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CONSTRUCTING MODEL CATEGORIES WITH PRESCRIBED
FIBRANT OBJECTS

ALEXANDRU E. STANCULESCU

Abstract. We present a weak form of a recognition principle for Quillen model cate-
gories due to J.H. Smith. We use it to put a model category structure on the category of
small categories enriched over a suitable monoidal simplicial model category. The proof
uses a part of the model structure on small simplicial categories due to J. Bergner. We
give an application of the weak form of Smith’s result to left Bousfield localizations of
categories of monoids in a suitable monoidal model category.

1. Introduction

There are nowadays several recognition principles that allow one to put a Quillen model
category structure on a given category. For the purposes of this work we divide them
into those that make use of the small object argument and those that don’t. A recog-
nition principle that makes use of the small object argument is the following theorem of
J.H. Smith [2, Theorem 1.7].

1.1. Theorem. Let E be a locally presentable category, W a full accessible subcategory
of Mor(E), and I a set of morphisms of E. Suppose they satisfy:

C1: W has the two out of three property.

C2: inj(I) ⊂W.

C3: The class cof(I) ∩W is closed under transfinite composition and under pushout.

Then setting weak equivalences:=W, cofibrations:=cof(I) and fibrations:=inj(cof(I)∩W),
one obtains a cofibrantly generated model structure on E.

We can say that (a) in practice, it is condition C3 above that is often the most difficult
to check and (b) the result gives no description of the fibrations of the resulting model
structure. Another recognition principle that makes use of the small object argument is
a result of D.M. Kan [9, Theorem 11.3.1], [10, Theorem 2.1.19]. We can say that Kan’s
result gives a full description of the fibrations of the resulting model structure. In this
paper we
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(1) advertise (see Proposition 2.3) an abstraction of a technique due to D.-C. Cisinski
[5, Proof of Théorème 1.3.22] and A. Joyal (unpublished, but present in his proof, circa
1996, of the model structure for quasi-categories) that addresses both (a) and (b) above,
in the sense that it makes C3 easier to check and it gives a partial description of the
fibrations of the resulting model structure—namely the fibrant objects and the fibrations
between them are described—provided that other assumptions hold, and

(2) give an application of this technique to the homotopy theory of categories enriched
over a suitable monoidal simplicial model category (see Theorem 3.5) and to left Bous-
field localizations of categories of monoids in a suitable monoidal model category (see
Theorem 5.7).

The paper is organized as follows. In Section 2 we detail the above mentioned tech-
nique. The two out of six property of a class of maps of Dwyer et al. [6] plays an
important role. In Section 3 we prove that the category of small categories enriched over
a monoidal simplicial model category that satisfies some assumptions, admits a certain
model category structure. Our proof uses one result of the non-formal part of the proof of
the analogous model structure for categories enriched over the category of simplicial sets,
due to J. Bergner [3]. We modify one of the steps in Bergner’s proof; this modification
is a key point in our approach and it enables us to apply the technique from Section 2.
We also fix (see Remark 3.10), in an appropriate way, a mistake in [16]. The idea to
use the model structure for categories enriched over the category of simplicial sets is due
to G. Tabuada [18]. In Section 4 we extend a result of R. Fritsch and D.M. Latch [8,
Proposition 5.2] to enriched categories; this is needed in the proof of the main result of
Section 3. The section is self contained. Motivated by considerations from [12], we apply
in Section 5 the technique from Section 2 to the study of left Bousfield localizations of
categories of monoids. Precisely, let LM be a left Bousfield localization of a monoidal
model category M. We consider the problem of putting a model category structure on
the category of monoids in M, somehow related to LM.

Acknowledgements. We are deeply indebted to André Joyal for many useful dis-
cussions and suggestions.

2. Constructing model categories with prescribed fibrant objects

We recall from [6] the following definitions. Let E be an arbitrary category and W a class
of maps of E. W is said to satisfy the two out of six property if for every three maps r, s, t
of E for which the two compositions sr and ts are defined and are in W, the four maps
r, s, t and tsr are in W. The class W is said to satisfy the weak invertibility property if
every map s of E for which there exist maps r and t such that the compositions sr and
ts exist and are in W, is itself in W. The two out of six property implies the two out of
three property. The converse holds in the presence of the weak invertibility property.

The terminal object of a category, when it exists, is denoted by 1.
Let E be a locally presentable category and J a set of maps of E. Then the pair
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(cof(J), inj(J)) is a weak factorization system on E [2, Proposition 1.3]. We call a map of
E that belongs to inj(J) a naive fibration, and say that an object X of E is naively fibrant
if X → 1 is a naive fibration. We denote the class of naive fibrations between naively
fibrant objects by inj0(J).

2.1. Lemma. (D.-C. Cisinski,A. Joyal) Let E be a locally presentable category, (A,B) a
weak factorisation system on E, W a class of maps of E satisfying the two out of six
property and J a set of maps of E.

(1) Suppose that cell(J) ⊂W. Then a map that has the left lifting property with respect
to maps in inj0(J) belongs to W.

(2) Suppose that cell(J) ⊂ W and that inj0(J) ∩W ⊂ B. Then a map in A belongs to
W if and only if it has the left lifting property with respect to the maps in inj0(J).
In particular, A ∩W is closed under pushouts and transfinite compositions.

(3) Suppose that cell(J) ⊂ A∩W and that inj0(J)∩W ⊂ B. Then an object X of E is
naively fibrant if and only if the map X → 1 is in inj(A∩W). Also, a map between
naively fibrant objects is in inj(A ∩W) if and only if it is a naive fibration.

Proof. (1) Let i : A → B be a map which has the left lifting property with respect
to the naive fibrations between naively fibrant objects. Factorize (see, for example, [2,
Proposition 1.3]) the map B → 1 as B → B̄ → 1, where B → B̄ is in cell(J) and B̄ is
naively fibrant. Next, factorize the composite map A → B̄ as a map A → Ā in cell(J)
followed by a naive fibration Ā→ B̄. The resulting commutative diagram

A //

i
��

Ā

��

B // B̄

has then a diagonal filler, and so the hypothesis and the two out of six property of W
imply that i is in W.

(2) Let

A
u //

i
��

X

p
��

B
v // Y

be a commutative diagram with i in A ∩ W and p in inj0(J). Factorize v as a map
B → B̄ in cell(J) followed by a naive fibration B̄ → Y . Next, factorize the canonical
map A→ B̄×Y X as a map A→ Ā in cell(J) followed by a naive fibration Ā→ B̄×Y X.
It suffices to show that the square

A //

i
��

Ā

��

B // B̄



638 ALEXANDRU E. STANCULESCU

has a diagonal filler. The map Ā→ B̄ is a naive fibration between naively fibrant objects.
It also belongs to W by the two out of three property, and so by hypothesis it is in B.
Therefore the diagonal filler exists. The converse follows from (1). Thus, in order to detect
if an element of A is in W one can use the left lifting property with respect to a class
of maps, namely inj0(J). In particular, A ∩W is closed under pushouts and transfinite
compositions.

(3) This is straightforward from (2).

2.2. Remark. One can make variations in Lemma 2.1. For example, the path object
argument devised by Quillen shows that the conclusion of (1) remains valid if instead of
cell(J) ⊂W one requires that E has a functorial naively fibrant replacement functor and
every naively fibrant object has a naive path object. This new requirement implies that
cell(J) ⊂W.

The following result makes the connection between Smith’s Theorem and Lemma 2.1.

2.3. Proposition. Let E be a locally presentable category, W a full accessible subcategory
of Mor(E) and I and J be two sets of morphisms of E. Let us call a map of E that belongs
to inj(J) a naive fibration, and an object X of E naively fibrant if X → 1 is a naive
fibration. Suppose the following conditions are satisfied:

C1: W has the two out of three property.

C2: inj(I) ⊂W.

C3: W has the weak invertibility property.

C4: cell(J) ⊂ cof(I) ∩W.

C5: A map between naively fibrant objects that is both a naive fibration and in W is in
inj(I).

Then the triple (W, cof(I), inj(cof(I)∩W)) is a model structure on E. Moreover, an object
of E is fibrant if and only if it is naively fibrant, and the fibrations between fibrant objects
are the naive fibrations.

Proof. All assumptions of Theorem 1.1 hold, except possibly condition C3. To check
that C3 holds we apply the last part of Lemma 2.1(2) to the weak factorization system
(A,B) = (cof(I), inj(I)). It follows that the triple (W, cof(I), inj(cof(I)∩W)) is a model
structure. The characterization of fibrant objects and of the fibrations between fibrant
objects is then a consequence of Lemma 2.1(3) applied to the weak factorization system
(cof(I), inj(I)).
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The following result is a variation of Proposition 2.3, essentially due to A.K. Bousfield
[4, Proof of Theorem 9.3]. We leave the proof to the interested reader.

2.4. Proposition. Let E be a category that is closed under limits and colimits and let
W be a class of maps of E that has the two out of three property. If I and J are two sets
of morphisms of E such that

(1) both I and J permit the small object argument [9, Definition 10.5.15],

(2) inj(I) ⊂W,

(3) cell(J) ⊂ cof(I) ∩W,

(4) inj0(J) ∩W ⊂ inj(I), and

(5) the class W is stable under pullback along maps in inj0(J),

then the triple (W, cof(I), inj(cof(I) ∩W)) is a right proper model structure on E. More-
over, an object of E is fibrant if and only if it is naively fibrant, and the fibrations between
fibrant objects are the naive fibrations.

Here is an application of Lemma 2.1. Let E be a locally presentable closed category
with initial object ∅. We denote by ⊗ the monoidal product of E and for two objects X, Y
of E we write Y X for their internal hom. In the language of Lemma 2.1 we have

2.5. Proposition. Let W be a class of maps of E having the two out of six property and
let I and J be two sets of maps of E. Suppose that the domains of the elements of I are
in cof(I), that cell(J) ⊂ cof(I)∩W and that a map between naively fibrant objects which
is both a naive fibration and in W is in inj(I). Then the following are equivalent:

(a) for any maps A→ B and K → L of cof(I), the canonical map

A⊗ L tA⊗K B ⊗K → B ⊗ L

is in cof(I), which is in W if either one of the given maps is in W;

(b) for any maps A→ B and K → L of cof(I), the canonical map

A⊗ L tA⊗K B ⊗K → B ⊗ L

is in cof(I) and for every element A → B of I and every naive fibration X → Y
between naively fibrant objects, the canonical map

XB → Y B ×Y A XA

is a naive fibration between naively fibrant objects.
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Proof. The fact that the domains of the elements of I are in cof(I) means that for every
element A→ B of I, the map ∅ → A is in cof(I) (and therefore so is ∅ → B).

We prove that (a) implies (b). Let A→ B be an element of I, X → Y a naive fibration
between naively fibrant objects and C → D an element of J . A commutative diagram

C //

��

XB

��

D // Y B ×Y A XA

has a diagonal filler if and only if its adjoint transpose

C ⊗B tC⊗A D ⊗ A //

��

X

��

D ⊗B // Y

has one. The latter is true by Lemma 2.1(2) applied to the weak factorization system
(cof(I), inj(I)). It follows thatXB → Y B×Y AXA is a naive fibration. A similar adjunction
argument shows that XA → Y A and XB → Y B are naive fibrations between naively
fibrant objects, therefore Y B ×Y A XA is naively fibrant.

We prove that (b) implies (a). Suppose first that A → B is an element of I and let
K → L be a fixed map in cof(I) ∩W. Then the canonical map

A⊗ L tA⊗K B ⊗K → B ⊗ L

is in W by Lemma 2.1(2) applied to the weak factorization system (cof(I), inj(I)) and an
adjunction argument. Thus, it suffices to show that the class of maps A′ → B′ of cof(I)
such that

A′ ⊗ L tA′⊗K B′ ⊗K → B′ ⊗ L

is in cof(I) ∩W is closed under pushout, transfinite composition and retracts. This is
the case since by Lemma 2.1(2) applied to the weak factorization system (cof(I), inj(I))
the elements of cof(I) which are in W can be detected by the left lifting property with
respect to a class of maps.

3. Application: categories enriched over monoidal simplicial model cate-
gories

We denote by S the category of simplicial sets, regarded as having the standard model
structure (due to Quillen). We let Cat be the category of small categories. We say that
an arrow f : C → D of Cat is an isofibration if for any x ∈ Ob(C) and any isomorphism
v : y′ → f(x) in D, there exists an isomorphism u : x′ → x in C such that f(u) = v. The



CONSTRUCTING MODEL CATEGORIES 641

class of isofibrations is invariant under isomorphisms in the sense that given a commutative
diagram in Cat

A //

f
��

B

g
��

C // D

in which the horizontal arrows are isomorphisms, the map f is an isofibration if and only
if g is so.

3.1. Monoidal simplicial model categories. Let M be a monoidal model category
with cofibrant unit. We recall [10, Definition 4.2.20] that M is said to be a monoidal S-
model category if it is given a Quillen pair F : S � M : G such that F is strong monoidal.
Since F is strong monoidal, G becomes a monoidal functor.

3.2. Classes of M-functors and the main result. Let M be a monoidal model
category with cofibrant unit e. We denote by M-Cat the category of small M-categories.
If S is a set, we denote by M-Cat(S) (resp. M-Graph(S)) the category of small M-
categories (resp. M-graphs) with fixed set of objects S. When S is a one element set
{∗}, M-Cat({∗}) is the category Mon(M) of monoids in M. There is a free-forgetful
adjunction

FS : M-Graph(S) � M-Cat(S) : US

We denote by εS the counit of this adjunction. Every function f : S → T induces an
adjoint pair

f! : M-Cat(S) � M-Cat(T ) : f ∗

If K is a class of maps of M, an M-functor f : A→ B is said to be locally in K if for each
pair x, y ∈ A of objects, the map fx,y : A(x, y)→ B(f(x), f(y)) is in K.

We have a functor [ ]M : M-Cat → Cat obtained by change of base along the sym-
metric monoidal composite functor

M // Ho(M)
Ho(M)(e,−)

// Set

3.3. Definition. Let f : A→ B be a morphism in M-Cat.

(1) The morphism f is a DK-equivalence if f is locally a weak equivalence of M and
[f ]M : [A]M → [B]M is essentially surjective.

(2) The morphism f is a DK-fibration if f is locally a fibration of M and [f ]M is an
isofibration.

(3) The morphism f is called a trivial fibration if it is both a DK-equivalence and a
DK-fibration.

(4) The morphism f is called a cofibration if it has the left lifting property with respect
to the trivial fibrations.
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It follows from Definition 3.3 that (a) an M-functor f is a DK-equivalence if and only
if Ho(f) is an equivalence of Ho(M)-categories, and (b) an M-functor is a trivial fibration
if and only if it is surjective on objects and locally a trivial fibration of M. In particular,
the class of DK-equivalences has the two out of three and weak invertibility properties.

We denote by I the M-category with a single object ∗ and I(∗, ∗) = e. For an object
X of M we denote by 2X the M-category with two objects 0 and 1 and with 2X(0, 0) =
2X(1, 1) = e, 2X(0, 1) = X and 2X(1, 0) = ∅. When M is cofibrantly generated, an M-
functor is a trivial fibration if and only if it has the right lifting property with respect to

the saturated class generated by {∅ → I} ∪ {2X
2i→ 2Y , i generating cofibration of M},

where ∅ denotes the initial object of M-Cat. We have the following fundamental result
of J. Bergner [3].

3.4. Theorem. The category S-Cat of simplicial categories admits a cofibrantly gen-
erated model structure in which the weak equivalences are the DK-equivalences and the
fibrations are the DK-fibrations. A generating set of trivial cofibrations consists of

B1: {2X
2j−→ 2Y }, where j is a horn inclusion, and

B2: inclusions I
δy→ H, where {H} is a set of representatives for the isomorphism classes

of simplicial categories on two objects which have countably many simplices in each
function complex. Furthermore, each such H is required to be cofibrant and weakly
contractible in S-Cat({x, y}). Here {x, y} is the set with elements x and y and δy
omits y.

Recall from [14, Definition 3.3] the monoid axiom. The main result of this section is

3.5. Theorem. Let M be a cofibrantly generated monoidal S-model category having cofi-
brant unit and which satisfies the monoid axiom. Suppose furthermore that M is locally
presentable and that a transfinite composition of weak equivalences of M is a weak equiv-
alence.

Then M-Cat admits a cofibrantly generated model category structure in which the
weak equivalences are the DK-equivalences, the cofibrations are the elements of cof({∅ →
I}∪{2X

2i→ 2Y }), where i is a generating cofibration of M, the fibrant objects are the locally
fibrant M-categories and the fibrations between fibrant objects are the DK-fibrations.

If the model structure on M is right proper, then so is the one on M-Cat.

Proof. We shall apply Proposition 2.3. We take E to be M-Cat and W to be the class of
DK-equivalences. The fact that M-Cat is locally presentable can be seen in a few ways,
one is presented in [13]. The fact that the class of DK-equivalences is accessible follows
essentially from the fact that the classes of weak equivalences of M and of essentially

surjective functors are accessible. We take I to be the set {∅ → I} ∪ {2X
2i→ 2Y }), where

i is a generating cofibration of M. Let

F : S � M : G
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be the Quillen pair guaranteed by the definition. The adjoint pair (F,G) induces adjoint
pairs

F ′ : S-Cat � M-Cat : G′

and
F ′ : S-Cat(S) � M-Cat(S) : G′

for every set S. The first G′ functor preserves trivial fibrations and the M-functors which
are locally a fibration. The latter adjoint pair is a Quillen pair. Finally, we take J to be

the set F ′(B2) ∪ {2X
2i→ 2Y }, where i is a generating trivial cofibration of M, where B2

is as in Theorem 3.4.
Step 1. Conditions C1, C2 and C3 from Proposition 2.3 were dealt with above.
Step 2. Since every map δy belonging to the set B2 from Theorem 3.4 has a retraction,

one readily checks that an M-category is naively fibrant if and only if it is locally fibrant.
We claim that if an M-functor between locally fibrant M-categories is a naive fibration,
then it is a DK-fibration. To see this, let first M-Catf be the full subcategory of M-Cat
consisting of the locally fibrant M-categories. By [9, Proposition 8.5.16] we have a natural
isomorphism of functors

η : [ ]SG
′ ∼= [ ]M : M-Catf → Cat

such that for all A ∈M-Catf , ηA is the identity on objects: indeed, for each pair x, y ∈ A

of objects we have natural isomorphisms

[A]M(x, y) ∼= Ho(M)(e,A(x, y)) ∼= Ho(M)(F1,A(x, y))
∼= Ho(S)(1, GA(x, y)) ∼= [G′A]S(x, y)

Second, we use the following relaxed version of [3, Proposition 2.3]. Let f be a simpli-
cial functor between categories enriched in Kan complexes such that f is locally a Kan
fibration. If f has the right lifting property with respect to every element of the set B2,
then f is a DK-fibration. (This is the only result from [3] that we need.) These facts,
together with the observation that the class of isofibrations is invariant in Cat under
isomorphisms, imply the claim. It is now clear that condition C5 from Proposition 2.3
holds.

Step 3. We check condition C4 from Proposition 2.3. Let j : X → Y be a trivial
cofibration of M. We show that for every M-category A, in the pushout diagram

2X
2j
//

��

2Y

��

A // B

the map A → B is a DK-equivalence. Let S = Ob(A). This pushout can be calculated
as the pushout

FSUSA //

εS
A
��

FSX

��

A // B
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where USA→ X is a certain map of M-graphs with fixed set of objects S. But then the
map A → B is known to be locally a weak equivalence of M, see [15, Proof of Proposi-
tion 6.3(1)].

We now claim that if δy : I → H is a map belonging to the set B2 from Theorem 3.4
and A is any M-category, then in the pushout diagram

F ′I
a //

F ′δy
��

A

��

F ′H // B

the map A → B is a DK-equivalence. We factorize the map δy as I
δ′y→ H′ → H, where

the simplicial category H′ has {x} as set of objects and H′(x, x) = H(x, x), and then we
take consecutive pushouts:

F ′I a //

F ′δ′y
��

A

j
��

F ′H′

��

// A′

��

F ′H // B

The map j can be obtained from the pushout diagram in M-Cat(Ob(A))

a!F
′I //

a!F
′δ′y
��

A

j
��

a!F
′H′ // A′

where a! : Mon(M)→M-Cat(Ob(A)). By Lemma 3.6 the map δ′y is a trivial cofibration in
the category of simplicial monoids, therefore F ′δ′y is a trivial cofibration in the category of
monoids in M. Since a! is a left Quillen functor, j is a trivial cofibration in M-Cat(Ob(A)).

The map F ′H′ → F ′H is a full and faithful inclusion, so by Proposition 4.1 the map
A′ → B is a full and faithful inclusion. Therefore the map A → B is locally a weak
equivalence of M. Applying the functor [ ]M to the diagram

F ′I a //

F ′δy
��

A

��

F ′H // B

and taking into account that F ′ preserves DK-equivalences and that Ob(B) = Ob(A)∪{∗},
it follows that A→ B is a DK-equivalence as well. The claim is proved.

So far we have shown that the pushout of a map from J along any M-functor is
in cof(I) ∩ W. Since a transfinite composition of weak equivalences of M is a weak
equivalence, we readily obtain that cell(J) ⊂ cof(I) ∩W. Thus, condition C4 is checked.
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Now, putting all the three steps together we obtain the desired model structure on
M-Cat.

Step 4. Suppose that M is right proper. Using the explicit construction of pullbacks
in M-Cat, the description of the fibrations between fibrant objects and [4, Lemma 9.4],
we conclude that the model structure on M-Cat is right proper.

3.6. Lemma. Let A be a cofibrant simplicial category. Then for each a ∈ Ob(A) the
simplicial monoid a∗A = A(a, a) is cofibrant.

Proof. Let S = Ob(A). The simplicial category A is cofibrant in S-Cat if and only if it is
cofibrant as an object of S-Cat(S). The cofibrant objects of S-Cat(S) are characterized
in [7, 7.6]: they are the retracts of free simplicial categories. Therefore it suffices to prove
that if A is a free simplicial category then a∗A is a free simplicial category for all a ∈ S.
There is a full and faithful functor ϕ : S-Cat→ Cat∆op

given by Ob(ϕ(A)n) = Ob(A) for
all n ≥ 0 and ϕ(A)n(a, a′) = A(a, a′)n. Recall [7, 4.5] that A is a free simplicial category
if and only if (i) for all n ≥ 0 the category ϕ(A)n is a free category on a graph Gn, and
(ii) for all epimorphisms α : [m]→ [n] of ∆, α∗ : ϕ(A)n → ϕ(A)m maps Gn into Gm.

Let a ∈ S. The category ϕ(a∗A)n is a full subcategory of ϕ(A)n with object set {a},
hence it is free as well. A set Ga∗A

n of generators can be described as follows. An element
of Ga∗A

n is a path from a to a in ϕ(A)n such that every arrow in the path belongs to
Gn and there is at most one arrow in the path with source and target a. The fact that
ϕ(a∗A)n is indeed freely generated by Ga∗A

n follows from Lemma 3.7 and its proof. Since
every epimorphism α : [m]→ [n] of ∆ has a section, α∗ maps Ga∗A

n into Ga∗A
m .

3.7. Lemma. A full subcategory of a free category is free.

Proof. Let F (G) be a free category generated by a graph G = (G1 ⇒ G0). An arrow
f of F (G) is a generator if and only if f is indecomposable (f is not a unit and f = vu
implies v or u is a unit). Let C be a full subcategory of F (G) with Ob(C) = C0 ⊂ G0. If
x, y ∈ C0, let us say that a path (x1, f1, ..., fn−1, xn) : x → y in the graph G is C0-free if
target(fi) /∈ C0 for 1 ≤ i < n. Let G′1 be the set of C0-free paths. It is easy to see that
every arrow of C can be uniquely written as a finite composition of C0-free paths, so that
C is freely generated by the graph (G′1 ⇒ C0).

3.8. Remark. The class of cofibrations of the model category constructed in Theorem 3.5
can be given an explicit description [17, Section 4.2].

3.9. Remark. We noticed during the proof of Theorem 3.5 that our result is almost
independent on Theorem 3.4, only a relaxed version of [3, Proposition 2.3] being needed.
In particular, taking M = S in Theorem 3.5 results in a weaker version of Bergner’s result.
However, using the fact that S has a monoidal fibrant replacement functor that preserves
fibrations, the full Theorem 3.4 can be recovered.
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3.10. Remark. One can change the assumptions of Theorem 3.5 and the recognition
principle used in its proof to obtain a similar outcome. For example, let M be a cofibrantly
generated monoidal S-model category having cofibrant unit and which satisfies the monoid
axiom. Suppose furthermore that

(a) a transfinite composition of weak equivalences of M is a weak equivalence,

(b) M satisfies the technical condition of [11, Theorem 2.1], and

(c) in the Quillen pair F : S � M : G guaranteed by the definition, the functor G
preserves weak equivalences.

Then [9, Theorem 11.3.1] can be used to show that M-Cat admits a cofibrantly generated
model category structure in which the weak equivalences are the DK-equivalences and
the fibrations are the DK-fibrations. The proof proceeds in the same way as the proof
of Theorem 3.5, Step 3 remains unchanged but Step 2 requires suitable modifications.
Condition (b) can be relaxed, it was stated in this form in order to include examples such
as compactly generated spaces [11].

4. Pushouts along full and faithful functors

A result of R. Fritsch and D.M. Latch [8, Proposition 5.2] says that the pushout of a
full and faithful functor is full and faithful. The purpose of this section is to extend this
result to categories enriched over a monoidal category.

Let (V,⊗, I) be a cocomplete closed category. We denote by V-Cat the category of
small V-categories and by V-Graph that of small V-graphs. A V-functor, or a map of
V-graphs, that is locally an isomorphism ( 3.2) is said to be full and faithful. If S is a set,
we denote by V-Cat(S) (resp. V-Graph(S)) the category of small V-categories (resp.
V-graphs) with fixed set of objects S. The category V-Graph(S) is a monoidal category
with monoidal product �S and unit which we denote by IS.

4.1. Proposition. Let A, B and C be three small V-categories and let i : A → B be a
full and faithful inclusion. Then in the pushout diagram of V-categories

A
i //

f
��

B

g
��

C
i′ // D

the map i′ : C→ D is a full and faithful inclusion.

Proof. We shall construct D explicitly, as was done in the proof of [8, Proposition 5.2].
On objects we put Ob(D) = Ob(C)t(Ob(B)\Ob(A)) and D(p, q) = C(p, q) if p, q ∈ Ob(C).
For p ∈ Ob(C) and q ∈ Ob(B) \Ob(A) we define

D(p, q) =

∫ x∈Ob(A)

B(x, q)⊗ C(p, f(x))
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For p ∈ Ob(B) \Ob(A) and q ∈ Ob(C) we define

D(p, q) =

∫ x∈Ob(A)

C(f(x), q)⊗B(p, x)

For p, q ∈ Ob(B) \Ob(A) we define D(p, q) to be the pushout∫ x∈Ob(A)

B(x, q)⊗B(p, x) //

��

∫ x∈Ob(A) ∫ y∈Ob(A)

B(x, q)⊗ C(f(y), f(x))⊗B(p, y)

��

B(p, q) // D(p, q)

We shall describe a way to see that, with the above definition, D is indeed a V-category.
Let (B \ A)+ be the preorder with objects all finite subsets S ⊂ Ob(B) \ Ob(A),

ordered by inclusion. For S ∈ (B \ A)+, let AS be the full sub-V-category of B with
objects Ob(A) ∪ S. Then B = colim(B\A)+ AS. On the other hand, a filtered colimit of
full and faithful inclusions of V-categories is a full and faithful inclusion. This is because
the forgetful functor from V-Cat to V-Graph preserves filtered colimits [13, Corollary
3.4] and a filtered colimit of full and faithful inclusions of V-graphs is a full and faithful
inclusion. Therefore one can assume from the beginning that Ob(B) = Ob(A) ∪ {q},
where q 6∈ Ob(A).

Case 1: f is full and faithful. In this case the pushout giving D(q, q) is simply
B(q, q), all the other formulas remain unchanged. Then to show that D is a V-category
is straightforward.

Case 2: f is the identity on objects. The map i induces an adjoint pair

i! : V-Cat(Ob(A)) � V-Cat(Ob(B)) : i∗

One has

i!A(a, a′) =


A(a, a′) if a, a′ ∈ Ob(A),

∅ otherwise,

I if a = a′ = q

and i factors as A → i!A → B, where i!A → B is the obvious map in V-Cat(Ob(B))).
Then the original pushout can be computed using the pushout diagram

i!A //

i!f
��

B

��

i!C // D

in V-Cat(Ob(B)). Next, we claim that D can be calculated as the pushout, in the category

BModB of (B,B)-bimodules in

(V-Cat(Ob(B)),�Ob(B), IOb(B))
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of the diagram

B�i!AB
B�i!A

i!f�i!A
B
//

��

B�i!Ai!C�i!AB

m
��

B // D

For this we have to show that D is a monoid in BModB. We first show that B�i!Ai!C�i!AB

is a monoid in BModB. There is a canonical isomorphism

i!C�i!Ai!C
∼= i!C�i!AB�i!Ai!C

of (i!A, i!A)-bimodules which is best seen pointwise, using coends. This provides a multi-
plication for B�i!Ai!C�i!AB which is again best seen to be associative by working point-
wise, using coends. To define a multiplication for D consider the cube diagrams

B · i!A ·B ·B B · i!A ·B //

**

��

B ·B B · i!A ·B

((

��

B · i!C ·B ·B B · i!A ·B //

��

D ·B B · i!A ·B

��

B · i!A ·B ·B B · i!C ·B //

**

B ·B B · i!C ·B

((

B · i!C ·B ·B B · i!C ·B // D ·B B · i!C ·B

and
B ·B B · i!A ·B //

))

��

B ·B B

((

��

D ·B B · i!A ·B //

��

D ·B B

��

B ·B B · i!C ·B //

))

B ·B D

((

D ·B B · i!C ·B // D ·B D

For space considerations we have suppressed tensors (always over i!A, unless explicitly
indicated) from notation. The right face of the first cube is the same as the left face of
the latter cube. Let PO1 (resp. PO2) be the pushout of the left (resp. right) face of the
first cube diagram. Let PO3 be the pushout of the right face of the second cube diagram.
We have pushout diagrams

PO1
//

��

PO2
//

��

PO3

��

B · i!C ·B ·B B · i!C ·B // D ·B B · i!C ·B // D ·B D
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Using these pushouts and the fact that B�i!Ai!C�i!AB is a monoid one can define in a
canonical way a map µ : D ·B D → D. We omit the long verification that µ gives D the
structure of a monoid. The map µ was constructed in such a way that m becomes a
morphism of monoids. The fact that D has the universal property of the pushout in the
category V-Cat(Ob(B)) follows from its definition.

Case 3: f is arbitrary. Let u = Ob(f). We factorize f as A
fu→ u∗C → C, where

Ob(u∗C) = Ob(A), u∗C(a, a′) = C(fa, fa′) and fu is the obvious map, and take consecu-
tive pushouts:

A
i //

fu

��

B

��

u∗C

��

// A′

��

C // D

Now apply Case 2 to fu and Case 1 to u∗C→ C.

5. Application: left Bousfield localizations of categories of monoids

This section was motivated by the paragraph ‘As we mentioned above,...in general.’ on
page 111 of [12].

5.1. The problem. Let M be a (suitable) monoidal model category, LM a left Bousfield
localization of M which is itself a monoidal model category and Mon(M) the category
of monoids in M. The problem is to induce on Mon(M) a model category structure
somehow related to LM. As pointed out in [12], such a model structure exists if, for
example, (a) LM satisfies the monoid axiom or (b) Mon(M) has a suitable left proper
model category structure. In order for (a) to be fulfilled one needs to know the (generating)
trivial cofibrations of LM. However, it often happens that one does not have an explicit
description of them. For (b), the category of monoids in a monoidal model category is
rarely known to be left proper (it is left proper when the underlying model category has
all objects cofibrant, for instance, which seems to us too restrictive to work with).

5.2. Our solution. We shall propose below a solution to the above problem. We shall
reduce the verification of the monoid axiom for LM to a smaller— and hopefully more
tractable in practice, set of maps and we shall avoid left properness by using Theorem 1.1
via Proposition 2.3. The model category theoretical framework will be the ‘combinatorial’
counterpart of the one of [12, Section 8].

It will be clear that the method could potentially be applied to other structures than
monoids.

Recollections on enriched left Bousfield localization. We recall some facts
from [1]. Let V be a monoidal model category and M a model V-category with tensor,
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hom and cotensor denoted by
− ∗ − : V×M→M

Map(−,−) : Mop ×M→ V

(−)(−) : Vop ×M→M

Let S be a set of maps of M between cofibrant objects.

5.3. Definition. A fibrant object W of M is S-local if for every f ∈ S the map
Map(f,W ) is a weak equivalence of V. A map f of M is an S-local equivalence if for
every S-local object W and for some (hence any) cofibrant approximation f̃ to f , the
map Map(f̃ ,W ) is a weak equivalence of V.

In the previous definition, if the map Map(f̃ ,W ) is a weak equivalence of V, then for
any other cofibrant approximation g̃ to f , the map Map(g̃,W ) is a weak equivalence of
V [9, Proposition 14.6.6(1)]. Recall the following result of C. Barwick [1].

5.4. Theorem. Let V be a combinatorial monoidal model category, M a left proper, com-
binatorial model V-category and S a set of maps of M between cofibrant objects. Suppose
that V has a set of generating cofibrations with cofibrant domains.

Then the category M admits a left proper, combinatorial model category structure,
denoted by LSM, with the class of S-local equivalences as weak equivalences and the same
cofibrations as the given ones. The fibrant objects of LSM are the S-local objects. LSM
is a model V-category.

Suppose that, moreover, M is a monoidal model V-category which has a set of gener-
ating cofibrations with cofibrant domains. Let us denote by ⊗ the monoidal product on
M. If X ⊗ f is an S-local equivalence for every f ∈ S and every X belonging to the do-
mains and codomains of the generating cofibrations of M, then LSM is a monoidal model
V-category.

The S-extended monoid axiom. Let V be a monoidal model category and M a
monoidal model V-category with monoidal product ⊗ and tensor, hom and cotensor de-
noted as in Section 5.2. If i : K → L is a map of V and f : A → B is a map of M, we
denote by i ∗′ f the canonical map

L ∗ A tK∗A K ∗B → L ∗B

Let S be a set of maps of M between cofibrant objects. For every f ∈ S, let f = vfuf be
a factorization of f as a cofibration uf followed by a weak equivalence vf ; a concrete one
is the mapping cylinder factorization.

5.5. Definition. We say that M satisfies the S-extended monoid axiom if, in the notation
of [14, Section 3], every map in

({trivial cofibrations of M} ∪ ({cofibrations of V} ∗′ uf )f∈S)⊗M-cofreg

is an S-local equivalence.
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As usual [14, Lemma 3.5(2)], if V and M are cofibrantly generated and every map in

({generating trivial cofibrations of M}∪({generating cofibrations of V}∗′uf )f∈S)⊗M-cofreg

is an S-local equivalence, then the S-extended monoid axiom holds.
Let Mon(M) be the category of monoids in M and let

T : M � Mon(M) : U

be the free-forgetful adjunction.

5.6. Definition. A monoid M in M is TS-local if U(M) is S-local. A map f of monoids
in M is a TS-local equivalence if U(f) is an S-local equivalence.

5.7. Theorem. Let V be a combinatorial monoidal model category having a set of gener-
ating cofibrations with cofibrant domains. Let M be a left proper, combinatorial monoidal
model V-category which has a set of generating cofibrations with cofibrant domains. Let
us denote by ⊗ the monoidal product on M. Let S be a set of maps of M between cofi-
brant objects. Suppose that X ⊗ f is an S-local equivalence for every f ∈ S and every X
belonging to the domains and codomains of the generating cofibrations of M and that M

satisfies the S-extended monoid axiom.
Then the category Mon(M) admits a combinatorial model category structure with

TS-local equivalences as weak equivalences and with T ({cofibrations of M}) as cofibra-
tions.The fibrant objects are the TS-local objects.

Proof. We shall apply Proposition 2.3. We take E to be Mon(M), W to be the class of
TS-local equivalences, I to be the set T ({generating cofibrations of M}) and J to be

T ({generating trivial cofibrations of M} ∪ ({generating cofibrations of V} ∗′ uf )f∈S)

Notice that a map g of monoids in M belongs to inj(T ({generating cofibrations of M}))
if and only if U(g) belongs to inj({generating cofibrations of M}) if and only if U(g) is a
trivial fibration of M. Therefore condition C2 from Proposition 2.3 holds.

We claim that a monoid M in M is naively fibrant if and only if M is TS-local. We may
assume without loss of generality that U(M) is fibrant. We observe that if i is any map of
V and f ∈ S, then M has the right lifting property with respect to T (i ∗′ uf ) if and only
if Map(uf , U(M)) has the right lifting property with respect to i. Since Map(vf , U(M))
is a weak equivalence of V and Map(uf , U(M)) is a fibration of V, the claim follows from
this observation.

Let now g be a map of monoids in M between TS-local monoids such that g is both a
TS-local equivalence and a naive fibration. Then U(g) is an S-local equivalence between
S-local objects, so U(g) is a weak equivalence. U(g) is also a fibration, therefore condition
C5 from Proposition 2.3 holds.

Condition C4 from Proposition 2.3 is guaranteed by the S-extended monoid axiom
and [14, Proof of Lemma 6.2].
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