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HOMOTOPY LOCALLY PRESENTABLE ENRICHED CATEGORIES

STEPHEN LACK AND JIŘÍ ROSICKÝ

Abstract. We develop a homotopy theory of categories enriched in a monoidal model
category V. In particular, we deal with homotopy weighted limits and colimits, and ho-
motopy local presentability. The main result, which was known for simplicially-enriched
categories, links homotopy locally presentable V-categories with combinatorial model
V-categories, in the case where all objects of V are cofibrant.

1. Introduction

There is a fruitful interaction between enriched category theory and homotopy theory, of
which the classical case is simplicial homotopy theory: the homotopy theory of simplicial
model categories. Moreover, since Dwyer-Kan equivalences provide a suitable notion of
weak equivalence between simplicial categories, one can develop a homotopy theory of
simplicial categories. In fact there is a model category structure on the category of small
simplicial categories, in which the weak equivalences are the Dwyer-Kan equivalences
[6]. This model category is Quillen equivalent to the model category of small quasi-
categories [7]. Dwyer-Kan equivalences and fibrations also make sense for large simplicial
categories, and fibrant simplicial categories correspond to quasi-categories. In particular,
the homotopy locally presentable simplicial categories introduced in [25] correspond to the
locally presentable quasi-categories of [22], in the sense of the following result from [25]:
a fibrant simplicial category K is homotopy locally presentable if and only if it admits a
Dwyer-Kan equivalence to the simplicial category IntM of cofibrant and fibrant objects
in a combinatorial simplicial model categoryM. There is a gap in the proof in [25] which
we correct by assuming the large cardinal axiom called Vopěnka’s principle (see [1]).

Dwyer-Kan equivalences and fibrations can be defined for V-categories over any mon-
oidal model category V , and so one can ask whether there is a corresponding model
category structure on the category V-Cat of all (small) V-categories. This question has
been studied by various authors under various hypotheses [5, 22, 24]; also particular
examples have been studied, such as V = SSet [6], V = Cat [17], and V = 2-Cat [20].

The aim of our paper is to introduce homotopy locally presentable V-categories, and
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to give a characterization analogous to that in the case of simplicial categories. As in the
simplicial case, we need Vopěnka’s principle for this.

Just as the definition of (enriched) locally presentable categories [15] involves (weight-
ed) limits and colimits, the definition of homotopy locally presentable categories involves
weighted homotopy limits and colimits. We define these as weighted limits or colimits
whose weight is cofibrant in the projective model structure. This emerges from a classical
calculation of homotopy limits and colimits in simplicial model categories; see [13] for
example.

In what follows, V will be a monoidal model category in the sense used in [22]; in
particular this means that the unit object I is cofibrant, rather than the weaker condition
introduced in [14]. For such a V , there is a notion of model V-category, as defined in [14].
We also suppose that V is cofibrantly generated. We further suppose that V is locally
presentable as a closed category, in the sense of [15]. For such a V , there is a notion of
locally presentable V-category; see [15] again. Whenever we need the projective model
category structure on [D,V ], we have to assume either that V satisfies the monoid axiom
of [29], or that D is locally cofibrant, in the sense that all its hom-objects are cofibrant in
V : see [30, 24.4]. Finally, we also need to suppose that there is a cofibrant replacement
functor Q:V → V which is enriched. But in fact this last assumption, together with
the earlier assumption that the unit is cofibrant, already implies that all objects of V
are cofibrant—see Proposition A.1—and in this case D is automatically locally cofibrant,
and indeed the monoid axiom follows from the assumption that V is a monoidal model
category.

Thus we may summarize our assumptions by saying that V is a combinatorial monoidal
model category in which all objects are cofibrant.

Since the assumption that all objects are cofibrant is very strong, perhaps we should
discuss briefly why it is needed. (This assumption was also made in [22, Appendix A]
in constructing a model structure on V-Cat.) A key aspect in the theory of (enriched)
locally presentable categories is that given a V-category K and a full subcategory G,
there is an induced V-functor J̃ :K → [Gop,V ] sending an object A ∈ K to the presheaf
K(J−, A):Gop → V , where J :G → K is the inclusion. If K is cocomplete and G is closed

in K under finite colimits, then J̃ will land in the locally finitely presentable category
M = Lex(Gop,V), and one can now characterize when J̃ :K →M is an equivalence.

In the homotopy context, we want to replace J̃ :K → [Gop,V ] by a V-functor K →
Int[Gop,V ] landing in the full subcategory of [Gop,V ] consisting of the fibrant and cofibrant
objects. Since the hom-objects of K will be assumed to be fibrant, certainly the values of
J̃ are fibrant, but there is no reason in general why they should be cofibrant. To rectify
this, we compose J̃ with a cofibrant replacement functor Q: [Gop,V ]fib → Int[Gop,V ], but
of course this Q should itself be a V-functor. It is not hard to use an enriched form of
the small object argument to construct such a V-functor Q, provided that there exists a
cofibrant replacement V-functor V → V . In an appendix to the paper, we sketch how this
enriched small-object argument goes (see also [30, 24.2]), as well as giving the argument,
referred to above, that the existence of such a V-functor Q along with the assumption
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that the unit I is cofibrant implies that all objects are cofibrant.
Although our assumptions on V are strong, there are nonetheless quite a few exam-

ples. Of course the classical example is SSet. Another key example is Cat, with the
natural/categorical model structure. If R is a Frobenius ring which is also a finite dimen-
sional Hopf algebra over a field, then the category of R-modules with the stable model
structure is an example. Another example is the category of chain complexes of comod-
ules over a commutative Hopf algebra defined over a field, equipped with the projective
model structure. All of these are described in [14].

An example closely related to Cat is the cartesian closed model category Gpd of
small groupoids. The locally finitely presentable category of non-negatively graded chain
complexes over a field also has a cofibrantly generated model structure in which all objects
are cofibrant: a straightforward modification of the proof of [14, Proposition 4.2.13] shows
that this is a monoidal model category under the usual tensor product. Another source
of examples is provided by Cisinski model categories [10]: these are model structures on
a topos, in which the cofibrations are the monomorphisms and so in particular all objects
are cofibrant. Toposes are cartesian closed, and a Cisinski model category will often
be a monoidal model category with respect to the cartesian monoidal structure. (The
compatibility condition between monoidal structure and cofibrations always holds.)

The recent paper [12] also studies enrichment in homotopical settings. It includes a
characterization of enriched model categories which are Quillen equivalent to enriched
presheaf categories with respect to the projective model structure. The context is more
general — in particular it does not require all objects of V to be cofibrant — but the
problem is less general, since only presheaf categories are considered rather than locally
presentable ones. In particular, Theorem 9.16 shows that our (enriched) homotopy locally
presentable categories correspond to left Bousfield localizations of presheaf categories
(with the projective model structure). The paper [12] also contains many general facts
about enrichment in the homotopy-theoretic context, and copious references to earlier
work.

2. Review of enriched categories

Notation. For a morphism f :X → Y in a V-category K, composition with f induces
maps

K(U,X)
K(U,f)// K(U, Y ) K(Y, V )

K(f,V )// K(X, V )

in V . In order to save space, we shall sometimes call these f∗ and f ∗, respectively, if we
allow ourselves to think that the context makes clear what the domains and codomains
are.

For a V-functor F :K → L and objects X, Y ∈ K, there is an induced morphism

K(X, Y )
FX,Y // L(FX,FY )
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which we shall sometimes simply call F . A V-functor F :K → L is sometimes called a
diagram in L of shape K, especially if K is small.

Enriched categories and ordinary categories. If K is a V-category, we write K0

for the underlying ordinary category with the same objects as K but with morphisms
from X to Y given by morphisms I → K(X, Y ) in V . The assignment K 7→ K0 defines
a 2-functor from V-categories to categories; this has a left adjoint sending the ordinary
category X to the V-category X with the same objects as X and with hom-object X (X, Y )
given by the copower X (X, Y ) · I; that is, the coproduct of X (X, Y ) copies of I.

By the universal property of the adjunction, if X is an ordinary category and K a V-
category, then any ordinary functor S:X → K0 extends to a unique V-functor S:X → K.
In particular, for an ordinary category X , we have the ordinary functor X op → V0 constant
at the unit object I of V , and this extends to a V-functor ∆I:X op → V . Limits or colimits
weighted by ∆I are called conical limits or colimits.

Limits and colimits. A weight is a presheaf Dop → V on a small V-category. Given a
V-category K, a diagram S:D → K, a weight G:Dop → V , and an object C ∈ K, we may
form the presheaf K(S,C):Dop → V which sends an object D ∈ D to the V-valued hom
K(SD,C).

The Yoneda lemma provides a bijection between morphisms δ:G→ K(S,C) in [Dop,V ]
and morphisms β:K(C,−)→ [Dop,V ](G,K(S,−)) in [K,V ]. We say that δ exhibits C as
the (weighted) colimit G ∗ S if the corresponding β is invertible.

A special case is where D is the unit V-category I consisting of a single object 0 with
I(0, 0) = I; then a diagram S: I → K just consists of an object S ∈ K, while a weight
consists of an object X ∈ V . The corresponding weighted colimit, usually written X · S,
and called a copower, is defined by a natural isomorphism

K(X · S,−) ∼= V(X,K(S,−)).

A limit in K is the same as a colimit in Kop, but typically one writes in terms of a
diagram S:D → K and weight D → V (a presheaf on Dop).

Local presentability. A symmetric monoidal closed category V is said to be locally
λ-presentable as a closed category [15] if the underlying ordinary category is locally λ-
presentable in the usual sense, and the full subcategory of λ-presentable objects is closed
under tensoring and contains the unit.

In this case there is a good theory of V-enriched locally λ-presentable categories [15];
a V-category K is locally λ-presentable if and only if it is a full reflective V-category of a
presheaf category [Dop,V ], closed under λ-filtered colimits.

Any symmetric monoidal closed category V which is locally presentable as a category
is locally λ-presentable as a closed category for some λ, and then also for all larger values
of λ: see [16].
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Model V-categories. We suppose that V is a monoidal model category in the sense
used in [22], which includes the assumption that the unit I is cofibrant, and that V satisfies
the monoid axiom [29].

A model V-category [14] is a complete and cocomplete V-category M, with a model
structure on the underlying ordinary category M0, subject to a compatibility condition
asserting that if j:X → Y is a cofibration in V and f :A → B a cofibration in M then
the induced map j�f out of the pushout in

X · A j·A //

X·f
��

Y · A

�� Y ·f

��

X ·B //

j·B ..

P
j�f

$$
Y ·B

is a cofibration; and a trivial cofibration if either j or f is one.
For a small V-category D, we regard the presheaf category [Dop,V ] as a model V-

category under the projective model structure.
Suppose thatM is a model V-category. A morphism f :A→ B inMmay be identified

with a morphism I → M(A,B). Since M and V each have model structures, we could
consider either the homotopy relation on morphisms A → B defined using the model
structure onM, or the homotopy relation on morphisms I →M(A,B) defined using the
model structure of V . The following easy result helps to resolve this potential ambiguity:

2.1. Proposition. If A is cofibrant and B is fibrant in M, then the two notions of
homotopy agree.

Proof. Let f, g:A → B be morphisms, and write f ′, g′ for the corresponding I →
M(A,B). Factorize the codiagonal I + I → I as a cofibration (i j): I + I → J followed
by a weak equivalence w: J → I; it follows that i and j are trivial cofibrations. Since I
and A are cofibrant, A+A is cofibrant; also (i j) ·A:A+A→ J ·A is a cofibration with
i · A and j · A trivial cofibrations, and so w · A: J · A→ A is a weak equivalence.

Then f ′ is homotopic to g′ if and only if the induced (f ′ g′): I+I →M(A,B) factorizes
through (i j), say as h′: J →M(A,B). And f is homotopic to g if and only if the induced
(f g):A + A → B factorizes through (i j) · A, say as h: J · A → B. But to give such an
h is equivalently to give an h′, by the universal property of the copower J · A. Thus f is
homotopic to g if and only if f ′ is homotopic to g′.

3. Homotopy equivalences

Given a monoidal model category V , we have a monoidal structure on HoV , for which the
canonical functor P :V → HoV is (lax) monoidal. Since the hom-functor HoV(I,−): HoV →
Set is also monoidal, so is the composite U := HoV(I, P−):V → Set. On the other
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hand, there is also the monoidal functor V(I,−):V → Set, and P induces a monoidal
natural transformation p:V(I,−) → U whose component at A ∈ V is the function
p:V(I,X)→ HoV(I,X) given by applying P .

The following definition also appears in [22, A.3.2.9], although we have been more
explicit about the role of p:V(I,−)→ U .

3.1. Definition. Let V be a monoidal model category and K a V-category. The homo-
topy category hoK of K has the same objects as K, and hoK(A,B) = U(K(A,B)). There
is an induced functor p∗ from the underlying ordinary category K0 of K to hoK, sending
a morphism f : I → K(A,B) to p(f).

A morphism f :A→ B in a V-category K is called a homotopy equivalence if its image
in hoK is invertible.

3.2. Remark. For a model V-categoryM, we now have the standard homotopy category
HoM of the underlying ordinary category M0 of M, and the homotopy category hoM
defined using the enrichment, and these need not agree. But if IntM is the full subcategory
of M consisting of the fibrant and cofibrant objects, then ho(IntM) is equivalent to
Ho(M), thanks to Proposition 2.1.

Since the passage from K to hoK is functorial, a V-functor K → L sends homotopy
equivalences to homotopy equivalences. Furthermore, if a V-functor K → L is fully
faithful then so is the induced functor hoK → hoL; thus fully faithful V-functors reflect
homotopy equivalence.

3.3. Definition. A V-category K is said to be fibrant if each hom-object K(A,B) is
fibrant in V .

3.4. Remark. These are also called locally fibrant [22, A.3.2.9], following the usage that
an enriched category is “locally P” if its hom-objects are P . The name fibrant was also
used in [25] in the case V = SSet, and is justified by the fact that, in the model structures
on V-Cat studied in [17, 6, 5] the fibrant V-categories in our sense are precisely the fibrant
objects.

3.5. Example. IfM is a locally presentable V-category with a V-enriched model struc-
ture, then M(A,B) is fibrant in V whenever A is cofibrant in M and B is fibrant in M.
Thus IntM is a fibrant V-category.

3.6. Remark. LetM be an ordinary model category, with homotopy category P :M→
HoM. If X is cofibrant and Y is fibrant, then HoM(PX,PY ) may be identified with
the quotient of M(X, Y ) by the homotopy relation. In particular, PX,Y :M(X, Y ) →
HoM(PX,PY ) is surjective. If now K is a fibrant V-category, then for any two objects
A,B ∈ K we have I cofibrant and K(A,B) fibrant in V ; thus

K0(A,B) = V(I,K(A,B)) P // HoV(I,K(A,B)) = hoK(A,B)

is surjective, and any morphism in hoK is induced by one in K0(A,B). This means, in
particular, that if K is a fibrant V-category, then there exists a homotopy equivalence
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A → B if and only if there exists a homotopy equivalence B → A. Thus “homotopy
equivalence” defines an equivalence relation on the objects of a fibrant V-category. In this
case we shall sometimes write A ' B.

3.7. Definition. [J. H. Smith] A model category is λ-combinatorial, for a regular
cardinal λ, if it is locally λ-presentable as a category, cofibrantly generated as a model
category, and the generating cofibrations and trivial cofibrations may be chosen to have
λ-presentable domains and codomains. It is combinatorial if it is λ-combinatorial for some
λ This will be the case for some λ if and only if it is cofibrantly generated and locally
presentable; it will then also be µ-combinatorial whenever µ > λ.

3.8. Remark. We shall use the following facts about λ-combinatorial model categories:

• the cofibrant and fibrant replacement functors preserve λ-filtered colimits;

• the weak equivalences are closed under λ-filtered colimits;

• the fibrant objects are closed under λ-filtered colimits.

Proofs of the first two can be found in [11, 2.3] or [27, 3.1], while the third is really a
general fact about injectivity classes, and was proved in that context in [1, 4.7].

3.9. Proposition. Let V be a combinatorial monoidal model category satisfying the
monoid axiom, K a fibrant V-category and f :A→ B a morphism in K. Then the following
conditions are equivalent:

(i) f is a homotopy equivalence.

(ii) K(C, f) is a weak equivalence in V, for all C ∈ K.

(iii) K(f, C) is a weak equivalence in V, for all C ∈ K.

(iv) K(C, f) is a weak equivalence in V for C equal to A or B;

(v) K(f, C) is a weak equivalence in V for C equal to A or B.

Proof. Clearly (i) implies all the other conditions, since representable functors send
homotopy equivalences in K or Kop to homotopy equivalences in V , and homotopy equiv-
alences in V are weak equivalences. Even more clearly (ii) implies (iv) and (iii) implies (v).
If we can prove that (iv) implies (i), then dually (v) will imply (i), and so all conditions
will be equivalent.

Suppose then that K(C, f) is a weak equivalence for C equal to A or B. Let C
be the full subcategory of K with objects A and B, and consider the projective model
structure on [Cop,V ]. The inclusion J : C → K induces a V-functor J̃ :K → [Cop,V ] with

J̃J equal to the Yoneda functor Y . Now J̃f : J̃A → J̃B is a weak equivalence in [Cop,V ]
by assumption, but its domain and codomain are the representables C(−, A) and C(−, B)

which are fibrant and cofibrant, thus J̃f is in fact a homotopy equivalence. But that
means Y f is a homotopy equivalence, whence f is a homotopy equivalence in C, and so
also in K.
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4. Homotopy orthogonality

4.1. Definition. Let V be a monoidal model category, K a V-category, and f :A → B
a morphism in K. Then an object K in K is called homotopy orthogonal to f if K(f,K)
is a weak equivalence.

While homotopy orthogonality is clearly some sort of homotopy version of orthogo-
nality, it also resembles injectivity in some ways: see Proposition 4.7 for example. In the
terminology of [21], such a homotopy orthogonal object would be called f -injective over
the weak equivalences. An object K is homotopy orthogonal to a class F of morphisms
if it is homotopy orthogonal to each f ∈ F . The class of all objects homotopy orthogonal
to F is denoted by F -Inj. Small homotopy orthogonality classes are defined as classes
F -Inj where F is a set. Without this limitation, we speak about homotopy orthogonality
classes.

By Proposition 3.9, a morphism f is a homotopy equivalence if and only if every object
K is homotopy orthogonal to f .

4.2. Lemma. Let K be a fibrant V-category, f :A → B a morphism in K, and K and L
homotopy equivalent objects of K. Then K is homotopy orthogonal to f if and only if L
is so.

Proof. Suppose that K is homotopy orthogonal to f , and let h:K → L be a homotopy
equivalence. In the commutative square

K(B,K)
K(f,K)//

K(B,h)
��

K(A,K)

K(A,h)

��
K(B,L)

K(f,L)
// K(A,D)

the vertical morphisms are weak equivalences by Proposition 3.9, thus K(f,K) is a weak
equivalence if and only if K(f, L) is one.

4.3. Lemma. Let K be a fibrant V-category, f :A → B a morphism in K, and f = gh
where h is a homotopy equivalence. Then an object K is homotopy orthogonal to f if and
only if it is homotopy orthogonal to g.

Proof. Since
K(f,K) = K(h,K)K(g,K)

and K(h,K) is a weak equivalence by Proposition 3.9, K(f,K) is a weak equivalence if
and only if K(g,K) is a weak equivalence.
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4.4. Definition. Let L be a full sub-V-category of a fibrant V-category K. We say that
L is homotopy reflective in K if, for each K in K, there is a morphism ηK :K → K∗ with
K∗ in L such that each L in L is homotopy orthogonal to ηK .

Homotopy reflective full subcategories coincide with subcategories which are, in the
sense of [21], weakly reflective with respect to the weak equivalences.

A locally presentable model categoryM is called tractable [3] if both cofibrations and
trivial cofibrations are cofibrantly generated by a set of morphisms between cofibrant
objects. Of course, every tractable model category is combinatorial.

4.5. Theorem. Let V be a tractable monoidal model category and M a tractable left
proper model V-category. Then each small homotopy orthogonality class in IntM is ho-
motopy reflective.

Proof. Let F be a set of morphisms in IntM. Since weak equivalences in IntM are
homotopy equivalences in the sense of Definition 3.1, we can use Lemma 4.3 and assume
that F consists of cofibrations in IntM. An object K in IntM is F -injective if and only
if it is F -local; that is, if and only if it is fibrant in the F -localized V-model category
structure on M (see [3]). Thus homotopy reflections ηK :K → K∗ are given by fibrant
replacements in this model category.

4.6. Remark. Let V be a tractable monoidal model category and M a left proper
tractable model V-category. A consequence of the relationship between small homo-
topy orthogonality classes in IntM and enriched left Bousfield localizations inM used in
the proof above is that each small homotopy orthogonality class F -Inj in IntM is IntN
for some combinatorial model V-category N ; in particular, we could take N to be the
F -localized model V-category.

LetM be a cofibrantly generated model V-category. If X ∈ V and A ∈M, recall from
Section 2 that the copower X ·A ∈M, is defined by the universal propertyM(X ·A,B) ∼=
V(X,M(A,B)). If i:X → Y is a generating cofibration in M, and f :A → B is a
morphism inM, we can form the pushout Pi,f as in the diagram below, and the induced
map i�f :Pi,f → Y ·B, called the pushout-product of i and f .

X · A i·A //

X·f
��

Y · A

�� Y ·f

��

X ·B

i⊗B ..

// Pi,f
i�f

$$
Y ·B

Such a map i�f is called an f -horn, and if F is a class of morphisms then we denote by
Hor(F) the class of f -horns, for all f ∈ F . Part of the definition of model V-category is
that if f is a cofibration or trivial cofibration, then so is each f -horn.

Recall that IntM denotes the full subcategory ofM consisting of those objects which
are both fibrant and cofibrant.
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4.7. Proposition. Let F be a set of cofibrations in IntM. An object K ∈ IntM is
homotopy orthogonal to F if and only if it is injective in M0 with respect to all F-horns.

Proof. Since each f is a cofibration, each IntM(f,K) is a fibration. Thus K will be
homotopy orthogonal to the f if and only if each IntM(f,K) is a trivial fibration; in other
words, each IntM(f,K) has the right lifting property with respect to each generating
cofibration i:X → Y . But this is equivalent to K being injective in M0 with respect to
the F -horns.

4.8. Theorem. Let V be a tractable monoidal model category and M a tractable left
proper model V-category. Assuming Vopěnka’s principle, each homotopy orthogonality
class in IntM is a small homotopy orthogonality class in IntM.

Proof. Let F be a class of morphisms in IntM. Then F is the union of an increasing
chain of subsets Fi indexed by ordinals. Let Wi denote the class of weak equivalences in
the Fi-localized model structure on M0. Following [28, 2.3], there exists the F -localized
model structure whose weak equivalences are W = ∪Wi. Let I be a set of generating
cofibrations in M. Following [28, 2.2] and [4, 1.7], trivial cofibrations in the F -localized
model structure are generated by a set J dense between I and W . Since J is dense
between I and some Wi, trivial cofibrations in the Fi-localized model structure coincide
with those in the F -localized one (see [4, 1.7] again). Hence F -local objects coincide with
Fi-local objects and thus F -Inj = Fi-Inj.

4.9. Remark. This generalizes the fact that, under Vopěnka’s principle, any orthogo-
nality class in a locally presentable category is a small orthogonality class [1, 6.24]. On
the other hand, the corresponding statement for injectivity classes is false. For example,
complete lattices form an injectivity class in posets which is not a small-injectivity class
(see [1, Example 4.7]).

5. Homotopy weighted colimits

Recall that, given a V-category K, a colimit G ∗ S of a diagram S:D → K weighted by
G:Dop → V is defined by a natural isomorphism

K(G ∗ S,−) ∼= [Dop,V ](G,K(S,−)).

If V is a monoidal model category satisfying the monoid axiom, the V-category [Dop,V ]
may be equipped with the projective model V-category structure. A cofibrant object in
[Dop,V ] will be called a cofibrant weight, and we shall use the term “cofibrant colimit” to
mean a weighted colimit for which the weight is cofibrant. We write Φ(D) for the full sub-
V-category of [Dop,V ] consisting of cofibrant weights. We are going to show that Φ(D) is
closed under cofibrant colimits, so that the class of cofibrant weights is saturated (or closed
in the original terminology of [2]). It then follows that Φ(D) is the free cocompletion of
D under cofibrant colimits.
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5.1. Proposition. The class Φ of cofibrant weights is saturated.

Proof. Let C be a small V-category. Suppose that S:D → [Cop,V ] takes values in Φ(C),
and that G:Dop → V is cofibrant. We must show that G ∗ S is in Φ(C). If p:A → B is
a trivial fibration in [Cop,V ], and u:G ∗ S → B, we must find a lifting of u through p.
To give u is equally to give u′:G→ [Cop,V ](S,B) in [Dop,V ], and to find a lifting of u is
equivalent to finding a lifting of u′ through [Cop,V ](S, p): [Cop,V ](S,A) → [Cop,V ](S,B).
Since G is cofibrant, this will be possible provided that [Cop,V ](S, p) is a trivial fibration
in [Dop,V ]; that is, provided that [Cop,V ](SD, p): [Cop,V ](SD,A) → [Cop,V ](SD,B) is a
trivial fibration in V for each D ∈ D. But p:A→ B is a trivial fibration, and each SD is
cofibrant, so this holds because [Cop,V ] is a model V-category.

5.2. Definition. Let V be a monoidal model category satisfying the monoid axiom, K
a fibrant V-category, S:D → K a diagram, and G:Dop → V a cofibrant weight. Then
a homotopy colimit of S weighted by G is an object G ∗h S equipped with a natural
transformation

β:K(G ∗h S,−)→ [Dop,V ](G,K(S,−))

whose components are weak equivalences.

By the (enriched) Yoneda lemma, the natural transformation β in the definition of
homotopy colimit corresponds to a cocone δ:G→ K(S,G ∗h S). We now group together
a list of facts about the existence and uniqueness of homotopy colimits.

5.3. Proposition. Let V be a monoidal model category satisfying the monoid axiom, let
K be a fibrant V-category, let G,H:Dop → V be cofibrant weights, and let S, T :D → K be
V-functors.

1. If the weighted colimit G ∗ S exists, then it is a homotopy colimit G ∗h S.

2. Weighted homotopy colimits are determined up to homotopy equivalence.

3. If ϕ:G → H is a weak equivalence, then a homotopy colimit H ∗h S exists if and
only if G ∗h S does so, and they then agree.

4. If δ:G → K(G ∗h S, S) exhibits G ∗h S as the homotopy colimit, then so does any
morphism in [Dop,V ] which is homotopic to δ.

5. If ψ:S → T is a pointwise homotopy equivalence, then a homotopy colimit G ∗h S
exists if and only if G ∗h T does so, and they then agree.

Proof. (1) If the actual colimit G ∗ S exists then we have a natural isomorphism β, not
just a natural weak equivalence.
(2) Let K1 and K2 be homotopy colimits of S weighted by G. Let J :X → K be a small
full subcategory of K containing K1, K2, and the image of S. The induced morphisms

X (K1,−) K(K1, J)
β1 // [Dop,V ](G,K(S, J))

X (K2,−) K(K2, J)
β2 // [Dop,V ](G,K(S, J))
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are pointwise weak equivalences in [X ,V ], so X (K1,−) and X (K2,−) are weakly equiva-
lent in [X ,V ]; but they are also cofibrant and fibrant objects, and so they are homotopy
equivalent. Thus K1 and K2 are homotopy equivalent in X , and so also in K. This proves
that any two choices of homotopy colimit are homotopy equivalent. Similarly, any object
homotopy equivalent to a homotopy colimit can itself be used as a homotopy colimit.
(3) Since ϕ:G→ H is a weak equivalence between cofibrant objects and K(S,X) is fibrant
for all X ∈ K, also [Dop,V ](ϕ,K(S,X)) is a weak equivalence for all X ∈ K. Thus if
H ∗h S exists then we have weak equivalences

K(H ∗h S,X) // [Dop,V ](H,K(S,X)) // [Dop,V ](G,K(S,X))

natural in X, and so H ∗h D also serves as a homotopy colimit G ∗h D.
The converse is more delicate. We need to show that G∗hS will serve as H ∗hS. Form

the coproduct G+H and the map G+H → H induced by ϕ and 1H , and factorize it as
a cofibration α:G+H → K followed by a trivial fibration τ :K → H. Restricting α to G
and H, we obtain a factorization ϕ = τρ of ϕ as a trivial cofibration ρ:G → K followed
by a trivial fibration τ :K → H, as well as a trivial cofibration σ:H → K which is also a
section of τ . By the first part of the proof and the existence of σ, we know that if K ∗h S
exists it will also serve as H ∗h S. Thus it will suffice to show that if G ∗h S exists, then
it will serve as K ∗h S. Suppose then that

K(G ∗h S,−)
β // [Dop,V ](G,K(S,−))

exhibitsG∗hS as a homotopy colimit. For eachX ∈ K we have the presheafK(S,X):Dop →
V , and this is fibrant in [Dop,V ]. On the other hand, ρ:G→ K is a trivial cofibration. It
follows that

[Dop,V ](K,K(S,X))
[Dop,V](ρ,K(S,X)) // [Dop,V ](G,K(S,X))

is a trivial fibration. But this was true for all X ∈ K, and so now in the diagram

K(G ∗h S,−) //

β **

[Dop,V ](K,K(S,−))

[Dop,V](ρ,K(S,−))

��
[Dop,V ](K(G,K(S,−)))

the vertical arrow is a trivial fibration and K(G ∗h S,−) is cofibrant, and so there exists
a lift, displayed in the diagram as a dotted arrow, and this will be a pointwise weak
equivalence since the other two morphism are so.
(4) Suppose that δ:G → K(C, S) exhibits C as the homotopy colimit G ∗h S, and that
δ′:G→ K(C, S) is homotopic to δ. Since G is cofibrant and K(C, S) is fibrant, there exist
trivial cofibrations i, j : G→ G′ and a morphism γ making the diagram

G i //

δ ##

G′

γ

��

G
joo

δ′{{
K(C, S)
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commute. In the diagram

[Dop,V ](G,K(S,A))

K(C,A)
K(S,−)// [Dop,V ](K(S,C),K(S,A))

γ∗ //

δ∗
44

(δ′)∗ ++

[Dop,V ](G′,K(S,A))

j∗

��

i∗

OO

[Dop,V ](G,K(S,A))

the vertical map i∗ is a weak equivalence because K(S,A) is fibrant and i:G → G′ is a
trivial cofibration; similarly j∗ is a weak equivalence. Thus the composite δ∗K(S,−) is a
weak equivalence if and only if the composite (δ′)∗K(S,−) is one.
(5) If ψ:S → T is a pointwise homotopy equivalence, then

K(T,X)
K(ψ,X)// K(S,X)

is a weak equivalence in [Dop,V ] between fibrant objects, and so

[Dop,V ](G,K(T,X))
[Dop,V](G,K(ψ,X))// [Dop,V ](G,K(S,X))

is a weak equivalence in V between fibrant objects, for any X ∈ K. Thus if the homotopy
colimit G ∗h T exists, then we have a composite weak equivalence

K(G ∗h T,X) // [Dop,V ](G,K(T,X)) // [Dop,V ](G,K(S,X))

natural in X, and so G ∗h T serves as G ∗h S.
Once again, the converse is more delicate. Suppose that δ:G → K(S,C) exhibits C

as the homotopy colimit G ∗h S. Since ψ:S → T is a pointwise homotopy equivalence,
the morphism ψ∗:K(T,C) → K(S,C) in [Dop,V ] induced by composition with ψ is a
pointwise weak equivalence between fibrant objects. Since G is cofibrant, δ:G→ K(S,C)
can be lifted, up to homotopy, through ψ∗, say by γ:G→ K(T,C). But ψ∗γ is homotopic
to δ, and so by the previous part it also exhibits C as the homotopy colimit G ∗h S. Thus
we may as well replace δ by ψ∗γ, and then regard γ as a genuine lifting of δ through ψ∗.

Now consider the diagram

K(C,A)
K(S,−) //

K(T,−)
��

[Dop,V ](K(S,C),K(S,−))

(ψ∗)∗

��
[Dop,V ](K(T,C),K(T,−))

(ψ∗)∗ //

γ∗

��

[Dop,V ](K(T,C),K(S,−))

γ∗

��
[Dop,V ](G,K(T,A))

(ψ∗)∗ // [Dop,V ](G,K(S,A)).



HOMOTOPY LOCALLY PRESENTABLE ENRICHED CATEGORIES 725

The upper composite is the weak equivalence δ∗K(S,−), thus the lower composite is also
a weak equivalence. But the bottom horizontal arrow (ψ∗)∗ is a weak equivalence because
G is cofibrant and ψ∗:K(T,A)→ K(S,A) is a weak equivalence between fibrant objects.
Thus the composite γ∗K(T,−) is a weak equivalence, and so γ exhibits C as the homotopy
colimit G ∗h T .

5.4. Remark. We have defined homotopy weighted colimits only for cofibrant weights,
but since the homotopy weighted colimit depends on the weight only up to weak equiva-
lence, there is no danger in defining the homotopy colimit of S weighted by an arbitrary
G to be the homotopy colimit weighted by the cofibrant replacement QG of G. We shall
do this when convenient.

Dually, given a fibrant V-category K, the homotopy limit {G,S}h of a diagram S:D →
K weighted by G:D → V is defined by a natural transformation

β:K(−, {G,S}h)→ [D,V ](G,K(−, S))

whose components are weak equivalences.
All that was said about homotopy colimits applies to homotopy limits. In particular,

the natural transformation β corresponds to a cone

δ:G→ K({G,S}h, S).

5.5. Theorem. Let V be a monoidal model category satisfying the monoid axiom and
let M be a model V-category. Then IntM has weighted homotopy colimits and weighted
homotopy limits.

Proof. I. First we show that IntM has weighted homotopy colimits. Let G:Dop → V
be a cofibrant weight and S:D → IntM a diagram. Form the colimit G ∗ S in M.
First we prove that G ∗ S is cofibrant; this follows closely the proof of Proposition 5.1,
which is essentially a special case. Let p:A → B be a trivial fibration in M. We must
show that every morphism f :G ∗ S → B lifts through p. But to give such an f is
equivalently to give f ′:G →M(S,B) in [Dop,V ], and to give a lifting of f through p is
to give a lifting of f ′ through M(S, p):M(S,A) → M(S,B). Since G is cofibrant, this
will exist provided that M(S, p) is a trivial fibration in [Dop,V ]; that is, provided that
M(SD, p):M(SD,A) → M(SD,B) is a trivial fibration for every D ∈ D. But SD is
cofibrant by assumption, and p:E → B is a trivial fibration, so M(SD, p) is a trivial
fibration since M is a model V-category.

Now, take a fibrant replacement r:G ∗ S → R(G ∗ S) via a trivial cofibration r. We
have natural transformations

IntM(R(G ∗ S), A) [Dop,V ](G, IntM(S,A))

M(R(G ∗ S), A)
M(r,A) //M(G ∗ S,A) ∼= [Dop,V ](G,M(S,A))
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and so ifM(r, A) is a weak equivalence for all A ∈ IntM, then the replacement R(G ∗S)
will be the desired homotopy colimit G ∗h S in IntM. But r is a trivial cofibration and A
is fibrant, so M(r, A) is a trivial fibration, and so in particular a weak equivalence.

II. Turning to limits, everything is a formal consequence; given a cofibrant weight
G:D → V and a diagram S:D → IntM, the weighted limit {G,S} in M is fibrant, but
need not be cofibrant. The cofibrant replacement Q{G,S} of {G,S} gives the required
homotopy limit {G,S}h.

5.6. Remark. The homotopy limits and colimits in IntM constructed in the proof have
various special properties that need not hold for homotopy limits and colimits in gen-
eral. For example, the pointwise weak equivalences in the definition of homotopy colimits
and limits are actually pointwise trivial fibrations. Moreover, assuming that the model
category M is functorial, the construction of homotopy limits and colimits in IntM is
functorial, which need not be the case in a general fibrant V-category. We do, however,
have the following weak version of functoriality.

5.7. Proposition. Let f :G → H be a morphism between cofibrant weights in [Dop,V ],
and consider a diagram S:D → K in the fibrant V-category K for which the homotopy
colimits G ∗h S and H ∗h S exist. Then there is a morphism f ∗h S:G ∗h S → H ∗h S for
which the diagram

G
δG //

f

��

K(S,G ∗h S)

K(S,f∗hS)

��
H

δH
// K(S,H ∗h S)

in [Dop,V ] commutes up to homotopy.

Proof. In the solid part of the diagram

K(G ∗h S,H ∗h S)
βG // [Dop,V ](G,K(J,H ∗h S))

I

f∗hS

OO

δH
// [Dop,V ](H,K(J,H ∗h S))

f∗

OO

βG is (a component of) the weak equivalence in V defining the homotopy colimit G ∗h S,
and δH is the counit of the homotopy colimit H ∗h S, while f ∗ is given by composition
with f . Since βG is a weak equivalence between fibrant objects, and I is cofibrant, there
is a factorization f ∗h S up to homotopy. By naturality, the composite of βG and f ∗h S
is the map I → [Dop,V ](G,K(J,H ∗h S)) corresponding to the composite

G
δG // K(S,G ∗h S)

K(S,f∗hS) // K(S,H ∗h S)

whence, in view of Proposition 2.1, the result follows.
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Recall that a conical colimit in a V-category K is a colimit ∆I ∗ S where S:J → K is
a diagram defined on the free V-category on an ordinary category and ∆I is the weight
which is constant at the unit object I.

If K is fibrant then we may define the homotopy colimit hocolimS of S as the homotopy
colimit K ∗S for a cofibrant replacement K of ∆I; by Proposition 5.3 this is independent
of the cofibrant replacement. We have a cocone

δ:K → K(S, hocolimS).

and the natural transformation q:K → ∆I induces the comparison morphism

k: hocolimS → colimS

(provided, of course, that both colimits exist). Observe that the hom-objects of a V-
category J are coproducts of I, and so are cofibrant in V . Homotopy limits in K are
defined as homotopy colimits in Kop.

In model V-categories, our homotopy colimits are weakly equivalent to standard ones
provided that the diagram S is objectwise cofibrant [31, Proposition 1]. If M is a model
V-category and S:J → IntM then hocolimS is a fibrant replacement of K ∗ S. This
definition is classical for V = SSet where K = B(−, ↓ J )op: see [13].

5.8. Proposition. Let V be a λ-combinatorial monoidal model category satisfying the
monoid axiom, M a λ-combinatorial model V-category, and J a λ-filtered ordinary cate-
gory. Let J be the free V-category on J , let ∆I:J op → V be the functor constant at the
unit object I, and let q:K → ∆I be its cofibrant replacement. Then q ∗S:K ∗S → ∆I ∗S
is a weak equivalence for any S:J →M.

Proof. I. First consider the case where J has a terminal object t. Then ∆I:J op → V
is the representable V-functor J (−, t), and so is cofibrant. Then q:K → ∆I is a weak
equivalence between fibrant and cofibrant objects, and so is a homotopy equivalence. It
follows that q ∗ S is a weak equivalence.

II. Since λ-presentable objects in V form a strong generator and M has powers by
all those objects, conical colimits inM may be calculated inM0. An arbitrary λ-filtered
category J may be written as the union ∪h∈HJh of a λ-filtered set of small subcategories
Jh with a terminal object: write Jh:Jh → J for the inclusions. Each V-functor

[J
op

h ,V ]: [J op
,V ]→ [J op

h ,V ]

has a left adjoint Φh given by left Kan extension.
Consider a diagram S:J →M and let Sh:J h →M be its restriction for each h ∈ H.

Then
∆I = colimh∈HΦh(∆Ih)

and similarly S is a colimit of the left Kan extensions of the Sh.
Since V is λ-combinatorial, all presheaf categories [J op

,V ] and [J op

h ,V ] are λ-combina-
torial too, and so cofibrant replacement functors on them preserve λ-filtered colimits: see
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Remark 3.8. Thus we have K = colimhKh where Kh is the cofibrant replacement of

(∆I)J
op

h .
The canonical maps qh ∗Sh:Kh ∗Sh → ∆Ih ∗Sh are weak equivalences by part I of the

proof. SinceM is λ-combinatorial, we know that λ-filtered colimits of weak equivalences
are weak equivalences [11, 27]; thus the induced map colimh∈HKh∗Sh → colimh∈H∆Ih∗Sh
is a weak equivalence; but this map is just q ∗ S:K ∗ S → ∆I ∗ S.

5.9. Theorem. Let V be a λ-combinatorial monoidal model category satisfying the monoid
axiom, M a λ-combinatorial model V-category, and J a λ-filtered ordinary category. If
S:J →M lands in IntM then the canonical comparison k: hocolimS → colimS is a weak
equivalence.

Proof. Since S has fibrant values, colimS is fibrant by Remark 3.8; thus since r:K ∗S →
R(K ∗S) is a trivial cofibration, the map q ∗S:K ∗S → ∆I ∗S extends along r to give a
map k:R(K ∗ S)→ ∆I ∗ S. Now q ∗ S is a weak equivalence by Proposition 5.8, and so
k too is a weak equivalence.

5.10. Remark. For V = Cat, cofibrant weights are precisely flexible weights: see [18].
Since colimits weighted by flexible weights are bicolimits (see [8] and [19]), a consequence
of Theorem 5.9 is that filtered colimits in Cat are bicolimits: see [23, 5.4.9]. We are
indebted to J. Bourke for this observation (see [9] as well).

This relies on the fact that in Cat every weak equivalence is an equivalence. For a
general combinatorial model 2-category this need not be the case, and so filtered colimits
need not be bicolimits; indeed it need not even be the case in a presheaf 2-category.

We also have the following more general result.

5.11. Proposition. Let V be a λ-combinatorial monoidal model category satisfying the
monoid axiom, M a λ-combinatorial model V-category, and J a λ-filtered ordinary cate-
gory. If S:J →M has cofibrant values, then hocolimRS is weakly equivalent to colimS;
if S lands in IntM, then hocolimS is weakly equivalent to colimS, in the sense that they
are isomorphic in the homotopy category.

Proof. Write ∆I:J op → V for the V-functor which is constant at the identity, and
q:K → ∆I for its cofibrant replacement. Then q ∗ S:K ∗ S → (∆I) ∗ S is a weak
equivalence by Proposition 5.8, and of course r:K ∗S → R(K ∗S) is a weak equivalence.
Since, by Theorem 5.5, we may construct hocolimRS as R(K ∗RS), it will suffice to show
that R(K ∗ r):R(K ∗ S) → R(K ∗ RS) is a weak equivalence. But this will certainly
be the case if R(K ∗ r) is a homotopy equivalence, and so it will suffice to show that
M(R(K ∗ r),M):M(R(K ∗ RS),M) → M(R(K ∗ S),M) is a weak equivalence for all
M ∈ IntM, and finally this will be true if and only if M(K ∗ r,M):M(K ∗ RS,M) →
M(K ∗ S,M) is a weak equivalence for all M ∈ IntM. By the universal property of the
colimits K ∗ S and K ∗RS, this is equivalent to

[J op
,V ](K,M(RS,M))

M(r,M)∗ // [J op
,V ](K,M(S,M))
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being a weak equivalence. Now r:S → RS is a trivial cofibration and M fibrant, so
M(r,M) is a weak equivalence between fibrant objects; thus the displayed map is a weak
equivalence because K is cofibrant.

6. Preservation of homotopy colimits

6.1. Definition. Let F :K → L be a V-functor between fibrant V-categories, G:Dop →
V a cofibrant weight, and S:D → K a diagram. We say that F preserves the homotopy
weighted colimit G ∗h S when the composite

G δ // K(S,G ∗h S) F // L(FS, F (G ∗h S))

exhibits F (G ∗h S) as the homotopy colimit G ∗h FS.

6.2. Remark. (1) Provided that the homotopy colimit G ∗h FS exists, the composite
above induces a morphism

l:G ∗h FS → F (G ∗h S)

and F preserves G ∗h S if and only if this morphism is a homotopy equivalence.
(2) In particular, given a diagram S:J → K for an ordinary category J , we say that

F preserves the homotopy colimit of S when

∆I δ // K(S, hocolimS) F // L(FS, FhocolimS)

exhibits FhocolimS as a homotopy colimit of FS.

We now want to show that representable functors preserve homotopy limits, as well as
considering the extent to which they preserve homotopy colimits. Usually, a representable
functor has codomain V , but we are only considering homotopy limits or colimits in fibrant
V-categories, and V need not be fibrant. IfK is a fibrant V-category, then the representable
K(K,−) will take values in the full subcategory of fibrant objects in V , but in general
this subcategory need not be fibrant. If, however, we suppose that all objects of V are
cofibrant, then the full subcategory of fibrant objects is IntV , and this finally is a fibrant
V-category.

6.3. Lemma. Let V have all objects cofibrant and let K be a fibrant V-category. Then
K(A,−):K → IntV preserves weighted homotopy limits for each object A in K.

Proof. Consider a cofibrant weight G:D → V , a diagram S:D → K, a natural transfor-
mation

δ:G→ K(L, S)

exhibiting L as the homotopy limit {G,S}h, as well as the corresponding natural trans-
formation

β:K(−, L)→ [D,V ](G,K(−, S))
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whose components are weak equivalences. Form the composite δ′ given by

G
δ // K(L, S)

K(A,−) // V(K(A,L),K(A, S))

and the corresponding natural transformation

β′:V(−,K(A,L))→ [D,V ](G,V(−,K(A, S))).

We have to show that β′ is a pointwise weak equivalence. The components βA:K(A,L)→
[D,V ](G,K(A, S)) of β are weak equivalences between fibrant objects, and so

V(X, βK):V(X,K(A,L))→ V(X, [D,V ](G,K(A, S)))

is also a weak equivalence for each X ∈ V . But the composite of the weak equivalence
V(X, βK) with the canonical isomorphism

V(X, [D,V ](G,K(A, S))) ∼= [D,V ](G,V(X,K(A, S)))

is the X-component β′X of β′. Thus β′ is indeed a pointwise weak equivalence.

6.4. Definition. Let V have all objects cofibrant and let K be a fibrant V-category. An
object A of K is said to be homotopy λ-presentable when K(A,−):K → IntV preserves
homotopy λ-filtered colimits.

6.5. Lemma. Let F,G:K → L be V-functors between fibrant V-categories, and let ϕ:F →
G be a pointwise homotopy equivalence. Then F preserves a homotopy colimit in K if and
only if G does so.

Proof. Let H:Dop → V be a cofibrant weight, and S:D → K a diagram in K, and let

H
η // K(S,H ∗h S)

exhibit H ∗h S as the homotopy colimit in K.
In the commutative diagram

L(G(H ∗h S), L)
L(ϕ,1) //

L(GS,−)

��

L(F (H ∗h S), L)

L(FS,−)

��
H(L(GS,G(H ∗h S)),L(GS,L))

H(G,1)
��

H(L(FS, F (H ∗h S)),L(FS, L))

H(F,1)
��

H(L(S,H ∗H S),L(GS,L))

H(η,1)
��

H(1,L(ϕ,1))
// H(L(S,H ∗h S),L(FS,L))

H(η,1)
��

H(H,L(GS,L))
H(1,L(ϕ,1))

// H(H,L(FS, L))

where we write H for [Dop,V ], the homotopy colimit H ∗h S is preserved by F if and
only if the right vertical composite is a weak equivalence (in V), and is preserved by G
if and only if the left vertical composite is a weak equivalence. But the top and bottom
horizontal maps are both weak equivalences, since ϕ is a pointwise homotopy equivalence,
so these conditions are equivalent.
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6.6. Lemma. Let F :K → L and G:L → M be V-functors between fibrant V-categories.
If F preserves a homotopy colimit H ∗h S, then G preserves H ∗h FS if and only if GF
preserves H ∗h S.

Proof. Given that F preserves H ∗h S, then for GF to preserve H ∗h S is literally the
same thing as for G to preserve F (H ∗h S).

6.7. Lemma. Let (Fκ:K → Lκ)κ∈K be a family of V-functors between fibrant V-categories,
and suppose that they jointly reflect homotopy equivalences. Then the Fκ jointly reflect
any type of homotopy colimit which they preserve.

Proof. Let S:D → K be a diagram in K and G:Dop → V a cofibrant weight. Suppose
that δ:G → K(S,G ∗h S) exhibits G ∗h S as the homotopy colimit, and that this is
preserved by the Fκ. Now let C be an object of K, and γ:G → K(S,C) a morphism in
[Dop,V ]. By the universal property of G ∗h S, there is a morphism w:G ∗h S → C in K
making the diagram

I

γ

��

w // K(G ∗h S,C)

K(S,−)

��
[Dop,V ](G,K(S,C)) [Dop,V ](K(S,G ∗h S),K(S,C))

δ∗
oo

commute up to homotopy.
Now γ exhibits C as the homotopy colimit of S weighted by G if and only if w:G∗hS →

C is a homotopy equivalence in K. If the Fκ preserve the homotopy colimit G ∗h S and
each

G
γ // K(S,C)

Fκ // Lκ(FκS, FκC)

exhibits FκC as G ∗h FκS then each Fκw is a homotopy equivalence in Lκ. Thus if the Fκ
jointly reflect homotopy equivalences then w is a homotopy equivalence, and so γ exhibits
C as the homotopy colimit of S weighted by G.

6.8. Lemma. Let V be a λ-combinatorial monoidal model category, let A be a small V-
category, and let K be a fibrant V-category with λ-filtered homotopy colimits. Let F :A →
K be a V-functor whose values are homotopy λ-presentable, and let E:K → [Aop,V ] be
the V-functor sending X ∈ K to K(F−, X). Then the composite Q ◦ E:K → Int[Aop,V ]
preserves λ-filtered homotopy colimits.

Proof. Recall that we write Q generically for cofibrant replacement functors. Since
K is fibrant, E takes values in the fibrant objects of [Aop,V ], so Q ◦ E takes values in
Int[Aop,V ].

By Remark 6.2, we have a comparison

`: hocolimQES → QE(hocolimS)

for each λ-filtered diagram S in K, and we are to show that this is a homotopy equivalence
in Int[Aop,V ]; equivalently, a weak equivalence.
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There is an evaluation functor evA: Int[Aop,V ]→ IntV for each object A ∈ A. These
preserve homotopy colimits by the construction of 5.5, and they jointly reflect weak equiv-
alences, thus they jointly reflect homotopy colimits. But the composites evAQE preserve
homotopy λ-filtered colimits because the A are homotopy λ-presentable in K.

6.9. Proposition. LetM and N be λ-combinatorial model V-categories, and let F :M→
N be a V-functor which preserves λ-filtered colimits, preserves weak equivalences between
fibrant objects, and which maps IntM to IntN . Then the induced F : IntM → IntN
preserves λ-filtered homotopy colimits.

Proof. Let J be the free V-category on a λ-filtered ordinary category, let ∆I:J op → V
be the weight for conical colimits, and let q:K → ∆I be the cofibrant replacement of ∆I
in [J op,V ]. Let S:J →M take values in IntM. Thus ∆I ∗ S is a synonym for colimS.

Then hocolimFS may be constructed as the fibrant replacement R(K ∗FS) of K ∗FS,
and similarly FhocolimS as FR(K ∗ S). The fibrant replacement map r:K ∗ FS →
R(K ∗ FS) is of course a weak equivalence, and if we can show that the composite

K ∗ FS ϕ // F (K ∗ S) Fr // FR(K ∗ S)

is a weak equivalence, where ϕ is the canonical comparison map, then preservation of
hocolimS will follow.

To do this, consider the diagram

K ∗ FS
q∗FS

��

ϕ // F (K ∗ S) Fr //

F (q∗S)
��

FR(K ∗ S)

FR(q∗S)
��

∆I ∗ FS ϕ
// F (∆I ∗ S)

Fr
// FR(∆I ∗ S)

where the lower ϕ is once again a canonical comparison map; this time invertible, since
F preserves colimS by assumption. Now q ∗ S and q ∗ FS are weak equivalences by
Proposition 5.8, and so also FR(q ∗ S) is a weak equivalence since F preserves weak
equivalences between fibrant objects. Thus it will suffice to show that Fr:F (∆I ∗ S) →
FR(∆I ∗ S) is a weak equivalence. But ∆I ∗ S is a λ-filtered colimit of fibrant objects
and so fibrant by Remark 3.8, thus r: ∆I ∗S → R(∆I ∗S) is a weak equivalence between
fibrant objects, and so preserved by F .

We close this section with a discussion of limit-colimit commutativity in the homo-
topical context.

Let G:D → V and H: Cop → V be weights. One says that G-weighted limits commute
with H-weighted colimits, in a V-category M in which these limits and colimits exist, if
the V-functor H ∗ − below

[C,M]
H∗− //M [D,M]

{G,−}//M
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preservesG-weighted limits; or, equivalently, if the V-functor {G,−} preservesH-weighted
colimits. Each of these is in turn equivalent to the condition that, for each V-functor
S:D ⊗ C →M, the canonical comparison K ∗ {G,S} → {G,K ∗ S} is invertible.

In the homotopy setting things are more delicate, since, as observed above, homotopy
limits and homotopy colimits need not be functorial in general. For this reason, we restrict
to the case of homotopy limits and colimits in IntM, for a model V-category M. We
then say that homotopy G-weighted limits commute with homotopy H-weighted colimits,
if the composite of the canonical maps

H ∗Q{G,S} H∗q // H ∗ {G,S} // {G,H ∗ S} {G,r} // {G,R(H ∗ S)}

is a weak equivalence, for any S:D ⊗ C → M taking values in IntM. Here the fibrant
replacement of the domain H ∗ Q{G,S} has the form H ∗h {G,S}h, while the cofibrant
replacement of the codomain {G,R(H ∗ S)} has the form {G,H ∗h S}h.

6.10. Proposition. Let V be a λ-combinatorial monoidal model category in which all
objects are cofibrant, and let M be a λ-combinatorial model V-category. Then λ-filtered
homotopy colimits commute in IntM with λ-presentable homotopy limits.

Proof. Let J be a λ-filtered ordinary category, and consider ∆I:J op → V and its
cofibrant replacement q:K → ∆I. Let G:D → V be λ-presentable and cofibrant, and let
S:D ⊗ J →M take values in IntM.

Consider the commutative diagram

K ∗Q{G,S} K∗q //

q∗Q{G,S}
��

K ∗ {G,S} ϕK //

q∗{G,S}
��

{G,K ∗ S} {G,r}//

{G,q∗S}
��

{G,R(K ∗ S)}
{G,R(q∗S)}
��

∆I ∗Q{G,S}
∆I∗q

// ∆I ∗ {G,S} ϕ∆I

// {G,∆I ∗ S}
{G,r}
// {G,R(∆I ∗ S)}

in which the maps ϕK and ϕ∆I are the canonical comparisons from the non-homotopy
situation.

We are to prove that the upper horizontal composite is a weak equivalence. Now
∆I ∗q is a λ-filtered colimit of weak equivalences, so is a weak equivalence by Remark 3.8;
while ϕ∆I is invertible, since λ-presentable limits commute with λ-filtered colimits. Also
S(D, J) is fibrant for all values D ∈ D and J ∈ J , thus the values of ∆I ∗S are λ-filtered
colimits of fibrant objects, and so fibrant by Remark 3.8 once again. In other words,
∆I ∗ S is fibrant in [D,M]. Thus r: ∆I ∗ S → R(∆I ∗ S) is a weak equivalence between
fibrant objects. Since G is cofibrant and M is a model V-category, {G, r} is also a weak
equivalence by Ken Brown’s lemma. This now proves that the lower horizontal composite
is a weak equivalence.

It will suffice, therefore, to prove that the left and right vertical maps are weak equiv-
alences. The case of the left vertical map q ∗ Q{G,S} follows from Proposition 5.8. By
the same proposition, we know that q ∗ S is a weak equivalence, and so that R(q ∗ S) is
a weak equivalence between fibrant objects; thus, using Ken Brown’s lemma and the fact
that G is cofibrant once again, {G,R(q ∗ S)} is a weak equivalence.
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7. Dwyer-Kan equivalences

Recall that a V-functor W :K → L is said to have a property “locally”, if each of the in-
duced maps K(K,K ′)→ L(WK,WK ′) between hom-objects has the property (in V). In
particular, W :K → L is locally a weak equivalence if each W :K(K,K ′)→ L(WK,WK ′)
is a weak equivalence in V .

Recall also that a V-functor W :K → L is called a Dwyer-Kan equivalence or just a
weak equivalence if

1. it is locally a weak equivalence, in the above sense, and

2. it is homotopically surjective on objects, in the sense that for each object L ∈ L
there is an object K ∈ K and a homotopy equivalence L→ WK.

If L is fibrant, then there exists a homotopy equivalence L → WK if and only if there
exists a homotopy equivalence WK → L: see Remark 3.6.

For well-behaved V , these Dwyer-Kan equivalences are the weak equivalences for a
model structure on the category of small V-categories: see [5, 22, 24].

7.1. Proposition. Let V be a combinatorial monoidal model category, and let W :K → L
be a Dwyer-Kan equivalence between fibrant V-categories. Then

1. W preserves any existing homotopy colimits;

2. W creates homotopy colimits, in the sense that if S:D → K is a diagram for which
the homotopy colimit G ∗hWS exists in L, then the homotopy colimit G ∗h S exists
in K (and is preserved by W );

3. W preserves and reflects presentability, in the sense that if L has homotopy λ-filtered
colimits, then an object A ∈ K is homotopy λ-presentable if and only if WA ∈ L is
so.

Proof. (1) Let G:Dop → V be a cofibrant weight, S:D → K a diagram in K, and
δ:G → K(S,K) a morphism in [Dop,V ] exhibiting K as the homotopy weighted colimit
G ∗h S. As earlier, we write H for [Dop,V ]. In the diagram

K(K,A)

K(S,−)

��

WK,A // L(WK,WA)

L(WS,−)
��

H(L(WS,WK),L(WS,WA))

W ∗

��
H(K(S,K),K(S,A))

δ∗

��

W∗ // H(K(S,K),L(WS,WA))

δ∗

��
H(G,K(S,A))

W∗
// H(G,L(WS,WA))
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the left vertical δ∗ ◦ K(S,−) is a weak equivalence by the universal property of K =
G ∗h S; while the lower horizontal W∗ is a weak equivalence because G is cofibrant and
W :K(S,A)→ L(WS,WA) is a weak equivalence between fibrant objects. Since the upper
horizontal WK,A is a weak equivalence, it follows that the right vertical δ∗◦W ∗◦L(WS,−)
is one too. But this implies, using the fact that any B ∈ L is homotopy equivalent to
WA for some A ∈ K, that the composite

G
δ // K(S,K) W // L(WS,WK)

exhibits WK as G ∗hWS.
(2) Let G:Dop → V be a cofibrant weight, S:D → K a diagram in K, and γ:G →
L(WS,L) a morphism in [Dop,V ] exhibiting L as the homotopy weighted colimit G∗hWS.
Since W is homotopy surjective, we may suppose without loss of generality that the object
L has the form WK for some K ∈ K.

Since WS,K :K(S,K) → L(WS,WK) is a weak equivalence between fibrant objects,
and G is (fibrant and) cofibrant, there is a map δ making the triangle

K(S,K)

WS,K

��
G

δ
99

γ
// L(WS,WK)

commute up to homotopy. By Proposition 5.3, the composite WS,Kδ also exhibits WK
as the homotopy colimit G ∗h WS; henceforth we take this to be γ, so that the triangle
commutes on the nose.

Consider once again the large diagram appearing in the proof of (1). This time we
know that the composite δ∗ ◦W ∗ ◦ L(WS,−) is a weak equivalence; since of course WK,A

is also a weak equivalence, the upper composite is a weak equivalence hence so too is the
lower one. The lower horizontal W∗ is a weak equivalence just as before, hence δ∗◦K(S,−)
is a weak equivalence, as required.

(3) Suppose that L has homotopy λ-filtered colimits; it follows by (2) that K does
so too, and that W :K → L preserves them. Let A ∈ K; we are to show that K(A,−)
preserves homotopy λ-filtered colimits if and only if L(WA,−) does so. But W preserves
homotopy λ-filtered colimits by (1), thus by Lemma 6.6 L(WA,−) preserves them if and
only if L(WA,W−) does; while WA,−:K(A,−)→ L(WA,W−) is a pointwise homotopy
equivalence, thus by Lemma 6.5 L(WA,W−) preserves homotopy λ-filtered colimits if
and only if K(A,−) does so.

Let V :A → B be a V-functor between small V-categories. Then composition with V
induces a V-functor V ∗: [Bop,V ] → [Aop,V ], and this has a left adjoint V! a V ∗ given by
left Kan extension. If we give the presheaf categories the projective model structure, then
V ∗ preserves fibrations and weak equivalence, more or less by definition; thus V! a V ∗
becomes a Quillen adjunction.
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7.2. Proposition. Let V :A → B be a Dwyer-Kan equivalence between small V-categ-
ories. Then the induced adjunction V! a V ∗ is a Quillen equivalence.

Proof. Write n: 1→ V ∗V! for the unit and e:V!V
∗ → 1 for the counit of the adjunction.

First we show that, for any cofibrant M :Aop → V , the composite

M
n // V ∗V!M

V ∗r // V ∗RV!M

is a weak equivalence, where r: 1 → R denotes the fibrant replacement functor. Now V ∗

preserves the weak equivalence r:V!M → RV!M , so it will suffice to prove that the unit
n:M → V ∗V!M of the original adjunction is a weak equivalence; in other words, that for
each A ∈ A, the map MA → evV AV!M is a weak equivalence. But this map is obtained
by applying M ∗ − to the pointwise weak equivalence

A
A(A,−)

++

B(V A,V−)

33 IntVVA,−��

and weak equivalences in IntV are in fact homotopy equivalences, so VA,−:A(A,−) →
B(V A, V−) is in fact a pointwise homotopy equivalence. Thus M ∗VA,−:MA→ evV AV!M
is a weak equivalence by Lemma 7.3 below.

This proves that the unit of the derived adjunction is invertible; for the counit, we
should show that the composite e.V!q in

V!QV
∗N

V!q // V!V
∗N

e // N

is a weak equivalence for any fibrant N . In the diagram

V ∗V!QV
∗N

V ∗V!q // V ∗V!V
∗N V ∗e // V ∗N

QV ∗N

n

OO

q
// V ∗N

n

OO

q is of course a weak equivalence, and n:QV ∗N → V ∗V!QV
∗N is a weak equivalence by

the first half of the proof. Thus V ∗(e.V!q) is a weak equivalence. But it follows easily from
the fact that V is homotopically surjective on objects that V ∗ reflects weak equivalences;
thus e.V!q is a weak equivalence as required.

The following lemma is closely related to parts of Proposition 5.3; indeed it could be
deduced from that proposition if we restricted to the case of fibrant V-categories. But in
some sense it is more basic, and so we give an independent proof.

7.3. Lemma. Let M be a model V-category, and let S, T :D →M take values in IntM.
Let w:S → T be a pointwise weak equivalence, and let G:Dop → V be a cofibrant weight.
Then G ∗ w:G ∗ S → G ∗ T is a weak equivalence in M.
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Proof. Since S and T land in IntM, the map w is in fact a pointwise homotopy equiv-
alence. Thus the induced map M(w,X):M(T,X)→M(S,X) is a pointwise homotopy
equivalence for any X ∈M.

If in fact X is fibrant, thenM(S,X) andM(T,X) are fibrant in [Dop,V ], and so the
induced map

[Dop,V ](G,M(T,X))→ [Dop,V ](G,M(S,X))

is a weak equivalence (since G is cofibrant). Thus in turn the map

M(G ∗ w,X):M(G ∗ T,X)→M(G ∗ S,X)

is a weak equivalence for all fibrant X.
Now G ∗ S and G ∗ T are cofibrant colimits of cofibrant objects, so are cofibrant; but

they need not be fibrant. In the commutative diagram

M(R(G ∗ T ), X)
M(R(G∗w),X) //

M(r,X)

��

M(R(G ∗ S), X)

M(r,X)

��
M(G ∗ T,X)

M(G∗w,X)
//M(G ∗ S,X)

the vertical maps are weak equivalences (since r is a trivial cofibration and X is fibrant),
andM(G∗w,X) is a weak equivalence, thus alsoM(R(G∗w), X) is a weak equivalence.
But this is true for all X ∈ IntM, and so in fact R(G ∗ w) is a homotopy equivalence,
and in particular a weak equivalence. Finally R reflects weak equivalences, and so G ∗ w
is a weak equivalence as required.

8. Characterization of small homotopy orthogonality classes

8.1. Proposition. Let V be a monoidal model category satisfying the monoid axiom,
and K a fibrant V-category. Then homotopy orthogonality classes in K are closed under
any existing weighted homotopy limits.

Proof. It suffices to show that objects homotopy orthogonal to a single morphism f :A→
B are closed under existing weighted homotopy limits. Let S:D → K be a diagram with
each SD homotopy orthogonal to f , let G:D → V be a cofibrant weight, and suppose
that the homotopy limit {G,S}h exists in K. Then we have a commutative diagram

K(B, {G,S}h)
K(f,{G,S}h) //

��

K(A, {G,S}h)

��
[D,V ](G,K(B, S))

[D,V](G,K(f,D))
// [D,V ](G,K(A, S))

in which the vertical maps are weak equivalences, by definition of the homotopy limits.
Now G is cofibrant, and K(f,D) is a (pointwise) weak equivalence between fibrant objects,
so [D,V ](G,K(f,D)) is also a weak equivalence. It follows that K(f, {G,D}h) is a weak
equivalence and so that {G,D}h is homotopy orthogonal to f .
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8.2. Definition. Let K be a fibrant V-category. A full subcategory A of K is called
homotopy replete if an object D in K lies in A whenever there is a homotopy equivalence
h:C → D with C in A.

8.3. Definition. Let K be a full subcategory of a category M. We say that a full
subcategory A of K isM-accessibly embedded in K when there exists a regular cardinal λ
such that A is closed in K under all λ-filtered colimits which exist in K and are preserved
by the inclusion into M. In this case, we say that K is (M, λ)-accessibly embedded in K.

8.4. Remark. Given a combinatorial model categoryM, the full subcategoryMfib con-
sisting of fibrant objects is accessibly embedded in M by Remark 3.8. In general, this
is true neither for the full subcategory Mcof nor for IntM. Indeed we do not even know
that the inclusion of IntM inM preserves all existing λ-filtered colimits for some regular
cardinal λ, although this would be true under Vopěnka’s principle. However, there is a
regular cardinal λ such that each object X in IntM is a λ-filtered colimit (δd:Kd → X)d∈D
in M of objects Kd which are λ-presentable in M and belong to IntM. We now explain
why this is the case.

In fact by [11] (or [27]) there is a regular cardinal λ such that M is locally λ-
presentable, Mfib is λ-accessible, and its inclusion in M preserves λ-filtered colimits and
λ-presentable objects; and, moreover, the cofibrant replacement functor Q:M→M pre-
serves λ-filtered colimits and λ-presentable objects. Now, consider X in IntM and take
its cofibrant replacement q:QX → X. Such an X is a λ-filtered colimit (δj:Xj → X)j∈J
of objects Xj ∈ Mfib which are λ-presentable in M, and now QX is a λ-filtered colimit
(Qδj:QXj → QX)j∈J of λ-presentable objects QXj ∈M belonging to IntM. Since X is
cofibrant, it is a retract of QX. By the proof of [23, 2.3.11], X is a λ-filtered colimit of
objects QXj.

If the object K ∈ IntM is λ-presentable in M, then any morphism f :K → X
factorizes through some δj. Now X is a canonical λ-filtered colimit inM for the diagram
consisting of all f :K → X where K ∈ IntM is λ-presentable in M. But we do not
know that the objects K are λ-presentable in IntM because we do not know that IntM
is closed in M under λ-filtered colimits (or even that IntM has such colimits).

8.5. Theorem. Let V be a tractable monoidal model category and M a tractable left
proper model V-category. Then a full subcategory A of IntM is a small homotopy orthog-
onality class if and only if it isM-accessibly embedded, homotopy reflective, and homotopy
replete.

Proof. Let A be a small homotopy orthogonality class in IntM. Then A is homotopy
reflective by Theorem 4.5 and homotopy replete by Lemma 4.2. Moreover by Proposi-
tion 4.7 there is a set G of morphisms inM such that A consists of those objects of IntM
which are injective inM0 with respect to G. It follows that A isM-accessibly embedded
in IntM.

Conversely, assume that A isM-accessibly embedded, homotopy reflective, and homo-
topy replete. We shall show that A = H-Inj where H consists of all homotopy reflections
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ηK :K → K∗ with K in IntM. Clearly A ⊆ H-Inj. Consider K in H-Inj. Then both
M(ηK , K) and M(ηK , K

∗) are weak equivalences, and so by Proposition 3.9, also ηK is
a homotopy equivalence. Since A is homotopy replete, K belongs to A. This proves that
A = H-Inj, and if H were small, the proof would be complete.

For each K ∈ IntM, factorize ηK as

K
gK // K̃

hK // K∗

where gK is a cofibration and hK a trivial fibration. Now let H̃ consist of the morphisms
gK :K → K̃ (still with K ∈ IntM). By Lemma 4.3, H-Inj = H̃-Inj. There is a regular
cardinal λ having the property from Remark 8.4 and such that A0 is (M, λ)-accessibly
embedded in (IntM)0. When we speak of an object being λ-presentable, we shall always
mean λ-presentable in M. Let F consist of all those cofibrations gK for which K is
λ-presentable. We have A ⊆ F -Inj. Since F is a set, it suffices to prove the converse
inclusion.

Assume that X ∈ IntM belongs to F -Inj. By Remark 8.4, we know that X is the
colimit of the λ-filtered diagram consisting of all f :K → X with K ∈ IntM λ-presentable
inM. Since gK :K → K̃ is a cofibration,M(gK , X):M(K̃,X)→M(K,X) is a fibration

(in V), and so we can factorize f as hgK , where h: K̃ → X. Since K is λ-presentable and

K̃ is a λ-filtered colimit of objects of A which are λ-presentable, there is a factorization

K
s // K ′

t // K̃

of gK for a λ-presentable K ′ ∈ A. Now f = hgk = hts, and so X is the (λ-filtered) colimit
of the diagram consisting of the ht:K ′ → X; since the K ′ are in A, so too is X.

8.6. Remark. In the situation of Theorem 8.5, let A be a small homotopy orthogonality
class in IntM. By Remark 8.4, there is a regular cardinal λ such that each object X in A
is the colimit in M of the diagram of all M → X with M in IntM and λ-presentable in
M, and this diagram is λ-filtered. Moreover, we can assume that the fibrant replacements
in the model category obtained by localizing with respect to the set of maps defining the
homotopy orthogonality class A (see Remark 4.6) preserve λ-presentable objects. Here
we make the further observation that if we restrict to those M as above which are also
in A, the diagram is still λ-filtered, and the colimit is still X; this follows from the fact
that for any M → X as above, there is a factorization M → M∗ → X with M∗ in the
restricted diagram. And this in turn can be done by taking M → M∗ to be the fibrant
replacement of M in the model category obtained by localizing with respect to the set of
maps defining the homotopy orthogonality class.

8.7. Corollary. Let V be a tractable monoidal model category,M a tractable left proper
model V-category, and A a small homotopy orthogonality class in IntM. Then there is a
regular cardinal λ such that A is closed under homotopy λ-filtered colimits in IntM.
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Proof. Let J be a generating set of trivial cofibrations in M. By Proposition 4.7, the
objects of F -Inj are precisely those of Hor(F) ∩ J -Inj. Thus F -Inj is closed in M under
under λ-filtered colimits for some regular cardinal λ. Let q:Q(colimD) → colimD be a
cofibrant replacement. Since q is a trivial fibration and the domains and codomains of
morphisms from F are cofibrant (because they belong to IntM), the same argument as
in the proof of Lemma 4.2 yields that Q(colimD) belongs to F -Inj. Let k: hocolimD →
colimD be a weak equivalence as guaranteed by Theorem 5.9. Since hocolimD is cofibrant,
there is a lifting f : hocolimD → Q(colimD) with qf = k. Thus f is a weak equivalence
and, since both hocolimD and Q(colimD) belong to IntM, also a homotopy equivalence.
Hence, by Lemma 4.2, hocolimD belongs to F -Inj.

8.8. Definition. A full subcategory of a fibrant V-category is called homotopy accessibly
embedded when it is closed under homotopy λ-filtered colimits for some regular cardinal
λ.

8.9. Corollary. Let V be a tractable monoidal model category and M a tractable left
proper model V-category. Then a full subcategory A of IntM is a small homotopy orthog-
onality class if and only if it is homotopy accessibly embedded and homotopy reflective.

Proof. The necessity follows from Theorem 8.5 and Corollary 8.7. Since homotopy
colimits in IntM are determined up to homotopy equivalence, a homotopy accessible
subcategory of IntM is homotopy replete. Moreover, it is M-accessibly embedded, thus
the sufficiency follows from Theorem 8.5.

9. Homotopy locally presentable categories

We suppose for the remainder of the paper that V is locally presentable and that every
object is cofibrant.

Recall [15] that V is locally λ-presentable as a closed category when it is locally λ-
presentable, and the full subcategory of λ-presentable objects is closed under tensoring
and contains the unit. This assumption allows a good theory of V-enriched locally λ-
presentable categories: see [15]. Any symmetric monoidal closed category V which is
locally presentable as a category is locally λ-presentable as a closed category for some λ,
and then also for all larger values of λ: see [16].

9.1. Definition. Suppose that V is locally λ-presentable as a closed category. A V-
category X is said to be λ-small when it has fewer than λ objects and when each hom-
object X (x, y) is λ-presentable in V .

9.2. Example. Suppose that J is an ordinary category which is λ-small in the usual
sense that it has fewer than λ-morphisms. Since I is λ-presentable, V0(I,−):V0 → Set
preserves λ-filtered colimits, and thus its left adjoint preserves λ-presentable objects.
Hence each hom-object of J is λ-presentable in V , and so J is λ-small as a V-category.



HOMOTOPY LOCALLY PRESENTABLE ENRICHED CATEGORIES 741

9.3. Proposition. Suppose that V is locally λ-presentable as a closed category. If D is
a λ-small V-category, a weight G:D → V is λ-presentable in [D,V ] if and only if GD is
λ-presentable in V for all D ∈ D. Such a weight G is called λ-small.

Proof. If G is λ-presentable, then it is a λ-small colimit of representables. Since the
evaluation functors are cocontinuous, GD is a λ-small colimit of hom-objects D(C,D);
but these are all λ-presentable in V , hence so too is GD.

Suppose conversely that each GD is λ-presentable. Each D(−, D) is λ-presentable (in
fact small-projective) and so each GD ·D(−, D) is λ-presentable. But G itself is a λ-small
colimit of the GD · D(−, D), since D is λ-small, thus G is also λ-presentable.

9.4. Proposition. Let V be a combinatorial monoidal model category satisfying the
monoid axiom, M a combinatorial model V-category, and D a small V-category. Then
there is a regular cardinal λ such that, in IntM, any weighted homotopy colimit over D
is a homotopy λ-filtered colimit of λ-small weighted homotopy colimits.

Proof. There is a regular cardinal λ such that [Dop,V ] is λ-combinatorial with cofibrant
replacement preserving λ-presentable objects. Consider a weight G:Dop → V and a
diagram S:D → IntM. Since G is a λ-filtered colimit of λ-small weights, the cofibrant
replacement QG is a λ-filtered colimit of λ-small and cofibrant weights. Since weighted
homotopy colimits are functorial in IntM, a homotopy colimit of S weighted by G is a
homotopy λ-filtered colimit of λ-small weighted homotopy colimits.

9.5. Proposition. Let V be a λ-combinatorial monoidal model category which is locally
λ-presentable as a closed category and has all objects cofibrant, and let K be a fibrant
V-category. Then a λ-small weighted homotopy colimit of homotopy λ-presentable objects
in K is homotopy λ-presentable.

Proof. Let D be a λ-small V-category, and H:Dop → V a λ-small cofibrant weight. Let
S:D → K have homotopy λ-presentable values. We must show that H ∗h S is homotopy
λ-presentable; in other words, that K(H ∗h S,−) preserves homotopy λ-filtered colimits.

We have a pointwise weak equivalence

K(H ∗h S,−)→ [Dop,V ](H,K(S,−))

but this takes values in IntV and so is in fact a pointwise homotopy equivalence. Thus,
by Lemma 6.5, it will suffice to show that [Dop,V ](H,K(S,−)) preserves the homotopy
colimit. This functor is the composite

K K(S,−) // [Dop,V ]
[Dop,V](H,−) // IntV

which is pointwise homotopy equivalent to the composite

K Q◦K(S,−)// Int[Dop,V ]
Int[Dop,V](H,−) // IntV .

The first factor Q ◦ K(S,−) preserves λ-filtered homotopy colimits by Lemma 6.8, while
the second factor preserves them by Proposition 6.9.
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Recall the following two characterizations of locally λ-presentable categories. Let K
be cocomplete and J :A → K a full subcategory consisting of λ-presentable objects. Then
K is locally λ-presentable if either of the following equivalent conditions hold:

• each object of K is a λ-filtered colimit of objects in A;

• the induced functor K(J, 1):K → [Aop,Set] is fully faithful (in other words, J is
dense).

In our homotopy-theoretic setting we shall consider analogues of both these conditions;
it is no longer clear that they are equivalent.

9.6. Definition. Let V be a combinatorial monoidal model category having all objects
cofibrant, and let K be a fibrant V-category with weighted homotopy colimits. Let J :A →
K be a small full subcategory consisting of homotopy λ-presentable objects.

We say that A exhibits K as strongly homotopy locally λ-presentable if every object of
K is a homotopy λ-filtered colimit of objects in A.

We say that A exhibits K as homotopy locally λ-presentable if the induced V-functor

K E // [Aop,V ]
Q // [Aop,V ]

is locally a weak equivalence.
We say that K is strongly homotopy locally λ-presentable or homotopy locally λ-

presentable if there is some such A, and we say that K is strongly homotopy locally
presentable or homotopy locally presentable if it is so for some λ.

9.7. Proposition. Every strongly homotopy locally λ-presentable V-category is homo-
topy locally λ-presentable.

Proof. Let J :A → K exhibit K as strongly homotopy locally λ-presentable. We must
show that

K E // [Aop,V ]
Q // [Aop,V ]

is locally a weak equivalence; in other words that

K(K,K ′) E // [Aop,V ](EK,EK ′)
Q // [Aop,V ](QEK,QEK ′)

is a weak equivalence for all K,K ′ ∈ K.
Since K is fibrant, E has fibrant values, and so in particular EK ′ is fibrant. Thus

q:QEK ′ → EK ′ is a weak equivalence between fibrant objects, and QEK is cofibrant,
thus the map [Aop,V ](QEK,QEK ′) → [Aop,V ](QEK,EK ′) given by composition with
qEK ′ is a weak equivalence. Thus, by naturality of q, it remains to show that the
composite

K(K,K ′) E // [Aop,V ](EK,EK ′)
q∗ // [Aop,V ](QEK,EK ′)
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is a weak equivalence, where q∗ denotes the map given by composition with q:QEK →
EK.

To do this, let L consist of those objects K for which this composite is a weak equiva-
lence for all K ′ ∈ K. First, observe that L contains the objects in A, for if K = JA, then
EK = EJA = A(−, A) is representable, and so cofibrant, and so q∗ is itself a weak equiv-
alence, and we need only check that E:K(JA,K ′) → [Aop,V ](EJA,EK ′) is one. But
this holds by the Yoneda lemma, since [Aop,V ](EJA,EK ′) = [Aop,V ](A(−, A), EK ′) ∼=
(EK ′)A = K(JA,K ′).

Thus if L is closed under homotopy λ-filtered colimits, then it will be all of K. Suppose
then that J is a λ-filtered ordinary category, and that D = J is the free V-category on
J , and that K:Dop → V is a cofibrant replacement of ∆I:J op → V . Let S:D → K be
the V-functor induced by a diagram J → K, and suppose that S takes values in L. We
must show that the homotopy colimit K ∗h S lies in L.

Consider the following diagram

[Dop,V ](K,K(S−, X)) //

[Dop,V](K,E)

��

K(K ∗h S,X)

E
��

[Dop,V ](K, [Aop,V ](ES−, EX))

[Dop,V](K,Q)

��

[Aop,V ](E(K ∗h S), EX)

Q

��
[Dop,V ](K, [Aop,V ](QES−, QEX)) // [Aop,V ](QE(K ∗h S), QEX)

in which the horizontal arrows are weak equivalences induced by the universal property of
the homotopy colimit K ∗h S and the fact that QE preserves this homotopy colimit (see
Lemma 6.8). For each object D ∈ D, we know that SD ∈ L, and so that the composite

K(SD,X) E // [Aop,V ](ESD,EX)
Q // [Aop,V ](QESD,QEX)

is a weak equivalence between fibrant objects; since K is cofibrant, it follows that the
vertical composite on the left of the previous diagram is a weak equivalence, and so that
the vertical composite on the right is also a weak equivalence. This proves that K ∗h S
lies in L.

9.8. Proposition. Let V be a combinatorial monoidal model category having all objects
cofibrant and M a combinatorial model V-category. Then IntM is strongly homotopy
locally presentable, and so also homotopy locally presentable.

Proof. We know that IntM has weighted homotopy colimits. By Remark 8.4, there is
a regular cardinal λ such that each object in IntM is a λ-filtered colimit of objects from
IntM which are λ-presentable in M. Moreover, M is λ-combinatorial. Thus λ-filtered
colimits are weakly equivalent to homotopy λ-filtered colimits: see Theorem 5.9. Since
the same is true in V , objects from IntM which are λ-presentable in M are homotopy
λ-presentable in IntM. We choose A to consist of those objects of IntM which are
λ-presentable in M.
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By Remark 8.4, any object of IntM is a λ-filtered colimit of objects in A. Since this
λ-filtered colimit lies in IntM, it is a homotopy colimit.

9.9. Theorem. Let V be a combinatorial monoidal model category in which all objects
are cofibrant, and let M be a tractable model V-category. Then each small homotopy
orthogonality class in IntM is strongly homotopy locally presentable, and so also homotopy
locally presentable.

Proof. Let M be a tractable model V-category and K a small homotopy orthogonality
class in IntM. By Theorem 4.5, K is homotopy reflective in IntM; let L be a homotopy
reflection. Consider a cofibrant weight G:Dop → V and a diagram S:D → K. By the
universal property of the homotopy weighted colimit G∗hJS, there are weak equivalences

IntM(G ∗h JS,M)→ [Dop,V ](G, IntM(JS,M))

natural in M ∈ IntM; by the universal property of the homotopy reflection L(G ∗h JS)
there are weak equivalences

K(L(G ∗h JS), K)→ IntM(G ∗h JS, JK)

natural in K ∈ K. Taking M = JK in the first and then composing with the second, we
obtain weak equivalences

K(L(G ∗h JS), K)→ [Dop,V ](G, IntM(JS, JK)) ∼= [Dop,V ](G,K(S,K))

natural in K ∈ K. This shows that L(G∗hJS) has the universal property of the homotopy
colimit G ∗h S in K, and so that K has homotopy weighted colimits.

By Remark 8.6 (1), there is a regular cardinal λ such that M is λ-combinatorial and
each object X in K is a λ-filtered colimit inM of objects from K which are λ-presentable
in M. Hence the same argument as in the proof of Proposition 9.8 yields that K is
strongly homotopy locally λ-presentable.

9.10. Theorem. Let V be a combinatorial monoidal model category in which all objects
are cofibrant. Then, assuming Vopěnka’s principle, any homotopy locally presentable V-
category K admits a weak equivalence K → IntM where M is a combinatorial model V-
category. Furthermore, M can be taken to be a left Bousfield localization of an (enriched)
presheaf category with respect to a set of morphisms.

Proof. Let J :A → K exhibit K as homotopy locally λ-presentable, where V is λ-
combinatorial. We know that the composite

K E // [Aop,V ]
Q // [Aop,V ]

is locally a weak equivalence, but there is no reason why it should be homotopy surjective
on objects. We deal with this via a suitable localization.
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For each cofibrant weight G ∈ [Aop,V ], we have the homotopy colimit G ∗h J in K,
and the corresponding unit

G
δG // K(J,G ∗h J) = E(G ∗h J).

Since the cofibrant replacement map q:QE(G ∗h J)→ E(G ∗h J) is a trivial fibration and
G is cofibrant, we may choose a lifting

G
γG // QE(G ∗h J)

of δG through q:QE(G∗hJ)→ E(G∗hJ). The collection F of all such γG with G cofibrant
can be written as the union F = ∪λFλ, where Fλ is the (small) set of those γG for which
G is cofibrant and λ-presentable in [Aop

,V ]. Since all objects of V are cofibrant, [Aop
,V ] is

tractable and left proper, and so we may form the enriched left Bousfield localizationMλ

of [Aop
,V ] with respect to Fλ: see [3, 4.46]. LetWλ denote the class of weak equivalences

in Mλ. Then the Wλ form an increasing chain and we write W for its union. By 4.8,
a left Bousfield localization M of [Aop,V ] with respect to F exists, has W as the class
of weak equivalences and is equal to a left Bousfield localization [Aop,V ] with respect to
some Fλ. Thus M is a combinatorial model V-category.

The cofibrant objects of M are the same as the cofibrant objects of [Aop,V ]. The
fibrant objects of M are those fibrant objects H of [Aop,V ] which are moreover F-local,
which here means that they are homotopy orthogonal to the γG. (By the invariance results
of Proposition 5.3, this is independent of the choice of homotopy colimits.) This means
that composition with each γG induces a weak equivalence

[Aop,V ](QE(G ∗h J), H)→ [Aop,V ](G,H)

in V , and so a homotopy equivalence in IntV .
In the following commutative diagram, in which qEK∗ denotes composition with qEK,

K(G ∗h J,K)

E
��

[Aop,V ](E(G ∗h J), EK)

q∗

��

Q

ss
δ∗G

oo

[Aop,V ](QE(G ∗h J), QEK)
qEK∗

//

γ∗G
��

[Aop,V ](QE(G ∗h J), EK)

γ∗G
��

[Aop,V ](G,QEK)
qEK∗

// [Aop,V ](G,EK)

the right-hand path δ∗GE is a weak equivalence by the universal property of the homotopy
colimit G ∗h J , thus the left-hand path is also a weak equivalence. But the final map
qEK∗ of the left-hand path is a weak equivalence since G is cofibrant and qEK is a trivial
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fibration; also, we saw above that the composite QE appearing at the beginning of the
left-hand path is a weak equivalence; it follows therefore that the γ∗G appearing in the
middle of the left-hand path is a weak equivalence. This proves that QEK is F -local,
and so that QE:K → [Aop,V ] takes values in IntM.

Since, as a V-category,M is just [Aop,V ], the induced V-functor K → IntM will still
be locally a weak equivalence. It remains to show that it is homotopy surjective; equiv-
alently, that if H ∈ Int[Aop,V ] is F -local, then it is homotopy equivalent to some QEK.
But this follows from the fact that γH : H → QE(H ∗h J) is a homotopy equivalence.

9.11. Proposition. Let V be a combinatorial monoidal model category in which all ob-
jects are cofibrant, and let W :K → L be a weak equivalence of fibrant V-categories. If L
is homotopy locally λ-presentable, then so is K.

Proof. Let J :B → L exhibit L as homotopy locally λ-presentable. Since W is a weak
equivalence, for each B ∈ B there is some A ∈ K for which there is a homotopy equivalence
B → WA. If we enlarge B so as to include these objects WA, the resulting J :B →
L will still exhibit L as homotopy locally λ-presentable. Let H:A → K be the full
subcategory consisting of all such objects A, and let V :A → B be the restriction of W .
By Proposition 7.1, we know that K is homotopically cocomplete, and that each A ∈ A
is homotopically λ-presentable in K. It remains to prove that QH̃:K → Int[Aop,V ] is

locally a weak equivalence, where H̃ is given by H̃X = K(H,X).
Now V :A → B is a weak equivalence of V-categories, and so by Proposition 7.2 the V-

functor V ∗: [Bop,V ]→ [Aop,V ] given by restriction along V is part of a Quillen equivalence
V! a V ∗. In particular, this means that the functor

QV ∗: Int[Bop,V ]→ Int[Aop,V ]

is locally a weak equivalence. Thus the composite

K W // L QJ̃ // Int[Bop,V ]
QV ∗ // Int[Aop,V ]

is locally a weak equivalence, where J̃L = L(J−, L).

We now have three V-functors from K to [Aop,V ], namely QH̃, V ∗J̃W , and QV ∗QJ̃W ;
we know that the last is locally a weak equivalence and we want to show that the first is
one.

Now
V ∗J̃WX = V ∗L(J−,WX) = L(JV−,WX) = L(WH−,WX)

and composition with W induces a morphism

K(H−, X)
WH,X // L(WH−,WX)

in [Aop,V ] which is a weak equivalence; as X varies in K, the WH,X define a V-natural

K
H̃

++

V ∗J̃W

33 [A
op,V ]WH,−��
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which is a pointwise weak equivalence.
On the other hand q:QJ̃W → J̃W is a pointwise trivial fibration, and V ∗ preserves

trivial fibrations and so the composites

QH̃
q // H̃

WH,− // V ∗J̃W QV ∗QJ̃W
q // V ∗QJ̃W

V ∗q // V ∗J̃W

are pointwise weak equivalences. Also QH̃ and QV ∗QJ̃W are pointwise fibrant and cofi-
brant (so take values in Int[Aop,V ]), while V ∗J̃W is pointwise fibrant. Thus by the fol-

lowing lemma, QH̃ is locally a weak equivalence because QV ∗QJ̃W is one; this completes
the proof of the proposition.

9.12. Lemma. LetM be a model V-category and K an arbitrary V-category. Let R, S, T :
K →M be V-functors with fibrant values, and suppose further that R and T have cofibrant
values. Let v:R → S and q:T → S be pointwise weak equivalences. Then R is a local
weak equivalence if and only if T is one.

Proof. Since the property of being a local weak equivalence can be checked on each hom-
object separately, it suffices to consider the case where K is small; then we can consider
the projective model structure on [K,V ].

Let P be the (pointwise) cofibrant replacement of the pullback of v and q; thus we
have a square

P
p //

u
��

R

v
��

T q
// S

of pointwise weak equivalences. Consider the diagram

K(X, Y )
RX,Y //

TX,Y

��

SX,Y

))

M(RX,RY )

M(RX,vY )
��

M(SX, SY )
M(vX,SY )//

M(qX,SY )
��

M(RX,SY )

M(pX,SY )
��

M(TX, TY )
M(TX,qY )

//M(TX, SY )
M(uX,SY )

//M(PX, SY )

for objects X, Y ∈ K. Now RX is cofibrant and vY is a weak equivalence between fibrant
objects, soM(RX, vY ) is a weak equivalence; similarlyM(TX, qY ) is a weak equivalence.
On the other hand SY is fibrant and pX is a weak equivalence between cofibrant objects,
and soM(pX, SY ) is a weak equivalence; similarlyM(uX, SY ) is a weak equivalence. It
follows that RX,Y is a weak equivalence iff TX,Y is one.
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Combining the various results proved so far, we obtain a characterization of homotopy
locally presentable categories.

9.13. Theorem. Let V be a combinatorial monoidal model category in which all objects
are cofibrant. Then, assuming Vopěnka’s principle, a fibrant V-category K is homotopy
locally presentable if and only if there is a weak equivalence K → IntM for some combina-
torial model V-categoryM. FurthermoreM can be taken to be a left Bousfield localization
of an (enriched) presheaf category with respect to a set of morphisms.

Proof. If there is such a weak equivalence K → IntM then K is homotopy locally
presentable by Propositions 9.8 and 9.11; this does not require Vopěnka’s principle. We
do use it for the converse, which is Theorem 9.10.

9.14. Remark. (1) The proof of Theorem 9.10 shows that a homotopy locally presentable
V-category admits a weak equivalence into a category of models of a λ-small weighted
homotopy limit sketch.

(2) Using [31], we can replace the existence of weighted homotopy colimits in the def-
inition of homotopy locally presentable V-category by the existence of homotopy colimits
and homotopy copowers.

(3) We have generalized results given in [25] from SSet to any monoidal model category
V having all objects cofibrant. The paper [25] contained a stronger formulation of 9.10
which asserted that each fibrant simplicial category weakly equivalent to IntM, where
M is a combinatorial simplicial model category, is homotopy locally presentable. This
stronger formulation was withdrawn in [26]. In fact Vopěnka’s principle also seems to be
needed for the arguments in [25].

On the other hand, the following result does not require Vopěnka’s principle:

9.15. Proposition. Let V be a combinatorial monoidal model category in which all ob-
jects are cofibrant. Let K and L be fibrant V-categories, let W1 : K → L and W2 : L → K
be weak equivalences, and suppose that W2W1X is homotopy equivalent to X for each
X ∈ K, and that W1W2Y is homotopy equivalent to Y for each Y ∈ L. Then K is
strongly homotopy locally λ-presentable if and only if L is strongly homotopy locally λ-
presentable.

Proof. Clearly it suffices to prove that if L is strongly homotopy locally λ-presentable
then so is K. By Proposition 7.1 we know that K is homotopically cocomplete. Let
J :B → L exhibit L as strongly homotopically locally λ-presentable. Let H:A → K be
the full image of B under W2:L → K, and let V :B → A be the restriction of W2.

Each A ∈ A has the form W2B for some B ∈ B. Now B is homotopy λ-presentable,
and W1A = W1W2B is homotopically equivalent to B so is also homotopy λ-presentable.
It follows by Proposition 7.1 that A is homotopy λ-presentable in K.

Finally, any X ∈ K is homotopically equivalent to W2W1X, and we can write W1X =
hocolimiJBi as a homotopy λ-filtered colimit of objects in B, and W2 preserves homotopy
colimits, so

X ' W2W1X = W2hocolimiJBi ' hocolimiW2JBi
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with each W2JBi ∈ A, and so X is a homotopy λ-filtered colimit of objects in A.

The following result was proved by D. Dugger [11] in the case of simplicial model
categories.

9.16. Theorem. Let V be a combinatorial monoidal model category in which all objects
are cofibrant, and let N be a combinatorial model V-category. Then, there is a Quillen
equivalence U :N →M where M is a left Bousfield localization of a V-presheaf category
with respect to a set of morphisms;

Proof. Define A as in the proof of Theorem 9.10, with J :A → N the inclusion; this takes
values in IntN . Since N is cocomplete, the induced functor J̃ :N → [Aop,V ], sending
N ∈ N to N (J−, N):Aop → V , has a left adjoint L sending M ∈ [Aop,V ] to M ∗J . Since

J has cofibrant values, J̃ preserves fibrations and trivial fibrations, and therefore L a J̃
is a Quillen adjunction. We know that the induced map IntN → Int[Aop,V ] is locally a
weak equivalence, so that the derived functor HoN → Ho[Aop,V ] is fully faithful, and the
counit of the derived adjunction is invertible. This in turn implies that the map

LQJ̃N
Lq // LJ̃N

e // N

is a weak equivalence for all fibrant N , where e is the counit of the adjunction L a J̃ .
For all G ∈ [Aop,V ], we have the composite

G
n // J̃LG J̃r // J̃RLG

where n is the unit of the adjunction; this defines a natural map s: 1→ J̃RL. As in [11,
3.2] or [27], choose λ so that:

• Q and R preserve λ-filtered colimits

• each A ∈ A is λ-presentable in N

• Q preserves λ-presentability

and let M be the localization of [Aop,V ] with respect to the set F of all QsG:QG →
QJ̃RLG with G cofibrant and λ-presentable.

By virtue of the Quillen adjunction, for any G ∈ Int[AopV ] and any N ∈ IntN , the
composite

N (RLG,N)
QJ̃ // [Aop,V ](QJ̃RLG,QJ̃N)

(QsG)∗// [Aop,V ](QG,QJ̃N)

is a weak equivalence. Also the first map QJ̃ is a weak equivalence because IntN is
homotopy locally presentable, and so the second map (QsG)∗ is a weak equivalence in

IntV , and so a homotopy equivalence. Thus QJ̃N is F -local, and so by the universal
property of the localization M, the Quillen adjunction L a U factorizes through M.
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The counit of the derived adjunction is still invertible, but we should check that the unit
of the derived adjunction is so too; in other words, that for each cofibrant G, the map
sG:G → J̃RLG is a weak equivalence in M; or, equivalently, that QsG:QG → QJ̃RLG
is a weak equivalence. But G is a λ-filtered colimit of λ-presentable objects, while both
Q and QJ̃RL preserve λ-filtered colimits and the weak equivalences are closed under
λ-filtered colimits, so it will suffice to show that QsG is a weak equivalence for all λ-
presentable objects G. This is true precisely because we have localized with respect to all
such QsG.

A. Enriched cofibrant replacement

In this appendix we discuss issues related to the existence of an enriched cofibrant re-
placement functor. The bad news is that this is rather rare: we show below that if such
an enriched cofibrant replacement functor exists for a monoidal model category V with
cofibrant unit, then all objects V must be cofibrant. The good news is, as explained in
[30, Proposition 24.2], that if all objects of V are cofibrant, then any cofibrantly gener-
ated model V-category does have an enriched cofibrant replacement functor, formed by a
straightforward adaptation of the small object argument to the enriched setting.

A.1. Proposition. Suppose that V is a monoidal model category with cofibrant unit, and
that the V-natural transformation q:Q→ 1 exhibits Q:V → V as a cofibrant replacement
V-functor. Then all objects of V are cofibrant.

Proof. Since I is cofibrant, there exists a section s: I → QI to q:QI → I. Let X be
an arbitrary object. Since Q is a V-functor, it acts on the internal hom [I,X] as a map
Q: [I,X]→ [QI,QX]. Now in the diagram

[I,X]
Q //

[q,1] %%

[QI,QX]
[s,QX] //

[QI,q]
��

[I,QX]

[I,q]

��
[QI,X]

[s,X]
// [I,X]

the triangular region commutes by naturality of q, and the rectangular region commutes
by associativity of composition. The lower composite [s,X][q,X] is [qs,X] which is the
identity. Thus the vertical map [I, q]: [I,QX] → [I,X] has a section; but up to isomor-
phism this is just q:QX → X. This proves that X is cofibrant.

At the request of the referee, we are also including a proof of the fact that if all objects
of V are cofibrant, then there is an enriched cofibrant replacement functor. As observed
in [30], what is really needed is that the functor X · −:M → M preserves cofibrations
for all objects X ∈ V .

A.2. Proposition. Suppose that V is a monoidal model category in which all objects
are cofibrant, and that M is a cofibrantly-generated model V-category. Then M has an
enriched cofibrant replacement functor Q:V → V, and q:Q→ 1 is V-natural.
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Proof. First we recall briefly the small object argument in the case of an ordinary
(unenriched) model category M. The key construction involves a morphism f :C → D,
we would then let Λ parametrize all commutative squares

Aλ
uλ //

iλ
��

C

f
��

Bλ vλ
// D

with iλ:Aλ → Bλ a generating cofibration in M, and then form the pushout C ′ in∑
λ∈ΛAλ∑

λ iλ
��

u // C

j

��
f

��

∑
λ∈ΛBλ

//

v

))

C ′

f ′

��
D

and the induced map f ′:C ′ → D; here u and v are the maps induced by the uλ and vλ.
Then j is a pushout of coproducts of cofibrations, so is a cofibration. Define Q0D = 0
and q0:Q0D = 0 → D to be the unique map, and now set up a transfinite induction by
applying this construction to qβD:QβD → D, to obtain a cofibration j:QβD → Qβ+1D
and a map qβ+1D:Qβ+1D → D.

The pushout defining C ′ could alternatively be written as∑
i∈I(M(Ai, C)×M(Ai,D)M(Bi, D)) · Ai∑

i 1·i
��

// C

j

��∑
i∈I(M(Ai, C)×M(Ai,D)M(Bi, D)) ·Bi

// C ′

where now I is the set of all generating cofibrations and M(X, Y ) stands (temporarily)
for the Set-valued hom for M. Here the expression

M(Ai, C)×M(Ai,D)M(Bi, D)

denotes the set of all pairs (uλ, vλ) with fuλ = vλi (for the given i). With this reformu-
lation, the construction makes sense in the enriched context.

The only problem is that now the left vertical
∑

i 1 · i is not just a coproduct of
cofibrations, but a coproduct of copowers of cofibrations, and we need to be sure that
copowers of cofibrations are cofibrations; in other words that X · i:X · A → X · B is a
cofibration when i:A→ B is a cofibration and X ∈ V . There is no reason why this should
be true in general, but it will be true if X is cofibrant, by the axioms for enriched model
categories. The X in question will be M(Ai, C) ×M (Ai, D)M(Bi, D), and there seems
no way to guarantee that this is cofibrant other than assuming that all objects in V are
so. But under this assumption, the pushout j will also be a cofibration. The rest of the
argument goes through as in the classical case.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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