morphism a → b
with a ∈ A must be in A. Cosieves are also fully faithful imbeddings.

A functor i : A→ B between small categories is a Dwyer map if

1) i imbeds A as a sieve in B,

2) Let W be the full subcategory of B consisting of objects v admitting a morphism
a → v with a ∈ A. Then the inclusion j : A ⊂ W has a right adjoint r : W → A
such that rj = 1A and the unit a→ rj(a) is the identity map.

In this definition, it is enough to assume that j has a right adjoint r. To prove
this, note that the counit ε : jr(x) → x is a terminal object for the category j/x. The
imbedding j is full, so that the identity j(a) → j(a) is terminal in j/j(a) for all a ∈ A.
It follows that ε : jrj(a) → j(a) is an isomorphism for all a ∈ A, and so the unit
η : a→ rj(a) is an isomorphism, again since j is full. It follows that r can be replaced up
to natural isomorphism by a functor r∗ such that r∗j(a) = a for a ∈ A and r∗(x) = r(x)
for x ∈ W − A.

It is a consequence of the definition that the inclusion W ⊂ B is a cosieve.

Suppose that i : K ⊂ L is an inclusion of polyhedral complexes (so that both are
subcomplexes of the nerve of a poset P ), and consider the induced functor

i∗ : N sd(K) ∼= NBNK → NBNL ∼= N sd(L).

This functor is a monomorphism. An object of NBNK is a strictly increasing string

σ0 < σ1 < · · · < σk

of non-degenerate simplices ofK, ordered by the face relationship, and there is a morphism
σ′ ⊂ σ if and only if σ′ is a substring of σ.

Say that an object τ ∈ NBNL meets K if some face of τ is in NBNK, equivalently
if some τi is a non-degenerate simplex of K. There is a maximum k such that τk ∈ K,
and all simplices in 〈τ〉 ∩NBNK are faces of the simplex

τK : τ0 < · · · < τk.

Let W ⊂ NBNL be the poset of objects of NBNL which meet K. Then NBNK ⊂ W
and the assignment τ 7→ τK defines a functor r : W → NBNK. The composite

NBNK
j
⊂ W

r−→ NBNK
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is the identity, and the relations τK ≤ τ define a natural transformation jr(τ) ≤ τ . The
functor r is right adjoint to the inclusion j.

The subcategory W is, in other words, the poset of objects τ ∈ NBNL for which
there is a morphism σ ≤ τ with σ ∈ NBNK. The imbedding NBNK → NBNL is also
plainly a sieve. We have therefore proved the following:

2.1. Lemma. Suppose that i : K → L is an inclusion of simplicial complexes. Then the
induced functor NBNK → NBNL is a Dwyer map.

We’ll need the following:

2.2. Lemma. Suppose that i : A ⊂ X is an inclusion of simplicial sets such that

1) if
a = x0 → x1 → · · · → xn = b

is a path of 1-simplices of X with a, b ∈ A, then all 1-simplices in the path are in
A, and

2) if σ : ∆2 → X is a simplex whose boundary

∂∆2 ⊂ ∆2 σ−→ X

is in A, then σ is in A.

Then the induced functor i∗ : P (A)→ P (X) of path categories is a full imbedding.

Here, the path category functor P : sSet → Cat is defined to be the left adjoint of the
nerve functor B : Cat→ sSet, where Cat is the category of small categories. See [8].

Proof. Condition 1) implies that all induced functions

i∗ : P (A)(a, b)→ P (X)(a, b)

are surjective, so that the functor i∗ is full.
Suppose that a ∈ A0. Then the 1-simplex a

s0a−−→ a of X is in A. If σ : ∆2 → X is
a 2-simplex of A such that the vertices σ(0) and σ(2) are in A, then the boundary of σ
is in A by condition 1), so that σ ∈ A by condition 2). It follows that all relations in X
between paths of A from a to b are already in A, so that i∗ : P (A)(a, b) → P (X)(a, b) is
an injective function.

The functor i∗ : P (A) → P (X) is therefore fully faithful. The functor i∗ is injective
on objects (vertices), and is therefore a full imbedding.
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2.3. Lemma. Suppose given a pushout diagram

A
f //

i
��

C

i∗
��

B // D

in small categories, where i is a sieve (respectively cosieve). Then the induced functor i∗
is a sieve (respectively cosieve).

Proof. We’ll prove the sieve statement. The cosieve statement has a similar proof.
Form the pushout diagram

BA
f //

i
��

BC

i∗
��

BB
f∗

// X

in simplicial sets, and recall that D is isomorphic to P (X). The the map i∗ is a cofibra-
tion, and the simplices of X can be identified with either simplices of BC or (disjointly)
simplices of BB −BA, in all simplicial degrees.

Suppose that σ : ∆n → X is a simplex of X. If σ ∈ BB − BA then σ is a string of
morphisms

b0 → b1 → · · · → bn

of B with bn /∈ A (for otherwise the simplex is in BA since A is a sieve). It follows that
σ(n) /∈ BC. Thus, if σ ∈ Xn is a simplex such that σ(n) ∈ BC then σ ∈ BC. Further, if

x0 → x1 → · · · → xn

is a path of 1-simplices of X with xn ∈ BC, then all 1-simplices in the string are in BC.
The cofibration BC → X therefore satisfies the conditions of Lemma 2.2, so that the

induced functor
C ∼= PBC → P (X) ∼= D

is fully faithful and is a sieve.

2.4. Lemma. Suppose given a pushout diagram

A
f //

i
��

C

i∗
��

B
f∗
// D

in small categories, where i is a sieve. Let V be the full subcategory of B on objects outside
of A. Then the composite

V ⊂ B
f∗−→ D

is a full imbedding.
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Proof. Form the pushout diagram

BA
f //

i
��

BC

i∗
��

BB
f∗

// X

in simplicial sets. Recall that if σ : ∆n → X is a simplex with σ(n) ∈ BC, then σ ∈ BC.
Observe that BV ⊂ BB −BA ⊂ X in all degrees, so that the composite

BV ⊂ BB → X

is a cofibration. Observe also that the vertices in BB − BA coincide with the objects of
V .

If τ is a 2-simplex of X with boundary in BV , then τ ∈ BV . In effect, τ(0) ∈ X−BC
so that τ ∈ X − BC = BB − BA, and τ is a 2-simplex of BB with vertices in BV and
A→ B is a sieve. But then τ ∈ BV since V is a full subcategory of B.

Take objects v, w of V and identify them with vertices of X. If

v = v0 → v1 → · · · → vn = w

is a path of 1-simplices from v to w in X, then all vi are in BB − BA. Otherwise, if
some vi ∈ C, then v ∈ BC since the functor C → P (X) is a sieve by Lemma 2.3, while
v ∈ BV ⊂ X −BC. The simplices vi → vi+1 are not in BC and are therefore defined by
morphisms of B. But V is full in B so that all such 1-simplices are in BV .

Finish by applying Lemma 2.2.

2.5. Lemma. Suppose given a pushout diagram

A //

f
��

C

f∗
��

B // D

in categories with f a Dwyer map. Then f∗ is a Dwyer map.

Proof. The functor f∗ is a sieve, by Lemma 2.3. Let W ′ be the full subcategory of D
consisting of objects w admitting a morphism c→ w with c ∈ C.

Form the pushout diagrams

A
α //

j
��

C

j∗
��

W α∗
//

i
��

W ′

i∗
��

B // D

(11)
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where j and i are full imbeddings and f = i · j. The right adjoint r of j induces a functor
r∗ : W ′ → C such that r∗j∗ = 1 and a homotopy ε : W ′ → W ′1 which satisfies the
condition 2) in the definition of Dwyer map, so that the functor j∗ has a right adjoint of
the correct form.

The functor i∗ : W ′ ⊂ D is a cosieve, again by Lemma 2.3.
Observe that the functors j∗ and i∗ are fully faithful imbeddings.
Suppose that v is an object of D and that there is a morphism c→ v for some object

c ∈ C. Then c ∈ W ′ and W ′ is a cosieve in D, so that v is an object of W ′. It follows
that W ′ is the full subcategory of D consisting of objects v for which there is a morphism
c→ v with c ∈ C.

2.6. Lemma. Suppose given a pushout diagram

A //

f
��

C

��
B // D

of small categories, where the functor f is a Dwyer map. Then the induced diagram

BA //

f
��

BC

��
BB // BD

of simplicial set maps is homotopy cocartesian.

Proof. Let V ′ be the full subcategory of D on objects outside of C.
The composite functor V → B → B/A is fully faithful, by Lemma 2.4. Form the

diagram
V //

��

V ′

��
B/A ∼=

// D/C

The vertical maps are fully faithful imbeddings, while the map V → V ′ is an isomorphism
on objects. It follows that V → V ′ is an isomorphism of categories.

Every object w of W ′ is in C or is in the image of the functor α∗ : W → W ′ of diagram
(11). Thus, if w is not in C (and is therefore in V ′ ∩W ′), then w is in the image of the
functor α∗ : V ∩W → V ′ ∩W ′. It follows that the functor α∗ : V ∩W → V ′ ∩W ′ is
bijective on objects. This functor is also fully faithful, and is therefore an isomorphism.

The square
BA //

��

BC

��
BW // BW ′
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is homotopy cocartesian since both vertical maps are weak equivalences. The square

B(V ∩W ) //

��

BW

��
BV // BB

is a pushout, since the subobjects BW and BV cover BB. The composite square

B(V ∩W ) //

��

BW //

��

BW ′

��
BV // BB // BD

is isomorphic to the pushout

B(V ′ ∩W ′) //

��

BW ′

��
BV ′ // BD

associated to the Dwyer map f∗, so that the square

BW //

��

BW ′

��
BB // BD

is a pushout.

3. Presheaves of small categories

Write Pre(Cat(C)) for the category of presheaves of small categories on a small Grothendieck
site C.

I say that a functor f : C → D between presheaves of small categories is

a) a local weak equivalence if the induced map BC → BD is a local weak equivalence
of simplicial presheaves,

b) a fibration if the induced map Ex2BC → Ex2BD is an injective fibration, equiva-
lently if the map BC → BD is an sd2-fibration,

c) a cofibration if it has the left lifting property with respect to all trivial fibrations.

The path category functor P : sSet→ Cat induces a functor

P : sPre(C)→ Pre(Cat(C))

which is left adjoint to the nerve functor

B : Pre(Cat(C))→ sPre(C).
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3.1. Theorem. Suppose that C is a small Grothendieck site.

1) With these definitions, the category Pre(Cat(C)) of presheaves of small categories
on C has the structure of a proper closed model category.

2) The adjoint pair
P sd2 : sPre(C) � Pre(Cat(C)) : Ex2B

is a Quillen equivalence, for the injective model structure on the simplicial presheaf
category sPre(C).

3) The adjoint pair
P : sPre(C) � Pre(Cat(C)) : B

is a Quillen equivalence for the sd2-model structure on sPre(C).

3.2. Remark. Theorem 3.1 specializes to the model structure of Thomason [11] for
the category Cat of small categories. There is a gap in the main line of argument of
Thomason’s paper [11], in the proof of his Proposition 4.3.

Thomason’s Proposition 4.3 is Lemma 2.6 of this paper, which is proved here by a
completely different technique.

Thomason’s Lemma 5.3 asserts that Dwyer maps are closed under retracts. Cisinski
gives a counterexample to this claim in [1], and proves a corrected version of Thomason’s
Proposition 4.3, based on a modified definition of Dwyer map. Thomason’s Proposition
4.3 is a key step in the derivation of his model structure for the category of small categories,
so that Cisinski also corrects the proof of Thomason’s main result.

The results of this paper do not involve Cisinski’s modified definition of Dwyer map.

Proof. Suppose given a pushout diagram

tiP sd2(Ki) //

��

C

j

��
tiP sd2(Li) // D

in Cat, where the vertical map on the left is induced by inclusions Ki ⊂ Li of finite
simplicial complexes. The induced functor

P sd2Ki → P sd2 Li

is isomorphic to the functor
NBNKi → NBNLi

since there are natural isomorphisms PBC ∼= C for all small categories C [8]. It follows
from Lemma 2.1 that the functor⊔

i

P sd2Ki →
⊔
i

P sd2 Li
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is a Dwyer map, and so Lemma 2.6 implies that the induced square

tiBP sd2(Ki) //

��

BC

j∗

��
tiBP sd2(Li) // BD

is homotopy cocartesian.
If all inclusions Ki ⊂ Li are weak equivalences, then the induced maps

sd2Ki
∼= BP (sd2Ki)→ BP (sd2 Li) ∼= sd2 Li

are weak equivalences, and so the map i∗ : BC → BD is a weak equivalence.
If the diagram

P sd2A //

i∗
��

C

��
P sd2B // D

is a pushout in Cat such that i∗ is induced by a cofibration i : A→ B of simplicial sets,
then the induced diagram

BP sd2A //

i∗
��

BC

��
BP sd2B // BD

is homotopy cocartesian, since the class of all cofibrations i for which this is so includes
the maps ∂∆n ⊂ ∆n by Lemma 2.6.

The functor
P sd2 : sSet→ Cat

therefore preserves trivial cofibrations as well as cofibrations. This functor P sd2 also
preserves weak equivalences, since every simplicial set is cofibrant.

The functor
P sd2 : sPre(C)→ Pre(Cat(C))

preserves cofibrations, by definition.
All direct image functors f∗ associated with geometric morphisms f of Grothendieck

topoi commute with the functor Ex2B, so that the inverse image functors f ∗ commute
with the sheaf theoretic version of the composite functor P sd2 up to natural isomorphism.
This is so, in particular, for a Boolean localization π : Shv(B) → Shv(C), for which
the inverse image functor π∗ detects local weak equivalences. It then follows from the
corresponding statement for simplicial sets, which is proved in the first paragraphs, that
the functor P sd2 preserves local weak equivalences.

Let I and J be sets of generators for the class of trivial cofibrations and cofibrations for
the injective model structure on sPre(C) and let P sd2 I and P sd2 J be the corresponding
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sets of images in Pre(Cat(C)). A functor p : C → D is a fibration (respectively trivial
fibration) of Pre(Cat(C)) if and only if it has the right lifting property with respect to
all maps of P sd2 I (respectively P sd2 J). The factorization axiom CM5 is then proved
with small object arguments in the standard way.

The lifting axiom CM4 is proved in the usual way: every trivial cofibration α : A→ B
has a factorization

A i //

α ��

C

p
��
B

such that p is a fibration, and i is a trivial cofibration which has the left lifting property
with respect to all fibrations. But then p is a trivial fibration, so that i is a retract of α.
The remaining closed model axioms are easily verified.

Suppose given a pushout diagram

C //

i
��

E

��
D // F

of presheaves of categories such that i is a cofibration. Then the induced diagram

BC //

i
��

BE

��
BD // BF

(12)

is homotopy cocartesian in simplicial presheaves. This is true if i is a generator P sd2A→
P sd2B, so it is true for all cofibrations i.

This observation implies the left properness of the model structure on presheaves of
categories. Right properness is proved with an adjointness argument and the observation
that the functor Ex2B preserves pullbacks.

For statement 2), it’s clear from the definitions that the functors P sd2 and Ex2B form
a Quillen adjunction

P sd2 : sPre(C) � Pre(Cat(C)) : Ex2B.

All simplicial set maps
η : ∆n → Ex2BP sd2 ∆n

are weak equivalences, since BP sd2 ∆n = sd2 ∆n is contractible. The inclusion skn−1X →
sknX for a simplicial set X induces a homotopy cocartesian diagram

tx∈NXn Ex2BP sd2 ∂∆n //

��

Ex2BP sd2 skn−1X

��
tx∈NXn Ex2BP sd2 ∆n // Ex2BP sd2 sknX
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by Lemma 2.6. It follows by induction on n that the map

η : sknX → Ex2BP sd2 sknX

is a weak equivalence for all n ≥ 0. The map

η : X → Ex2BP sd2X (13)

is therefore a weak equivalence for all simplicial sets X. It follows from a triangle identity
argument that the counit map

ε : P sd2 Ex2BC → C

is a weak equivalence of Cat for all small categories C.

Statement 3) follows from the proof of statement 2). The adjoint pair

P : sSet � Cat : B

is a Quillen adjunction for the sd2-model structure on the simplicial set category. The
counit ε : PBC → C is a natural isomorphism. There is a natural sectionwise weak
equivalence sd2X → X for each simplicial set X, and so sd2X is a cofibrant model for X
in the sd2-model structure. The unit map η : sd2X → BP sd2X is a weak equivalence,
since the composite

X
η−→ Ex2 sd2X

Ex2(η)−−−−→ Ex2BP sd2X

is the weak equivalence (13), the map η : X → Ex2 sd2X is a weak equivalence, and the
functor Ex2 reflects weak equivalences.

It follows that the map η : Y → BPY is a local weak equivalence for all sd2-cofibrant
simplicial presheaves Y .

Write Dia(C) for the category of whose objects are all simplicial presheaf maps
X → BC such that C is a presheaf of small categories, and whose morphisms are the
commutative diagrams

X
f //

��

Y

��
BC g

// BD

I say that such a map is

• a local weak equivalence if both f and g are local weak equivalences,

• a cofibration if f is an sd2-cofibration of simplicial presheaves and the functor g :
C → D is a cofibration of presheaves of categories, and

• a fibration if the map g : C → D is a fibration of Pre(Cat(C)), and the induced map

X → BC ×BD Y

is an sd2-fibration of simplicial presheaves.
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3.3. Theorem. With these definitions, the category Dia(C) satisfies the axioms for a
closed model category.

Proof. The axioms CM1, CM2 and CM3 are easy to verify. In particular, the category
Dia(C) is complete and cocomplete.

Observe that if g : C → D is a fibration (respectively trivial fibration) of Pre(Cat(C)),
then the pullback diagram

BC ×BD Y //

��

Y

��
BC // BD

is a fibration (respectively trivial fibration) of Dia(C).
Factorize the functor g : C → D as

C
j //

g   

E

q
��
D

where j is a cofibration and q is a trivial fibration in Dia(C), and then find a factorization

X

%%

j′ // Z

q′

��
BE ×BD Y

of the induced map X → BE ×BD Y , where j′ is an sd2-cofibration and q′ is a trivial
sd2-fibration of simplicial sets. Then the map (f, g) has a factorization

X
j′ //

��

Z
q∗q′ //

��

Y

��
BC

j
// BE q

// BD

such that (j′, j) is a cofibration and (q∗q
′, q) is a trivial fibration. The other part of CM5

has a similar proof.
Suppose given a diagram

A //

##

��

B

##

��

X //

��

Y

��

BE //

##

BF

##
BC // BD
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in which the back face is a cofibration and the front face is a trivial fibration. The lift θ1

exists in the diagram of functors
E //

��

C

��
F //

θ1

>>

D

and then the lift θ2 exists in the induced diagram of simplicial set maps

A //

��

X

��
B //

θ2

99

BC ×BD Y

It follows that every trivial fibration has the right lifting property with respect to all
cofibrations. Similarly, every fibration has the right lifting property with respect to all
trivial cofibrations, and we have proved the axiom CM4.

4. Presheaves of simplicial categories

A simplicial category is a simplicial object in the category Cat of small categories. Write
sCat for the corresponding category of simplicial categories and their morphisms.

Note that we are not, in general, making any assumption in this definition on the
simplicial set of objects Ob(C) of a simplicial category C.

In all that follows, the nerve BC of a simplicial category C will be the bisimplicial set
which is defined in vertical degrees n by

BC∗,n = BCn. (14)

Recall from Section 1 that the subdivision sd2,0X of a bisimplicial set consists of the
simplicial sets sd2X∗,n in all vertical degrees n. The functor

P : s2Set→ sCat (15)

is defined by applying the path category functor P : sSet→ Cat in all vertical degrees:
P (X) is the simplicial category with

P (X)n = P (X∗,n)

for a bisimplicial set X.
Suppose again that C is a small Grothendieck site. Write sPre(Cat(C)) for the cat-

egory of presheaves in simplicial categories, or equivalently for the category of simplicial
objects in presheaves of categories. Then the functors P and B of (15) and (14) induce
an adjoint pair of functors

P : s2 Pre(C) � sPre(Cat(C)) : B
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where s2 Pre(C) is the category of bisimplicial presheaves on the site C.
A map f : C → D of presheaves of simplicial categories is a local weak equivalence if

the induced map BC → BD is a diagonal weak equivalence of bisimplicial presheaves.
The map f : C → D is a fibration if the induced map BC → BD is an sd2,0-fibration.
Cofibrations in the category sPre(Cat(C)) are defined by a left lifting property with
respect to trivial cofibrations.

4.1. Theorem. Suppose that C is a small Grothendieck site.

1) With these definitions, the category sPre(Cat(C)) of presheaves of simplicial cate-
gories on C has the structure of a proper closed simplicial model category.

2) The adjoint pair

P sd2,0 : s2 Pre(C) � sPre(Cat(C)) : Ex2,0B

is a Quillen equivalence, for the diagonal model structure on the bisimplicial presheaf
category s2 Pre(C).

3) The adjoint pair
P : s2 Pre(C) � sPre(Cat(C)) : B

is a Quillen equivalence for the sd2,0-model structure on s2 Pre(C).

Proof. Suppose given a pushout diagram⊔
i P sd2,0(Ki) //

��

C

��⊔
i P sd2,0(Li) // D

in s2 Pre(C), where the vertical map on the left is induced by inclusions Ki ⊂ Li of
bisimplicial sets such that each (Li)∗,n is a finite simplicial complex. The induced functor

P sd2,0Ki → P sd2,0 Li

is isomorphic to the map
NBNKi → NBNLi

which is defined by applying the functor NBN in all vertical degrees. It follows from
Lemma 2.1 that the functor ⊔

i

P sd2,0Ki →
⊔
i

P sd2,0 Li
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is a Dwyer map in each vertical degree, and so Lemma 2.6 implies that the induced square⊔
i BP sd2,0(Ki) //

��

BC

��⊔
i BP sd2,0(Li) // BD

is homotopy cocartesian in all vertical degrees, and is therefore homotopy cocartesian for
the diagonal model structure.

Suppose given a pushout square

P sd2,0A //

i∗
��

C

��
P sd2,0B // D

for which the map i∗ is induced by a cofibration i : A→ B of bisimplicial sets. Then the
induced diagram

BP sd2,0A //

i∗
��

BC

��
BP sd2,0B // BD

is homotopy cocartesian for the diagonal model structure on bisimplicial sets, since this
is true for all inclusions ∂∆p,q ⊂ ∆p,q.

The functor
P sd2,0 : s2Set→ sCat

therefore preserves trivial cofibrations as well as cofibrations.
All direct image functors commute with the composite Ex2,0B, so that inverse image

functors commute with the functor P sd2,0 up to isomorphism. A Boolean localization
argument implies that the functor

P sd2,0 : s2 Pre(C)→ sPre(Cat(C))

preserves local weak equivalences.
As in the proof of Theorem 1.2, write P sd2,0 I and P sd2,0 J for the sets of morphisms

of sPre(Cat(C)) which are induced by a set I of generators for the trivial cofibrations and
a set J of generators for the cofibrations, respectively, for the diagonal model structure
on bisimplicial presheaves. Then a map p : C → D of presheaves of simplicial categories
is a fibration (respectively trivial fibration) if and only if it has the right lifting property
with respect to all members of the set P sd2,0 I (respectively P sd2,0 J). The closed axioms
CM5 and CM4 then follow in a standard way, via small object arguments. The remaining
closed model axioms are easily verified.
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Suppose given a pushout diagram

A //

j
��

C

��
B // D

in presheaves of simplicial categories, where j is a cofibration. Then the induced diagram

BA //

j
��

BC

��
BB // BD

(16)

is homotopy cocartesian in the diagonal model structure for bisimplicial presheaves, since
this is true for all morphisms j in the set of generators P sd2,0 J of the class of cofibrations
by the argument above.

The left properness of the model structure is a consequence. Right properness follows
from the corresponding property for the diagonal structure on bisimplicial presheaves, via
an adjointness argument and the observation that the functor Ex2,0B preserves pullbacks.

For statement 2), it follows from the proof of the corresponding part of Theorem 3.1
that the natural map

η : X → Ex2,0BP sd2,0X

is a weak equivalence in all vertical degrees, and is hence a diagonal weak equivalence for
all bisimplicial sets X. A triangle identity argument shows that the counit map

ε : P sd2,0 Ex2,0BC → C

is a weak equivalence of Pre(sCat)(C) for all simplicial categories C.

The proof of statement 3) uses the fact that sd2,0X is a cofibrant model for a bisimpli-
cial set X in the sd2,0-model structure on the category of bisimplicial sets, just as for the
proof of the corresponding part of Theorem 3.1. It follows that the map η : Y → BPY
is a local weak equivalence for all sd2,0-cofibrant bisimplicial presheaves Y . We also know
that the counit ε : PBC → C is an isomorphism for all presheaves of simplicial categories
C.

Write sDia(C) for the category of whose objects are all bisimplicial presheaf maps
X → BC where C is a simplicial presheaf of categories, and whose morphisms are the
commutative diagrams

X
f //

��

Y

��
BC g

// BD

in bisimplicial presheaves. I say that such a map is
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• a weak equivalence if both f and g are diagonal local weak equivalences,

• a cofibration if f is an sd2,0-cofibration of bisimplicial presheaves and the functor
g : C → D is a cofibration of sPre(Cat(C)), and

• a fibration if the map g : C → D is a fibration of sPre(Cat(C)), and the map
X → BC ×BD Y is an sd2,0-fibration of bisimplicial presheaves.

4.2. Theorem. With these definitions, the category sDia(C) satisfies the axioms for a
closed model category.

Proof. The proof of this result is a word for word transcription into the present context
of the proof of Theorem 3.3.

5. Diagrams for simplicial categories

Many of the ideas and notational conventions of this section originated in [6].
Suppose that E is a presheaf of simplicial categories on a Grothendieck site C. We

interpret E as a category object in simplicial presheaves, with simplicial presheaves Ob(E)
and Mor(E), source and target maps s, t : Mor(E)→ Ob(E), identity map e : Ob(E)→
Mor(E) and a law of composition

Mor(E)×Ob(E) Mor(E)→ Mor(E),

all of which satisfy the usual properties.
Suppose that α is an infinite cardinal which is an upper bound for the cardinality of

both the set Mor(C) and the presheaf Mor(E).
A diagram X on E, or E-diagram in presheaves consists of a simplicial presheaf map

πX : X → Ob(E) (called the structure map) and an “action map”

X ×Ob(E) Mor(E)→ X,

in simplicial presheaves which again satisfies the usual properties.
Every category A is a simplicial category which is simplicially discrete in objects and

morphisms, and an A-diagram (in sets) in the present sense is just a functor A → sSet
which takes values in simplicial sets.

A morphism f : X → Y of E-diagrams is a commutative diagram

X
f //

πX ��

Y

πY��
Ob(E)

of simplicial presheaves which respects action maps. Write Pre(C)E for the corresponding
category of all E-diagrams in presheaves.
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I say that the morphism f : X → Y of E-diagrams is a weak equivalence (respectively
cofibration) if the underlying map X → Y is a weak equivalence (respectively cofibration)
of simplicial presheaves. An injective fibration of E-diagrams is a map which has the right
lifting property with respect to all maps which are cofibrations and weak equivalences.

Suppose that α is an infinite cardinal which is an upper bound for the cardinality of
both the set Mor(C) and the presheaf Mor(E).

The following result is proved in [6]:

5.1. Theorem. Suppose that the simplicial presheaf Ob(E) is simplicially discrete. Then
with the definitions given above, the cofibrations, weak equivalences and injective fibrations
satisfy the axioms for a proper closed simplicial model structure on SetE. This model
structure is cofibrantly generated.

There is a functor
Ob : Pre(C)E → sPre(C)/Ob(E)

which takes a E-diagram X to the structure map πX : X → Ob(E). This functor has a
left adjoint

L : sPre(C)/Ob(E)→ Pre(C)E

which takes a simplicial presheaf map φ : Y → Ob(E) to the E-diagram L(φ) which has
structure map

Y ×s Mor(E)
pr−→ Mor(E)

t−→ Ob(E).

The generating cofibrations (respectively trivial cofibrations) for the injective model
structure of Theorem 5.1 are the images under the functor L of the α-bounded cofibrations
(respectively trivial cofibrations)

A
i //

��

B

��
Ob(E)

of sPre(C)/Ob(E).
The proof of Theorem 5.1 depends on the assertion the functor L preserves local weak

equivalences. If the presheaf of simplicial categories E does not have a discrete simplicial
presheaf Ob(E) of objects, then it is no longer clear that this is so.

Say that a map p : X → Y of E-diagrams is a projective fibration if the underlying
map p : X → Y over Ob(E) is an injective fibration of simplicial presheaves. A projective
cofibration is a map A→ B of E-diagrams which has the left lifting property with respect
to all maps which are injective fibrations and weak equivalences.

If the map

A
i //

��

B

��
Ob(E)
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is a cofibration over Ob(E), then the induced map i∗ : L(A) → L(B) is a projective
cofibration. It follows by a standard argument that the class of projective cofibrations
is generated by the set S0 of maps of the form i∗ with B α-bounded, and that every
projective cofibration is a cofibration.

Suppose that S is some set of cofibrations which contains S0, and let CS denote the
saturation of the set S of the set of cofibrations

(Bj × ∂∆n) ∪ (Aj ×∆n) ⊂ Bj ×∆n,

where n ≥ 0 and the cofibrations Aj → Bj belong to the set S. The members of the class
CS are called S-cofibrations. Say that a map f : X → Y of E-diagrams is an S-fibration
if it has the right lifting property with respect to all maps which are S-cofibrations and
weak equivalences.

5.2. Theorem. Suppose that the simplicial presheaf Ob(E) is simplicially discrete. Then
the category SetE of E-diagrams, together with the S-cofibrations, weak equivalences, and
S-fibrations, satisfies the axioms for a proper closed simplicial model structure. This model
structure is cofibrantly generated.

The model structure of Theorem 5.1 is called the injective model structure on the
category SetE of E-diagrams. The case S = S0 of Theorem 5.2 gives the projective model
structure on sSetE. All other S-model structures of Theorem 5.2 are intermediate model
structures.

Proof. The proof of Theorem 5.2 follows the outline of proof of Theorem 2 of [7]. Among
the closed model axioms, only the factorization axiom CM5 needs proof. For that, every
map f : X → Y of E-diagrams has a factorization

X
f //

j ��

Y

Z

p

DD

where j is a morphism of CS and p has the right lifting property with respect to all
members of CS. It follows that p is a projective fibration and a weak equivalence, and we
have one of the factorizations required for CM5.

By Theorem 5.1, the map f can be factored

X
f //

i ��

Y

W

q

DD

where q is an injective fibration (and hence an S-fibration) and i is a cofibration and a
weak equivalence. Then, by the first paragraph, i = p · j, where p is an S-fibration and
a weak equivalence, and j is an S-cofibration. Then j is also a weak equivalence, and so
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f = (q · p) · j factors f as the composite of an S-fibration q · p with a map j which is an
S-cofibration and a weak equivalence.

The function complex hom(X, Y ) is standard: its n-simplices are the maps X×∆n →
Y . If i : A→ B is an S-cofibration and j : K → L is a cofibration of simplicial sets, then
the map

(A× L) ∪ (B ×K)→ B × L

is an S-cofibration by construction, and it’s a weak equivalence if either i or j is a weak
equivalence by the corresponding statement for simplicial presheaves.

The set S of cofibrations generates the class CS of S-cofibrations, by construction.
One proves a bounded cofibration condition for the class of cofibrations in Pre(C)E:

given a diagram of cofibrations
X

i
��

A // Y

such that i is a trivial cofibration and A is an α-bounded subobject of Y , there is an
α-bounded subobject B ⊂ Y with A ⊂ B such that the map B ∩ X → B is a weak
equivalence. The set of generating trivial cofibrations is then found by a solution set
argument, as in the proof of Proposition 5 of [7].

Every E-diagram X has a homotopy colimit holim−−−→ EX in bisimplicial presheaves (com-
posed of nerves of translation categories in all vertical degrees and sections), and there is
a canonical map

π : holim−−−→ EX → BE

of bisimplicial presheaves.
To make the notation easier, write LhX = holim−−−→ EX. I say that a map X → Y of

E-diagrams is an Lh-equivalence if the induced map LhX → LhY is a diagonal weak
equivalence of bisimplicial presheaves.

5.3. Lemma. Suppose that α is an infinite cardinal with α > |Mor(E)|, and suppose
given a diagram

X

i
��

A
γ

⊂
// Y

is E-diagrams where i is a cofibration which is an Lh- equivalence and A is an α-bounded
subobject of Y . Then there is an α-bounded subobject D of Y which contains A such that
the map D ∩X → D is an Lh-equivalence.

Proof. The simplicial presheaf LhA is an α-bounded subobject of LhY , and the induced
map i∗ : LhX → LhY is a trivial cofibration of bisimplicial presheaves. It follows from
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the bounded cofibration property for bisimplicial presheaves (Lemma 1 of [10]) that there
is an α-bounded subobject B1 such that we have a diagram of bisimplicial presheaves

B1 ∩ LhX //

'
��

LhX

��
LhA

j

⊂
// B1 ⊂

// LhY

There is an α-bounded subobject A1 of Y which contains A and such that B1 ⊂ LhA1,
because the homotopy colimit functor preserves colimits and monomorphisms.

Repeat this construction inductively, and let D = ∪iAi. Then the map LhD∩LhX →
LhD is a filtered colimit of the maps Bi ∩ LhX → LhBi and is also the filtered colimit of
the system

LhA ∩ LhX //

��

B1 ∩ LhX //

'
��

LhA1 ∩ LhX //

��

B2 ∩ LhX //

'
��

. . .

LhA // B1
// LhA1

// B2
// . . .

The map LhD ∩ LhX → LhY is therefore a weak equivalence. The homotopy colimit
functor preserves pullbacks and filtered colimits, and it follows that the map D∩X → D
is an Lh-equivalence.

Say that a map p : X → Y of E-diagrams is an Lh-fibration if it has the right lifting
property with respect to all cofibrations which are Lh-equivalences.

5.4. Theorem. Suppose that C is a small Grothendieck site, and that E is a presheaf
of simplicial categories on C. There is a model structure on the category Pre(C)E of
E-diagrams in Pre(C), for which the cofibrations are the monomorphisms, the weak equiv-
alences are the Lh-equivalences and the fibrations are the Lh-fibrations.

Proof. The axioms CM1, CM2 and CM3 are easily verified. On account of Lemma
5.3, a map is an Lh-fibration if and only if it has the right lifting property with respect to
all α-bounded Lh-trivial cofibrations. The homotopy colimit functor preserves pushouts
and cofibrations, and then the factorization axiom CM5 follows from a small object
argument.

We have to show that if p : X → Y is an Lh-fibration and an Lh-equivalence, then it
has the right lifting property with respect to all cofibrations. This is also standard: p has
a factorization

X
j //

p   

Z

q
��
Y
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where q has the right lifting property with respect to all cofibrations and j is a cofibration.
Then j is an Lh-equivalence as well as a cofibration so the lift exists in the diagram

X 1 //

j
��

X

p
��

Z q
//

>>

Y

and p is a retract of q.

Suppose that A is a simplicial category and that φ : Z → BA is a bisimplicial set
map. Then φ consists of simplicial set maps

φ : Zn = Z∗,n → BAn

in all vertical degrees, and each such map determines simplicial set-valued functor pb(Zn) :
An → sSet in the standard way: pb(Zn)i is defined for i ∈ An by the pullback diagram

pb(Zn)i //

��

Zn

φ

��
B(An/i) // BAn

Define the simplicial set pb(Zn) by

pb(Zn) =
⊔

i∈Ob(An)

pb(Zn)i

Then the simplicial set maps pb(Zn) → Ob(An) define a bisimplicial set map pb(Z) →
Ob(A), and we obtain an A-diagram pb(Z) in simplicial sets. A similar analysis produces
a second A-diagram B(A/?) in simplicial sets and a map pb(Z)→ B(A/?) of such objects.

Write sSetA for the category of A-diagrams in simplicial sets.
In general, if the bisimplicial set map Y → Ob(A) defines an A-diagram in simplicial

sets, then applying the diagonal functor d to Y gives an A-diagram d(Y )→ Ob(A) in sets.
In each vertical degree, Y∗,n → Ob(An) defines an An-diagram in simplicial sets, and we
can form the homotopy colimit of this diagram and the corresponding simplicial set map
holim−−−→ AnY∗,n → BAn. Letting n vary gives the bisimplicial set map holim−−−→ A Y → BA.
There is a natural isomorphism

d(holim−−−→ A Y ) ∼= holim−−−→ A d(Y )

of simplicial sets, since both objects are triple diagonals of the same trisimplicial set.
Taking homotopy colimits in vertical degrees n gives a natural commutative diagram

of canonically defined bisimplicial set maps

holim−−−→ A pbZ '
γ

//

φ∗
��

αφ

xx

Z

φ

��
BA holim−−−→ AB(A/?)'

αoo
'
γ // BA
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where the displayed weak equivalences are equivalences in all vertical degrees. It follows
that the functor which takes a bisimplicial set map Z → BA to the A-diagram d(pb(Z))→
Ob(A) takes diagonal equivalences over BA to Lh-equivalences of A-diagrams.

We therefore have induced functors

Lh : Ho(SetA) � Ho(s2Set/BA) : d · pb .

It also follows that there is a natural weak equivalence

d(γφ∗)
d(γ)−−→ d(φ)

The maps α, γ : holim−−−→ A B(A/?)→ BA are homotopic (see Remark 16 of [9]), and so the
functors

Ho(sSet/d(holim−−−→ AB(A/?)))→ Ho(sSet/d(BA))

which are defined by composition with the maps d(α) and d(γ) coincide up to natural
isomorphism. It follows that there is a natural isomorphism

d(Lhd(pb(φ))) = d(Lh pb(φ)) = d(αφ) = d(α)d(φ∗) ∼= d(γ)d(φ∗)
d(γ)−−→∼= d(φ)

of functors
Ho(s2Set/BA)→ Ho(sSet/d(BA))

The diagonal functor d induces an equivalence

Ho(s2Set/BA) ' Ho(sSet/d(BA))

of homotopy categories (since it’s part of a Quillen equivalence — see Proposition 6 of
[10]), and so there is a natural isomorphism

Lhd(pb(φ)) ∼= φ

for all objects φ : Z → BA of the homotopy category Ho(s2Set/BA).
Generally, if X : I → sSet is a diagram in simplicial sets indexed on a small category

I, then there is a sectionwise weak equivalence

ε : pb(holim−−−→ IX)i
'−→ Xi

which is natural in I-diagrams. Thus, if Y is a A-diagram in sets, then there is a natural
map of An-diagrams of simplicial sets

ε : pb(holim−−−→ AnYn)
'−→ Yn

which is a weak equivalence in each vertical degree. It follows that the induced map

ε : d(pb(Y ))→ Y

of A-diagrams in sets is a natural Lh-equivalence.
We have therefore proved the following:



302 J.F. JARDINE

5.5. Proposition. The functors

Lh : Ho(SetA) � Ho(s2Set/BA) : d · pb

define an equivalence of categories.

The constructions which are involved in the proof of Proposition 5.5 are easily pro-
moted to the presheaf level.

5.6. Corollary. Suppose that C is a small Grothendieck site, and that E is a presheaf
of simplicial categories on C. Then the functors

Lh : Pre(C)E � s2 Pre(C)/BE : d · pb

induce an equivalence of homotopy categories

Ho(Pre(C)E) ' Ho(s2 Pre(C)/BE).

The functor Ex2,0 induces a functor

Ex2,0 : s2 Pre(C)/BE → s2 Pre(C)/Ex2,0BE

which takes an object φ : X → BE to the object Ex2,0 φ : Ex2,0X → Ex2,0BE. This
functor has a left adjoint

sd2,0 : s2 Pre(C)/Ex2,0BE → s2 Pre(C)/BE,
which takes an object Y → Ex2,0BE to the composite

sd2,0 Y → sd2,0 Ex2,0BE
ε−→ BE.

The slice category s2 Pre(C)/BE has an sd2,0-model structure, for which a morphism

X
f //

��

Y

��
BE

is a weak equivalence (respectively fibration) if and only if the map f : X → Y is a
diagonal weak equivalence (respectively sd2,0-fibration) of bisimplicial presheaves. The
adjoint pair

sd2,0 : s2 Pre(C)/Ex2,0BE � s2 Pre(C)/BE : Ex2,0 (17)

is a Quillen adjunction for the usual model structure on s2 Pre(C)/Ex2,0BE and the sd2,0-
structure on s2 Pre(C)/BE The unit and counit maps are natural weak equivalences (see
the proof of Theorem 1.2), so that the adjunction (17) is a Quillen equivalence. There is
diagonal equivalence Ex2,0BE → BE which induces a Quillen equivalence

s2 Pre(C)/Ex2,0BE � s2 Pre(C)/BE.
It follows that the homotopy categories for the sd2,0-structure and the standard structure
on the slice category s2 Pre(C)/BE are equivalent.

The model structure of Theorem 4.2 on the category sDia(C) therefore effectively
contains the “homotopy colimit” model structure of Theorem 5.4 for the category Pre(C)E
of E-diagrams in presheaves, for all presheaves of simplicial categories E.
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