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TRACED ∗-AUTONOMOUS CATEGORIES ARE
COMPACT CLOSED

TAMÁS HAJGATÓ AND MASAHITO HASEGAWA

Abstract. We show that any traced ∗-autonomous category is compact closed.

1. Introduction

Suppose that C = (C, I,⊗,(,⊥,Tr) is a traced ∗-autonomous category; here we under-
stand that a ∗-autonomous category is a symmetric monoidal closed category (C, I,⊗,()
(we write A( B for the internal hom from A to B) equipped with a dualizing object ⊥
[Barr, 1979], and that the trace

TrXA,B : C(A⊗X,B ⊗X) −→ C(A,B)

is given on the symmetric monoidal structure in the sense of Joyal, Street and Verity
[Joyal et al., 1996] (rather than the trace for linearly distributive categories with MIX by
Blute, Cockett and Seely [Blute et al., 2000]).

In C, we have the trace of the evaluation map

(X ( (⊥⊗X))⊗X ev−→ ⊥⊗X

X ( (⊥⊗X)
TrXev−→ ⊥

which gives rise to a morphism tX : I −→ X ⊗ (X ( I) via the isomorphism

(X ( (⊥⊗X))( ⊥ ' X ⊗ (X ( I).

It is then natural to ask if tX satisfies the equations

X
tX⊗X−→ X ⊗ (X(I)⊗X

X⊗evX,I−→ X = idX (1)

and

X(I
(X(I)⊗tX−→ (X(I)⊗X ⊗ (X(I)

evX,I⊗(X(I)−→ X(I = idX(I (2)
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which mean that X ( I is a (left) dual of X, hence C is compact closed [Kelly and
Laplaza, 1980]. Below we see that this is the case.

Before proceeding to the proof, let us explain how we came across this observation.
In the sequel, we write f̂ : A −→ B ( C for the transpose of f : A ⊗ B −→ C in a
symmetric monoidal closed category. In a traced symmetric monoidal closed category, we
have a family of morphisms

τXB = TrXX((B⊗X),B(evX,B⊗X) : X ( (B ⊗X) −→ B.

It is easy to see that τ ’s are sufficient to determine trace of any f : A⊗X −→ B ⊗X as

TrXA,Bf = A
f̂−→ X ( (B ⊗X)

τXB−→ B.

In the case of traced ∗-autonomous categories, we can further restrict our attention to τ ’s
with B = ⊥, from which τXB for any B is recovered as

X ( (B ⊗X) ' X ( ((B

&⊥)⊗X)
X(δ−→ X ( (B

&

(⊥⊗X))
' B

&

(X ( (⊥⊗X))
B

&

τX⊥−→ B

&⊥
' B

where δ denotes linear distributivity [Cockett and Seely, 1997].
Therefore, giving τX⊥ : (X ( (⊥ ⊗ X)) −→ ⊥ for each X is enough to determine

a trace. With some efforts of spelling out how the trace can be recovered directly from
τX⊥ ’s, we noticed that τX⊥ actually determines the unit map tX : I −→ X ⊗ (X ( I) of
the duality between X and X ( I.

To make the proof short and readable, we use some basic results on (enriched) extraor-
dinary natural transformations of Eilenberg and Kelly [Eilenberg and Kelly, 1966, Kelly,
1982], though it is also possible to derive the result by direct calculation from scratch.

2. A Characterization of Compact Closedness

There are many ways of characterizing compact closed categories as special symmetric
monoidal closed categories [Day, 1977, Kelly and Laplaza, 1980]. In our development, the
following characterization turns out to be useful:

2.1. Proposition. Suppose that C is a symmetric monoidal closed category such that
there is an extraordinary C-natural transformation tX : I −→ X ⊗ (X ( I) with tI
invertible. Then C is compact closed.
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Proof. Recall that, for a symmetric monoidal closed category V, V-categories A, B, a V-
functor F : Aop⊗A→ B and an object B of B, a family of morphisms αX : B −→ F (X,X)
is said to be an extraordinary V-natural transformation [Kelly, 1982] when the following
diagram commutes for all X, X ′.

A(X,X ′)
��

���
����

F (X,−)
HH

HHH
HHHj

F (−, X′)

B(F (X,X), F (X,X ′)) B(F (X ′, X ′), F (X,X ′))

HHH
HHH

HHj
B(αX , id)

���
���

���
B(αX′ , id)

B(B,F (X,X ′))

In the proposition, the assumption that tX : I −→ X⊗(X(I) is extraordinally C-natural
means that the following diagram commutes for all X and X ′:

X(X ′
�
���

���
��

(X(X′)⊗ tX
H
HHH

HHH
Hj

tX′ ⊗ (X(X′)

(X(X ′)⊗X ⊗ (X(I) X ′ ⊗ (X ′(I)⊗ (X(X ′)

HH
HHH

HHHj
ev ⊗ (X( I)

��
���

����
X′ ⊗ comp

X ′ ⊗ (X(I)

By letting X be I in the diagram above, we see that (modulo some obvious simplifications)

X ′
tX′⊗X′−→ X ′ ⊗ (X ′( I)⊗X ′ X

′⊗ev−→ X ′

agrees with

X ′
X′⊗tI−→ X ′ ⊗ I ⊗ (I ( I)

'−→ X ′.

Similarly, by letting X ′ be I in the diagram, we have that

X ( I
(X(I)⊗tX−→ (X ( I)⊗X ⊗ (X ( I)

ev⊗(X(I)−→ X ( I

agrees with

X ( I
tI⊗(X(I)−→ I ⊗ (I ( I)⊗ (X ( I)

'−→ X ( I.

Hence

t′X = I
'−→ I ⊗ (I ( I)

t−1
I−→ I

tX−→ X ⊗ (X ( I)

satisfies the equations (1) and (2) for making X ( I a left dual of X.
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Note that, in the proof above, t′X agrees with tX if tI : I −→ I ⊗ (I ( I) itself is the
canonical isomorphism from I to I ⊗ (I ( I).

2.2. Remark. In Proposition 2.1, the assumption that tI is invertible cannot be dropped.
For instance, consider the category ωCppo⊥ of pointed ω-complete partial orders and
strict ω-continuous functions. ωCppo⊥ is symmetric monoidal closed, with Sierpinski
space as the unit object, smash products as tensor and strict function spaces as internal
hom. In ωCppo⊥, there is an extraordinary ωCppo⊥-natural transformation tX : I −→
X ⊗ (X(I) given by the constant functions returning the least element. However, tI is
not invertible, and ωCppo⊥ is not compact closed.

3. Proof of the Main Result

As in the introduction, let us define

τXB = TrXX((B⊗X),B(evX,B⊗X) : X ( (B ⊗X) −→ B

in traced symmetric monoidal closed categories.

3.1. Lemma. In a traced symmetric monoidal closed category C with an object B,

τ̂XB : I −→ (X ( (B ⊗X))( B

is extraordinary C-natural in X.

Proof. The extranaturality amounts to the commutativity of

(X(X ′)⊗ (X ′((B ⊗X))
��

���
����

id ⊗ τ̂XB
HH

HHH
HHHj

id ⊗ τ̂X′
B

(X(X ′)⊗ (X ′((B ⊗X))⊗ ((X((B ⊗X))(B) (X(X ′)⊗ (X ′((B ⊗X))⊗ ((X ′((B ⊗X ′))(B)

?

comp ⊗ id

?

comp ⊗ id

(X((B ⊗X))⊗ ((X((B ⊗X))(B) (X ′((B ⊗X ′))⊗ ((X ′((B ⊗X ′))(B)

HH
HHH

HHHj
ev

�
����

����
ev

B

which is a consequence of the sliding property (dinaturality) of trace.
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3.2. Lemma. In a ∗-autonomous category C, the isomorphism

ϕX,Y : (X ( (⊥⊗ Y ))( ⊥ '−→ X ⊗ (Y ( I)

given by

(X ( (⊥⊗ Y ))( ⊥ ' (X ( (((⊥⊗ Y )( ⊥)( ⊥))( ⊥
' (X ( ((Y ( (⊥( ⊥))( ⊥))( ⊥
' (X ( ((Y ( I)( ⊥))( ⊥
' ((X ⊗ (Y ( I))( ⊥)( ⊥
' X ⊗ (Y ( I)

is C-natural in X and Y .

Proof. Each isomorphism involved in ϕ is C-natural.

3.3. Lemma. [Eilenberg and Kelly, 1966, Kelly, 1982] Assume that V is a symmetric
monoidal closed category. Let A, B be V-categories and G,H be V-functors of the form
Aop⊗A→ B and suppose that B is an object of B. If αX : B → G(X,X) is extraordinary
V-natural in X and βX,Y : G(X, Y )→ H(X, Y ) is V-natural in X and Y , then

βX,X ◦ αX : B → H(X,X)

is extraordinary V-natural in X.

3.4. Corollary. In a traced ∗-autonomous category C, tX = ϕX,X ◦ τ̂X⊥ : I −→ X ⊗
(X ( I) is extraordinary C-natural in X. �

3.5. Lemma. tI : I −→ I ⊗ (I ( I) agrees with the canonical isomorphism from I to
I ⊗ (I ( I).

Proof. A consequence of the vanishing property of trace.

Putting Proposition 2.1, Corollary 3.4 and Lemma 3.5 together, we obtain our main
result.

3.6. Theorem. Any traced ∗-autonomous category is compact closed.

It is possible that a compact closed category is equipped with a dualizing object which
is not isomorphic to the unit object (and par not isomorphic to tensor). For instance,
the linearly ordered set of integers Z is compact closed with unit I = 0 and tensor
X ⊗ Y = X + Y and duality X∗ = −X, while any element of Z serves as a dualizing
object. (The same can be done for any partially ordered Abelian group regarded as a
compact closed poset.)

Since a compact closed category has a unique trace (cf. [Hasegawa, 2009]), we have:

3.7. Theorem. To give a traced ∗-autonomous category is to give a compact closed cat-
egory with a dualizing object.

Note that a dualizing object in a compact closed category is just an object ⊥ such
that the unit morphism I −→ ⊥⊗⊥∗ is invertible, cf. the Abelian group example above.
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4. On Linear Distributivity

In a compact closed category with a dualizing object ⊥, linear distributivity [Cockett and
Seely, 1997] on the ∗-autonomous structure is invertible. To see this, recall that the linear
distributivity δ : (A

&

B) ⊗ C −→ A

&

(B ⊗ C) in a ∗-autonomous category (regarded
as a symmetric linearly distributive category with negation) amounts to the canonical
morphism (A⊥( B)⊗C −→ A⊥( (B⊗C) which is just the associativity isomorphism
((A⊥)∗ ⊗B)⊗ C ' (A⊥)∗ ⊗ (B ⊗ C) in a compact closed category.

Conversely, a ∗-autonomous category with invertible linear distributivity is compact
closed. We have

A( B ' A⊥

&

B ' A⊥

&

(I ⊗B)
δ−1

' (A⊥

&

I)⊗B ' (A( I)⊗B

In particular, the canonical map (A ( I) ⊗ A −→ A ( A is invertible, and it follows
that the category is compact closed (cf. [Day, 1977]).

Together with Theorem 3.7, we have that the following three structures are essentially
the same:

• a traced ∗-autonomous category,

• a compact closed category equipped with a dualizing object, and

• a ∗-autonomous category with invertible linear distributivity.

4.1. Remark. As noted in [Cockett and Seely, 1997], in a symmetric linearly distributive
category with invertible linear distributivity and also equipped with a tensor-inverse of
⊥ (an object ⊥∗ such that there is an isomorphism I ' ⊥ ⊗ ⊥∗ subject to a coherence
axiom), the par A

&

B is isomorphic to the “⊥-shifted tensor” A ⊗ ⊥∗ ⊗ B. This is the
case for ∗-autonomous categories with invertible linear distributivity (equivalently: traced
∗-autonomous categories, or compact closed categories with a dualizing object), in which
⊥∗ = ⊥( I serves as a tensor-inverse of ⊥ and we have A

&

B ' A⊗ (⊥( I)⊗B.
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