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HOMOTOPY THEORY FOR ALGEBRAS OVER POLYNOMIAL

MONADS

M. A. BATANIN AND C. BERGER

ABSTRACT. We study the existence and left properness of transferred model structures
for “monoid-like” objects in monoidal model categories. These include genuine monoids,
but also all kinds of operads as for instance symmetric, cyclic, modular, higher operads,
properads and PROP’s. All these structures can be realised as algebras over polynomial
monads.

We give a general condition for a polynomial monad which ensures the existence and
(relative) left properness of a transferred model structure for its algebras. This condition
is of a combinatorial nature and singles out a special class of polynomial monads which
we call tame polynomial. Many important monads are shown to be tame polynomial.
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Introduction

This text emerged from model-theoretical properties needed in our approach to the sta-
bilisation hypothesis of Baez-Dolan [2]. Indeed, our proof [8] of this hypothesis relies on
a careful homotopical analysis of n-operads and their symmetrisation. This analysis was
initiated in [5, 6] but for the proof of the stabilisation hypothesis, the formulas obtained
in loc. cit. had to be extended to a much broader context. Moreover, our study of stabil-
isation phenomena in [9] required the existence of a certain left Bousfield localisation of
the transferred model structure on n-operads which turns n-operads into higher categor-
ical analogues of E,-operads [7, 17]. However, the available techniques for left Bousfield
localisation (cf. [36]) are based on left properness, and it turned out to be surprisingly
difficult to verify this property for n-operads. These two problems motivated us to re-
consider foundational aspects of the homotopy theory of operads from a new categorical
perspective.

In this article we address among others the general problem of preservation of left
properness under transfer. We show that, under some specific conditions on the base cat-
egory, a certain form of preservation is given for an interesting class of transfers, including
those for the known model structures on monoids [60], reduced symmetric operads [11],
general non-symmetric operads [52], reduced n-operads [5].

The common feature of all these transfers is that in each case the algebraic structure
is governed by a polynomial monad in sets. Building on 2-categorical techniques devel-
oped in [6, 66, 67] we show that for this kind of algebraic structure, the existence of a
transferred model structure and its left properness are intimately related. Both rely on
a careful analysis of free algebra extensions. In the case of free monoid extensions this
analysis has been done by Schwede-Shipley [60] in an exemplary and prototypical way.
It is among the main results of this article that an analogous analysis is available for
free algebra extensions over a general polynomial monad, provided the latter satisfies an
extra-condition. This condition is of a combinatorial nature: it requires a certain cate-
gory (attached to the polynomial monad) to be a coproduct of categories with terminal
object. A polynomial monad fulfilling this extra-condition will be called tame. This ar-
ticle provides a combinatorial toolkit to construct free algebra extensions over any tame
polynomial monad.

All operads above are algebras over tame polynomial monads. In particular, we recover
Muro’s [52] recent construction of free non-symmetric operad extensions. Although non-
symmetric operads can be viewed as monoids for a certain circle-product, the construction
of these free operad extensions is highly non-trivial, since the circle-product commutes
with colimits only on one side, while the Schwede-Shipley construction of free monoid
extensions is based on a commutation with colimits on both sides. The availability of a
Schwede-Shipley type construction for free algebra extensions depends on the behaviour
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of what we call semi-free coproducts. These are coproducts of an algebra with a free
algebra. Any tame polynomial monad induces a “polynomial expansion” for semi-free
coproducts. E. g., the underlying object of the coproduct M V Fr(K) of a monoid M
with a free monoid Frr(K) can be computed as follows (cf. [60] and Section 9.2):

MV FPr(K) =[] M® (Ko M)®. (1)

n>0

The existence of an analogous functorial “polynomial expansion” for semi-free coprod-
ucts of T-algebras over a tame polynomial monad 7" is the main ingredient for a transferred
model structure on T-algebras with good properties.

Interestingly, the question of left properness has been dealt with in literature only
recently in some special cases, cf. Cisinski-Moerdijk [18, Theorem 8.7] and Muro [53,
Theorem 1.11]. Although the monoid aziom of Schwede-Shipley [60] gives a quite pre-
cise criterion for the existence of a transfer, the monoid axiom alone does not guarantee
preservation of left properness under transfer. We propose in this article a common
strengthening of the monoid axiom and of left properness which ensures that the trans-
ferred model structure on T-algebras is left proper if T is tame polynomial. We also show
(cf. [31, 61]) that a relative form of left properness (namely, weak equivalences between
T-algebras with cofibrant underlying object are closed under pushout along cofibrations)
already follows from the monoid axiom.

This strengthening crucially involves a model-theoretical concept of h-cofibration. We
call a Quillen model category [55] h-monoidal if it is a monoidal model category in the
sense of Hovey [37] and the tensor product of a (trivial) cofibration with an arbitrary object
is a (trivial) h-cofibration. An h-monoidal model category, which is compactly generated
[14], satisfies the monoid axiom of Schwede-Shipley. Most of the model categories of
algebraic topologists are compactly generated h-monoidal. If in addition the class of
weak equivalences is closed under tensor product (e.g. all objects are cofibrant) then the
model category is called strongly h-monoidal.

Our main theorem can now be stated as follows:

0.1. THEOREM. For any tame polynomial monad T in sets and any compactly generated
monoidal model category £ fulfilling the monoid axiom, the category of T-algebras in €
admits a relatively left proper transferred model structure.

The transferred model structure is left proper provided & is strongly h-monoidal.

Examples of T-algebras in &€ for tame polynomial monads 7" include monoids, non-
symmetric operads, reduced symmetric operads, reduced n-operads, reduced cyclic op-
erads, as well as higher opetopic extensions of all these structures. In several of these
cases, existence results for a transferred model structure (under some conditions on &)
were known before. It seems however that even in the known cases, our assumptions on
& are weaker than those which appeared in literature. Moreover, the discussion of left
properness in the generality considered here seems to be new. Even more importantly,
the uniformity of our approach allows us to give explicit formulas for the total left derived
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functors induced by morphisms of polynomial monads. These explicit formulas have often
concrete applications.

Failure of tameness for a polynomial monad very often produces obstructions for the
existence of transfer. However, these obstructions can be removed by imposing more
restrictive conditions on the base category £. For instance, if £ is the category of chain
complexes over a field of characteristic 0, or the category of simplicial sets, resp. compactly
generated topological spaces with the Quillen model structure, then a transferred model
structure for algebras in £ over any (tame or not tame) polynomial monad exists. The
question of left properness is more subtle, yet.

The article is subdivided into four rather independent parts.

Part 1 develops basic properties of h-monoidal model categories and relates this no-
tion to the monoid axiom of Schwede-Shipley [60]. We recall the concept of compact
generation [14] of a monoidal model category and give general “admissibility” conditions
on a monad, sufficient for the existence and relative left properness of the transfer. Two
themes are treated in some detail: monoids in h-monoidal model categories (closely fol-
lowing Schwede-Shipley [60] but adding left properness) and stability of h-monoidality
under passage to “convoluted” diagram categories (here we extend some of the results of
Dundas-Ostvaer-Rondigs [21]).

Part 2 is devoted to polynomial monads. This part relies on 2-categorical techniques
developed in [6, 67], but we have tried to keep the presentation as self-contained as
possible. These techniques are used to reformulate the construction of a pushout along
a free T-algebra map as a left Kan extension of a certain functor attached to 7. More
generally, given a morphism of polynomial monads S — T, the induced functor Algs(E) —
Algr(E), left adjoint to restriction, is expressible as a left Kan extension. Our main
theorem then follows by combining this construction with the results of Part 1, since the
explicit formula for free algebra extensions over a tame polynomial monad implies the
admissibility of the latter.

At the end we study the Quillen adjunction induced by a morphism of tame polynomial
monads. We show that in good cases the total left derived functor can be calculated as
a homotopy colimit. Instances of this appear in [5], where a higher-categorical Eckmann-
Hilton argument is used to show that the derived symmetrisation of the terminal n-
operad is homotopy-equivalent to the Fulton-MacPherson operads of compactified point
configurations in R"™; and in [27], where Giansiracusa computes the derived modular
envelope of several cyclic operads. Doing so he closely follows Costello [19] who suggested
that the derived modular envelope of the terminal planar cyclic operad is homotopy
equivalent to the modular operad of nodal Riemann spheres with boundary. Notice that
the main obstacle for Giansiracusa and Costello in rendering such a statement precise was
the missing model structure on cyclic operads. This is by now not anymore the case.

Part 3 studies examples. We first show that the polynomial monads based on con-
tractible graphs (i.e. trees) tend to be tame, at least their normalised or reduced versions'.
We then show that most of the polynomial monads for operads which are based on graphs

'See Remarks 9.6 and 10.5 regarding a subtlety of the definitions of reduced operad and PROP.
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rather than trees (such as modular operads, properads or PROP’s) are not tame, even if we
consider just their normalised versions. For all these operad types there is no transferred
model structure for chain operads in positive characteristics. Nevertheless, a transfer ex-
ists in characteristic 0. We get the surprising result that for any polynomial monad T, its
Baez-Dolan +-construction 7" is a tame polynomial monad. This can be used to define
a homotopy theory of homotopy T-algebras for any polynomial monad 7.

We finally study in detail the monad for normalised n-operads. In [6, 5], the latter was
shown to be polynomial. Here we show that it is tame polynomial, which is quite a bit
harder. This particular example is of special interest for us for reasons explained at the
beginning of this introduction. In fact, it was this example which motivated the whole
project. We also show that the polynomial monads for general (non-reduced) symmetric,
cyclic and n-operads for n > 2, are not tame.

Part 4 contains a concise combinatorial definition of the notions of graph, tree and
graph insertion. We decided to include this material here because the tameness of a
given polynomial monad often relies on subtle properties of a canonically associated class
of structured graphs. The monad multiplication reflects the operation of insertion of a
graph into the vertex of another graph of the same class. This close relationship between
graph insertion and operad types is actually the central idea of Markl’s article [46], and
has been further developed in the recent book by Johnson-Yau [32], cf. also chapter
13.14 in the book [44] of Loday-Vallette. Our study of algebras over polynomial monads
subsumes all these examples. Each class of graphs which is suitably closed under graph
insertion defines a polynomial monad for which the question of tameness can be raised.

For the reader’s convenience we present here two tables which summarise various re-
sults obtained in this article. The first table presents monoidal model categories considered
in Part 1 for which we were able to establish (strong) h-monoidality.

. all objects strongly )
Monoidal model category cofibrant homonoidal | h-monoidal
Simplicial sets (Quillen) yes yes yes
Small categories (groupoids) (Joyal-Tierney) yes yes yes
Complete ©,-spaces (Rezk) yes yes yes
Chain complexes over a field yes yes yes
C.g. topological spaces (Strgm) yes yes yes
Modules over a commutative monoid

yes yes yes

in a monoidal category with cofibrant objects
C.g. topological spaces (Quillen) no yes yes
Small 2-categories (2-groupoids) with

Gray tensor product (Lack) no yes yes
Modules over a commutative monoid
in a strongly h-monoidal model category no yes yes
Chain complexes over a commutative ring
with the projective model structure no no yes
Symmetric spectra in simplicial sets with
levelwise or stable projective model structures no no yes
Modules over commutative monoid

no no yes

in an h-monoidal model category

Figure 1: A-monoidal model categories
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The second table contains the polynomial monads treated in Part 3 for which the
question of tameness has been settled. This table refines a similar table contained in the
aforementioned article [46] by Markl.

polynomial monad for type insertional class of graphs tame
C-diagrams C-coloured corollas yes
monoids linear rooted trees yes
enriched categories I-coloured linear
with object-set [ rooted trees yes
non-symmetric operads general planar rooted trees yes
symmetric operads general rooted trees no
reduced non-degenerate rooted trees yes
constant-free regular rooted trees yes
normal normal rooted trees yes
planar cyclic operads general planar trees no
reduced non-degenerate planar trees yes
constant-free regular planar trees yes
normal normal planar trees yes
cyclic operads general trees no
reduced non-degenerate trees yes
constant-free regular trees yes
normal normal trees yes
n-operads for n > 2 general n-planar trees no
reduced non-degenerate n-planar trees yes
constant-free regular n-planar trees yes
normal normal n-planar trees yes
dioperads general directed trees no
normal normal directed trees yes
% PROP’s general % graphs no
normal normal %graphs yes
modular operads general connected graphs (with genus) no
normal normal connected (stable) graphs no
properads general loop-free connected directed graphs no
normal normal loop-free connected directed graphs no
PROP’s general loop-free directed graphs no
normal normal loop-free directed graphs no
wheeled operads general wheeled rooted trees no
normal normal wheeled rooted trees yes
wheeled properads general connected directed graphs no
normal normal connected directed graphs no
wheeled PROP’s general directed graphs no
normal normal directed graphs no

Figure 2:

Polynomial monads based on graphs
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Part 1

Model structure for algebras over admissible monads

1. Homotopy cofibrations and h-monoidal model categories

We introduce and investigate here a model-theoretical concept of h-cofibration? which
seems interesting in itself. The dual concept of an h-fibration has been studied by Rezk [56]
under the name of sharp map. The definition of an h-cofibration only depends on the class
of weak equivalences and on the existence of pushouts. In left proper model categories,
the class of h-cofibrations can be considered as the closure of the class of cofibrations
under cofibre equivalence, cf. Proposition 1.6. We prove a useful gluing lemma for weak
equivalences between pushouts along h-cofibrations in left proper model categories, cf.
Proposition 1.8. We mainly use h-cofibrations in order to formulate a strengthening of
left properness (h-monoidality) well adapted to monoidal model categories. A similar
concept has been developed by Dundas-Ostveer-Rondigs [21, Definition 4.6].

In the course of studying basic properties of h-monoidal model categories, we es-
tablish in Propositions 1.13, 1.14 and 1.15 below some useful recognition criteria for h-
monoidality. Since a compactly generated h-monoidal model categories fulfills the monoid
axiom of Schwede-Shipley (Proposition 2.5) and is left proper (Lemma 1.12), these crite-
ria are helpful tools in establishing the monoid axiom of Schwede-Shipley and/or the left
properness of a given monoidal model category.

We have been advertised by Maltsiniotis that the notion of h-cofibration already
appears in some of Grothendieck’s unpublished manuscripts. In recent work, Ara and
Maltsiniotis use h-cofibrations to prove a version of the transfer theorem [1, Proposition
3.6] which is related to our Theorem 2.11.

For an object X of a category £ the undercategory X /€ has as objects morphisms with
domain X, and as morphisms “commuting triangles” under X. If £ carries a model struc-
ture then so does X/€. A map X — A — B in X/& is a cofibration, weak equivalence,
resp. fibration if and only if the underlying map A — B in & is.

1.1. DEFINITION. A morphism f : X — Y in a model category & is called an h-
cofibration if the functor fi : X/E — Y/E (given by cobase change along f) preserves
weak equivalences.

In more explicit terms, a morphism f : X — Y in £ is an h-cofibration if and only if

2Mike Hopkins suggested the term flat morphism for h-cofibration, cf. [35]. Our terminology is
in conflict with the terminology of Peter May and Kate Ponto [50, Chapter 17] who use the term h-
cofibration (resp. g-cofibration) to designate a cofibration in Strgm’s (resp. Quillen’s) model structure on
topological spaces. We argue that this terminological conflict is not peculiar, because our h-cofibrations
are defined for all model categories, while the h-cofibrations of May and Ponto are defined for topological
model categories only. In those cases where the two definitions telescope each other, they do so in a nice
way, cf. the proof of Proposition 1.17, especially its footnote.
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in each commuting diagram of pushout squares in &

w

X—+A——B
1
Y A e B

w’ is a weak equivalence as soon as w is.

1.2. LEMMA. A model category is left proper if and only if each cofibration is an h-
cofibration.

PRrROOF. If in diagram (2) above £ is left proper, f is a cofibration and w a weak equiv-
alence, then w’ is a weak equivalence as well, thus f is an h-cofibration. Conversely, if
every cofibration is an h-cofibration, then (2) shows that weak equivalences are stable
under pushout along cofibrations, so that & is left proper. [

1.3. LEMMA. The class of h-cofibrations is closed under composition, cobase change,
retract, and under formation of finite coproducts.

PROOF. Closedness under composition, cobase change and retract follows immediately
from the definition. For closedness under finite coproducts, it is enough to show that for
each h-cofibration f : X — Y and each object Z, the coproduct f L1y is an h-cofibration.
This follows from the fact that the commutative square

X— XUz

f\ fulz

Y —YUuZz
is a pushout. [

1.4. LEMMA. —

(i) An object Z is h-cofibrant if and only if — U Z preserves weak equivalences.

(i) The class of weak equivalences is closed under finite coproducts if and only if all
objects of the model category are h-cofibrant.

(iii) The class of weak equivalences is closed under arbitrary coproducts whenever all
objects are h-cofibrant and weak equivalences are closed under filtered colimits along
coproduct injections.

PRrROOF. The first statement expresses the fact that a pushout along the map from an
initial object to Z is the same as taking the coproduct with Z. The second statement
follows from the first and from the identity f g = (Leodomain(f) U 9) © (f U Ldomain(g))- The
third statement follows from the second and the fact that any coproduct can be calculated
as a filtered colimit of finite coproducts with structure maps being coproduct injections. m
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1.5. HOMOTOPY PUSHOUTS AND COFIBRE EQUIVALENCES. —

A commutative square in a general model category
A——B

|

C——D
will be called a formal homotopy pushout if for any factorisation A »— B’ — B (resp.
A— C" = C)of A — B (resp. A — C) into a cofibration followed by a weak
equivalence, the induced map B’ Uy C' — D is a weak equivalence.

In left proper model categories, it suffices to choose a particular factorisation of A — B
and check that B'U,C — D is a weak equivalence. We will see in Corollary 1.9 below that
in left proper model categories, formal homotopy pushouts are homotopy pushouts (i.e.
homotopy colimits). Yet, in order to avoid any confusion, we maintain the terminological
distinction.

The following proposition gives several useful characterisations of h-cofibrations in
left proper model categories. Left properness is essential here because formal homotopy
pushouts are easier to recognise in left proper model categories than in general model
categories. For instance, in a left proper model category any pushout along a cofibration
is a formal homotopy pushout, which is not the case in general model categories.

A weak equivalence w in X/€ is called a cofibre equivalence if for each morphism
g : X — B the functor g, : X/ — B/E takes w to a weak equivalence in B/E.

1.6. PROPOSITION. In a left proper model category &, the following four properties of a
morphism f: X =Y are equivalent:

(i) f is an h-cofibration;
(ii) every pushout along f is a formal homotopy pushout;

(iii) for every factorisation of f into a cofibration followed by a weak equivalence, the
weak equivalence is a cofibre equivalence;

(iv) there ezists a factorisation of f into a cofibration followed by a cofibre equivalence.

PROOF. (i) = (ii) For a given outer pushout rectangle like in diagram (2) above with
an h-cofibration f, factor the given map X — B as a cofibration X — A followed by a
weak equivalence w : A — B, and define Y — A’ as the pushout of X »— A along f.
Since the right square is then a pushout, w’ : A" — B’ is a weak equivalence, whence the
outer rectangle is a formal homotopy pushout.

(ii) = (iii) The pushout

x-J.p
1]
B

Y —— B
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is factored vertically according to a factorisation of f into a cofibration X — Z followed
by a weak equivalence v : Z — Y

Y — B.

Since the outer rectangle is a formal homotopy pushout by assumption, v’ is a weak
equivalence, whence v is a cofibre equivalence.

(ili) = (iv) This is obvious.

(iv) = (i) Consider a commutative diagram like in (2) above, and factor f into a
cofibration X ~— Z followed by a cofibre equivalence v : Z — Y. This induces the
following commuting diagram of pushout squares

X— .A-Y.B
7w My
v U// U/
NI LY

in which v” and v’ are weak equivalences because v is a cofibre equivalence, and w” is a
weak equivalence by left properness of £. Therefore, the 2-out-of-3 property of the class
of weak equivalences implies that w’ is a weak equivalence as well, and hence f is an
h-cofibration as required. n

1.7. LEMMA. Let £ be a left proper model category.
(a) A commutative square
A—- A
w\w \w’
B——PB

with a left vertical weak equivalence w : A — B is a formal homotopy pushout if
and only if w' : A" — B’ is a weak equivalence;
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(b) In a commutative diagram

A - B - C

o

A/ _ B/ o C/
in which the left square is a formal homotopy pushout, the right square is a formal
homotopy pushout if and only if the outer rectangle is a formal homotopy pushout.

PROOF. (a) Factoring A — A’ into a cofibration A — A” followed by a weak equivalence
v: A" = A’ and taking a pushout we get the following commutative square

A ‘A// U‘A/

I

B>—> B// -, B/
,U/

in which w” is a weak equivalence by left properness. Therefore, by the 2-out-of-3 property
of weak equivalences, v’ is a weak equivalence (i.e. the given square is a formal homotopy
pushout) if and only if w’ is a weak equivalence.

(b) Factoring A — A’ into a cofibration A — A” followed by a weak equivalence
v: A" =3 A’ and taking pushouts we get the following commutative diagram

A - B - C

A// o B// _ C//
V|~ U// ~ ,U/
A/ o B/ _ C/

in which v” is a weak equivalence because the left square above is a formal homotopy
pushout. Now v’ is a weak equivalence if and only if either the right square above is a
formal homotopy pushout or, equivalently, the outer rectangle above is a formal homotopy
pushout. n

1.8. PROPOSITION. [cf. Proposition B.12 in [35]]-
In a model category &£, consider the following commutative diagram

C—a—".B
f’y\ fa\ \fﬁ
' A —— B

u
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in which fo, fs, [ are supposed to be weak equivalences.

Then the induced map on pushouts f, Uy, fz: CUsB — C'"Ux B’ is a weak equivalence
provided one of the following two conditions is satisfied:

(a) all objects of the diagram are cofibrant and the maps u,u’ are cofibrations;
(b) the model category & is left proper and the maps u,u’ are h-cofibrations.

PROOF. Case (a) is classical, see e.g. Goerss-Jardine [29, Lemma 9.8|. Alternatively, (a)
can be deduced from (b) by the following trick: the full subcategory of £ spanned by the
cofibrant objects is a category of cofibrant objects in the sense of Brown and the proof
of (b) holds in such categories (in which every cofibration is an h-cofibration because all
objects are cofibrant).

To prove (b) let us write D = C Uy B and D' = C" Us B'. Then the induced map
fs : D — D' is part of the following commutative cube

C D
S s
A " B
fo | fs (3)
' — | — D
/ /
A B’

in which top and bottom squares are formal homotopy pushouts by Proposition 1.6ii, and
the left square is a formal homotopy pushout by Lemma 1.7a. It follows then from Lemma
1.7b that the right square is also a formal homotopy pushout. This implies by Lemma
1.7a that fs is a weak equivalence as required. [

1.9. COROLLARY. In left proper model categories, formal homotopy pushouts are homo-
topy pushouts in the homotopical sense.

PROOF. In cube (3) assume that f, : A — A’ is a cofibrant replacement of A’, and define
B (resp. C) by factoring A —+ A’ — B’ (resp. A — A’ — (") as a cofibration A — B
(resp. A — C) followed by a weak equivalence fz: B — B’ (resp. f, : C' — C"). The
top square is then a formal homotopy pushout and D = B U, C' realises the homotopy
colimit of the lower diagram C" < A" — B'.

If the bottom square is a formal homotopy pushout then the proof of Proposition 1.8b
shows that the canonical map f5 : D — D’ from the homotopy pushout to the formal
homotopy pushout is a weak equivalence. [
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A weak equivalence which is an h-cofibration will be called a trivial h-cofibration.
A weak equivalence which remains a weak equivalence under any cobase change will be
called couniversal. For instance, trivial cofibrations are couniversal weak equivalences.

1.10. LEMMA. In general, couniversal weak equivalences are trivial h-cofibrations. In left
proper model categories, the converse holds: trivial h-cofibrations are couniversal weak
equivalences.

PROOF. The 2-out-of-3 property of the class of weak equivalences implies that couniversal
weak equivalences are trivial h-cofibrations. In a left proper model category, the pushout
of a trivial h-cofibration is a trivial h-cofibration in virtue of Lemmas 1.3, 1.6ii and 1.7a. =

1.11. DEFINITION. A model category is called h-monoidal if it is a monoidal model cate-
gory [37] such that for each (trivial) cofibration f : X — Y and each object Z, the tensor
product f @1, : X ® Z =Y ® Z is a (trivial) h-cofibration.

It is called strongly h-monoidal if moreover the class of weak equivalences is closed
under tensor product.

In particular, each cofibration is an h-cofibration so that, by Lemma 1.2, h-monoidal
model categories are left proper. Moreover, in virtue of Lemma 1.10, the condition on
trivial cofibrations can be considered as a weak form of the monoid axiom of Schwede-
Shipley [60], cf. Proposition 2.5 and Corollary 2.6 below.

1.12. LEMMA. For monoidal model categories the following implications hold:
all objects cofibrant = strongly h-monoidal =—> h-monoidal = left proper.

PRrROOF. For the first implication, it suffices to observe that, by a well-known argument
of Rezk, if all objects are cofibrant then the model structure is left proper, i.e. (by
1.2) cofibrations are h-cofibrations. Moreover, the pushout-product axiom implies that
tensoring a (trivial) cofibration with an arbitrary object yields again a (trivial) cofibration.
Therefore, the model structure is h-monoidal. The class of weak equivalences is closed
under tensor product, since by Brown’s Lemma (if all objects are cofibrant) each weak
equivalence factors as a trivial cofibration followed by a retraction of a trivial cofibration.
The other two implications are obvious. [

It is in general difficult to describe explicitly the class of h-cofibrations of a model
category. The following three propositions are useful since they are applicable even if
such an explicit description is unavailable.

1.13. PROPOSITION. Let & be a closed symmetric monoidal category with two model struc-
tures, called resp. injective and projective, and sharing the same class of weak equiva-
lences. We assume that the following three properties hold:

e the projective model structure is a monoidal model structure;

e the injective model structure is left proper;
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e tensoring a (trivial) cofibration of the projective model structure with an arbitrary
object yields a (trivial) cofibration of the injective model structure.

Then the projective model structure is h-monoidal.

PROOF. Observe that the notion of h-cofibration only depends on the class of weak equiv-
alences, hence both model structures have the same class of h-cofibrations. The statement
then follows directly from Lemma 1.2. [

1.14. PROPOSITION. Let £ be a symmetric monoidal category with two monoidal model
structures such that each cofibration (resp. weak equivalence, resp. fibration) of the first
model structure is an h-cofibration (resp. weak equivalence, resp. fibration) of the second.
If all objects of the first model structure are cofibrant then both model structures are h-
monoidal.

PROOF. Since all objects of the first model structure are cofibrant, the first model structure
is (strongly) h-monoidal by Lemma 1.12. Since the trivial fibrations of the first structure
are among the trivial fibrations of the second, the cofibrations of the second are among
the cofibrations of the first. The latter class is closed under tensor product and contained
in the class of h-cofibrations of the second structure. This yields the first half of h-
monoidality for the second model structure. Similarly, since the fibrations of the first
model structure are among the fibrations of the second, the trivial cofibrations of the
second are among the trivial cofibrations of the first. The latter class is closed under
tensor product and contained in the class of trivial h-cofibrations of the second model
structure. This shows that the second half of h-monoidality holds for the second model
structure as well. [

1.15. PROPOSITION. Let £ be a monoidal model category in which all objects are fibrant.
Then &£ is h-monoidal provided the internal hom of &£ detects weak equivalences in the
following sense: a map f : X — Y is a weak equivalence whenever E(f, W) is a weak
equivalence for all objects W.

PROOF. Let f: X — Y be a cofibration. We have to show that in

X®Z—wA-—2.B

oz ||

Y®Z— A — B
w
w' is a weak equivalence if w is. For this it suffices to show that E(w’, W) is a weak
equivalence for all W, which follows from the pushout-product axiom and the hom-tensor
adjunction. If f is a trivial cofibration then E(f ® Z, W) = E(f,E(Z,W)) is a trivial
fibration for each object W. Hence f ® Z is a weak equivalence. ]
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1.16. REMARK. We implicitly used in the preceding proof that £ is right proper because
all of its objects are fibrant, and that therefore weak equivalences in £ are stable under
pullback along fibrations. Proposition 1.15 deduces from this and the good behaviour
of the internal hom of £ that £ is h-monoidal and hence in particular left proper. This
explicit relationship between right and left properness in monoidal model categories does
not seem to have been observed before.

1.17. COROLLARY. The category of compactly generated topological spaces is strongly h-
monoidal with respect to Strom’s and Quillen’s cartesian model structures.

PROOF. Recall that in Strgm’s model structure the weak equivalences and fibrations are
homotopy equivalences and Hurewicz fibrations respectively; the corresponding classes in
Quillen’s model structure are weak homotopy equivalences and Serre fibrations. These
classes verify the inclusion relations required by Proposition 1.14. The cofibrations of
Strgm’s model structure are the closed cofibrations (i.e. NDR-pairs) in the topologist’s
classical sense. Closed cofibrations are h-cofibrations for Quillen’s model structure?. In
Strgm’s model structure all objects are cofibrant so that it is strongly h-monoidal by
Lemma 1.12. Proposition 1.14 implies that Quillen’s model structure is h-monoidal. It
is strongly h-monoidal since the product of two weak homotopy equivalences is again a
weak homotopy equivalence. [

1.18. COROLLARY. The following two examples are h-monoidal model categories:

e the category of chain complexes over a commutative ring with the projective model
structure;

e the category of symmetric spectra (in simplicial sets) with the stable projective model
structure.

PrROOF. We use in both cases Proposition 1.13. Recall that the cofibrations of the in-
jective (resp. projective) model structure on chain complexes are the monomorphisms
(resp. monomorphisms with degreewise projective quotient). In particular, a projective
cofibration f, : X, — Y, is degreewise split so that f, ® Z, is degreewise a monomor-
phism, and hence a cofibration in the injective model structure. If f, is trivial (i.e. a
quasi-isomorphism), its degreewise projective quotient Y,/X, is acyclic, and hence con-
tractible. Therefore (Y,/X,) ® Z, is contractible as well, and hence f, ® Z, is trivial as
required. The statement about symmetric spectra follows by an analogous argument from
Proposition I11.1.11i, Lemma I11.1.4 and Theorem I11.2.2 of Schwede’s book project [59].m

3In order to show that weak homotopy equivalences are preserved under cobase-change along closed
cofibrations, it is enough to consider weak homotopy equivalences which are closed cofibrations. In other
words, for any NDR-triad (X, X1, X2) we have to show that if (X7, X7 N X32) is co-connected then so is
(X, X5). This holds if all spaces are CW-complexes. CW-approximation reduces thus the problem to
a gluing lemma for weak homotopy equivalences between NDR-triads. This follows from the analogous
statement for excisive triads [20, Theorem 6.7.9] because each NDR-triad is homotopy equivalent to an
excisive triad by a double mapping cylinder construction.
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1.19. EXAMPLES. Below a list of frequently used monoidal model categories in which all
objects are cofibrant. By Lemma 1.12 they are thus strongly h-monoidal.

e simplicial sets;

e small categories with the folklore model structure, cf. [41, 14];

Rezk’s model for (oo, n)-categories [57];

compactly generated spaces with Strgm’s model structure;

e chain complexes over a field with the projective model structure.

There are strongly h-monoidal model categories in which not all objects are cofibrant,
e.g.

e compactly generated spaces with Quillen’s model structure, cf. Corollary 1.17;

e small 2-categories (or 2-groupoids) with the Gray tensor product, cf. Proposition
1.15 and [41, 14].

Corollary 1.18 treats two examples of h-monoidal model categories which are not
strongly h-monoidal.

1.20. RESOLUTION AXIOM AND STRONG UNIT AXIOM. It can be verified by direct in-
spection that in the preceding examples all objects are h-cofibrant. In Proposition 1.21
below we give a sufficient criterion for this to hold. This is the only place in this article
where we make explicit use of Hovey’s unit axiom [37] under a strengthened form. We
are indebted to Muro for clarifying comments, who uses in [53] another strengthening of
Hovey’s unit axiom, weaker than ours, but with a similar purpose.

The unit e of a monoidal model category £ plays an important role. The minimal
requirement for the existence of a unit in the homotopy category of £ has been formulated
by Hovey [37] as the so-called unit aziom: cofibrant resolutions of the unit should remain
weak equivalences under tensor with cofibrant objects.

It is often the case that the following (stronger) resolution axiom holds: general cofi-
brant resolutions are stable under tensor with cofibrant objects. The resolution axiom
implies (by 2-out-of-3) that the class of weak equivalences is stable under tensor with
cofibrant objects, and actually implies (again by 2-out-of-3) that cofibrant resolutions of
the unit remain weak equivalences under tensor with arbitrary objects. We call the lat-
ter property the strong unit axiom. We thus have for any monoidal model category the
following chain of implications

strongly h-monoidal = resolution axiom = strong unit axiom

The reader should observe that the strong unit axiom also holds if the unit e of &£ is
already cofibrant, in which case the following proposition has a much easier proof.
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1.21. PROPOSITION. In any h-monoidal model category, in which the strong unit axiom
holds, all objects are h-cofibrant.

PROOF. We shall use Lemma 1.4(i) for recognising h-cofibrant objects. The strong unit
axiom requires the existence of a cofibrant resolution Q(e) — e for the unit e, which
remains a weak equivalence after tensoring with arbitrary objects. For each object X of
&, we thus have a weak equivalence Q(e) ® (el X) — el X. Since the tensor commutes
with coproducts, this weak equivalence can be rewritten as

Q) (Qe) @ X) = Qe)UX el X

where the first map is the coproduct of Q(e) with Q(e) ® X — X. Therefore, since Q(e)
is h-cofibrant by Lemma 1.2, the first map above is a weak equivalence. By the 2-of-3
property of weak equivalences, the second map Q(e) Ll X — e U X is a weak equivalence
as well. But then, for each weak equivalence X — Y| the commutative diagram

Qle)UX — Qe) UY

]

el X eldY

implies that e L1 X — e lY is a weak equivalence, which shows that e is h-cofibrant.
In an h-monoidal model category we have the stronger property that Q(e) ® Z is
h-cofibrant for each object Z. Therefore, factoring the weak equivalence

Qle)®(ZUX)=(Qe)®@Z2)U(Qle)® X) = ZUX

through (Q(e) ® Z)U X yields a weak equivalence (Q(e) ® Z)UX — ZU X for all objects
Z and X. This implies as above that all objects Z are h-cofibrant. ]

1.22. REMARK. If all objects of a (monoidal) model category are h-cofibrant then each
weak equivalence factors as a trivial h-cofibration followed by a retraction of a trivial h-
cofibration, using the same argument as for Brown’s Lemma. In this case, the resolution
axiom amounts thus to the property that tensoring a trivial h-cofibration with a cofibrant
object yields a weak equivalence. In particular, the two examples of Corollary 1.18 fulfill
the resolution axiom.

The following lemma is also useful to retain:

1.23. LEMMA. In an h-monoidal model category, tensoring a weak equivalence between
cofibrant objects with an arbitrary object yields again a weak equivalence.

Proor. By Brown’s Lemma, a weak equivalence between cofibrant objects factors as a
trivial cofibration followed by a retraction of a trivial cofibration. Both factors yield a
weak equivalence when tensored with an arbitrary object. [
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2. Admissible monads on compactly generated model categories

It is well-known that the class of (trivial) cofibrations in an arbitrary model category is
closed under cobase change, transfinite composition and retract. Classes of morphisms
with these three closure properties will be called saturated.

2.1. DEFINITION. With respect to a saturated class of morphisms K in a model category
E, the class W of weak equivalences of & is called K-perfect if W is closed under filtered
colimits along morphisms in K.

2.2. REMARK. Our terminology is borrowed from Lurie [45] who calls a class of weak
equivalences perfect if it is K-perfect with respect to the saturated class K of all mor-
phisms. By Hovey’s argument (see the proof of [37, Corollary 7.4.2] or [21, Lemma 3.5]
for a more recent treatment) a sufficient condition for the K-perfectness of the class of
weak equivalences is the existence of a generating set of cofibrations whose domain and
codomain are finite with respect to K.

2.3. LEMMA. If the class W of weak equivalences is K -perfect then the intersection WNK
is closed under transfinite composition.

PROOF. Any transfinite composition of maps can be identified with the colimit of a natural
transformation from a constant diagram to the given sequence of maps. If the given maps
belong to W N K this colimit is a filtered colimit of weak equivalences along morphisms
in K. By assumption such a colimit is a weak equivalence. [

We shall say that a class of morphisms is monoidally saturated if it is saturated and
moreover closed under tensoring with arbitrary objects of the monoidal model category.
Accordingly, the monoidal saturation of a class K is the least monoidally saturated class
containing K. For instance, in virtue of the pushout-product axiom, the class of (trivial)
cofibrations of a monoidal model category is monoidally saturated whenever all objects
of the model category are cofibrant.

We are mainly interested in the monoidal saturation of the class of cofibrations. This
monoidal saturation will be denoted I'® since it suffices to monoidally saturate a generating
set of cofibrations which traditionally is denoted I. For brevity we shall call ®-cofibration
any morphism in /®. An object will be called ®-small (resp. ®-finite) if it is small (resp.
finite) with respect to I®. The class of weak equivalences will be called ®-perfect if it is
I®-perfect.

2.4. DEFINITION. [cf. [14]] A model category is called K-compactly generated if it is
cofibrantly generated, its class of weak equivalences is K -perfect, and each object is small
with respect to K.

A monoidal model category is called compactly generated, if the underlying model
category is 1®-compactly generated.

For instance, any monoidal model category whose underlying model category is com-
binatorial, and whose class of weak equivalences is closed under filtered colimits, is an
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example of a compactly generated monoidal model category. The majority of our exam-
ples are of this kind. However, compactly generated topological spaces form a monoidal
model category which is neither combinatorial nor does it have a class of weak equiv-
alences which is closed under filtered colimits. Yet, every compactly generated space
is ®-small, and the class of weak equivalences is ®-perfect, hence the monoidal model
category of compactly generated spaces is compactly generated in the aforementioned
model-theoretical sense, cf. [37, 14].

2.5. PROPOSITION. In any compactly generated h-monoidal model category, the monoid
axiom of Schwede-Shipley holds and each ®-cofibration is an h-cofibration.

If in addition the strong unit axiom holds (cf. Section 1.20) then the class of weak
equivalences is closed under arbitrary coproducts.

PROOF. The monoid axiom of Schwede-Shipley [60] requires the monoidal saturation
of the class of trivial cofibrations to stay within the class of weak equivalences. In
a cofibrantly generated monoidal model category this monoidal saturation can be con-
structed by choosing a generating set J for the trivial cofibrations, and saturating the
class {f®1z| f € J, Z € Ob&} under cobase change, transfinite composition and retract.
Since, by Lemma 1.10, each f® 1 is a couniversal weak equivalence and a ®-cofibration,
and both classes are closed under cobase change and retract, it remains to be shown
that the class of maps, which are simultaneously weak equivalences and ®-cofibrations, is
closed under transfinite composition. This is precisely Lemma 2.3 for K = I®.

For the second statement, we have to show that the monoidal saturation of the class of
cofibrations stays within the class of h-cofibrations. As before, this monoidal saturation
can be constructed by choosing a generating set I for the cofibrations, and saturating the
class {f®1z| f € I, Z € ObE} under cobase change, transfinite composition and retract.
Since each f ® 1z is an h-cofibration and a ®-cofibration, and both classes are closed
under cobase change and retract, it remains to be shown that the class of maps, which are
simultaneously h-cofibrations and ®-cofibrations, is closed under transfinite composition.
This follows from the definition of an h-cofibration, since a vertical transfinite composition
of diagrams of the form (2) (all vertical maps being h-cofibrations and ®-cofibrations)
yields a diagram of the same form (2).

For the last statement, note first that by Proposition 1.21 all objects are h-cofibrant
so that by Lemma 1.4(iii) it remains to be shown that weak equivalences are closed
under filtered colimits along coproduct injections. By the strong unit axiom, a cofibrant
resolution Q(¢) — e of the monoidal unit e yields a resolution Q(e) ® Z — Z of
each object Z by a ®-cofibrant object Q(e) ® Z. This resolution functor commutes
with colimits so that each colimit can be replaced with a weakly equivalent colimit of
®-cofibrant objects. Any coproduct injection with respect to a ®-cofibrant object is a
®-cofibration. By compact generation weak equivalences are closed under filtered colimits
along ®-cofibrations as required. [

2.6. COROLLARY. In a monoidal model category with ®-perfect class of weak equivalences,
the monoid axiom of Schwede-Shipley holds if and only if the tensor product of a trivial
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cofibration with an arbitrary object is a couniversal weak equivalence.
PRrOOF. This follows from the argument of first paragraph of the preceding proof. n

2.7. REMARK. The preceding proposition and corollary (together with 1.13, 1.14 or 1.15)
may be an efficient tool to establish the monoid axiom and left properness. For instance,
Lack’s original proofs [41, Theorems 6.3 and 7.7] of these properties for the category of
small 2-categories are quite a bit more involved.

2.8. ADMISSIBLE MONADS. Recall that a monad T on £ is called finitary if T preserves
filtered colimits, or what amounts to the same, if the forgetful functor Ur : Alg, — &£
preserves filtered colimits. Here, Alg, denotes the category of T-algebras and

FTig:AlgTZUT

the free-forgetful adjunction. Thus T' = UrFr and Fr(X) = (TX, ux) where pp: T?> = T
is the multiplication of the monad T

2.9. DEFINITION. Let £ be a model category, W its class of weak equivalences, and K
be an arbitrary saturated class in €. A monad T on £ is said to be K-admissible if
for each cofibration (resp. trivial cofibration) u : X — Y and each map of T-algebras
a: Fr(X) — R, the pushout in Alg,

Fr(X) 2R

FT(U) (4)

Uq
- |

Fr(Y) — Ru, ]
yields a T-algebra map u, : R — Rlu,a| whose underlying map Ur(uy) belongs to K
(resp. to WNK).

For all the sequel a weak equivalence f : R — S of T-algebras means a map of T-
algebras such that the underlying map Ur(f) : Ur(R) — Ur(S) is a weak equivalence in
E. A T-algebra R will be called Ur-cofibrant if the underlying object Ur(R) is cofibrant
in £.

Note that the notion of h-cofibration (cf. Definition 1.1) makes sense for any category
with pushouts and a specified class of weak equivalences. Accordingly, a map of free
T-algebras Fr(u) : Fr(X) — Fr(Y) will be called an h-cofibration if for any diagram of
pushouts of T-algebras

P2 g

Fr(Y) — Rlu,a] — Slu, fa]

in which f: R — S is a weak equivalence, the induced map R[u, a] — Slu, fa] is again a
weak equivalence. We shall say that Fr(u) is a relative h-cofibration if
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(*) for any weak equivalence f : R — S between Up-cofibrant T-algebras and any
a: Fr(X) — R, the induced map Rlu,a] — S[u, fa] is again a weak equivalence
between Ur-cofibrant T-algebras.

If all objects of £ are cofibrant, any h-cofibration Fr(u) is a relative h-cofibration. In
general there might be h-cofibrations which are not relative h-cofibrations.

2.10. DEFINITION. A model structure on T-algebras will be called relatively left proper if
for any weak equivalence f: R — S between Urp-cofibrant T'-algebras and any cofibration
R — R’ of T-algebras, cobase change along the latter yields a weak equivalence R —
R ' Ug S between Up-cofibrant T-algebras.

Again, if all objects of £ are cofibrant, then a left proper model structure on Alg,. is
automatically relatively left proper. In general however this might be wrong.

2.11. THEOREM. For any finitary K-admissible monad T on a K-compactly generated
model category &, the category of T-algebras admits a transferred model structure. This
model structure is (relatively) left proper if and only if the free T-algebra functor takes
cofibrations in & to (relative) h-cofibrations in Alg;.

PROOF. By definition of a transfer, a map of T-algebras f is defined to be a weak equiv-
alence (resp. fibration) precisely when Ur(f) is a weak equivalence (resp. fibration) in &.
Cofibrations of T-algebras are defined by the left lifting property with respect to trivial
fibrations. In order to show that these three classes define a model structure on Alg;,
the main difficulty consists in proving the existence of cofibration/trivial fibration (resp.
trivial cofibration/fibration) factorisations. For this we apply Quillen’s small object argu-
ment to the image Fr(I) (resp. Fr(J)) of a generating set I (resp. J) for the cofibrations
(resp. trivial cofibrations) of €. The following two points have to be shown:

(i) The domains of the maps in Frp(I) (resp. Fr(J)) are small with respect to the
saturation of Fip(I) (resp. Fr(J)) under cobase change and transfinite composition
in Alg;

(ii) The saturation of Fr(J) under cobase change and transfinite composition in Alg;
stays within the class of weak equivalences.

Since the forgetful functor Ur preserves filtered colimits, an adjunction argument and the
K-smallness of the objects of £ yield (i). Moreover, Lemma 2.3 and the K-perfectness of
the weak equivalences in &€ yield (ii).

If the transferred model structure on Alg, is (relatively) left proper then the left
Quillen functor Fr takes cofibrations in £ to (relative) h-cofibrations in Alg, by Lemma
1.2. Conversely, assume that Frr(u) is a (relative) h-cofibration for each generating cofi-
bration u. Note first that the forgetful functor Ur preserves transfinite compositions
since it preserves filtered colimits. It follows then from the K-perfectness of the class of
weak equivalences and the K-admissibility of 7" that cobase change along a transfinite
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composition of free T-algebra extensions of the form R — R|u, a| preserves weak equiva-
lences (between Up-cofibrant T-algebras). But any cofibration in Alg, is retract of such
a transfinite composition. Thus, Alg, is (relatively) left proper.

The reader should observe that in the relatively left proper case, we need the full con-
dition (*) of a relative h-cofibration in order to ensure that, at each step of the transfinite
composition, the underlying objects are cofibrant. [

2.12. PROPOSITION. The free T-algebra functor takes cofibrations to relative h-cofibrations
if it takes cofibrations with cofibrant domain to relative h-cofibrations.

PROOF. Suppose that v : X — Y is a cofibration. We have to show that for a weak
equivalence f : R — S between Up-cofibrant T-algebras, the morphism R[u, o] — Slu, fa]
in the diagram (5) is a weak equivalence. Let o/ : X — Ur(R) be the composite

X 5 UpFn(X) "™ Up(R)

and consider the following pushout in & :

!/

— Ur(R)

X

U\ (%
[

Y —— P

The given map « factors as
Fr(x) "™ prUr(R) 5 R

where £ is the structure map of the T-algebra R. Therefore, by the universal property of
pushouts, the right-hand square of the following commutative diagram

Fo0) 1) poar) F e R
FT(U) \
Fe(Y) Fy(P) — Rlu, ]

is a pushout. Hence, we get the following pushout diagram in Alg, :

FrUn(R) -~ R /

Fr(v)
I%Gﬁ*Rde(rSWLM

Since v is a cofibration with cofibrant domain, Fr(v) is a relative h-cofibration by
assumption, so that Rfu,a] — S[u, fa] is a weak equivalence as required. n
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2.13. DEFINITION. A monad T is K-adequate if the underlying map of any free T-algebra
extension u, : R — Rlu, a| admits a functorial factorisation

Ur(R) = R[u]® = Ru]® — ... = Ru]™ — ... - colim,R[u]™ = Up(R|u, a]);

such that for a (trivial) cofibration u, each map of the sequence belongs to K (resp. WNK ),
and for a weak equivalence f : R — S, the induced morphisms R[u]™ — S[u]™ are weak
equivalences for all n > 0.

A monad T is relatively K-adequate if the second condition only holds for cofibrations
u with cofibrant domain and for weak equivalences f : R — S between Ur-cofibrant T -
algebras, and the individual maps of the horizontal sequences are cofibrations.

2.14. THEOREM. Any finitary (relatively) K -adequate monad T on a K-compactly gen-
erated model category £ is K-admissible, and the associated free T-algebra functor takes
cofibrations to (relative) h-cofibrations. Hence, the category of T-algebras has a transferred
model structure which is (relatively) left proper.

PRrROOF. The second statement follows from the first and from Theorem 2.11.

That a K-adequate monad is K-admissible follows from the saturation of K and from
Lemma 2.3. Moreover, given a cofibration u : X — Y and a weak equivalence f: R — S
of T-algebras, the underlying map of morphism R[u,a] — S[u, fa] of diagram (5) is a
sequential colimit of a ladder in &

Ru)® — Ru]Y — ... — R[u]"™ — ... — colim, R[u]"™ = Up(R[u, a])

.

Su)® — S[u)V — . — S[u]™W — ... — colim,, S[u]™ = Ur(S[u, fa])

in which the vertical maps are weak equivalences and the horizontal maps belong to K.
Since £ is K-compactly generated this colimit is a weak equivalence. This shows that the
free T-algebra functor takes cofibrations to h-cofibrations.

For the relative version, K-admissibility is proved as before. For the relative h-
cofibration property of Fr(u) we can assume, according to Proposition 2.12, that u has
a cofibrant domain. Then, by assumption, the horizontal maps of the diagram above are
cofibrations so that their composite is a cofibration as well, whence Ur(R][u, a]) is cofi-
brant, given that R is Up-cofibrant by assumption. Moreover, the colimit of the ladder
is a weak equivalence by the same argument as before (or by invoking a Reedy telescope
lemma). Therefore, Frr(u) is a relative h-cofibration. ]

3. Monoids in h-monoidal model categories

This section presents the main result of Schwede-Shipley [60] concerning the existence of
a model structure on monoids if the monoid axiom holds. We add a discussion of left
properness of the transferred model structure, cf. Muro [53].
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Recall that I® denotes the monoidal saturation of the class of cofibrations, and that
any morphism in I® is called a ®-cofibration. Accordingly, we say ®-admissible (resp.
®-adequate) instead of I®-admissible (resp. I®-adequate).

3.1. THEOREM. For any compactly generated monoidal model category £ the free monoid
monad T on & is :

(a) relatively ®@-adequate if the monoid axiom holds;
(b) ®-adequate if € is strongly h-monoidal.
And hence

(d') there is a relatively left proper transferred model structure on monoids if the monoid
azxiom holds;

(V') the model structure on monoids is left proper if £ is strongly h-monoidal.

PRrOOF. ('), (b') follow from (a), (b) and Theorem 2.14.

Let R be a monoid in &, and let u : Yy — Y; be a map in & equipped with a map
of monoids Fr(Yy) — R. We shall exhibit the pushout in the category of monoids as a
sequential colimit in £.

Let R[u]® = R and define inductively R[u]™ by the following pushout

v — Rlu)®

where
n
N\

YW =RV,9R® - ®Y,® R

and Y™ is the colimit of a diagram over a punctured n-cube {0,1}* — {(1,..., 1)} in
which the vertex (iy,...,14,) takes the value

RRY, ®  -®R®Y;, @R

and the edge-maps are induced by u. The map Y™ 5 y®™ ig the comparison map from
the colimit of this diagram to the value at (1,...,1) of the extended diagram on the
whole n-cube. The map v R[u]™Y is defined inductively, using the fact that the
construction of R[u]™™V involves n — 1 tensor factors only.

Since the tensor —® — commutes with pushouts in both variables, there are canonical
maps of R[u]® @ R[u]@ — R[u]®+?. Since the tensor — ® — commutes with sequential
colimits in both variables, these maps induce the structure of a monoid on the colimit
colim,, R[u]™. A proof that this monoid has indeed the universal property of R[u] has
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been sketched in [60]. We obtain in Theorem 7.11 below a far-reaching generalisation of
this result.

We shall now prove that, for each n > 0, the map R[u]™ " — R[u]™ is a (trivial) ®-
cofibration whenever u is a (trivial) cofibration. The considered map derives from y™

Y™ through a cobase change. Collecting all tensor factors R, the map Yy o ym
may be identified with an iterated pushout-product map along u, tensored with R®"*1,
Therefore, Y™ — Y™ is a ®-cofibration and its cobase change Ru)™Y — R[u]™ as
well. If w is a trivial cofibration, the iterated pushout-product map is a trivial cofibration,
and its tensor product with R®"*! is a couniversal weak equivalence by the monoid axiom;
thus R[u]™ Y — R[u]™ is a trivial ®-cofibration. This proves that the free monoid monad
is ®-admissible.

For the proof of (a) we consider for each n > 0, the following commutative cube in €

Z(") S[u] (n—1)

7(n) - S[u] (n)

/ /

y () R|u] (n)

in which 2" — Z® is defined like Y™ — y®@ just replacing R with S, and where we
assume that Ur(R) and Up(S) are cofibrant, and that u has a cofibrant domain.

Front and back square of the cube are pushouts; in particular the right vertical maps
are cofibrations since the left vertical maps are so by the pushout-product axiom. The
natural transformation from front to back square is induced by tensor powers of f : R — S.
By induction, it suffices now to show that R[u]™ — S[u]™ is a weak equivalence whenever
R[u)™ Y — S[u]™Y is. Indeed, all objects of the cube (7) are cofibrant, the two left
vertical maps are cofibrations, and the two left horizontal maps are weak equivalences.
Proposition 1.8a implies then that R[u]™ — S[u]™ is a weak equivalence as required.

For the proof of (b) we consider the same cube assuming that £ is strongly h-monoidal
and that f : R — S is a weak equivalence of monoids. We have seen that Y™ oy

and Z™ — Z™ are ®-cofibrations and hence h-cofibrations by Proposition 2.5.
Since £ is strongly h-monoidal, the tensor power f&"+! . RO+l o Gontl g aoain a
weak equivalence. Hence, for any vertex (iq,...,1,) of the n-cube, the map

RRY;, ®  -QR®Y;, 9 R—-SQY;, ®---5S®Y;, @S (8)

is a weak equivalence. Recollecting the tensor factors as above shows that the maps
Y® — 720 and Y™ — 2™ are weak equivalences. Proposition 1.8b implies then that
if Rlu]™Y — S[u]™ Y is a weak equivalence then so is R[u]™ — S[u]™. n
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4. Diagram categories and Day convolution

As a first application of our methods we observe that the class of compactly generated
(strongly) h-monoidal categories £ is closed under taking diagram categories over a small
E-enriched category C. More precisely, let £ be a monoidal model category and C be a
small E-enriched category. Let [C, &] be the category of E-enriched functors and E-natural
transformations. Let Cj be the set of objects of C, considered as a discrete £-category.
We have an inclusion £-functor i : Co — C. The category [Co, ] = £ has an obvious
product model structure.

There is a monad i*i, on [Cy, £] where ¢* denotes the restriction functor and i, its left
adjoint. The restriction functor i* is monadic, and the projective model structure on [C, £]
is by definition the model structure which is transferred from [Cy, £] along the adjunction
i : [Co, &] S [C, €] : * if such a transfer exists.

We shall call an object of £ discrete if it is a coproduct of copies of the unit of £.
Clearly, any tensor product of discrete objects is again discrete.

4.1. THEOREM. Let &€ be a compactly generated monoidal model category, and let C be
a small E-enriched category. Then the projective model structure on [C, & exists in each
of the following three cases:

(i) all hom-objects of C are discrete in &;
(i) all hom-objects of C are cofibrant in &;

(i11) the monoid axiom holds in E.

The projective model structure on [C,E] is left proper if either £ is h-monoidal (and
hence (i) holds), or if £ is just left proper, but (i) or (ii) holds. If moreover C is equipped
with a symmetric monoidal structure, then [C, E] is a compactly generated monoidal model
category with respect to Day’s convolution product, and

(a) the monoid axiom holds in [C,E] whenever it holds in E;
(b) [C,E&] is (strongly) h-monoidal whenever £ is (strongly) h-monoidal;
(c¢) all objects in [C, E| are h-cofibrant whenever all objects in € are h-cofibrant.

PROOF. The existence and left properness of the projective model structure on [C,£]
follows from Theorem 2.11 if we prove that the monad %4, is K-admissible, where K is
the class of pointwise @-cofibrations. Note that the class of weak equivalences in [Cy, £] is
K-perfect. Moreover, all objects of [Cy, £] are K-small, so that [Cy, £] is a K-compactly
generated model category. Note also that the monad ¢*¢, is finitary because the right
adjoint ¢* is left adjoint as well and thus preserves all colimits.
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Now, for any object X of [Cy, &£], we have (41X )(a) = Lpec, C(b, a) @ X (b). Let u : X —
Y be a morphism in [Cy, £] and let « : 44X — R be a morphism in [C, £]. This defines for
each a € C, the following pushout

«

[Tc®,0) @ X(b) R(a)
¢ u
—
[[c®.0) @Y (b) — Rlu,a](a)

beC

in £. For the K-admissibility of i*i, we have to show that the right vertical map is a
®-cofibration (resp. weak equivalence) if v : X — Y is a cofibration (resp. trivial cofibra-
tion). This is obviously the case under assumptions (i) and (ii). For case (iii), note first
that a pushout u : R(a) — R|u, a](a) like above can be realised as a transfinite composi-
tion of pushouts of single maps C(b,a) ® X (b) — C(b,a) ® Y (b). For any cofibration u,
such a pushout is a ®-cofibration, and hence a transfinite composition of them is again a
®-cofibration. For a trivial cofibration u, the analogous transfinite composition belongs
to the monoidal saturation of the class of trivial cofibrations, and is therefore a weak
equivalence under assumption (iii).

If € is left proper and C satisfies (i) or (ii) then the left vertical map above is a
cofibration, and left properness of £ implies left properness of [C,£]. Under assumption
(iii) and assuming that £ is h-monoidal, Proposition 2.5 shows that the left vertical map
above is an h-cofibration which implies left properness of [C, &£].

From now on we assume that C is a symmetric monoidal category with tensor

©:CxC—-C

and we endow [C,&] with the Day convolution product. There is an external tensor
product ® : [C,&] ® [C,E] — [C ® C,&] which is a Quillen functor of two variables
with respect to the projective model structures on both sides, cf. Barwick [4]. Left
Kan extension along the tensor ® : C ® C — C also yields a left Quillen functor ®; :
[C®C,E&] — [C,E&]. Therefore, the composite functor

o Ce e e e

which may be identified with the Day convolution product, is a left Quillen functor of
two variables, hence [C, £] satisfies the pushout-product axiom. The unit axiom for [C, ]
follows from the unit axiom for &£.

For the compact generation of [C, €], note first that the projective model structure
on [C, £] is K-compactly generated for the saturated class K of pointwise ®-cofibrations,
since the weak equivalences of [C, | are pointwise weak equivalences, and colimits in
[C, £] are computed pointwise. Therefore, it suffices to show that each generating cofi-
bration of [C, &] belongs to K, and that K is stable under Day convolution —0Z with
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an arbitrary object Z. The aforementioned formula for the left adjoint ¢, shows that i
takes cofibrations in [Cy, £] to pointwise ®-cofibrations in [C,&]. Observe furthermore
that XOZ is a pointwise retract of (i;i*X)0(47*Z), and hence fOZ is a pointwise retract
of (ii*f)a(ii*Z) for any map f : X — Y in [C,&]. The latter morphism evaluated at
c € Cy is given by

[[Claebc)eX(@) @ z®) = [[Claob,c)@Y(a) @ Z(b) (9)

which is a ®-cofibration whenever f : X — Y is a pointwise ®-cofibration. Hence, the
pointwise retract fOZ is also a pointwise ®-cofibration, as required.

For statement (a), it will now be enough to apply Corollary 2.6 and to show that for a
trivial cofibration f : X — Y, we get a couniversal weak equivalence foz : XoZ — Yoz
in [C, £]. For this, observe that like before foZ is a pointwise retract of (iyi* f)a(ii*Z).
The latter evaluated at ¢ € Cy is given by coproduct (9) above. Since the monoid axiom
holds in &£, each component of this coproduct is as well a couniversal weak equivalence as
well a ®-cofibration. Writing this coproduct as a transfinite composition of pushouts of
its components shows (in virtue of Lemma 2.3) that the coproduct itself is a couniversal
weak equivalence. Since couniversal weak equivalences in [C, £] are pointwise couniversal
weak equivalences and since they are closed under retract, fOZ is indeed a couniversal
weak equivalence.

For statement (b), observe first that since colimits in [C, £] are computed pointwise,
and since the weak equivalences in [C,&] are the pointwise weak equivalences, the h-
cofibrations in [C, £] are precisely the pointwise h-cofibrations. Therefore, a similar ar-
gument as above (based on Proposition 2.5) yields (b). Statement (c) follows easily from
Lemma 1.4ii. [

4.2. REMARK. This theorem recovers and strengthens Theorem 4.4 and Corollary 4.8
of Dundas-Ostveer-Rondigs [21]. We do not talk about right properness here but right
properness is preserved under any transfer.

If € possesses a sufficiently nice system of spheres (with symmetries) then the for-
malism of [21] enables one to define (symmetric) spectra in €, as C-enriched functors on
a certain E-enriched category C which satisfies assumption (ii) above. Therefore, there
exists a levelwise projective model structure on (symmetric) spectra in any compactly
generated monoidal model category £ with nice system of spheres (with symmetries).
This projective model structure is thus h-monoidal whenever £ is. In this special case,
h-monoidality could also be derived from Proposition 1.13, since there is a suitable injec-
tive model structure on (symmetric) spectra witnessing the fact that C is a (generalised)
E-enriched Reedy category.

4.3. REMARK. Any one-object £-enriched symmetric monoidal category C can be viewed
as a commutative monoid in £ and vice-versa. In this case, the diagram category [C, &]
(equipped with the Day convolution product) may be identified with the category of C-
modules (equipped with the usual tensor product of C-modules). Theorem 4.1 for this
special case recovers one of the results of Schwede-Shipley [60].
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Part 11

Algebras over tame polynomial monads

In this second part we study algebras over polynomial monads and show that the tech-
niques of Part 1 are applicable to them. Polynomial monads are intermediate between
non-symmetric and symmetric coloured operads. They have remarkable properties which
among others allow a thorough combinatorial analysis of free algebra extensions. Beside
the prototypical example of the free monoid monad, most of the currently used notions of
operads are expressible as algebras over polynomial monads. Part 3 treats these examples
in more detail. The reader may wish to go forth and back between Parts 2 and 3 so as to
have concrete examples at hand.

The main new result of this second part is a combinatorial condition under which
a polynomial monad is relatively ®-adequate (resp. ®-adequate) whenever the ambient
compactly generated monoidal model category is h-monoidal (resp. strongly hA-monoidal).
In particular we get a (relatively) left proper model structure on the algebras over this
monad. Polynomial monads which satisfy this condition will be called tame. At the end
of this second part we study the Quillen adjunction induced by a cartesian morphism of
tame polynomial monads, and describe the total left derived functor of such an adjunction
as a homotopy colimit.

There are other techniques for establishing the existence of a transferred model struc-
ture on algebras. One of the most popular and powerful methods, applicable to algebras
over symmetric operads, goes back to a joint paper of the second author and Ieke Moerdijk
[11]. This method was generalised further in [13, 22, 32]. Since polynomial monads can
be considered as a particular kind of coloured symmetric operad, it follows that under
the Berger-Moerdijk conditions (the existence in £ of a cocommutative interval and of
a symmetric monoidal fibrant replacement functor), the category of algebras over any
polynomial monad admits a transferred model structure. This is in particular the case
for the category of chain complexes over a field of characteristic 0, or the categories of
simplicial sets, resp. compactly generated topological spaces.

These conditions are however not satisfied in all cases of interest, nor do they provide
a clue for approaching the problem of left properness of transferred model structures. It
makes therefore sense to consider the smaller class of tame polynomial monads for which a
transfer exists under less restrictive conditions on &, and for which the transferred model
structures are at least relatively left proper.

5. Cartesian monads and their internal algebra classifiers

In this section we recall the theory of internal algebra classifiers of the first author [6]
including its recent developments (cf. [66, 67]). This tool is fundamental for us because
it enables us (cf. Section 7) to replace free algebra extensions with left Kan extensions
which are easier to handle. We formulate the theory for general cartesian monads, though
later on we shall only apply it to polynomial monads.
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The reader less familiar with 2-category theory can skip the 2-categorical Definitions
5.3 and 5.9, and take Theorems 5.4 and 5.10 as definitions. Indeed, as far as cartesian
monads are concerned, the theory of internal algebra classifiers can be considered as a
2-categorical characterisation of the well-known simplicial bar resolution (cf. [49]), the
internal algebra classifier being a categorified version of it.

It should however be observed that the whole theory applies to arbitrary 2-monads
and yields here internal algebra classifiers which in general are not anymore categorified
bar resolutions (cf. [66, 67]).

5.1. INTERNAL CATEGORIES AND THEIR SIMPLICIAL NERVES. —

Let C be a category with pullbacks. An internal category C in C is a reflexive graph
C1 =—— Cy equipped with a unitary and associative multiplication m : C; x¢, C; — Cf.
This data assembles into a 2-truncated simplicial object

pr2
S <
-~
m
C()—Zt>01 ‘pTCl XCo Cl
-~ -~

enjoying the additional property that the following square

chl Xcy M
Cl X Co Cl X Co Cl Cl X Co Cl
m X¢, idcl m
Cr X, G4 - C)
m

commutes. An internal functor between internal categories is a natural transformation
of the associated 2-truncated simplicial objects. Internal categories and internal functors
form a category, denoted Cat(C). Each internal category C' extends to a simplicial object
C, in C, the so-called nerve of C, by

n
-

Cp=0C1Xgy Xy C1, n>0,

with obvious simplicial operators. The nerve functor (-), : Cat(C) — C2* is fully faithful
and its essential image consists of those simplicial objects C, of C for which the Segal maps

n
-

Cn—>ClXCO"'XCOC;7 n207

are invertible. A simplicial object with invertible Segal maps will be called a strict Segal
object. The nerve functor induces thus an equivalence of categories between internal
categories and strict Segal objects. Accordingly, the 2-truncation of a strict Segal object
will be called its underlying internal category.

Each internal category C' possesses an internal arrow category Arr(C') with Arr(C)y =
Cy and Arr(C); = Cy X, Cy. The latter object represents “commuting squares” in C'
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so that “projecting in one direction” yields the structural source/target maps Arr(C); =
Arr(C)y while “projecting in the other direction” yields two internal functors s¢,tc :
Arr(C) = C. For two internal functors f, g : C' = D, an internal natural transformation
¢ : f = gis given by an internal functor ¢ : C' — Arr(D) such that f = sp¢ and g = tpo.

Internal categories, internal functors and internal natural transformations form a 2-
category, still denoted Cat(C). For C = Set we obtain the familiar 2-category Cat =
Cat(Set) of small categories, functors and natural transformations.

5.2. STRICT AND LAX MORPHISMS OF CATEGORICAL T-ALGEBRAS. —

A natural transformation is called cartesian if all naturality squares are pullbacks. A
monad T = (T, pu,n) on a category C with pullbacks is called cartesian if T preserves
pullbacks, and as well the multiplication p : T? = T as well the unit 7 : idc = T of the
monad are cartesian natural transformations.

Let T be a cartesian monad on a finitely complete category C. Since T' preserves
pullbacks it induces a monad on the category Cat(C) of internal categories. Algebras
for this extended monad (also denoted T') are called categorical T-algebras. As usual,
categorical T-algebras can either be considered as T-algebras in internal categories, or as
internal categories in T-algebras. According to the preceding subsection a categorical T-
algebra can thus also be viewed as a strict Segal object in T-algebras. For instance, since
the multiplication of T" is cartesian, any T-algebra (X,&x : T(X) — X) has a simplicial
bar resolution B,(T,T,X) = T**1(X) which is such a strict Segal object in T-algebras,
cf. the proof of Theorem 5.4.

The monad T on Cat(C) takes an internal natural transformation ¢ : f = ¢ to an
internal natural transformation 7'(¢) : T(f) = T(g). Such a monad on a 2-category
gives rise to a so-called 2-monad. This allows the definition of two different notions of
morphisms of categorical T-algebras. Beside the classical strict morphisms there are also
the lax morphisms, cf. [42, 66]. Let (A,&a), (B,£p) be categorical T-algebras. A lax
morphism (A,£4) — (B,&p) is given by a pair (f,¢) consisting of an internal functor
f: A — B and an internal natural transformation

T(A)MJ( B)
€a ¢>/ 3%
A f B
such that the following conditions hold:
AL B A—Lp
na B
T T = i, id
fA‘ % e
A—1 g Aa—L . p

and
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T*(A) o
/ \’K{) fa \R(;f)
T(A) s T*B)  T(A) M 7(6), T2(B)
I
¢/Tr 7(B) A/Qg/RT(B)

B

A T-natural transformatlon between two lax morphisms (f, @), (g,%) : A = B is given by
an internal natural transformation p : f = ¢ such that

T A

For a cartesian monad 7" on a category C with pullbacks, categorical T-algebras, strict
morphisms of categorical T-algebras and T-natural transformations form a 2-category
which we shall denote Alg,(Cat(C)) or Cat(Alg,(C)).

If C has a terminal object 1 and hence is finitely complete then Cat(C) as well has a
terminal object and is finitely complete. An internal category C' is terminal if and only if
Cy and Cy are terminal. A terminal internal category has a unique T-algebra structure;
the latter promotes it to a terminal categorical T-algebra. All terminal objects will be
denoted 1 hoping that this will cause no confusion.

5.3. DEFINITION. [6] Let A be a categorical T-algebra for a cartesian monad T .

An internal T-algebra in A s a lax morphism of categorical T-algebras from the ter-
minal categorical T-algebra to A.

Internal T-algebras in A and T-natural transformations form a category Inty(A) and
this construction extends to a 2-functor Inty : Alg;(Cat(C)) — Cat.

5.4. THEOREM. [6] The 2-functor Inty is representable. The representing categorical
T-algebra T" in Algy(Cat(C)) is the underlying internal category

T() —=T(1) T=—T°(1) (10)

of the simplicial bar resolution Be(T,T,1) of the terminal T-algebra in Alg,(C).

This categorical T-algebra T will be called the internal algebra classifier of T because
morphisms of categorical T-algebras TT — A correspond one-to-one to lax morphisms of
categorical T-algebras 1 — A, i.e. to internal T-algebras in A.

PROOF. The free-forgetful adjunction Fr : C = Alg,(C) : Ur induces a simplicial bar
resolution Be(T,T,1) of the terminal T-algebra 1 in Alg,(C). Explicitly, Bo(T,T,1) =
T*t1(1) with the usual simplicial operators, induced by multiplication and unit of T
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Since T" has a cartesian multiplication, the following naturality square (where ! : 7'(1) — 1
denotes the unique T-algebra structure of 1)

is a pullback in Alg;,(C), and hence the Segal map T°(1) — T?(1) xp(1) T?(1) is invertible.
Notice that this pullback square realises the identity of simplicial face operations 9°9? =
00! : By(T,T,1) — Byo(T,T,1). Similarly, the cartesianness of p : T? = T implies that
the identity of simplicial face operations 9°0" = 9"~ 19° : B,(T,T,1) — B,_o(T,T,1) is
realised by a pullback square in Alg,(C). It follows then by induction on n that all higher
Segal maps

n
-

~

B.(T,T,1) — B:(T,T,1) X Bo(T,T,1) " ** X By(T,T,1) B.(T,T,1)

are invertible, so that (10) is the 2-truncation of a strict Segal object in T-algebras, and
therefore represents indeed a categorical T-algebra T7.

It remains to be shown that TT has the asserted universal property, namely that the
category of strict morphisms TT — A is canonically isomorphic to the category of lax
morphisms 1 — A. Our proof closely follows Lack [42, Section 2].

A lax morphism of categorical T-algebras 1 — A consists of an internal functor a :
1 — A together with an internal natural transformation ¢ from 7'(1) @ T(A) 4 4 to

T(1) = 1% A fulfilling coherence conditions. Now, the existence of the 1-cell a : 1 — A

in Cat(C) amounts to the existence of the 1-cell a : T'(1) 7@ (A) 4 Ain Alg,(Cat(C)).

Moreover, the existence of the 2-cell ¢ in Cat(C) amounts to the existence of the 2-cell
¢ =&a-T(¢) in Algp(Cat(C)).

It can be checked that the coherence conditions of a lax morphism 1 — A translate
under this correspondence into the coherence conditions of a morphism of categorical T-
algebras (a, ¢, ¢ x5 ¢) : TT — A. This correspondence respects the category structures
on both sides and is 2-functorial in A, see [42] for details. n

5.5. EXAMPLE. The previous theorem applies to the free monoid monad T which is a
cartesian monad on Set. In this case, categorical T-algebras are strict monoidal small
categories. Bénabou [10] noticed that a lax monoidal functor from the terminal monoidal
category to a monoidal category A is the same as a monoid in A. The category of internal
T-algebras in A is thus the category of monoids in A.

On the other hand, the internal algebra classifier T is easily identified with a skeleton
of the category of finite ordinals and order-preserving maps, also known as the augmented
simplex category A, . This is a strict monoidal category with unit the empty ordinal,
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and tensor given by the join of ordinals. This strict monoidal category contains a generic
monoid (the first non-empty ordinal) and Theorem 5.4 recovers the well-known fact that

monoids in a (strict) monoidal category A are the same as (strict) monoidal functors from
A+ to A.

5.6. MONAD MORPHISMS. Let S (resp. T') be a finitary monad on a cocomplete category
D (resp. C). For any functor d : C — D with left adjoint ¢ : D — C the following three
conditions are equivalent:

1. There exists a functor d' : Algr — Algs such that Usd = dUr;

2. There exists a natural transformation ¥ : Sd = dT compatible with the multipli-
cation and unit of S and T

3. There exists a morphism of monads ® : S = dTc.

The equivalence between (1) and (2) is classical and does not require the existence of
a left adjoint c. For the equivalence between (2) and (3), use unit 7 : idp = dc and counit
€ : cd = 1dc of the adjunction to define ® = Weo Sy, resp. ¥ = dTeodd. A 2-categorical
diagram chase shows that these two assignments are mutually inverse.

If these conditions are satisfied then by the adjoint lifting theorem the functor d’ has
a left adjoint ¢’ such that the following square of adjoint functors commutes:

/

Algg ——0—— Alg,
Ug ‘Fs Ur ‘FT (11)
D C
C

The natural transformation ® : S = dTc yields (by adjunction) a natural transfor-
mation @ : ¢S = Tc and hence a natural transformation T®" : T'cS = T?c which, after
composition with pc : T?c = Te, gives rise to a natural transformation

0:TcS=Tc
inducing the structure of a right S-module on the composite functor Tc: D — C.

5.7. DEFINITION. We will say that ® : S = dT'c is a cartesian monad morphism if ®
is a cartesian natural transformation and ¢ 4 d is a cartesian adjunction (i.e. unit and
counit are cartesian natural transformations and ¢ preserves pullbacks).

5.8. LEMMA. For a natural transformation ® : S = dT'c between cartesian monads such
that ¢ 4d is a cartesian adjunction, the following conditions are equivalent:

(i) the natural transformation ® : S = dT'c is cartesian;
(i) the natural transformation ® : ¢S = Tc is cartesian;

(i11) the natural transformation 0 : T'cS = T'c is cartesian.
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PROOF. ® is cartesian if and only if ® is because of the identities & = (eT'c)(c®P) and
® = (d®')(nS) and the hypothesis that ¢ preserves pullbacks. Since p : T? = T is
cartesian and 0 = (uc)®’ we see that @' is cartesian if and only if @ is. n

5.9. DEFINITION. [6] Let ® : S = dT'c be a cartesian monad morphism.

An internal S-algebra in a categorical T-algebra A is a lax morphism of categorical
S-algebras from the terminal categorical S-algebra to d'(A).

Internal S-algebras in A and S-natural transformations form a category Intg(A). This
construction extends to a 2-functor

Intg : Algp(Cat(C)) — Cat.

5.10. THEOREM. [6] The 2-functor Intg is representable. The representing categorical
T-algebra TS is the underlying internal category

Te(l) m—= TcS(1) == TcS*(1) (12)

of the two-sided simplicial bar construction Be(Tc,S,1) = TcS*(1) of the terminal S-
algebra, where the right action of S on Tc is given by 6 : TcS = Tec.

This categorical T-algebra T*® will be called the internal S-algebra classifier of T because
morphisms of categorical T-algebras T® — A correspond one-to-one to lax morphisms of
categorical S-algebras 1 — d'(A), i.e. to internal S-algebras in A.

PROOF. Since @ : S = dT'cis a cartesian monad morphism, the right action 6 : TcS = Tc
is cartesian as well (cf. Lemma 5.8), so that Be(T'c, S, 1) is a strict Segal object of Alg,(C)
by the same inductive argument as in the proof of Theorem 5.4.

The universal property of the underlying categorical T-algebra T follows now from
the following adjunction argument. Lax morphisms 1 — d’(A) correspond by Theorem
5.4 one-to-one to simplicial maps Be(S,S,1) — d'(A).; the latter correspond via the
adjunction ¢ 4 d' to simplicial maps ¢ B,(S,S,1) — A,. The simplicial isomorphism
' Be(S,5,1) = B,(Tc, S, 1) permits us to conclude. n

5.11. INTERNAL LEFT KAN EXTENSIONS. For each categorical T-algebra A, the cartesian
monad morphism ® : S = dTc induces a functor

6% : Intp(A) — Intg(A),

taking an internal T-algebra X : 1 — A to the internal S-algebra d'(X) : 1 — d'(A).
In good cases, the functor §% admits a left adjoint

7% Intg(A) — Intp(A).

It is one of the crucial observations of [6] that this left adjoint v (if it exists) can be
computed as an internal left Kan extension. Indeed, §% may be identified with restriction
(T*)* along a certain internal functor of classifiers

T?: TS — T"
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in the following way: represent an internal T-algebra X in A by X : TT — A. Then the
internal S-algebra §%(X) is represented by the composite morphism

T* X
TS — . 7 - A

Accordingly, the left adjoint ¥4 may be identified with left Kan extension (T?), along
the same internal functor. On objects, the internal functor T? : TS — T7 is given by
T("): Te(l) = T(1), where ! : ¢(1) — 1 while on morphisms T* is given by

Tes(1) 25 2¢(1) Y 12(1),

5.12. PROPOSITION. [6] Let A be a categorical T-algebra and @ : S = dT'c be a cartesian
monad morphism.

The adjoint pair v% : Intg(A) = Intp(A) : 6% is represented by left Kan extension and
restriction along the internal functor T* : TS — T7 in T-algebras.

PROOF. It suffices to show that 6% is represented by restriction along T?.

The image 6% (X) of an internal T-algebra X : 1 — A is the lax morphism of categorical
S-algebras d'(X) : 1 = d'(1) — d'(A). By Theorem 5.4, such a lax morphism is represented
by a simplicial map Be(S,S,1) — d’'(A)e. In virtue of the adjunction ¢ 4 d’, the latter
corresponds to a simplicial map ¢ B4(S, S, 1) = Bs(T¢, S,1) — A,. It remains to be shown
that this simplicial map factors through the simplicial map Be(T,T,1) — A, representing
the internal T-algebra X.

The required simplicial map ¢ B,(S,S,1) — Be(T,T, 1) is adjoint to a simplicial map
B.(S,5,1) = d'Bo(T,T,1). The latter derives from the natural transformation ¥ : Sd =
dT so that the former derives from its “mate” ® : ¢S = Tec. As underlying internal
functor we get the functor T* : T® — T7 defined above. m

5.13. DEFINITION. [67] Let (A,&4) be a categorical T-algebra and € : B — C be a mor-
phism of categorical T-algebras. The algebra A is called cocomplete with respect to & if

for any morphism of T-algebras F' : B — A the following pointwise left Kan extension
F

B A
g{y
C

ezists in Cat(C) and the induced diagram
T(B) T(F) T(A) |

T(V
T(G)

T(C)

()

exhibits 4 - T(G) as the pointwise left Kan extension of €4 - T'(F') in Cat(C).
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5.14. THEOREM. [67] Let A be a categorical T-algebra which is cocomplete with respect
to T* : TS — TT and let Y be an internal S-algebra in A. Then the pointwise left
Kan extension of Y along T?® in Alg,(Cat(C)) exists and its underlying functor is the
pointwise left Kan extension of Up(Y) along Up(T?).

In particular,

Ur((T*)(Y)) = colimUT(Ts)UT(Y) in  Cat(C).
A useful generalisation is the following relative version. Let
R—>—5
N , e
be a commutative triangle of cartesian monad morphisms (cf. Definition 5.7). As above
it induces a morphism of categorical T-algebras T* : T* — TS,

5.15. THEOREM. [67] Let A be a categorical T-algebra which is cocomplete with respect
to T* : T® — T° and let Y be an internal R-algebra in A. Then the pointwise left
Kan extension of Y along T% in Alg (Cat(C)) exists and its underlying functor is the
pointwise left Kan extension of Up(Y) along Ur(T?).

In other words, the following diagram of adjoint functors commutes:

(T%)"
Il’ltR(A) IIlts (A)
(T?),
UT UT
UT(T{))*
[Ur(T), Ur(A)] [Ur(T%), Ur(A)]
Ur(T?),

5.16. REMARK. Theorems 5.14 and 5.15 are valid more generally in a 2-monadic setting,
and a conceptual proof is based on an internalisation of Guitart’s theory of exact squares
[30]. A detailed exposition would lead us too far from our main purpose and we refer the
reader to Weber [67]. Theorem 2.4.4 and Theorem 5.7.2 in [oc. cit. yield a comparatively
short proof in the special case of cartesian monads. The two main ideas entering in the
proof may be summarised as follows:

(a) If in the situation of Definition 5.13 the additional assumption is made that the
commuting square of internal functors

78 L& )
fB{ Eo
B C
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is ezact (cf. [67, Definition 2.4.1]) then the pair of pointwise left Kan extensions

is a pseudomorphism of T-algebras and the forgetful functor Alg;(Cat(C)) — Cat(C)
preserves the pointwise left Kan extension of F': B — A along ¢ : B — C.

(b) Under the hypotheses of Theorem 5.14 (and similarly for Theorem 5.15) the com-
muting square of internal functors

T(T*?)

T(TS) T(TT)
| o
T T

is indeed exact in Cat(C) by [67, Proposition 4.3.4] since it is a pullback square and the
vertical functors are discrete fibrations.

It is remarkable that the cartesianness of the unit of the monads .S and 7" is not needed,
neither for the existence of the internal algebra classifiers nor for the validity of Theorems
5.14 and 5.15. We are however not aware of a single example of a pullback preserving
monad, whose multiplication is cartesian and whose unit is not. So, we preferred to keep
working with cartesian monads.

6. Polynomial and tame polynomial monads

In this section we recall the definition of a polynomial monad in sets and of its associ-
ated coloured symmetric operad. We also introduce the new concept of a tame polynomial
monad which will be crucial for us. For a nice and instructive account of polynomial func-
tors we recommend Kock’s article [38] from which we shall borrow the idea of representing
coloured bouquets as certain special polynomials. For a general treatment of polynomial
monads in locally cartesian closed categories the reader may consult Gambino-Kock [24].
An extension to categories with pullbacks has been studied by Weber [64]. Earlier ap-
pearances of polynomial functors can be found in the articles of Tambara [62] and of
Moerdijk-Palmgren [51].

6.1. POLYNOMIAL FUNCTORS. For any set I we denote Set/I the comma category over
I. Objects of Set/I are mappings 7 : X — I, and morphisms of Set/I are commuting
triangles over I. For each i € I, the preimage m (i) will be called the fibre of T over
i. The mapping 7 is completely determined by its fibres, and hence the category Set/I
may be identified with the category of I-indexed families of sets (X;);c;. This will be our
favourite notation for the objects of Set/I.
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6.2. DEFINITION. A polynomial P = (s,p,t) is a diagram in sets of the form

¢
J— > p_ P .p I

A polynomial is of finite type if all fibres of the middle arrow p are finite.

Each polynomial P generates a functor between overcategories
P :Set/J — Set/I

which is defined as the composite functor

*

N 4]
Set/J . Set/E LN Set/B —— Set/I

where s* is the pullback functor,

ps is right adjoint to p*,

- 1L e
eecp— 1

and t, is left adjoint to t*,
H X,
bet—1(
So, the functor P is given by the formula

= 1] H Xy(e)s (13)

bet—1(i) e ()

which explains the name ‘polynomial’ that is a sum of products of formal variables.

Any functor P generated by a polynomial P is called a polynomial functor. In particu-
lar, polynomial functors preserve connected limits. This property characterises polynomial
functors from Set/.J to Set/I. For this and other characterisations of polynomial functors
we refer the reader to [38, 24]. In particular, polynomial functors compose. The composite
functor P o () is the polynomial functor P(Q) generated by an up to unique isomorphism
uniquely determined polynomial PQ. Cartesian natural transformations of polynomial

functors correspond bijectively to commutative diagrams of the form
S/ p/ t/
J E’ - B

_

-1

1y

J—°> p_ P

in which the horizontal lines are polynomials and the middle square is a pullback square.
This defines a 2-category Poly with O-cells the overcategories Set/I, with 1-cells the
polynomial functors, and with 2-cells the cartesian natural transformations. We denote
Poly(I) the category of polynomial endofunctors Set// — Set/I and cartesian natural
transformations. It is a monoidal category for composition of endofunctors.
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6.3. DEFINITION. A polynomial monad is a monad in the 2-category Poly.

Hence a polynomial monad 7" over [ is a monoid in (Poly([),o). Each polynomial
monad over [ is a cartesian monad on Set/I. The polynomial monad is finitary if and
only if the generating polynomial is of finite type.

From now on we always assume that our polynomial monads are finitary.

6.4. REMARK. Let T be the polynomial monad generated by the polynomial

¢
j—° g P .p -]

We shall outline how to define an I-coloured symmetric operad Or whose associated
monad is 7. Each element b € B comes equipped with a target t(b) =i € I, and a fibre
p~1(b) C E. The elements e € p~*(b) of the fibre have sources s(e) € I.

A T-operation is a pair (b,o) consisting of an element b € B and a bijection o :
{1,2,...,k} — p~*(b). We shall refer to o as a linear ordering of the fibre. The I-
coloured symmetric operad Or associated to T consists precisely of all T-operations.
Such a T-operation (b, o) belongs to Or(iy, .. .,ix; 1) if and only if

t() = i and (s(c(1)), 8(c(2)), ..., s(a(k)) = (ir, - .., ir)-

We shall write s(b, o) = (i1, ...,i) and t(b,0) =i and call them source and target of the
T-operation (b, ).

A composite T-operation consists of alist ((b, 0); (b1, 01), (be, 02), . .., (bg, 0k )) such that
(t(by,01), ... ,t(bg,0%)) = s(b,0). The multiplication of the operad Or is induced by the
multiplication of the polynomial monad 7' (cf. Remark 6.5 below) and associates to a
composite T-operation a single T-operation (b, o)((b1,01), ..., (bg,0x)) with same target
as (b,0) and with source-list (s(by,01), $(ba, 09), ..., $(bg, 0x)) linearly ordered in the ob-
vious way. This multiplication satisfies the usual associativity, unitarity and equivariance
constraints of an I-coloured symmetric operad.

We shall denote the composed T-operation by

(b, O')((bl,O'l), ceey (bk,O'k)) = (ba(bl, .. .,bk),O'(O'l, P ,O’k))

to remind that the linear ordering o of the fibre of b determines the way in which the
individual T-operations (b;, 0;) are “inserted” into the leading T-operation (b, o).

6.5. REMARK. The process just described constitutes a functor O from the category of
finitary polynomial monads over [ to the category of symmetric I-coloured operads in
sets with freely acting symmetry groups. Kock [38] and Szawiel-Zawadowski [58] showed
that this functor is an equivalence of categories. For a deeper study of the relationship
between polynomial monads and operads, the reader may consult the recent article [65]
of Weber.

Let us briefly recall the argument given by Kock in [38].
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6.6. DEFINITION. [38] An I-coloured bouquet of arity k is a polynomial

[ o

The latter will be represented by the (k + 1)-tuple (s(1),...,s(k);t(1)) € I*1.
The full subcategory of Poly(I) spanned by I-coloured bouquets will be denoted Bouq(7).
The associated nerve functor is denoted

O:Poly(I) — Coll(I) = SetBovall™
P - Op = Hompoly(1)(—, P)

The subcategory Bouq(7) is dense in Poly([), i.e. the nerve functor is fully faithful.
Moreover, Bouq(7) is a groupoid: the symmetry group of a bouquet of arity & may be
identified with a certain subgroup of the symmetry group of {1,...,k}. The essential
image of the nerve functor consists of those I-coloured collections in Coll(!) for which
the automorphisms in Bouq([/) act freely, cf. [38, Theorem 2.4.10].

There is a substitutional o-product on Coll(I) for which the monoids are precisely
the I-coloured symmetric operads in sets, cf. the appendix of [13], where the category
of I-coloured bouquets Bouq(I) is denoted F=(I). It can be checked by hand that the
nerve functor is a monoidal functor

O : (Poly(I),0) — (Coll(I), o)

and therefore takes polynomial monads over I to I-coloured symmetric operads. It follows
from [38, Theorem 2.2.12] that this “enhanced” nerve functor induces an equivalence
between the category of finitary polynomial monads over I and the category of I-coloured
symmetric operads with freely acting symmetry groups, cf. also [58].

6.7. ALGEBRAS OVER POLYNOMIAL MONADS. The category of T-algebras Alg, for a
polynomial monad 7" on Set/I coincides with the category of Op-algebras of the associated
coloured symmetric operad Op. Explicitly a T-algebra in sets is given by an [-indexed
family of sets (A;);es together with structural maps

M)+ As)) X -+ X Asow)) = Ar)

for each operation (b, o) of 7. These structure maps satisfy the usual associativity, uni-
tarity and equivariance conditions of an algebra for a coloured symmetric operad.

Given a cocomplete symmetric monoidal category (£,®,e), the strong symmetric
monoidal functor

Set—>8:X»—>He
X

takes the coloured symmetric operad Or to a coloured symmetric operad in £ and thus
defines a category Alg,(E) of T-algebras in £. Explicitly, a T-algebra A in £ is an I-
indexed family (A;);e; of objects of £ together with structural maps

Mbo) * Aso)) @+ @ Aoty — Aip)

for each operation (b, o) of T', subject to the same associativity, unitarity and equivariance
conditions as above.
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6.8. INTERNAL T-ALGEBRAS IN COCOMPLETE SYMMETRIC MONOIDAL CATEGORIES.
Since each polynomial monad T is cartesian it generates a 2-monad on the category Cat/[
where [ is considered as a discrete category. The category of strict algebras for this 2-
monad is by definition the category Alg,(Cat) of categorical T-algebras. There is also
a 2-category of pseudo-T-algebras associated to the 2-monad T'. A general strictification
theorem of Power implies that any pseudo-T-algebra is equivalent to a strict T-algebra
(cf. [54, 42, 6]). We tacitly apply this strictification whenever necessary.

A categorical T-algebra (A;);c; is cocomplete with respect to morphisms between small
categorical T-algebras in the sense of Definition 5.13 if and only if each A; is a cocomplete
category and the structure maps m, o) : Ago)) X - X Asok)) — Awp) preserve colimits
in each variable.

Let A be a categorical T-algebra. Then an internal T-algebra in A can be explicitly
given by a collection of objects a; € A; together with a morphism

f(b0)  MUb,0) (@s(o(1))s - - - As(a (k) = Qe(b)s

for each operation (b, o), which satisfies obvious associativity, unitarity and equivariancy
conditions. Here, m ¢ is the structure functor of A.

To any symmetric monoidal category (€, ®, e) we associate the categorical pseudo-T-
algebra £7 with constant underlying collection

i)=&, iel

Nullary T-operations act as unit e : 1 — £, unary T-operations act as identity and T-
operations of arity n > 2 acts as iterated tensor product ®". This pseudo-T-algebra £
is cocomplete with respect to morphisms between small pseudo-T-algebras if and only if
£ is cocomplete as a category, and moreover the tensor of £ commutes with colimits in
both variables, cf. [67, Proposition 2.3.3]. Recall that the latter holds in particular if £
is closed symmetric monoidal.

The assignment £ — &7 is the right adjoint part of an adjunction between categorical
T-algebras and symmetric monoidal categories. This adjunction is induced by a map
T — P of polynomial monads in Cat where P denotes the monad for symmetric monoidal
categories. The existence of this adjunction provides a conceptual reason for the existence
of an enrichment over £ of the category of T-algebras. The interested reader may find
more details in [66, 67]. We will not pursue this point of view any further here. However,
it will be essential for us to represent T-algebras in £ as internal T-algebras in &7, based
on the following proposition.

6.9. PROPOSITION. The category of T-algebras in £ is isomorphic to the category of
internal T-algebras in E7.

PROOF. An internal T-algebra in £} is by definition a lax morphism of categorical T-
algebras 1 — &%.. Such a lax morphism is given by an I-collection (X;);c; of objects of &
together with coherence data fulfilling coherence conditions. The coherence data consists
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of a 2-cell from T'(1) — T(&y) — &y to T(1) — 1 — &7 which amounts precisely to
Yi-equivariant structure maps in £

one for each orbit of T-operations b € T'(1) of type (i,...,i;1), cf. Remark 6.4 and
Section 6.13. The unit and associativity constraints of this 2-cell (cf. Section 5.2) translate
into the familiar unit and associativity constraints of an operad action. [

6.10. REPRESENTING T-ALGEBRAS AS INTERNAL FUNCTORS TT — &7 —

According to Proposition 6.9 and Theorem 5.4, T-algebras in £ can be represented
as internal functors TT — &%. By Theorem 5.4, the objects of the classifier TT are the
elements of the free T-algebra T'(1) = Or(1). These elements correspond bijectively to
orbits of T-operations (cf. Remark 6.4), i.e. to elements of B.

A morphism from ¥ to b is given by an element of T?%(1) with correct source and
target. Since T?(1) = (O7oOr)(1), such an element corresponds to an orbit of composite
T-operations ((b,0); (by,01),. .., (b, 0x)) fulfilling & = b7(by,...,b;) in the notation of
Remark 6.4. It is important to observe that each such orbit can be represented by a
(k + 1)-tuple (b;by,...,b) € B! together with a colour-preserving bijection between
the source-list of b and the list of targets of the individual b;. This representation of the
elements of T%(1) is unique up to a reordering of the b; going along with the appropriate
change of bijection.

The unit of the polynomial monad T' defines an I-indexed collection (1;);e; of special
elements 1; € B. The latter have singleton fibre with source and target ¢ € I. They
induce two families of morphisms in T?, namely the identities

(b7 1i1> ceey 17«k)

b b

and the morphisms

(1;0)

b ————— 1,.

Now, let (X;)ic; be the I-collection underlying the T-algebra X in £. Then the
representing functor of categorical T-algebras

X: T =&

is constructed as follows. We have X(1;) = X; and X(b) = X;, ® --- ® X;, where
(i1,...,ix) is the source-list of the fibre p~!(b) for a fixed linear ordering o. Then the
map X(b — 1;) in £7.(7) represents the T-action mpq) : X;, @ -+ ® X;, — X; on X, and
the functoriality of X : TT — &7 amounts precisely to the equivariance, associativity and
unitarity constraints of this T-action.
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6.11. REMARK. The T-algebra structure on the internal algebra classifier TT splits the
latter into components T spanned by those objects b € B with target ¢(b) = i. The
restrictions of the representing functor X : TT —» &7 to these components will be denoted
X : TT — £. This amounts to removing the forgetful functor Uy : Alg,(Cat) — Cat from
our notation.

In other words, we will identify the categorical T-algebra TT with its underlying I-
collection of categories (T} );cr, and will make no notational distinction between the rep-
resenting functor X : TT — &7 and its components X TT — £. We hope this will cause
no confusion.

The reader should observe that the object 1; is terminal in its component T7, so that
the component X; of the I-collection (X;);c; can be recovered as

X, =X(1;) = colimbeTgX(b).

6.12. EXAMPLE. At this point, we should mention two examples which have been decisive
for the elaboration of the whole theory. If T" is the free monoid monad (see Section 9.2)
then TT is isomorphic to the augmented simplex category Ay, cf. Bénabou [10], and
we recover the fact, mentioned in Example 5.5, that monoids in £ correspond to strict
monoidal functors A, — &. If T is the free symmetric operad monad (see Section 9.4)
then T7 is isomorphic to a category of labelled rooted planar trees RTr** which goes back
to Ginzburg-Kapranov [28, Section 1.2], and which again has the characteristic property
that symmetric operads in € correspond to certain functors RTr*™* — £.

6.13. GRAPHICAL FORMALISM. It is convenient to use some sort of graphical formalism
(cf. [39, 51]) to visualise objects and morphisms of TT. An object of TT (i.e. an orbit of
T-operations) will be represented as a non-planar corolla

ip By

S~ LS

i1 i5

where b € B, the incoming edges are decorated by the source-list of the fibre s(p~*(b)) =
(11,19, ...,15) and the outgoing edge is decorated by the target ¢(b) = ¢. This orbit of
T-operations b is said to be of type (iy,...,i5;1), cf. Definition 6.6.

A morphism of T7 (i.e. an orbit of composite T-operations) will be represented by a
non-planar bicorolla (i.e. corolla of corollas) as for instance

Y

where b is of type (i1, i9; 1) and by, by are respectively of type (i1, 412, i13; 1) and (491, i92;92).
This bicorolla represents a morphism b(by, by) — b in TT with source b(by, bs) obtained by

K3

i1 2
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“contracting” inner edges, i.e. by inserting b, and b, into b according to the multiplication
of the polynomial monad 7" and the source/target matching displayed in the bicorolla.
The notation b(by, by) — b for morphisms in T7 is slightly abusive, insofar as it does not
explicitly mention the bijection between the list of targets of the b; and the source-list
of b. The graphical representation incorporates this bijection and we tacitly assume that
such a bijection is given.

6.14. CARTESIAN MORPHISMS OF POLYNOMIAL MONADS. We need a more general notion
of map between polynomials which includes the possibility of base-change. Let S be a
polynomial monad generated by a polynomial

/ / t/
Je > g P | p J.

A cartesian morphism ® = (9,9, ¢) from S to T' is a commutative diagram

/ / !
J— g Y .y '
|
5 " & 5
I S p_ P p_ 1 I

in sets in which the middle square is a pullback, the horizontal lines generate the polyno-
mial monads S and T and the diagram

E' ——B

dos’ w{ fi){ dot’
I E B I

generates a morphism of polynomial monads. The mapping ¢ : J — [ induces a cartesian
adjunction ¢ 4 d where d = 6* : Set/I — Set/J is the pullback functor and ¢ = 0, :
Set/J — Set/I is its left adjoint, so that for an object Y of Set/J :

= 11 v (14

SO

Then the equivalent conditions of Lemma 5.8 are fulfilled and ® generates a cartesian
monad morphism ® : S = dT'c in the sense of Definition 5.7.
For a symmetric monoidal category £ we get a restriction functor

52 Algr(€) — Algs(€).

Observe that d'(£7) = £ so that an internal S-algebra in £7. is the same as an ordinary
S-algebra in £. Therefore, the restriction functor §¢ is induced by a functor of internal
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algebra classifiers T? : T® — T7, and its left adjoint
7+ Algg(€) — Algr(€)

can be calculated as a left Kan extension along the same functor. To carry out such a
program we need a description of the internal S-algebra classifier T and of the canonical
functor T? : T — T7 in terms of the given map ® between the generating polynomials.

6.15. THE CATEGORY T%. By Theorem 5.10, the objects of T® are the elements of T'¢(1).
According to (13) and (14), these elements can be understood as J-coloured T-operations.
In order to distinguish them from the objects of TT we denote them by bold letters. A J-
coloured T-operation b is given by an element b € B together with a colour j € 6*(s(e))
for each e € p~'(b). The internal functor T* : TS — TT replaces the J-colouring with
an [-colouring by applying 4. So, an object b of T® is determined by its image T?(b)
together with a compatible J-colouring.

In terms of our graphical formalism, such an object is represented by a non-planar

corolla
j2 73 4y

RN

J1 Js

with .J-decorated incoming edges and I-decorated outgoing edge. The component #; of
the right S-action 0 : T'cS = Tc is defined as follows, where we freely use our slightly
abusive notation for composite operations, cf. Section 6.13. Note first that the elements
of T¢S(1) can be understood as J-coloured T-operations b together with a compatible
family of S-operations di,...,d; € B’ in the sense that (#(d;),...,t(dy)) coincides with
the J-colouring of b. Then

T*(0(b;dy, . .., dy)) = T*(b)(¢(dh), . . ., ¢(dy)),

and the J-colouring of (b;dy,...,dy) is inherited from (the sources of) the fibres of
dy,...,d; in an obvious way.

A morphism b’ — b in T% is given by an element (b;dy,...,d;) of TcS(1) such
that b" = 0(b;dy,...,d.). The effect of T* on a morphism b’ — b is obvious: if b’ =
0(b;dy,...,d) then the identity T?(b’) = T*(b)(é(dy),. . ., ¢(d))) represents a morphism
T*(b") — T%*(b) in TT.

6.16. REPRESENTING S-ALGEBRAS AS INTERNAL FUNCTORS T® — &7. —

Let X be an S-algebra in £€. By the universal property of TS,~the corresponding
internal S-algebra in £Y is represented by a morphism of T-algebras X : TS — &%, which
can be can be described as follows: Let b be an object of T®. Then

Xb)=X; ® - ®X, (15)
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where (ji,...,jx) is the J-colouring of b. The morphism X (b’ — b) in & is defined by
the action of the S-operations di, ..., d; on X, where b’ = 0(b;dy, ..., d}).

The T-algebra structure on the internal algebra classifier T® splits the latter into
components T? spanned by those objects b with target ¢(b) = i. The restrictions of the
representing functor X : TS — &7 to these components will be denoted X T — £. This
amounts to removing the forgetful functor Ur : Alg,(Cat) — Cat from our notation.

In other words, we will identify the categorical T-algebra TS with its underlying I-
collection of categories (T%);c;, and will make no notational distinction between the rep-
resenting functor X : TS — £2 and its components X : TS — £. We hope this will cause
no confusion.

6.17. THEOREM. Let £ be a cocomplete, closed symmetric monoidal category and let @ :
S = dTc be a cartesian monad morphism between polynomial monads. Then restriction
62 Alg(€) — Algg(€) has a left adjoint v& : Algg(E) — Algy(E).

For any S-algebra X in &, the underlying I-collection of the T-algebra v&(X) can be
calculated as the following colimit:

2 (X); = (T(X)(1;) = colimp g X (b) (i € ). (16)

PROOF. The first identification follows from Theorem 5.14, cf. Remark 6.11 for our
notations and Section 6.8 for applicability. The second identification just expresses that
left Kan extension along T? — 1 (which calculates the colimit on the right) can be
achieved in two steps: first left Kan extension along (T?); : T{ — TT then left Kan
extension along T] — 1 (which calculates evaluation at 1;). (]

6.18. TAME POLYNOMIAL MONADS. Let T be a finitary monad on a cocomplete category
C. We denote by T'+ 1 the finitary monad on C x C given by

(T+1)(X,Y) = (TX,Y)
(T +1)(¢,%) = (Th, )

with evident multiplication and unit. We get the following square of adjunctions

(idaig, X Ur)Aalg,

Alg, x C - Alg,
—V Fr(-)
UT X Zd(c FT X Zd(c UT FT (17)
Ac
CxC- - C
S [ —

in which the right adjoints commute by definition.

If C has pullbacks which commute with coproducts, and 7T is a cartesian monad, then
it is straightforward to verify that 7'+ 1 is a cartesian monad as well, and that the adjoint
square (17) induces a cartesian morphism from 7'+ 1 to 7" in the sense of Definition 5.7.
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If T is a polynomial monad on Set/I generated by the polynomial

¢
% g P .p -]

then 7'+ 1 is a polynomial monad on Set/I x Set/I = Set/(I Ll I) generated by

p|_|]_j t|_|1[

$|_|]_]
rur EUIrl BuI Irur

More precisely, the adjoint square (17) for a polynomial monad 7" on Set/I is induced
by the following cartesian morphism of polynomials (cf. 6.14)

L1 tul
p IBI_II I
_

Vi (0 ¢ Vi

8|_|1[

rur Eul rur

¢
% p_ P |p o]

in which V; is the identity on each copy of I, and ¢ (resp. ) is the identity on B (resp.
FE) and the unit 7 of 7" on I.

6.19. DEFINITION. A semi-free coproduct of T-algebras is a coproduct X V Fr(K) of a
T-algebra X and a free T-algebra Fr(K).

A polynomial monad T is said to be tame if the internal classifier for semi-free co-
products TT™ 4s a coproduct of categories with terminal object.

6.20. THE CATEGORY TT™' EXPLICITLY. The generating polynomial of T+ 1

$|_|]_] p|_|]_j t|_|1[

Irur EUlrl BUI Irur

can be described in terms of our graphical formalism. Its set of operations B LI I consists

of corollas of two types

x X x K
X X

\/

and

X K
where b € B, and 1; € B for i € I represents the unit of B = T'(1).
According to Section 6.15 an object b of TT*! is then represented by a corolla

x X Kk

t(b)
with incoming edges coloured by X and K and outgoing edge coloured by the target
t(b) of b. The X-edges correspond to the operations on the T-algebra summand of the
semi-free coproduct, while the K-edges correspond to the free summand.
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A morphism g : b’ — b in T™! is given by a set of elements by, ..., b, € B, one for
each X-coloured edge of b, where the 1’s correspond to K-edges and the b}s correspond
to X-edges of b. In the formalism of Section 6.15 a typical morphism in T™*? is therefore
a bicorolla

SNVAVY
oRoSNCIO
)

X
In this picture we tacitly assume that 1 is the unit element 1,.) where e belongs to the

fibre p~1(b). The corolla representing the source of g : b’ — b is obtained by contracting
inner edges of the bicorolla according to the multiplication &’ = b(1,...,by,1,... bg, ..., 1)
of the polynomial monad 7T, cf. Section 6.13.

6.21. REMARK. If T is a tame polynomial monad then semi-free coproducts admit a
functorial polynomial formula similar to formula (1) of the introduction. Indeed, Theorem
6.17 applied to the adjoint square (17), shows that the underlying object of the semi-free
coproduct X V Fr(K) is the colimit of a functor X defined on T™. If TT+! has a terminal
object in each connected component, then the colimit of X is the coproduct of the values
of X at these terminal objects. These values are tensor products of as many X's and
K's, as there are X- resp. K-edges in the corollas representing the terminal objects of
the different connected components of TTH?,
More precisely, there is a (uniquely determined) polynomial functor

P :Set/I x Set/I — Set/I

rendering the following diagram

Alg, x Set/I (=) v Fr(o)

Algy
Ur X idset/1 Ur
Set/I x Set/I L» Set /1
commutative with generating polynomial given by

t
Tul 2 ey Leopprmny L

Here we identify the set mo(T™?) of connected components of T™*! with a representative
set of objects of TT! which are terminal in their component. Such an object of TT*! is
represented by a corolla decorated by an element b € B with edges having colours X or
K. The target of b gives a map ¢ : wo(T™*) — I. The set mo(TT*)* is the set of corollas
as above with one edge marked. The map p : mo(T™)* — mo(T™?) simply forgets the
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marking. The source map s : mo(TT)* — I U I returns the colour of the marked edge
of b and places it to the first copy of I if the edge-colour is X and to the second if the
edge-colour is K.

See Sections 9.2 and 9.4 for explicit examples.

7. Free algebra extensions

In this central section we apply the theory of internal algebra classifiers to get an explicit
formula for free algebra extensions over tame polynomial monads. This formula generalises
the Schwede-Shipley formula [60] for free monoid extensions and involves a careful analysis
of the internal classifier T« for free algebra extensions over a tame polynomial monad T
We show in particular that a good behaviour of semi-free coproducts of T-algebras (the
tameness of T') is sufficient to express the underlying object of a free T-algebra extension
as a sequential colimit of pushouts.

7.1. INTERNAL CLASSIFIER FOR FREE ALGEBRA EXTENSIONS. Let T" be a finitary monad

on a cocomplete category C. Let Py, be the category whose objects are quintuples
(X,K,L,g,f), where X is a T-algebra, K, L are objects in C and g : K — Up(X), [ :
K — L are morphisms in C. There is an obvious forgetful functor

Usg: Psg — CxCxC,
taking the quintuple (X, K, L, f, g) in Py, to the triple (Up(X), K, L) in C x C x C.
7.2. PROPOSITION. Let T be a finitary monad on a cocomplete category C.
(i) The functor Uy, is monadic and the induced monad Ty, is finitary;

(ii) There is a commutative square of adjunctions
/

,vag AlgT (18)
uf,g\ Fr.g UT\ Fr
CxCxC C

in which A : C — C x C x C is the diagonal and A’ is given by

ANY)= X, Ur(Y), Ur(Y), Lupvy, Lupry)-

(iii) The left adjoint U to A is given by coproduct in C; the left adjoint L to A’ is given
by the following pushout in Alg,:
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) 2V gy
; (19)
g ’_ |
X L (X,K,L,g,f)

wn which g is adjoint to g.

(i) If C has pullbacks which commute with coproducts and T is a cartesian monad, then
Ty, is a cartesian monad as well, and the adjoint square (18) induces a cartesian
morphism from Ty, to T in the sense of Definition 5.7.

v) If T is a polynomial monad on Set/I then Tt , is a polynomial monad on Set/(I LI
f.9
Iy ]).

PROOF. —

(i) The left adjoint Fy4 to Uy, takes a triple (X, K, L) in C x C x C to the quintuple
(Fr(XUK),K,KUL,ji) in Py, where i : K — K U L is the coproduct injection and
j: K — UrFr(X U K) is the composite of the coproduct injection K — X U K and the
unit of the monad 7" at X U K. It is then straightforward to check that 7, is indeed left
adjoint to Uy 4, and that Ty, = Uy 4 F5 4 is finitary.

(ii) It is obvious that the square of right adjoints commutes. The existence of the left
adjoint L' follows from the adjoint lifting theorem.

(iii) By adjointness, a map (X, K, L, g, f) = A'(Y) in Py, corresponds one-to-one to
a pair of T-algebra morphisms (¢ : X — Y, ¥ : Fr(L) — Y') such that ¢g = ¢ Fr(f). The
universal property of pushout (19) then implies that this pair corresponds one-to-one to
a T-algebra morphism L/'(X, K, L, g, f) = Y.

(iv) We have seen in (i) that Ty,(X,K,L) = (T'(X U K),K, K U L) so that T},
is a cartesian monad, since 71" is a cartesian monad and moreover pullbacks commute
with coproducts in C. It remains to be shown that Proposition 5.8 applies, i.e. that
¢ :Tr, — AoTollis a cartesian natural transformation. Indeed, all three components
of

Oxxp: (TIXUK),K,KUL) = (T(XUKUL),T(XUKUL),T(X UK UL))

are cartesian natural transformations. The first component is obtained by applying 7" to
the coproduct injection X U K — X U K U L, the second component is obtained as the
composite of the unit K — T(K) with T(K — X U K U L), the third component as the
composite K UL — T(KUL) - T(XUKUL). In all three cases we can conclude, since
the unit of T"is a cartesian natural transformation, 7" preserves pullbacks, and pullbacks
commute with coproducts in C.

(v) It is enough to show that T}, preserves connected limits. But in Set// connected
limits commute with coproducts so that the explicit formula for T}, yields the result. =
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In virtue of the preceding proposition, Theorem 5.14 allows us to compute free T-
algebra extensions in cocomplete categorical T-algebras as left Kan extensions along a
map of categorical T-algebras T — TT.

If £ is a cocomplete, closed symmetric monoidal category and T is a polynomial
monad, Theorem 6.17 expresses free T-algebra extensions in £ as colimits of certain &-
valued functors on the free T-algebra extension classifier T, It is therefore vital to get
a better hold on the free T-algebra extension classifier TTt¢. To this effect it will be
convenient to introduce three other monads associated to T, which we shall denote by
Ty, T, and T + 2 respectively.

Let P; be the category whose objects are quadruples (X, K, L, f), where X is a T-
algebra, K, L are objects in C and f : K — L is a morphism in C.

Let P, be the category whose objects are quadruples (X, K, L, g), where X is a T-
algebra, K, L are objects in C and g : K — Up(X) is a morphism in C.

The obvious forgetful functors Uy : Py - Cx Cx Cand U, : P, - Cx C xC
are monadic yielding monads TF and T}, for which there are propositions analogous to
Proposition 7.2. We leave the details to the reader.

Finally, recall the monad 7'+ 1 from Section 6.18. We put 7'+ 2 = (T'+ 1) + 1 which
is also a monad on C x C x C as are Ty, Ty and T},

There is a commutative square of forgetful functors

Pt Py

|

Py — Alg; x Cx C

over C x C x C. All four forgetful functors have left adjoints so that we get a commutative
square of monad morphisms going in the opposite direction

Tyg~—Tf
T,«—T+2

and augmented over T' via cartesian natural transformations. We thus obtain a commu-
tative square of categorical T-algebra maps of the corresponding classifiers

TTf’g — TTf
I (20)
TTE — TT+2

which enables us to analyse the category structure of TTee,

Form now on we assume that 7" is a polynomial monad on Set/I. We have seen that
the monad 77, is then a polynomial monad on Set/(I U U ). Similarly,
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7.3. LEMMA. For any polynomial monad T' on Set/I, the monads T'+2, Ty, T, are poly-
nomial monads on Set/(I U1 UIT).

The internal classifiers T™e T T, TT2 qll have the same object-set, and diagram
(20) identifies T, T with subcategories of T™& which intersect in T™2 and which gen-
erate T as a category.

PROOF. The first assertion follows by a similar argument as for Proposition 7.2(v) from
the explicit formulas for the monads 1"+ 2, T%, T, given below.

According to Theorem 5.10, the object-set of all four internal classifiers is T'c(1) where
¢:CxC xC — Cis given by the coproduct in C, while the morphism-sets are T'cS(1)
where S is one of the four monads T} 4, T, T,, T+2. We have seen in Proposition 7.2(i) that
Trg(X,K,L) = (T(XUK),K,KUL). Similarly, we have T(X, K, L) = (T'(X), K, K U
L) and Ty(X,K,L) = (X UK),K,L) as well as (T'+ 2)(X,K,L) = (I'(X),K,L).
Evaluating these formulas for X = K = L = 1, and using the fact that ¢ and T are
faithful functors, it follows that T™ and T?s are subcategories of T™*¢ which intersect in
TT™2. Moreover, each morphism in T is the composite of morphisms in T™ and T. m

7.4. THE CATEGORY T™e EXPLICITLY. We begin by describing the cartesian morphism
(V1,¢,1) of polynomials (cf. Section 6.14)

/ / /

S , P , t
rTurulr E B rTurulr
_]

Vi (0 0] Vi

¢
% g P .p -]

which generates the cartesian monad morphism ® : Ty, = A o T o U described in Propo-
sition 7.2. We use our graphical formalism to represent the elements of B’, compare with
Section 6.20. The set B’ consists of corollas of the following types

(i) for b€ B,b # 1;,

(observe that a corolla of this type does not have L-coloured edges);

) foriel,

@%??@%?
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the first three corollas represent identity operations, the fourth corolla represents
the operation ¢ : K — Up(X) in a Ty -algebra, and the last one represents the
operation f : K — L in a T 4-algebra.

The set E’ is the set of such corollas equipped with a marking of one of the incoming
edges. The map p’ : E' — B’ forgets this additional marking. The source map s’ :
E" — I'U Ul is determined by the source of the decoration of the corolla together with
the labeling of the marked edge. In a similar way, the target map ¢’ : B’ — I U1 U is
determined by the decoration of the corolla together with the labeling of the root edge. We
leave it to the reader to check that this polynomial generates the monad 7', constructed
in Proposition 7.2. On the level of the generating polynomial the multiplication of 7%, is
induced by the obvious substitution of corollas into corollas together with the following
type of relations:

¥ X K x X < X X x < X X K X K
X X X X X X X

The two mappings ¢ : B — B and ¢ : E/ — FE forget the edge-colourings of the
corollas, and identify f and g with identity operations. This explicit presentation of the
generating map (Vy, ¢, 1) in conjunction with Section 6.15 yields the following description
of the free T-algebra extension classifier T™#, cf. Section 6.20.

The objects of T™¢ are corollas decorated by the elements of B = T'(1) with incoming
edges coloured by one of the three colours X, K, L :

x X x
K L

\/

t(b)

These incoming edges will be called X-edges, K-edges or L-edges accordingly.

The morphisms of T™e can be described in terms of generators and relations. There
are three types of generators. First, we have the generators coming from the T-algebra
structure on X-coloured edges, with a similar description as in T™*. The relations between
these generators witness the relations between T-operations. The subcategory of TT:e
spanned by these generators coincides with T7+2,

The next type of generators corresponds to the morphism f : K — L. Such a generator
simply replaces a K-edge with an L-edge in the corolla. Generators of this kind will be
called F'-generators. The category T is precisely the subcategory of T generated by
T2 and F-generators.

Finally, we have generators corresponding to g : K — Up(X). Such a generator
replaces a K-edge with an X-edge. Generators of this kind will be called G-generators.
The category T is precisely the subcategory of T™e generated by TTt2? and G-generators.

The relations in T™e between the morphisms in T2, the F-generators and the G-
generators readily follow from the aforementioned description of T™¢. Most importantly

for us, every span b & 4% o in which ¢ is an F-generator (resp. G-generator) and 1)
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belongs to TT™2, extends to a commutative square
i .

in which ¢’ is an F-generator (resp. G-generator) and v’ belongs to T™2. Indeed, F-
(resp. G-)generators replace a K-edge by an L-edge (resp. X-edge), while the morphisms
in T™2 only affect X-edges. So, we can either first apply ¢ and then replace the cor-
responding K-edge by an L-edge (resp. X-edge), or first apply ¢ and then apply the
corresponding morphism in TT2,

A similar argument yields that every composite a ﬁ b % cof an F -generator ¢y
followed by a G-generator ¢, can be rewritten

G0

czﬁ;\ lcbg (22)
/ —_—
i
as the composite of a G-generator ¢; followed by an F-generator ¢/;.

7.5. A FINAL SUBCATEGORY OF TTe. Recall that a subcategory A of B is called final
if the inclusion functor 7 : A < B is a final functor. This means that for each object
b of B, the undercategory b/ A is non-empty and connected. Final subcategories have
the characteristic property that for functors F' : B — £ with cocomplete codomain, the
canonical map colim 4F'i — colimgF' is an isomorphism.

The existence of a terminal object in B is equivalent either to the existence of a right
adjoint for the unique functor B — 1 to the terminal category 1 or to the existence of an
embedding of the terminal category 1 as a full and final subcategory of B. The following
lemma is a “several component” version of this observation.

7.6. LEMMA. For any category B the following three conditions are equivalent:
(i) B is a coproduct of categories with terminal object;
(ii) B has a full subcategory which is discrete and final;

(iii) The connected component functor B — mo(B) has a right adjoint.

In particular, if a reflective subcategory A of B satisfies one of the equivalent conditions
(i)-(iii) then so does B.
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PROOF. The equivalence of conditions (i)-(iii) follows like in the connected case.

For the second assertion observe that the composite of two full and final inclusions is
again a full and final inclusion, and that the inclusion of a reflective subcategory is a full
right adjoint (and hence final) functor. Therefore B inherits property (ii) from A. =

7.7. LEMMA. For any tame polynomial monad T, the categories TT 2 T™ T are co-
products of categories with terminal object.

PROOF. The explicit descriptions of the categories TT™* and T2 in Sections 6.20 and
7.4 show that TT*! is the full subcategory of TT"2 spanned by those corolla which do not
contain any L-edges. This inclusion has a retraction r : T2 — TT+! which preserves
the arities of the corollas as well as the distinction between X- and non-X-edges, but
takes K- and L-edges of a corolla in T™2 to K-edges of the image-corolla in T, Each
morphism ¢ : b" — b in TT™?2 induces a bijection between the K-edges of b’ and of b,
and a bijection between the L-edges of b’ and of b. A morphism g : b’ — b is completely
determined by these two bijections and its image r(g) : r(b’) — r(b) in T™*. This
implies that the restriction of r to a connected component of T2 is fully faithful and
bijective on objects, and takes thus a connected component of T2 isomorphically to the
corresponding connected component of T™!. Therefore, since by tameness the category
TT™ is a coproduct of categories with terminal object, the same holds for TT+2.

The category T™ contains a reflective subcategory isomorphic to T, namely the
subcategory spanned by those corollas in T™ which have only X- and L-edges. The
reflection of an object of T to this subcategory is given by successive applications of
F-generators replacing all K-edges with L-edges. According to Lemma 7.6, this implies
that T™ is a coproduct of categories with terminal object.

The category TTe also contains a reflective subcategory isomorphic to TT™!, namely
the subcategory spanned by those corollas in T which have only X- and L-edges. This
time, the G-generators define the reflection. According to Lemma 7.6, this again implies
that T is a coproduct of categories with terminal object. [

Let to be a final discrete full subcategory of T™"2 obtained by choosing a terminal
object in each connected component of T™2 (cf. Lemma 7.7). We define t to be the full
subcategory of T™ spanned by the objects of ty. In other words, the composite inclusion
tg — TT2 < TTe can be written as

H E
to— t — TTee

where H is the identity on objects and F is a full inclusion.

7.8. LEMMA. The category t is a final subcategory of T,

PROOF. Since the categories T™™2 and T have the same objects, the very definition
of to implies that each object a in T™¢ maps to a uniquely determined object t, in t
by a unique map a — t, in TT2. Since tq is a subcategory of t, this shows that the
undercategory a/t contains at least a — ¢, and is thus non-empty. We shall show that in
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a/t any object a — b is in the same connected component as a — t, using an induction
on the number of K-edges in the corolla representing a.

If @ has no K-edges then all morphisms a — b belong to T™2, so that a/t contains
just the canonical morphism a — t,, and there is nothing to prove. Assume now that a
has p K-edges with p > 0 and that we have already shown that a/t is connected for all
objects a with less than p K-edges.

Consider an arbitrary object ¢ : @ — b of a/t. In general, the morphisms in T are
generated by the morphisms in T7"2, the F-generators and the G-generators, see Section
7.4. If ¢ itself belongs to T™2 then, since b is an object of ty, one has necessarily b = t,,
and ¢ coincides with the canonical morphism a — %,.

If ¢ does not belong to TT2 then ¢ = ¢y, where ¢; or ¢, is an F-generator or a
G-generator. The relations (21) and (22) between the different generators of TTs imply
that we can assume that it is ¢y which is a F- or G-generator. Since F- and G-generators
decrease the number of K-edges, the codomain of ¢; : @ — o’ has less than p K-edges.
Therefore, by induction hypothesis, the object ¢3 : @’ — b is in the same connected
component as @’ — t, in a’/t. This implies that ¢o¢ : @ — a’ — b is in the same
connected component as a — a’ — t, in a/t.

Applying the relation (21) to the span ¢, + a 24 ! we get a commutative square

o

|

ta —/’ b/
o
where o' — b’ is in T2, Since ¥ is in the same connected component as a’ there is a
canonical morphism & — t,. Hence we have a commutative square in TTte

¢

a—a

]

tq —> tu

a

This shows that in a/t the (arbitrarily chosen) object ¢ : a — b is in the same connected
component as the canonical object a — t,. [

7.9. CANONICAL FILTRATION. We say that an object a of t is of type (p, ¢) if a contains
exactly p K-edges and ¢ L-edges, and we call p + ¢ the degree of a. We define t*) (resp.
w(®) to be the full subcategory of t spanned by all objects of degree < k (resp. of degree
k). We define g (resp. 1) to be the full subcategory of w*) spanned by all objects of
type (p, k — p) such that p # 0 (resp. p =0).

Recall that the (categorical) k-cube is the category of subsets and inclusions of the
set {1,...,k}. The punctured k-cube is the full subcategory of the k-cube spanned by the
proper subsets of {1,... k}.
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7.10. LEMMA. —

(i) Each connected component of w*) is isomorphic to a k-cube;
(ii) the category 1% 4s a final discrete full subcategory of w'®).
(iii) the category q'®) is isomorphic to a coproduct of punctured k-cubes.

PRrROOF. Note first that the morphisms in w*) cannot involve G-generators since the
latter decrease the degree; therefore, they necessarily belong to T™. Since the objects
in t are terminal in their connected component in TT™2, the non-identity morphisms of
w) cannot belong to T™? either; therefore, all morphisms in w*) are composites of
F-generators. Recall that each F'-generator replaces a K-edge with an L-edge. From this
it readily follows that the connected components of w*) are k-cubes. The assertions (ii)
and (iii) are immediate consequences of (i). "

7.11. THEOREM. For any tame polynomial monad T and any functor X : T — £ with
cocomplete codomain, the colimit of X is a sequential colimit of pushouts in &.
More precisely, for P, = Cohmt(k)X“;(k); we get

P= colimTTf,gX = colimy Py,

where the canonical map P,_1 — Py is part of the following pushout square in &

w
Qk—k’Lk

QJ Ii (23)

in which Qy (resp. Ly) is the colimit of the restriction of X to q®) (resp. 1%)).

PROOF. The finality of t implies P = colimrpr, , X = colim¢ X. It is obvious that t =

colimyt™® . Lemmas 7.8 and 7.13 then yield P = colimg X |¢ = colimy, P

The inclusion q*) — w®) induces the map wy, : Qr — colimw(k)fﬂw(k) & L, where
the last isomorphism is a consequence of Lemma 7.10(ii).

In order to construct the map a; : Qr — Py we shall realise t*~Y as a final
subcategory of a category g which contains q*). The map «y, is then simply induced
by the inclusion q® — q*). This category q*) is by definition the full subcategory of
t*) spanned by the objects not contained in 1.

To prove that t*~Y is a final subcategory of G*) note first that each object a of
q* comes equipped with a canonical map &, : @ — j(a), where j(a) is terminal in the
connected component of a in T, and hence &, : @ — j(a) is the unique morphism in T
with codomain j(a), ¢f. Lemma 7.7. In particular, j(a) belongs t*~ because a contains
at least one K-edge and G-generators decrease the degree.



206 M. A. BATANIN AND C. BERGER

It suffices now to show that each object a — ¢ of a/t*~1) lies in the same connected
component as &, : a — j(a). If a — ¢ belongs to T this holds trivially since j(a) is
terminal in its connected component in Te. Assume that a — ¢ does not belong to TTs.
We then factor a — cas a — b — ¢ where a — b is a composite of F-generators and b — ¢
belongs to T'e; in other words, we perform all replacements (inside a — ¢) of a K-edge
with an L-edge first, and perform the replacements of a K-edge with an X-edge only
afterwards. This is always possible due to relations between the generating morphisms of
T™e, cf. Section 7.4.

Since b — ¢ belongs to T and the codomain ¢ belongs to t*~1), the domain b cannot
belong to 1*) 5o that we have a canonical map & : b — j(b) whose codomain belongs to
t*=1_ Since b — ¢ belongs to T and j(b) is terminal in its connected component of T
we have a factorisation of & as b — ¢ — 7(b). It thus suffices to construct a zig-zag in
a/t*=Y connecting a — b & j(b) and a S ja).

It also suffices to assume that the morphism a — b is equal to one of the F-generators
fo : @ — b which replaces a K-edge v by a L-edge. Observe that the morphism &, : a —
j(a) can be factorised as

add B d D),
where ¢ is a composite of G-generators which replaces all K-edges by X-edges except the
K-edge v, g, is a G-generator which replaces K-edge v by an X-edge, and m belongs to
TT+2.
The morphism &, : b — j(b) can also be factored as

!

b5y ™ j(b),

where ¢’ is a composite of G-generators which replaces all K-edges by X-edges and m’
belongs to TTH2. Moreover, the following diagram commutes

9
a a
A
b tf
g

where the morphism f/ is a F-generator which replaces the K-edge v by an L-edge.
Since F-generators commute with the morphism from T?*2 we obtain the following
commutative diagram
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in which f” is an F-generator and m” belongs to TT™2. Observe, that a” belongs to tF~1
since it is obtained from j(b) by replacing an L-edge by a K-edge.

Finally we observe, that a,a’,a”,a” are in the same connected component of TTe by
construction and since j(a) is terminal in this connected component we have a commuta-
tive diagram

v
!/ al/

—_—

N

W — jla)

Putting all these morphisms together we get a commutative diagram in a/t*~%

which provides us with the necessary zigzag.

It follows from the preceding discussion that diagram (23) may be obtained by re-
stricting X : TTe — £ to the following commutative square of categories

q® e w®

|

q* e t®

and then computing the colimits of the corresponding restrictions. This yields commuta-
tivity of square (23) as well as a canonical map P,_; Ug, Ly — P, in €. It remains to be
shown that the latter map is invertible, i.e. that square (23) is a pushout diagram in £.
A closer inspection of square (24) reveals that it is a categorical pushout of a special
kind: the category t*) is obtained as the set-theoretical union of the categories G*) and
w(*) along their common intersection q*). Indeed, away from this intersection, there are
no morphisms in t*) between objects of G*) and objects of w(*). In virtue of Lemma 7.13
this implies that (23) is a pushout square in £. n

7.12. REMARK. In our particular situation, the inverse of P,_ Ug, Ly — P is obtained
by gluing together (along q*)) the two colimit cocones X|q(k) — Pp_1 and X|ww — Lg
and taking the colimit of X over t*.
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We are indebted to Steve Lack for pointing out to us a proof of the following categorical
fact. Let D be a small category and let ® : D — Cat be a D-diagram of small categories.
We denote by C the colimit of this diagram, and by ®(d) — C the components of the
corresponding colimit cocone. Let X : C — &£ be a functor with cocomplete codomain.
For each object d of D we consider the restriction X, : ®(d) — C — £ and its colimit
colimg(q)Xq in €. This defines a functor colimg_)X_ : D — &.

7.13. LEMMA. The induced map colimpcolimg_yX_ — colimc X is an isomorphism in

€.

PROOF. Consider the slice category Cat/E. There is a functor v : Cat/E — £ which takes
the objects of the slice category to their colimit in £. We have to show that + preserves
colimits. We actually show that v has a right adjoint. For this we observe that v can be
factored as follows:

Cat/€ 5 Cat//& 2 &

where Cat//E denotes the lax version of the slice category. In Cat//E the morphisms
from F' to G are pairs (f, ¢) defining triangles of the following form:

A / B
F\é’»/G
£

The functor 7 is the obvious inclusion functor and 4’ is again given by taking objectwise
the colimit. Both functors ¢ and +’ have right adjoints. The right adjoint of 4" takes an
object of £ to the functor 1 — £ which picks up this object. The right adjoint of ¢ is the
lax-limit functor given by a Grothendieck type construction. For a functor F': A — &£ this
Grothendieck construction P(F') is the category whose objects are pairs (a, ) consisting
of an object a of A and a morphism « : F'(a) — x in £. The morphisms (a,a) — (b, 3)
in P(F) are pairs (a — a/, x — 2’) such that an obvious diagram commutes. There is a
functor P(F') — & which takes (a, @) to the codomain of o in €. It is straightforward to
check that this construction provides a right adjoint for 7. [

8. Admissibility of tame polynomial monads and Quillen adjunctions

We are now ready to combine the results of Sections 2, 5, 6 and 7 so as to obtain the two
main theorems of this article.

Throughout this section £ denotes a monoidal model category and I a set of colours.
The category £/I is then a monoidal model category in which the cofibrations, weak
equivalences and fibrations are defined pointwise, and the monoidal structure as well is
defined pointwise.
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8.1. THEOREM. Let (£,®,¢) be a compactly generated monoidal model category and let
T be a tame polynomial monad on Set/I. Then E/I is a compactly generated monoidal
model category, and the monad on E/I induced by T is

(a) relatively ®@-adequate if £ satisfies the monoid aziom;
(b) ®@-adequate if € is strongly h-monoidal.

Therefore, the category of T-algebras in E/I admits a relatively left proper transferred
model structure if £ satisfies the monoid axiom (resp. a left proper transferred model
structure, if € is strongly h-monoidal).

PROOF. The cartesian monad morphism ® of Proposition 7.2(iii) from 7%, to 1" induces
an adjunction

VE Alngyg(g) S Algp(€) : 0

whose left adjoint takes the quintuple (X, K, L, f,g) to the pushout P in £. Theorem
6.17 implies that the underlying object of P can be calculated as the colimit of a functor
X : TTs — £. Theorem 7.11 permits us to realise this colimit as a sequential colimit of
pushouts.

From a homotopical point of view it is essential that the sequential colimit presentation
of P is made up by pushouts of maps wy : Q. — Ly which are easy to calculate. Indeed,

the functor X : TTe — £ takes the values

X(a) = (®v€x(a)Xv> & (®v€n(a)Kv> & (®v€)\(a)Lv>7 (25)

cf. formula (15). Here, y(a) is the set of X-edges, r(a) is the set of K-edges, and A(a) is
the set of L-edges in the corolla representing a. The F-generators of T act via the map
f: K — L, the G-generators act via the map g : K — Ur(X), the morphisms in T2 act
via the T-algebra structure on X. Note that by Lemma 7.10 the map wy : Qr — Lyi is a
coproduct of comparison maps. Each comparison map is obtained by taking the colimit
over a punctured k-cube (a connected component of q*)) in which the edge-maps are
tensor products Y ® f, where f, : K, = L,.

Now we can closely follow the proof of Theorem 3.1 which describes the special case of
the free monoid monad. Indeed, formula (25) indicates that the only qualitative difference
between a general tame polynomial monad and the free monoid monad lies in the fact
that the map wy : Qr — Lyi is in general a coproduct of comparison maps while in the
special case treated in Theorem 3.1 we have just a single comparison map. Since (trivial)
cofibrations as well as weak equivalences between cofibrant objects are closed under arbi-
trary coproducts, this difference does not affect the argument establishing (a). However,
to carry out the proof of (b) for a general tame polynomial monad, we need the additional
property that the class of weak equivalences is closed under arbitrary coproducts. This
follows from Proposition 2.5 because £ is strongly h-monoidal, cf. Section 1.20. [
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Let ® : S = dTc be a cartesian monad morphism, cf. Definition 5.7. Assume that
the categories of S- and T-algebras in £ admit transferred model structures (e.g., S and
T are tame polynomial and £ is compactly generated h-monoidal). By Theorem 6.17,
restriction df admits a left adjoint 7. The resulting adjoint pair

e+ Algs(€) S Algy(€) : 7

is a Quillen pair with respect to the transferred model structures on both sides. We shall
see now that the total left derived functor Ly2 has an explicit formula in terms of the
combinatorial data defining ®, provided that the monoidal model category £ admits a
good realisation functor |—|g¢ for simplicial objects.

One way to obtain such a realisation functor is to require that £ is simplicially enriched
in such a way that simplicial hom &,(—, —) and internal hom £(—, —) are related by the
following compatibility relation

EdX,Y) =& (e, E(X,Y)),

and moreover £ equipped with these simplicial hom’s becomes a simplicial model category,
cf. [36, 37]. The compatibility relation implies that the category Alg;(€) of T-algebras
is simplicially enriched, and that the free-forgetful adjunction is a simplicial adjunction.
The simplicial hom for the category of T-algebras is given by the usual formula involving
a categorical end (see for instance [5]).

More generally, in order to have a good realisation functor for simplicial objects, it is
enough to assume that £ has a standard system of simplices in the sense of Moerdijk and
the second author, cf. [12, Appendix A]. We then have the following derived version of
Theorem 6.17.

8.2. THEOREM. Let £ be a monoidal model category with a “good” realisation functor
|—|e for simplicial objects, and let ® : S = dT'c be a cartesian monad morphism between
polynomial monads. Let X be an S-algebra in £ whose underlying J-collection is pointwise
cofibrant. Then the I-collection underlying Ly2(X) can be calculated as the following
homotopy colimit B

Lyg(X); = hocolimy, e X(b) (i € 1) (26)

where X : TS — &€ represents the S-algebra X, cf. Section 6.16.

PROOF. Let B,(5, .S, X) be the simplicial bar-construction of the S-algebra X. Its realisa-
tion B(S, S, X) = |B.(S, 5, X)|¢ is a cofibrant resolution of the S-algebra X with respect
to the transferred model structure on Algg(E). This follows from a similar argument as
for [5, Theorem 5.5], once we know that the following augmented cosimplicial object in €

X — S(X) = S¥(X) — S(X) —= .- (27)

—_—

is Reedy cofibrant. In this cosimplicial object the cofaces are generated by the unit of the
monad S and the codegeneracies are generated by the multiplication of S.
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The unit n : Id; — S is a cartesian map of polynomial monads. The category of
J-collections in € can be identified with the category of Idj-algebras so that n induces
the free-forgetful adjunction between J-collections and S-algebras, whence the monad
S = UgFs can be rewritten as 62vJ. Theorem 5.14 implies that the adjoint pair (v2,d2)
is represented by the adjoint pair ((S"), (S")*) where S" : S — S5 is the functor of
classifiers induced by 7 : Id; — S, and J-collections (resp. S-algebras) are represented
by functors S™ — &£ (resp. S* — &).

The category S has the same objects as S® but only identity morphisms, and the
functor S7 : S — S% is identity on objects. The explicit formula for the left Kan
extension (S7), produces then for any S-algebra X, represented as a functor X: S5 €E,
the following formula for the iteration of the monad S

SHX)(d) = (W) (X)) = [ X(dw),

dé—dy < +d

where the coproduct is taken over composable chains of morphisms in SS.
Evaluating this formula at the terminal objects 1; of S? we obtain

SHX); = (FsUs)"(X); =[] X(di) (di,....dx€S5).

d14—- dg

The unit of the monad UgFy is the canonical summand inclusion X; — [, X (d) which
takes X; to X(1;) = X;. Therefore, the latching object of (27) in dimension k is the
coproduct of the X (dx) over degenerate k-simplices of the nerve of S®. Since the underlying
J-collection of the S-algebra X is pointwise cofibrant, all summands X (d) are cofibrant,
and hence the inclusion of the latching object is a cofibration. It follows that B(S, S, X)
is a cofibrant resolution of the S-algebra X so that the value of the total left derived
functor Lyg can be calculated as

LV?(X) = 7?(3(57 SvX)) = 7§|BO(57 SvX)|5 = hg(B'(Sv SvX))‘E

The simplicial T-algebra g (B, (S, S, X)) is isomorphic to

-~

Y (S(X) = #(S* (X)) = #(FX) = - (28)

-~

and, by Theorem 6.17, the underlying object in dimension k is given by the formula

72 (8%(X))i = colimp, 7 S*(X)(b) (i € 1), (29)

where this time S-algebras are represented as functors from T® to &£.

To finish the proof we therefore need a presentation of the iterations of the comonad
FsUg on Algs(€) in terms of the relative classifier T°. For ease of notation, we will use
the same letter S for the comonad FgUsg.
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Consider the following commutative triangle of polynomial monads

Id;—'—S
P

and use Theorem 5.15 to get

—~—— —_~— —_— ~

S(X) = 2£62(X) = (T"),6¢(X) = (T"),(T")"(X)

and hence

SH(X) = ((T")(T"))*(X).
The canonical functor T” : TI% — TS is the inclusion of the discrete subcategory of
objects of T®, so that we obtain (in a similar way as above) the formula

e~

SHX)b)= [ X(by) (30)
beb, b,

where this time the coproduct is over composable chains of morphisms in T%.
Let t; : TS — 1 be the unique functor to the terminal category. Putting formulas (29)
and (30) together we obtain

—_—

YE(SH(X))i = colimpgsSH(X)(b) = (#:) ((T")(T")")*(X)
= (GT(T) (T (X) = [T X(be).

We conclude that the simplicial object 72 (B.(S, S, X)) may be identified with the
classical simplicial replacement of Bousfield-Kan for the functor X : TS — € representing
the S-algebra X. By hypothesis, this functor is pointwise cofibrant so that the Bousfield-
Kan simplicial replacement calculates the homotopy colimit of X upon realisation. [

8.3. REMARK. The simplicial T-algebra & (B, (S, S, X)) is isomorphic to

Te(X) = TcS(X) = TcS*X) <

where ¢ : £/J — £/I is induced by the cartesian morphism of polynomial monads &
from S to T (see Section 6.14). In particular, we recognise here the two-sided simplicial
bar-construction B,(7T'c, S, X), and hence we get the formula

Lyg (X) 2 |Ba(Tc, S, X)|e.

8.4. COROLLARY. The simplicial nerve N(T®) of the S-algebra classifier T® is a cofibrant
simplicial T-algebra. In fact,
N(T®) = Lrg(1)

where € 1is the category of simplicial sets equipped with Quillen’s model structure, and 1
is the terminal simplicial S-algebra.
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8.5. REMARK. Theorem 8.2 and Corollary 8.4 generalise formulas of [5, 6] where the
symmetrisation functor from n-operads to symmetric operads has been studied. Theorem
8.2 is one of the main tools in the study of stabilisation phenomena in [8, 9].

8.6. REMARK. Giansiracusa’s formula [27] for the derived modular envelope of a cyclic
operad can be understood along similar lines. For the precise relationship with the present
approach we refer the reader to [67, Example 3.4.3].

Part II1

Operads as algebras over polynomial monads

Symmetric, non-symmetric, cyclic, modular operads, properads, PROP’s, the higher op-
erads of the first author, and other types of generalised operads (see [16, 46, 44, 32])
are examples of algebras over polynomial monads. In this part we study these examples
in some detail and investigate whether the corresponding polynomial monad is tame or
not. We pay a particular attention to the polynomial monad for n-operads for reasons
explained in the introduction to this article. This special case turns out to be the most
intricate one with respect to tameness.

In each case, the definition of the generating polynomial necessitates a rigorous defini-
tion of a certain class of graphs, together with the appropriate notion of graph insertion.
This graph insertion is responsible for the multiplication of the associated polynomial
monad. We refer the reader to Part 4 for our terminology and conventions concerning
graphs, trees and graph insertion.

9. Operads based on contractible graphs

9.1. DIAGRAM CATEGORIES. As a first example of tame polynomial monad we consider
‘linear’ monads. These are polynomial monads for which the middle map is the identity:

. p_ M p t

The category of linear monads is isomorphic to the category of small categories. If C'is a
linear monad and C the corresponding small category then the category of algebras over
C' is the category of diagrams [C,£]. To see that any linear monad is tame we need to
compute the classifier C°**. Let ¢ be an object of C. The objects of C®"!(i) are morphisms
f =7 — i coloured by two colours X or K. A (non-identity) morphism from f : j; — ¢
to g : Jjo — 1 can exist only if f and g both have colour X and there is a morphism
h : j1 — 72 in C such that f = g - h. In other words, the semi-free coproduct classifier
C®*1(4) is isomorphic to a coproduct of overcategories C/i together with a coproduct
of as many terminal categories as there are non-identity morphisms in C. Since each
overcategory C/i has a terminal object we conclude that the linear monad C' is tame.
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9.2. MONOIDS AND NON-SYMMETRIC OPERADS. Let M be free monoid monad on Set.
It is a polynomial monad generated by the following polynomial

t
1 LinearTrees® _p» LinearTrees — 1

in which LinearTrees is the set of (isomorphism classes of finite) linear rooted trees,
and LinearTrees™ is the set of (isomorphism classes of finite) linear rooted trees with
one marked vertex. The mapping p forgets the marking. The multiplication of M is
induced by insertion of linear trees into vertices of linear trees. The category MM"™! can
be described as follows, cf. Section 6.20.

The objects of M" are corollas with vertex decorated by a linear tree and edges
coloured by X or K. The edges of the corolla correspond to vertices of the decorating
tree. Therefore, such a corolla can be considered as a linear tree with vertices labelled by
X or K. The morphisms of M"*! are generated by contractions of linear subtrees with
X-coloured vertices to a single X-coloured vertex

O . ©

and insertions of a single X-coloured vertex into an edge:

©

Obviously, every connected component of M"** contains a terminal object which is a
linear tree the vertices of which have alternating colours starting with X and terminating
with X:

Hence, the free monoid monad M is tame and we obtain in particular formula (1) of the
introduction.
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Moreover, the objects of the final subcategory t of M"e (cf. Lemma 7.8) are linear
trees with vertices coloured by X, K, L such that

e first and last vertex are coloured by X;
e adjacent vertices have different colours;
e no edge connects a K-vertex with an L-vertex.

Let X = (R, Yy, Y1, u, ) be a My s-algebra, i.e. the data for a pushout along a free map
in the category of monoids (see the proof of Theorem 3.1). Then, according to formula
(25) the functor X takes on a typical object of t the value

RRY, ®R®Y,®---®Y;, ®R

where (i1, ...,1) is a vertex of a punctured k-cube. We thus obtain the Schwede-Shipley
formula (6) as a special instance of Theorem 7.11 (cf. also [60, pg. 10]).

The polynomial monad for non-symmetric operads monad is generated by the following
polynomial

No

S
Ny «—— PlanarRootedTrees” _p» PlanarRootedTrees

in which Ny denotes the set of natural numbers including 0; PlanarRootedTrees denotes
the set of isomorphism classes of planar rooted trees. The elements of PlanarRootedTrees*
are elements of PlanarRootedTrees with an additional marking of one vertex. The map-
ping p forgets this marking. The target map takes a planar tree to the cardinality of the
set of its leaves and the source map takes a tree S with marked vertex v to the cardinality
of the set of leaves of the corolla cor,(S) surrounding the vertex v in S. The multiplication
of the polynomial monad is induced by insertion of planar rooted trees into vertices of
planar rooted trees.

The polynomial monad O(1) for non-symmetric operads is tame for similar reasons as
in the preceding example. The objects of 0(1)0(1)+1 are planar rooted trees the vertices of
which are coloured by X and K. Morphisms in 0(1)0(1)+1 are generated by contractions
of a subtree with X-coloured vertices to a single X-coloured vertex, and by insertion
of a single X-coloured vertex into an edge. A typical terminal object in a connected
component of 0(1)0(1)+1 is a planar rooted tree with vertices coloured by X and K such
that adjacent vertices have different colours, and such that vertices incident to the root
or to the leaves are X-coloured. For instance, a tree of the following form is terminal in
its connected component:

o2
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There is also a corresponding description for the final subcategory t of the free non-
symmetric operad extension classifier O(l)o(l)f’g. As an instance of our Theorem 7.11 we
obtain Muro’s formula [52] for free non-symmetric operad extensions.

9.3. REMARK. We can introduce a coloured version for the polynomial monads above.
For this we need to use graphs whose edges are coloured by some set of colours I. The
coloured version of the free monoid monad gives the monad for categories with fixed
object-set I. Algebras over this monad in a symmetric monoidal category £ are precisely
E-enriched categories with object-set I. Similarly, the coloured version of the monad for
non-symmetric operads is the monad for multicategories with fixed object-set. These
monads are tame by the same argument as for their single-coloured counterparts. A
similar remark applies for all other polynomial monads of this article. We will thus not
anymore mention the coloured versions.

9.4. SYMMETRIC OPERADS. The monad for symmetric operads [15, 49] is generated by
the following polynomial

t
OrderedRootedTrees” _p» OrderedRootedTrees —— Nj

No

in which OrderedRootedTrees is the set of isomorphism classes of ordered rooted trees.
Such an isomorphism class is represented by a planar rooted tree together with an ordering
of its leaves. The structure maps of this polynomial monad are defined in a similar fashion
as those of the polynomial monad for non-symmetric operads.

9.5. DEFINITION. A wvertex v of a rooted tree is called non-degenerate (resp. normal) if
the set of incoming edges of v is non-empty (resp. of cardinality at least 2).

A tree is called regular (resp. normal) if its vertices are non-degenerate (resp. normal).
A tree T is called non-degenerate if the set of its leaves is mon-empty and any non-
degenerate vertex belongs to a linear subtree containing a leaf of the tree.

There is a polynomial monad for constant-free symmetric operads. These are sym-
metric operads without constant operations. The generating polynomial is

s t
N «——— OrderedRootedTrees, 2, OrderedRootedTrees,., — N

g

where everything is defined as above except that we restrict to regular ordered rooted
trees.

One can also define a polynomial monad for normal symmetric operads. These are
constant-free symmetric operads with a unique unary operation, i.e. the object of oper-
ations of arity 1 is the tensor unit e of £. The generating polynomial of the monad for
normal symmetric operad is

t
OrderedRootedTrees;, . R OrderedRootedTrees,, —— N

N

everything being defined as above except that we restrict to normal ordered rooted trees.
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The polynomial monad for constant-free symmetric operads is tame. In an implicit
manner, this was first observed by Getzler-Jones [25, Section 1.5]. As in the non-
symmetric case one can characterise the terminal object in each connected component
of the internal algebra classifier as alternating trees with two colours X and K (see Sec-
tion 9.4). The polynomial monads for normal symmetric operads are also tame. However,
the polynomial monad for general symmetric operads is not tame. The following tree

is the only candidate for a terminal object in one of the connected components of corre-
sponding internal algebra classifier but it has a non-trivial automorphism coming from a
Se-action on X5, and so, it can not be terminal. There is an obstruction for the existence
of model structure on symmetric operads with coefficient in chain complexes over a field
of positive characteristic, similarly to (12.30), which was first described by Fresse [22].

9.6. REMARK. Symmetric operads are often supposed to be 0-reduced, i.e. to have a
unique constant (the monoidal unit e) in arity 0. It seems unlikely that 0-reduced sym-
metric operads are the algebras for a polynomial monad in sets. We are grateful to
Giovanni Caviglia for having pointed this out. There is nevertheless a way of dealing with
0-reduced symmetric operads from a polynomial monad point of view.

Let us call reduced symmetric operad any algebra for the polynomial monad generated
by the following polynomial

t
OrderedRootedTrees; L, OrderedRootedTrees,q — N

N

where OrderedRootedTrees,,q is the set of isomorphism classes of non-degenerate ordered
rooted trees and OrderedRootedTrees’ , is the set of elements of OrderedRootedTrees,
with one non-degenerate vertex marked (cf. Definition 9.5). The reader should ob-
serve that non-degenerate trees can have degenerate vertices. The structure maps of
this polynomial are induced by substitution of non-degenerate trees into marked vertices
of non-degenerate trees, much like above. In virtue of the existing input leaves in any
non-degenerate tree, the polynomial monad for reduced symmetric operads is tame.

We denote by £ /e the category of objects of £ which are augmented over the monoidal
unit e. The category of reduced symmetric operads in £ /e contains then the category of
0-reduced symmetric operads in £ as a full subcategory, cf. Fresse [23, Theorem 2.2.18].
Reduced symmetric operads have the advantage over 0-reduced symmetric operads to be
algebras for a tame polynomial monad in sets. A similar observation applies to graphical
PROP’s versus Adams-Mac Lane PROP’s,; cf. Remark 10.5.

9.7. PLANAR CYCLIC AND CYCLIC OPERADS. The generating polynomial of the monad
for cyclic operads is

S t
N «——— OrderedTrees” 2, OrderedTrees —— N
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where OrderedTrees is the set of isomorphism classes of ordered (non-rooted) trees. In
the generating polynomial of the monad for planar cyclic operads the set OrderedTrees
has to be replaced with the set OrderedPlanarTrees of isomorphism classes of ordered
planar trees. Neither of these three polynomial monads is tame for similar reasons as
above. Nevertheless we have

9.8. PROPOSITION. The polynomial monad for normal (constant-free, reduced) cyclic
(resp. planar cyclic) operads is tame.

PROOF. The terminal objects in the connected components of the internal algebra classi-
fier can be characterised as alternating coloured trees much as in the case of the monad
for non-symmetric operads. [

9.9. DIOPERADS AND %PROP’S. Instead of going into details we refer the reader to
[46] for precise definitions. We just mention that the polynomial monad for dioperads is
based on the class of contractible ordered graphs while the monad for %PROP’S is based
on the class of those ordered contractible graphs, called %—graphs, which are obtained as
two rooted trees glued together along the roots. Both of these polynomial monads are
not tame as both contain the monad for symmetric operads as a submonad. Nevertheless,
if we define a normal dioperad (resp. normal %PROP) as one which has no operations
of type A(0,n) and no operations of type A(n,0) for n > 0 while A(1,1) = e, then the
following statement holds.

9.10. PROPOSITION. The polynomial monads for normal dioperads and normal %PROP s
are tame.

The proof is similar to the one for normal symmetric or normal cyclic operads.

10. Operads based on general graphs

10.1. MODULAR OPERADS. The monad for modular operads is generated by the polyno-
mial

i N

N OrderedGraphs” L, OrderedGraphs

in which OrderedGraphs denotes the set of isomorphism classes of ordered connected
graphs (with non-empty set of vertices) and OrderedGraphs* is the set of such isomor-
phism classes with one vertex marked. The source and target maps and the composition
operations are defined as above. The polynomial monad for modular operads is not tame
even if we restrict to normal modular operads. Normality in this case means that mod-
ular operads do not have operations whose arities are corollas with less than three flags.
Indeed, in the corresponding internal algebra classifier there is a connected component
which contains the following ordered bicoloured graph:
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in which top and bottom vertices are X-coloured and the middle vertices are K-coloured.
The isomorphism class of this graph can not be contracted further inside the internal
algebra classifier but it admits a non-trivial automorphism which consists of the following
renumbering of the edges incoming in into X-vertices:

There is thus no transferred model structure on modular operads under the general
assumptions of our Main Theorem 8.1.

10.2. REMARK. The usual definition of modular operad uses stable graphs [26, 46], i.e.
graphs decorated by genus and satisfying a stability condition. There is a polynomial
monad for this version of modular operad, which is not tame by exactly the same argument
as above for non-decorated graphs.

These negative results do not exclude the existence of a transferred model structure on
the algebras under some more restrictive conditions on the monoidal model category &.
The following proposition illustrates in which way specific properties of £ can be used to
establish the existence of a transfer even for algebras over non-tame polynomial monads.

10.3. PROPOSITION. The monad for modular operads is ®-admissible in the monoidal
model category Ch(k) of chain complexes over a field k of characteristic 0.

PROOF. The generating trivial cofibrations are of the form 0 — D where D is the chain

complex ... <0<+ k 2k 0« ... Tt is thus enough to consider semi-free coproducts
of modular operads. The underlying object of a semi-free coproduct X Vv F(K) has a
direct summand equal to X with canonical injection X — X V F(K). We have to show
that this injection is a quasi-isomorphism for acyclic K.

The classifier Mod""* contains a final subcategory the objects of which are isomor-
phism classes of ordered graphs with vertices coloured by X and K, such that internal
edges only connect vertices of different colours. Since no further contractions of such
graphs are possible the morphisms of this final subcategory are generated by insertion
of corollas into X-vertices. Therefore the final subcategory is equivalent to a coproduct
of finite groups. The semi-free coproduct is the colimit of a functor on this subcategory
which assigns to each graph a tensor product of as many X’s and K’s as there are X-
and K-vertices in the graph. The morphisms of the classifier act by permuting K-factors
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and through the modular operad action on X-factors. It follows that the colimit of this
functor splits into one component which corresponds to the image of the canonical injec-
tion X — X V F(K) and other components which correspond to graphs with at least one
K-vertex. It thus suffices to show that the latter components are acyclic.

Since our chain complex K is a chain complex of k-vector spaces, acyclicity of K
implies contractibility of K. Therefore, the functor on the classifier takes those graphs
which have K-vertices to contractible chain complexes. Over each connected component
of the final subcategory (with K-vertices) the functor can thus be considered as a chain
complex in the abelian category of diagrams over this connected component. As we have
seen the latter is equivalent to the category of representations of a finite group. Since k
has characteristic 0 this representation category is semisimple so that every chain complex
in it is cofibrant. Since taking the colimit is a left Quillen functor we conclude that the
colimit of F'is acyclic on each connected component containing K-vertices, as required. m

10.4. PROPERADS, PROP’s. The generating polynomials of the monad for properads
and PROP’s are defined in complete analogy with the preceding section, by specifying the
appropriate insertional class of graphs. We refer the reader to Markl [46] and Johnson-
Yau [32] for an explicit link with the original definitions of properads by Vallette [63] and
of PROP’s by Adams-Mac Lane. The insertional class of graphs for PROP’s (properads)
consists of all (connected) directed loop-free graphs.

In the normal versions there are no operations of type A(0,n) and no operations of
type A(n,0) for n > 0, while A(1,1) =e.

10.5. REMARK. Our definition of PROP as an algebra of a polynomial monad is slightly
weaker than the classical definition as a strict symmetric monoidal category whose set of
objects is the commutative monoid of natural numbers. The difference between the clas-
sical and our graphical definition of PROP concerns the structure of vertical composition.
In classical PROP’s there are two a priori different compositions, horizontal and vertical:

op : A(n,0) x A(0,m) — A(n,m) , o, : A(n,0) x A(0,m) — A(n,m).

In particular A(0,0) carries two multiplications which satisfy the middle interchange re-
lation and thus make A(0,0) a commutative monoid by the classical Eckmann-Hilton
argument. Therefore, the symmetric group action in the coloured operad for classical
PROP’s is not free so that this operad does not correspond to any polynomial monad. In
graphical PROP’s however the vertical composition o, : A(n, k) x A(k,m) — A(n,m) is
represented by the directed graph
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If £ = 0 there is no such graph representing vertical composition; rather there is only a
graph with two connected components which represents horizontal composition. There-
fore, in the case of graphical PROP’s A(0,0) carries only one composition (the horizontal)
and is thus not necessarily a commutative monoid. It is not hard to see, however, that the
coloured operad for classical PROP’s is a canonical quotient of the coloured operad for
graphical PROP’s, and that for normalised PROP’s there is no difference at all between
the classical and our definition.

10.6. PROPOSITION. The polynomial monads for (normal) properads and PROP’s are
not tame.

PROOF. This negative result follows from the fact that both category of PROP’s and
properads contain the category of symmetric operads. In the normal case observe that
the following graph lives in one of the connected components of TT:

in which top and bottom vertices are X-couloured and the middle vertices are K-colour.
The isomorphism class of this graph can not be contracted further in TT** but it admits
a non-trivial automorphism consisting of the following renumbering of the edges incoming
into the X-vertices:

10.7. WHEELED OPERADS, PROPERADS AND PROP’S. There is also a “wheeled” ver-
sion of the notions of operad, properad and PROP, due to Markl-Merkulov-Shadrin [48].
The polynomial monad for the wheeled version is defined by allowing certain loops in
the insertional class of graphs of the “non-wheeled” version. For instance, the insertional
class of graphs for wheeled operads contains rooted trees as well as graphs obtained from
rooted trees by identifying the root with one of the leaves of the tree (see [48] for details).

10.8. PROPOSITION. The polynomial monads for wheeled normal properads and PROP’s
are not tame.

PROOF. The classifier T for wheeled version of properads and PROP’s contains more
objects and admit more contractions than in nonwheeled version since directed loops are
allowed (see [48, Remark after Def.2.1.8]). In wheeled PROP’s case we can multiply X-
vertices (something which is not allowed in properads) and contract any edges between
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X-vertices (which is not allowed in “unwheeled” PROP’s). Doing this operation we end
up with a graph which has only one X-vertex connected to K-vertices. Nevertheless
the following graph, which does not admit any further contraction, has a non-trivial

automorphism in TTH!:
1
2

In this graph the central vertex is X-coloured and all the other vertices are K-coloured.
The non-trivial automorphism is generated by a substitution which interchanges 2 and 6,
and 5 and 3 inside the X-vertex. [

On the positive side we have the following statement that tame polynomial monads
based on noncontractible graphs do exist.

10.9. PROPOSITION. The polynomial monads for normal (constant-free, reduced) wheeled
operads are tame.

We leave the proof to the interested reader as it is very much analogous to the case of
symmetric operads.

11. Baez-Dolan +-construction for polynomial monads

With any polynomial monad T one can associate another polynomial monad T, the
so-called Baez-Dolan +-construction of 7', see [3, 38, 39, 43|. If T is generated by the
polynomial P

¢
I * g P | p I

then the generating polynomial P* for T is

ot + +

B tree*(P) P, tree(P) B

where tree(P) is the set of P-trees, and tree*(P) is the set of P-trees with a marked
vertex. Recall [38, 39] that a P-tree is an isomorphism class of rooted trees whose edges
are coloured by the elements of I, and whose vertices are decorated by T-operations in the
sense of Remark 6.4, in such a way that the sources and the target of these T-operations
coincide with the given edge-colouring of the P-tree.

The source map st of the generating polynomial of T returns the T-operation dec-
orating the marked vertex, the middle map p* forgets marking, and the target map ¢+
computes the composite T-operation of the whole P-tree.

The monad M for monoids is the 4-construction of the identity monad on Set. The
monad O(1) for non-symmetric operads is the 4+-construction of the monad M. In general,
the characteristic property of the +-construction is that T -algebras can be identified
with cartesian monads over T (i.e. T-operads in the terminology of Leinster [43]). For
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instance, non-symmetric operads can be identified with cartesian monads over M. In
particular, there is a natural notion of algebra over a TT-algebra, namely an algebra for
the corresponding cartesian monad over T'.

11.1. THEOREM. For any polynomial monad T, the polynomial monad T is tame.

PROOF. The objects of (T+)™T 1 are P-trees with an additional colouring of their vertices
by two colours X and K. The morphisms are generated by contraction to corolla of
subtrees all of whose vertices are X-coloured, or introducing a new X-vertex on an edge
coloured by an ¢ € I. The decorating element in this vertex is 1; € B. One can always
contract an object in (TF)T"+! to an object in which the vertex colours alternate starting
with X and ending with X (cf. Sections 9.2 and 9.4). Associativity and unitality of
the multiplication of T" imply that such a contraction represents a unique morphism in
(T+)T" *1. Hence, these objects are terminal in their connected components. (]

This theorem permits the definition of homotopy T'-algebras for any polynomial monad
T and choice of monoidal model category £ fulfilling the hypotheses of Theorem 8.1. In-
deed, the terminal object Ass” of the category of T -algebras corresponds to the identity
morphism of cartesian monads id : T — T, so that the category of algebras of Ass’ is
isomorphic to the category of algebras of T. Since Tt is tame polynomial we can consider
a cofibrant resolution cAsst — Assk in the category Alg;.(€) of T -algebras in €. The
cAssk-algebras should then be considered as homotopy T-algebras in E.

For instance, if M is the polynomial monad for monoids then Ass™ induces the clas-
sical non-symmetric operad Ass¥ for monoids in &€, and cAss¥ is a cofibrant resolution
in the category of non-symmetric operads in &, i.e. an A, -operad. Similarly, the cofi-
brant operad cAsséV+ is a coloured operad in £ whose algebras can be considered as
(non-symmetric) “homotopy operads” in &.

One can therefore, for any polynomial monad 7" and any monoidal model category
£ fulfilling the hypotheses of Theorem 8.1, embed the category of T-algebras in £ in a
larger category of homotopy T-algebras. We conjecture that in virtue of the cofibrancy of
cAssk in Algr (€) there exists a transferred model structure on the category of homotopy
T-algebras under very mild additional hypotheses on &.

12. Higher operads

For the convenience of the reader we recall here the definition of the higher operads of the
first author. In particular, we describe them as algebras over a polynomial monad, closely
following [5, 6]. This subsumes Section 9.2 since 0-operads are monoids, and 1-operads are
non-symmetric operads. We also define the monads for various interesting subcategories of
the category of n-operads. The monads for constant-free, reduced and normal n-operads
are tame polynomial, while the monad for general n-operads is polynomial, but not tame
polynomial if n > 2.
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12.1. COMPLEMENTARY RELATIONS AND 7-ORDINALS. -

For all what follows n denotes a fixed positive integer.

12.2. DEFINITION. An n-ordered set X is a set equipped with n binary antireflexive
relations <q, ..., <n_1 which are complementary in the following sense:

(i) for every pair (a,b) of distinct elements of X there is one and only one relation <,
such that a <, b or b <, a.

An n-ordinal T is a finite n-ordered set such that for any a,b,c in'T
(1) if a <p b and b <4 ¢ then a <pin(p,q) C-

A map of n-ordered sets o : X — Y is a mapping of the underlying sets such that the
relation a <, b in X implies one of the following three types of relations in Y :

1. o(a) <4, 0(b) forp<gq or
2. o(a) =0(b) or
3. o(b) <, 0(a) forp <q.

The category of n-ordered sets and maps between them will be denoted Rel(n). The
full subcategory of Rel(n) spanned by the n-ordinals will be denoted Ord(n). There is
an obvious forgetful functor |—| : Rel(n) — FinSet which forgets the relations. The
cardinality of an n-ordered set X is the cardinality of its underlying set | X].

As there are no non-trivial automorphisms in Ord(n) we will assume that each iso-
morphism class of n-ordinals contains a single element, i.e. Ord(n) is skeletal.

Each n-ordinal can be represented as a pruned planar rooted tree with n levels (pruned
n-tree for short), cf. [5, Theorem 2.1]. For example, the 2-ordinal

0<p2, 0<g3, O<04, 1<02, 1 <o 3, 1<04, 0<y1, 2<13, 2<14, 3<14,

is represented by the following pruned tree

0O 1 2 3 4

Figure 3: A pruned 2-tree.

The initial n-ordinal 2"Uy has empty underlying set and its representing pruned n-
tree is degenerate: it has no edges but consists only of the root at level 0. The terminal
n-ordinal U, is represented by a linear tree with n levels.
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12.3. DEFINITION. An n-ordered set X is said to dominate an n-ordered set Y if there
1s a map of n-ordered sets X — Y inducing the identity on underlying sets.

We also would like to consider the limiting case of oo-ordinals.

12.4. DEFINITION. Let T be a finite set equipped with a sequence of binary antireflexive
complimentary relations <o, <_1 ..., <p,<p—1 ... for all integers p < 0. The set T is
called an oo-ordinal if these relations satisfy:

o a<,b and b<,c implies a <min(p,q) C-

The definition of morphism between oo-ordinals coincides with the definition of mor-
phism between n-ordinals for finite n. The category Ord(oc) denotes the skeletal category
of oco-ordinals.

For an n-ordinal R , k < n we consider its vertical suspension S(R) which is an
(n + 1)-ordinal with the underlying set R, and the order <,, equal the order <,,_; on R
while <q is empty.

For example, a vertical suspension of the 2-ordinal from Figure 3 is the 3-ordinal

0 1 2 3 4

The suspension operation induces functors S, : Ord(n) — Ord(n+1), 0 < p < n.
We also define an oo-vertical suspension functor Ord(n) — Ord(co) as follows. For an
n-ordinal T its oco-suspension is an oco-ordinal ST whose underlying set is the same as
the underlying set of 7" and a <, b in S*T" if a <,,1,—1 b in 7. It is not hard to see that
the sequence

Ord(0) - Ord(1) - 0rd(2) —» ... -2 Ord(n) — ... 25 Ord(c0),
exhibits Ord(oco) as a colimit of Ord(n).

12.5. FOX-NEUWIRTH STRATIFICATION OF CONFIGURATION SPACES AND n-ORDINALS.
Recall that the moduli space of configurations of k ordered, pairwise distinct points in
R"” admits a stratification which goes back to Fox-Neuwirth. Consider the following
configuration space

F(R™ k) = {(21,...,21) € R | oy £ x;ifi # 7 }
and denote ST 77! the open (n — p — 1)-hemispheres defined by

S {x eR”

4. +a22=1
Tpr1 > 0and z; =0for 1 <i<p
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and

st {oere

4. 4ai=1
Tpr1 <Oand z; =0for 1 <i<p

Let u;; : F(R", k) — S™! be the function

Uij(xl, P ,l’k) = m
7 i

The Fox-Neuwirth cell corresponding to an n-ordinal 7" of cardinality & is

uij(r) €SP ifi<,jin T
FNy =< 2 € F(R" k)

uij(r) €S"P ifj<,iin T

For instance, the Fox-Neuwirth cell which corresponds to the 2-ordinal below

consists of configurations of points which seat on three parallel lines in the prescribed
order

1

Each Fox-Neuwirth cell is a convex subspace of (R")¥, open in its closure, and we have
a stratification
FR" k) = U 7F Nr.

|T|2{1,....k},m€S),

Here mF Ny is the space obtained from F'Np by renumbering points according to the
permutation 7.

The domination relation of Definition 12.3 induces a partial ordering of the set of
n-ordinal structures on a fixed set {1,...,k} of cardinality k. Using Fox-Neuwirth strat-
ification we can show that the nerve of this poset is homotopy equivalent to F(R" k), cf.
[5, Remark 2.2], [7, Theorem 5.1].

12.6. FIBRES AND TOTAL ORDER. Let ¢ : T — S be a map of n-ordinals. For each
i € |S|, the set-theoretical fibre |o|7*(i) C |T'| inherits from T the structure of an n-
ordinal. This n-ordinal will be denoted o=1(7) and called the fibre of o at i.

Observe that the underlying set |S| is totally ordered by the relation

a < b if there exists p € {0,...,n — 1} such that a <, b.
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We call this the total order on the underlying set |S|. The fibres of a map of n-ordinals
o : T — S will accordingly be represented by an ordered list (7, ...,Ty) of n-ordinals,
the ordering being induced by the total order on |S]|.

Analogously, any two composable maps of n-ordinals

T2 . s_Y,R

induce a family of maps of n-ordinals
(wo)™H(i) = w™ (i)

indexed by i € |R|. We thus have a list of fibres (7p,..., 7)) for the composite map
wo, a list of fibres (Sy,...,S;) for w, and a list of fibres (T2,...,T,™) for each map
(wo)7Y(i) — w™i(i) where i € |R|. These notations will be used in the definition of an
n-operad below.

12.7. DEFINITION. A map of n-ordinals is a quasibijection (resp. order-preserving) if
it induces a bijection between the underlying sets (resp., preserves the total orders of the
underlying sets, i.e. only possibilities (1) and (2) of Definition 12.2 occur).

12.8. DEFINITION. An n-collection in a symmetric monoidal category &€ is a family
(Ar)reoram) of objects of € indexed by n-ordinals. The category of n-collections and
levelwise morphisms in € will be denoted by Coll,(E).

We now recall the definition of a pruned (n — 1)-terminal n-operad [5]. Since we do
not need other types of n-operads we will call them simply n-operads.

12.9. DEFINITION. An n-operad in € is an n-collection (Ar)reoram) in € equipped with
the following structure:

- a morphism € : e — Ay, (unit);
- a morphism m, : Ag ® Ap, ® --- @ Ay, — Ar (multiplication) for each map of
n-ordinals o : T — S.

They must satisfy the following identities:

- for any composite map of n-ordinals

o w

T S R

the associativity diagram

AR®AS,@Ars @~ @Ars @ @Are

1%

AR®As, ®AT1° ®®Ag, ®AT; Q- ®As, ®AT]:

As®Ars @ @A7e @@ Ars AR®AT,

-
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commutes, where
Ag, = Ag, @ -+~ ® Ag,

Ape = Apo @ -+ @ Ay,

and
Ar, = A ® - ® Ay

- for an identity o0 = id : T — T the diagram

Ar ® Ay, ® -+ @ Ayz ArRe® - ®e

Ar

commutes;
- for the unique morphism T — U, the diagram

Ay, ® Ar e® Arp
Ar

commutes.

The notion of n-operad morphism is obvious and we have a category O, (€) of n-
operads. The forgetful functor

Up: On(E) — Coll,(E)
has a left adjoint and is monadic whenever £ is cocomplete.
12.10. CONSTANT-FREE, REDUCED AND NORMAL n-OPERADS.

12.11. DEFINITION. An n-ordinal is called regular if it is not the initial n-ordinal. An
n-ordinal is called normal if it is neither the initial nor the terminal n-ordinal.

There is a category structure on ROrd(n) which we will call the category of regular
n-ordinals. The morphisms are those maps of n-ordinals which are surjective on the
underlying sets. This forces the fibres to be regular again.

12.12. DEFINITION. A regular n-collection in € is a family (Ar)reroram) of objects of €
indexed by the set ROrd(n) of regular (i.e. nonempty) n-ordinals.

A normal n-collection in € is a family (Ar)reroram) of objects of € indexed by the set
NOrd(n) of normal n-ordinals.

A constant-free n-operad is defined in a similar way as an n-operad by using regular
n-collections and maps of regular n-ordinals. This defines the category of constant-free
n-operads CF O, (€) together with a forgetful functor

CFU, : CFO,(E) — RColl,(E),
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where C'FColl,(€) is the category of constant-free n-collections. This functor has a left
adjoint and is monadic whenever &£ is cocomplete.

Analogously we have a category of normal n-ordinals NOrd(n) with morphisms being
surjective morphisms between normal n-ordinals. In the list of fibres of a map of normal
n-ordinals we include only those fibres which are not equal to the terminal n-ordinal.
We have the corresponding categories of normal n-collections NColl,(E) and normal
n-operads NO,(E). The latter can be considered as the full subcategory of CFO, (&)
consisting of constant-free n-operads A such that Ay, = e. The forgetful functor

NU, : NOu(E) — NColl,(E),

is again monadic whenever &£ is cocomplete.

The category of reduced n-operads is the category of constant-free n-operads with
additional structure. This structure is the structure of a contravariant functor on the cat-
egory of regular n-ordinals and their injective order-preserving maps. Similar to the case
of reduced symmetric operads, the category of reduced n-operads contains the category
of those n-operads A such that A,.y, = e as a full subcategory, cf. Remark 9.6.

12.13. THE POLYNOMIAL MONAD FOR n-OPERADS.

12.14. PROPOSITION. The monad O(n) for n-operads is generated by the polynomial

Ord(n) +” nPlanarRootedTrees* > nPlanarRootedTrees . Ord(n)
where
e 0rd(n) is the set of isomorphism classes of n-ordinals;
e nPlanarRootedTrees is the set of isomorphism classes of n-planar trees;

e nPlanarRootedTrees™ is the set of elements T € nPlanarRootedTrees with one
vertex marked.

The structure maps are defined as follows:
o The middle map forgets the marking;
o The target map associates to T the n-ordinal of its leaves;

e The source map associates to a marked vertexr T the n-ordinal T, decorating the
marked vertezr v.

The multiplication of the monad is induced by insertion of n-planar trees into vertices of
n-planar trees and the unit of the monad assigns to an n-ordinal T a corolla decorated by
T with T as an n-ordinal structure on its leaves.
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PROOF. We give a sketch of the proof. More details can be found in [5, 6]. First, we can
show that the data above determine a polynomial monad O(n). Second, any algebra A of
O(n) has the structure of an n-operad. The unit of this operad is given by an n-planar
rooted tree Lo (see (13.2) for notations) whose target is the terminal n-ordinal U, and
whose set of sources is empty because Lg does not have vertices. To define a multiplication
in A we will associate an n-planar tree [o] with each morphism of n-ordinals o : " — S.
The set of vertices {vg,vr,,...,vp } of the tree [0] is in one-to-one correspondence with
the set {S,T},...Ty}, where Ty, ..., T} are fibres of 0. The outgoing edge of the vertex
vg is the root of the tree [¢]. The elements of |S| are incoming edges of this vertex with
its n-ordinal structure. The other vertices are all above vg and the outgoing edge of vy,
is the i-th incoming edge of vg. The leaves attached to the vertex vy, correspond to the
elements of |T;| and this set has T; as its n-ordinal structure. Finally, the set of leaves is
equipped with the n-ordinal structure of 7.

Figure 4: A 2-ordinal and its corresponding 2-planar tree.

The element [o] then produces the multiplication
mUZASXATOX"'XATk—)AT

in the algebra A. All axioms follow from the associativity and unitality of the operation
of insertion of n-planar trees.

Conversely, if B is an n-operad one can associate with any n-planar tree 7 a composite
map out of the product of all B;, for all vertices of 7 to the set By using induction from
top to the bottom of the tree (see [5, Lemma 3.2]). "

12.15. THE POLYNOMIAL MONADS FOR NORMAL AND CONSTANT-FREE 7n-OPERADS.
The monad for normal n-operads has been computed in [5, Theorems 3.1 and 4.1]. We
show now that it is a polynomial monad.

12.16. PROPOSITION. The monad for normal n-operads is generated by the polynomial

s t
NOrd(n) «— nPlanarRootedTrees) . L, nPlanarRootedTrees,,, — NOrd(n)
where
e NOrd(n) is the set of isomorphism classes of normal n-ordinals;

e nPlanarRootedTrees,,, is the set of isomorphism classes of normal n-planar trees;
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e nPlanarRootedTrees” . is the set of elements of nPlanarRootedTrees,,, with one

nor
vertex marked.

The structure maps of this polynomial monad NO(n) are defined in the same way as for
the polynomial monad for n-operads.
PRrOOF. The proof is analogous to the proof of Proposition 12.14. The only difference

is that we construct a normal n-planar tree [o] only for surjective maps of normal n-
ordinals. In this construction we also do not introduce vertices for those fibres of o which

are isomorphic to the terminal n-ordinal. [
1 3
U =Y 2
o(l)=1,0(2)=2,003) =1 o] =

Figure 5: A normal 2-ordinal and its corresponding normal 2-planar tree.

12.17. PROPOSITION. The monad for constant-free n-operads is generated by the poly-
nomial

s t
ROrd(n) «— nPlanarRootedTrees), R nPlanarRootedTrees,., — ROrd(n)

g
where

e ROrd(n) is the set of isomorphism classes of reqular n-ordinals;

e nPlanarRootedTrees, ., is the set of isomorphism classes of regular n-planar trees;

e nPlanarRootedTrees;,, is the set of elements of nPlanarRootedTrees,., with one
vertex marked.

The structure maps of this polynomial monad CFO(n) are analogous to those of the
polynomial monad for n-operads.

PROOF. The proof is again similar to the proof of Proposition 12.14. The difference is that
we construct a regular n-planar tree [o] only for surjective maps of regular n-ordinals. m
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12.18. DEFINITION. An n-planar tree is called non-degenerate if its underlying tree is
non-degenerate in the sense of Definition 9.5. A vertex v of an n-planar tree T is called
non-degenerate if the corolla cor,(T) is non-degenerate in the tree underlying .

12.19. PROPOSITION. The monad for reduced n-operads is generated by the polynomial

s t
ROrd(n) «— nPlanarRootedTrees;, P, nPlanarRootedTrees,; — ROrd(n)

where
e ROrd(n) is the set of isomorphism classes of reqular n-ordinals;

e nPlanarRootedTrees,  is the set of isomorphism classes of non-degenerate n-planar
trees;

e nPlanarRootedTrees’ , is the set of elements of nPlanarRootedTrees,; with one
non-degenerate vertex marked.

The structure maps of this polynomial monad RO(n) are analogous to those of the poly-
nomial monad for n-operads.

PROOF. Everything is similar to the other three cases except that contraction of trees
may involve dropping degenerate vertices. As a result, the underlying category of this
polynomial monad is the category of regular n-ordinals and their injections. [

We now prove that the polynomial monads NO(n), CFO(n) and RO(n) are tame,
while the monad O(n) is not tame for n > 2. We construct an obstruction for the
existence of transferred model structure in the latter case. Our proof will be based on a
combinatorial lemma about directed categories.

12.20. DEFINITION. A small category C' is called directed if there is a function dim
(called dimension function) on objects of this category to an ordinal X\ such that any
non-identity morphism strictly increases the dimension.

12.21. LEMMA. Let C be a finite directed category with a set of generating morphisms G
which satisfies the following two conditions:

(i) Any two parallel generators in C' are equal;

(i) Any span of generators

w&rhy

in C' can be completed to a commutative square by a cospan of generators (or iden-
tities)
vS .

Then there is a unique terminal object in each connected component of C.
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Proor. We first prove that each connected component of C' has a unique weakly terminal
object, i.e. an object such that there exists at least one morphism to it from any other
object of the same connected component. We use an induction on the number k of objects
in C. If £ = 1 the unique object in C' is weakly terminal. Assume now that we know that
the statement is true for any for £ < m — 1. Observe that given a zig-zag of morphisms
in C

Ag <— A1 —> Ay < ...... — Ap—9 < Ap—1 — Ap

one can replace it by a zig-zag

Doing the same for the zig-zag of b’s and continuing we come to the conclusion that for
any two objects ¢, ¢ of the same connected component of C' one can find an object ¢ and
a cospan

c—d" .

We can now assume that there is only one connected component in C, otherwise the
statement for & = m follows immediately from the inductive hypothesis. Let L be the
minimum of the function dim on C. Consider the full subcategory C’ consisting of objects
a such that dim(a) > L. Then C” is obviously connected and satisfies our inductive
hypothesis. Therefore, it contains a weakly terminal object ¢t. If an object a does not
belong to C’ then there must be a span

a— b+t

where b € C’. In this span b < ¢ must be an identity, otherwise dim(b) > dim(¢) and ¢
would not be weakly terminal. So, we have found a map from any object of C' to ¢t. This
weakly terminal object is obviously unique.

The next step of the proof is to show that the weakly terminal object ¢ is actually
terminal in its connected component. We use an induction on dim to prove that there
is at most one morphism to t. Indeed, the statement is true for all objects a such that
dim(a) > dim(¢). Now, suppose we know that the morphism is unique for all objects a
such that dim(a) > m. Let k be the maximal integer such that k& < m and there exists
an object b such that dim(b) = k. Let dim(b) = k. and f,g : b — t. One can factorise
f=fi-foand g = g1 - go where f; and ¢g; are generators. Now, we can complete the
cospan

a1<f—1bg4a2

to a span
a] — C < Qs.

If a; # ay then we can use our inductive hypothesis and, therefore, there is only one
morphism from ¢ to ¢t and we finished the proof. If a; = ay then f; = ¢g; and f, = g5 by
the inductive hypothesis. [
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12.22. THE NORMAL n-OPERAD CLASSIFIER NO(n)"™® . According to formula (10) and
Proposition 12.16 the n-collection whose S-th term is the set of normal S-dominated
n-planar trees is the object of objects of the classifier NO(n)ND(n). The morphisms of
NO(n)NO(n) are generated by insertions of n-planar trees into vertices of another n-planar
tree. This allows us to describe the morphisms explicitly as certain contractions of
“forests” in an n-planar tree.

Let 7 be an n-planar tree. An n-ordered subtree 7' of T is a plain subtree of 7 such that
for each of its vertices the set of incoming edges carries the obvious n-ordinal structure
induced from 7.

A n-ordered subtree 7’ is called an n-planar subtree if the set of leaves of 7’ is equipped
with an n-ordinal structure (called target n-ordinal of ') such that

(i) 7" is an n-planar tree;
(ii) the corresponding contraction C(; 1 (32) is a map of n-ordinals.

A forest of n-planar subtrees in T is a set of n-planar subtrees of 7 whose sets of vertices
are pairwise disjoint. The source of such a forest is the tree 7 itself; the target is the
n-planar tree obtained from 7 by contracting each subtree of the forest to a corolla, and
decorating the corresponding vertex by the target n-ordinal of the contracted subtree.

The category NO(n)NO(n) is generated by contractions of single n-planar subtrees.
There are two types of relations:

(ee) Given a forest consisting of two disjoint n-planar subtrees the morphism of contrac-
tion of this forest factorises as two consecutive contractions of its subtrees in any of
the two possible orders;

(@) Given an n-planar subtree which contains itself an n-planar subtree, the morphism
of contraction of the bigger subtree factorises as contraction of the smaller subtree
followed by contraction of the result of the first contraction.

For an example of a generator see the left hand side tree on Figure 10. The target
2-ordinal of the subtree shown by a dash line is the 2-ordinal in the root of the contracted
tree. Observe that the total order of this 2-ordinal structure on the leaves is different
from the linear order induced by planar structure of the subtree.

12.23. LEMMA. Any two parallel generators in NO(n)"™ are equal.

PROOF. For the proof it is enough to see that due to the planarity and normality of the
underlying trees source and target of a generator permit to reconstruct entirely the n-
planar subtree whose contraction defines the generator. Indeed, we know the decorating
n-ordinals of the vertices of this subtree and, hence, its n-ordinal structure. The decoration
of the vertex of the target tree gives us the n-ordinal structure on the set of leaves of this
subtree, so that we reconstructed the entire contracted n-planar subtree. [
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12.24. DIAMOND GENERATED BY A SPAN IN NO(n)™®. Let now 7 be an n-planar

tree and let 7/, 7" be two n-planar subtrees of 7. These two subtrees generate a span of
morphisms in NO(n)"®

w& B (31)

We now describe a construction which produces a cospan in NO(n)ND(H)

vS Ly
making the square
T L4 v
¢ ol
w e S

commutative. We call this construction diamond generated by the span (31).
We consider two cases:

(i) 7" and 7" have no common vertices so they form an n-planar subforest 7 U7’ in 7 ;

(ii) 7" and 7" have at least one common vertices, so 7U7" is a partially n-ordered subtree

7" in 1.

Case (i) is easy since in this case we can take as ¢ the result of contraction of the
subforest 7 U 7". The resulting square commutes because of the relation of type (ee) in
NO(n)"®.

For the case (ii) we will now complete the partial n-ordered subtree structure on 7 to
an n-planar subtree structure in 7 in such a way that 7" and 7”7 both are n-planar subtrees
of 7. If such a structure on 7" exists then we can take as ¢ the result of contraction of 7"
and we will have a morphism ¢ : 7 — ¢. We also get a morphism ¢* : v — ¢ because 7’ is
a subtree of 7 and relation of type (@) in NO(n)™® shows that § = 1 - ¢*. Analogously
we have § = ¢ - * and the result follows.

To provide 7 with an n-planar structure we need to equip the set of leaves L(7"") with
an n-ordinal structure and check that such an equipment satisfies the necessary condition.
Observe that L(7") is a subset of L(7") U L(7’). Let

"

Clry  L(7) = L(7') , Clgry : L(7) = L(")

be the corresponding contraction functions. They determine a unique function
C:L(t) = L(7") U L(7").

For each h € L(7") C L(7")UF(7") let us choose a leave i(h) € C~'(h). We have a subset
{i(h)[h € L(=")} C L(7)
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and we equip it with the n-ordinal structure induced from F(7). The tree 7" is an n-planar
subtree of 7. It is also clear that 7/ and 7" are n-planar subtrees of 7 which finishes the
construction.

12.25. LEMMA. For each n-ordinal T the category (NO(n)" ™)y is a finite directed cat-
egory.

PROOF. The finiteness of (NO(n)"®); is clear. To prove the existence of an increasing
dimension-function, let us construct an antireflexive and transitive relation on the objects
of (NO(n)"™®),. which reflects the morphisms in (NO(n)"™®);. We will write (7,7T) <
(7',T) if either the underlying rooted tree of 7’ is obtained from the underlying rooted
tree of 7 by contraction of some internal edges, or 7 and 7’ have isomorphic underlying
rooted trees but d(1) < d(77).

Here d(7) = }_,c, d(7,), where for an n-ordinal S the dimension d(S) is the number
of edges in the level-tree representation minus 7 — 1. This dimension d(S) of the n-ordinal
S is actually the geometric dimension of the Fox-Neuwirth cell defined by S (cf. Section
12.5), while the resulting d(7) is the geometric dimension of the Getzler-Jones cell defined
by the n-planar tree 7 (cf. [5]). It follows that each generator f : 7 — 7/ satisfies 7 < 7/,
because such a generator either contracts some internal edges of the underlying tree or
comes from a quasibijection, in which case the dimension of the domain tree is strictly less
than the dimension of codomain tree (a quasibijection corresponds to an inclusion of a
Fox-Neuwirth cell into the boundary of another). We now get by induction on the number
of elements that any finite set equipped with a transitive antireflexive relation possesses
a dimension-function for its elements which strictly increases along this relation. ]

12.26. THE CLASSIFIER NO(n)™®*!_ Objects of the classifier NO(n)"®™ consist of
n-planar planar trees with an additional decoration of each vertex by colours X or K. We
call such trees coloured n-planar trees. The vertices are called X-vertices or K-vertices
according to their colours.

2 9 6

5 3 4\/13
) H\/“/
/ (x)

(k)

Figure 6: Typical coloured n-planar tree. Here v, w, p,t, s are n-ordinals decorating vertices.
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The morphisms in NO(n )No(n 1 are generated by contractions of n-planar subtrees all

of whose vertices are X-vertices. The resulting new vertex after such a contraction gets
colour X. Relations between morphisms are the same as in NO(n)ND(n).

12.27. THEOREM. The polynomial monad NO(n) is tame.

PROOF. We check that the classifier (NO(n)"® "), satisfies the conditions of Lemma
12.21. Indeed, we use the same dimension-function as in Lemma 12.25. Property (i) of
the Diamond Lemma follows from Lemma 12.23. Property (ii) follows from the fact that
in such a span of generators only n-planar subtrees with X-vertices are involved and so
we can repeat the construction of the diamond from 12.24 verbatim. [

12.28. THEOREM. The polynomial monads CFO(n) and RO(n) are tame.

PROOF. The category NO(n)"®** is a subcategory of CFO(n)* ™™ for non-terminal
n-ordinals. It is not difficult to construct a terminal object in the connected component
of CFO(n )CFD D out of the terminal object in the corresponding connected component
of NO(0)" ™ Indeed, let t € NO(n)™®** be such an object. We construct an object

"in CFO(n )CF0 ML as follows: for any two K-vertices in ¢ connected by an edge, or for
a leave or root attached to a K-vertex, we replace this edge or leave with a linear tree
with one vertex. We assign the colour X to this new vertex. We have a morphism from
t to t’ generated by the unit of the n-operad.

Lo

For S = U, a typical terminal object in the connected component is a linear tree whose
vertices are decorated by U,, and whose colours are alternating between X and K, starting
with X and ending with X.

We leave the proof that these objects are terminal in their connected components of
CFO(n)"™™ a5 an exercise.

The classifier RO(n )Ro(n " for reduced n-operads contains more objects than the clas-
sifier CFO(n )CFO(n "1 because trees with stumps are allowed. Nevertheless it also contains
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morphisms of ‘dropping’ stumps. So objects which are terminal in their connected compo-
nent of CFO(n)*°®** are also terminal in their connected components of RO(n)*® ™ u

12.29. REMARK. The difficulties with the case of n-operads (n > 2) in comparison with
monoids and non-symmetric operads (and many other operad types) are closely related
to the existence of the so-called “bad” cells in the Fulton-MacPherson compactification
of real configurations spaces, discovered by Tamarkin [5, 40]. For instance, the object of

(NO(n)" ™™g (n = 2), represented in Figure 7, is terminal in its connected component.

SN Y U
j\@/ 2\ 46
\ /
&)

Figure 7: Terminal object in a connected component of NO(n)NO(nH'1 which corresponds to a
Tamarkin bad cell.

It was shown in [5] that this figure corresponds exactly to the first bad cell in the Fulton-
MacPherson operad fm?. One can show that certain cells of maximal dimensions in fm"
correspond to terminal objects in NO(m)ND(H)Jr1 but in general, we don’t know an ex-
plicit characterisation of such cells and as a consequence an explicit formula for semi-free
coproducts of n-operads for n > 2.

12.30. THE POLYNOMIAL MONAD O(n) IS NOT TAME FOR n > 2. Some connected
components of O(n )0(n J*1 4o not have terminal objects but do contain weakly terminal
objects. This is because we have to include trees with stumps in the description of the
monad for n-operads. As a consequence colimits over O(n)o(n)Jr1 are more complicated
than those appearing in the monads for constant-free and normal n-operads. Weak equiv-
alences may not be preserved by these colimits, and this creates an obstruction for the
existence of transferred model structure on n-operads in an arbitrary monoidal model
category &£ even if the latter satisfies the hypothesis of Theorem 8.1.

More precisely, for n = 2, the category (O(n)o(n)+1)z2U0 has as objects all coloured 2-
planar trees without leaves. All such trees which contain exactly two K-vertices without
leaves form a full connected subcategory of (O(n)o(n)+1)z2U0 This subcategory contains a
final subcategory consisting of two objects
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W

where Y,V are 2-ordinals as in (12.29). There are exactly two non-trivial morphisms
between these objects generated by two quasibijections oy and oy from V' to Y. It follows
that the z2Uj-component of the semi-free coproduct of 2-operads contains a summand
isomorphic to the coequaliser of

Xy ® Ko ® Ko=3 Xy ® Ko ® K,

where

d = X(O'()) ® idK()@Ko
d' = X(01) ® Tkye ks

and 7 is the symmetry morphism in &£.

Let now £ be the category of chain complexes over a field k of characteristic two. Let
K be a non-reduced 2-collection such that Ky = C, where C' is an acyclic cofibrant object
in £ and Kr = 0 for all 7" # 0. Let X be a 2-operad with X = k for all 7" € Ord(2).
The aforementioned calculation shows that the coproduct F'(K)V X contains a summand
C ® C'/Ss which is not necessarily an acyclic complex, moreover, it is not hard to find a
C' such that 0-homology of C'® C/S, will be k @ k. Hence, X — F(K)V X can not be a
weak equivalence. Nevertheless, if the category of 2-operads in £ admitted a transferred
model structure this map would have to be a weak equivalence because trivial cofibrations
are closed under pushouts. Similar obstructions for the existence of a model structure on
n-operads exist for any n > 2.

Part IV

Graphs, trees and graph insertion

In this last part, we give formal definitions of graphs, trees and graph insertion. Graphs
have been used in an essential way in defining the polynomial monads of Part 3 whose
algebras describe different types of operads. Indeed, each class of graphs, which is suitably
closed under graph insertion, gives rise to a polynomial monad on sets whose multipli-
cation is directly induced by graph insertion. The graph insertional origin of the monad
multiplication is responsible for the substitutional structure of the associated algebras.
This explains somewhat why these algebras are “generalised operads”.

Most important for us are the graphical properties of the so-called n-planar trees.
These are higher-order generalisations of the well-known linear (n = 0) and planar (n = 1)
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rooted trees. Algebras for the polynomial monad defined by the class of n-planar trees
are precisely pruned (n — 1)-terminal n-operads of the first author [5, 6], cf. Section 12.

Our notions of graph and graph insertion are equivalent to those used in the recent
book by Johnson-Yau [32], though closer in spirit to the Feynman graphs of Joyal-Kock
[33]. We are grateful to Mark Johnson and Donald Yau for pointing out that our pre-
viously used definitions omitted the “free-living loops” which naturally appear whenever
“operadic algebras” are equipped with “traces”.

13. Graphs and graph insertion

13.1. DEFINITION. A graph is a finite category G with three kinds of objects, called v-
objects, f-objects and e-objects respectively.

Among non-identity arrows in G are only allowed arrows with source an f-object and
target either a v- or an e-object such that the following two axioms hold:

(i) each e-object is the target of precisely two non-identity arrows;

(ii) each f-object is the source of at least one and at most two non-identity arrows,
among which one at least has an e-object as target; if both targets are e-objects, the
arrows must be parallel.

A morphism of graphs G — G’ is a functor of the underlying categories which takes
v-, f- resp. e-objects of G to v-, f- resp. e-objects of G'.

Observe that this definition allows the set of f-objects to be empty, in which case the
set of e-objects is empty as well. For ease of terminology, the v-, f- resp. e-objects of G
will be called the vertices, flags resp. edges of the graph GG. The reader should consider
the categorical structure of G as describing the incidence relations between these three
kinds of objects of G.

Each edge e of G comes equipped with a unique cospan f; — e < fo. We say that
the two flags f1 and f5 are adjacent. A flag f is free if f is the source of exactly one
non-identity arrow. For a vertex v of GG the sources of the incoming arrows are the flags
attached to v, or v-flags. Each v-flag is the source of exactly one arrow with target v. An
edge e is internal if the cospan f; — e < f5 either fulfills f; = f5 or extends to a zigzag

U1<—f1—>€%f2—>1)2.

Non-internal edges will be called external.

A corolla is a graph with a unique vertex and only external edges. For each n > 0
there is up to isomorphism a unique corolla with n external edges.

A free-living edge (resp. free-living loop) is a graph with no vertices and one external
(resp. internal) edge.

A pointed loop is a graph with one vertex and one internal edge.
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Let G, G’ be two graphs, let v be a vertex of G and let p be a bijection between the
set of free flags of G’ and the set of v-flags of G. Then the insertion of G' into G along p
is the graph G o, G’ defined as follows.

Let G\ v be the graph obtained by removing from G vertex v as well as all arrows
with target v. Let f(G’) (resp. e(G’)) be the discrete subcategory of G’ containing only
the free flags (resp. external edges) of G'. Let G\ e(G’) be the category obtained by
removing from G’ all external edges e as well as all arrows to such e, and by identifying
each free flag with its adjacent.

Both categories f(G’) and G'\ e(G’) are not graphs in our sense, but there is an
obvious functor (composite of inclusion and quotient) f(G') — G’ \ e(G’). The bijection
p induces a functor f(G’') — G’ \ v which takes a free flag of G’ to its image under p in

G\ v. We define G o, G’ to be the categorical pushout

F(G) — G\ e(@)

(.

G\v—>Go,G

which is easily seen to be a graph in our sense. This graph insertion has obvious associa-
tivity and commutativity properties. Moreover, the corollas serve as right units. Observe
that G’ can be considered as a subgraph of G o, G'.

Insertion of free-living edges removes vertices. More precisely, insertion of a free-living
edge into the unique vertex of a pointed loop (resp. corolla with two external edges) yields
a free-living loop (resp. free-living edge).

If G” is obtained by insertion of a graph G’ into a vertex of a graph G then we will
say dually that G is the result of contracting G’ inside G".

13.2. TREES, FORESTS AND OTHER SPECIAL GRAPHS. The realisation of a graph G is
the geometric realisation of (the simplicial nerve of) the underlying category.

A graph G is connected (resp. a tree) if the realisation of G is connected (resp.
contractible). A graph G is a forest if it is a finite coproduct of trees.

A rooted tree is a tree with a distinguished external edge called root; the other external
edges of the tree are called leaves or input edges. In a rooted tree T the corolla cor,(T)
attached to a vertex v has a canonical structure of rooted tree. The input edges (resp.
root) of this “local” tree cor,(T") will be called the incoming edges (resp. outgoing edge)
of v. Morphisms of rooted trees are morphisms of the underlying graphs which preserve
the outgoing edges of the vertices.

A graph is called a rooted forest if it is a finite coproduct of rooted trees.

There are some types of graphs which we would like to give separate names:

— A linear tree on n vertices L, is a tree with n vertices and n + 1 edges two of which
are external. In particular, Ly denotes the free-living edge.

— A linear graph on n vertices [1,n] is a tree with n vertices and n — 1 internal edges
and no external edges. We will call the two vertices with only one edge attached the
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boundary vertices of [1,n]. A path between two vertices vy, vy of a graph G is a graph
morphism [1,n] — G taking the boundary vertices to vy, vs.

A non-empty graph G without free-living edges/loops is connected (resp. a tree) if
and only if for any ordered pair of vertices there is a (unique) path between them.

13.3. ORDERED GRAPHS AND ORDERED TREES. A graph is said to be partially ordered
if the set of its free flags is linearly ordered. A graph G is said to be ordered if G as well
as the corollas cor,(G) for the vertices v of G are partially ordered.

In particular, an ordered corolla with vertex v carries two linear orderings: a linear
ordering of the set of its free flags and a linear ordering the set of its v-flags:

1

An isomorphism between ordered graphs is an isomorphism of the underlying graphs
which preserves all orderings.

An ordered rooted tree is a rooted tree which is ordered as a tree in such a way that
the external root and the roots (i.e. outgoing edges) of the corollas are the first elements
of the respective linear orderings. This implies that we can forget about the external root
and the roots of corollas and keep only the linear orderings of the input edges of the tree
and of the incoming edges for each vertex of the tree.

An ordered rooted forest is a finite coproduct of ordered rooted trees.

Ordered graphs admit an operation of graph insertion which depends only on com-
patibility conditions between graphs. The bijection p between the free flags of G’ and the
v-flags of GG is uniquely determined by the linear orderings once the cardinalities are the
same. We therefore can speak unambiguously about the insertion of G’ into the vertex
v of G, the result of which shall be denoted G’ o, G. The unit for this ordered graph
insertion is given by those ordered corollas for which the linear ordering of the free flags
coincides with linear ordering of the v-flags.

We can easily check that the subcategories of ordered trees (forests), ordered rooted
trees (forests) are closed under graph insertion and, hence, induce a well defined graph
insertion on isomorphism classes of the corresponding groupoids.

Each isomorphism class of ordered rooted trees has a unique representative by a planar
rooted tree equipped with a linear ordering of its input edges.

13.4. DIRECTED GRAPHS AND DIRECTED TREES. A directed graph is a graph with a
chosen arrow in each span f; — e < f, for each edge e of the graph. Such a choice
amounts to the choice of an orientation for this edge. Morphisms of directed graphs are
required to preserve these chosen arrows.

In a directed graph the v-flags of a vertex v are subdivided into incoming and outgoing
flags. The same is true for free flags. A directed ordered graph is a directed graph with a
linear ordering of all outgoing and a linear ordering of all incoming free flags, as well as
linear orderings of incoming v-flags and linear orderings of outgoing v-flags for each vertex
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v. Directed graph-insertion is defined like in the non-directed case assuming in addition
that the bijection p is orientation-reversing.

Any rooted tree admits two canonical orientations from top to bottom or vice versa.
We always orient a rooted tree from top to bottom. We also have a directed version of
the linear graph [1,n| with the direction going from p to p — 1.

A loop in a directed graph G is any map of directed graphs s : [1,n] — G,n > 2, for
which s(1) = s(n) or any map from the free living loop [ to G.

A loop-free graph is a directed graph which has no loops. Loop-free graphs are closed
under graph-insertion.

14. Planar trees and n-planar trees

14.1. PLANAR TREES. A subgraph G’ of a graph G is called plain if for each vertex v of
G’, the cardinalities of the set of v-flags are the same in G’ and in G. For any pair (T,7")
consisting of a tree T and plain subtree 7" of T there is a well-defined function, called

contraction
C(TT) ce(T) — e(T') (32)

taking external edges of T" to external edges of T”. This function is constructed as follows.
For each external edge e of T there exists a unique n > 0 and a unique injective map 7,
from the rooted tree L'* to T with the following three properties:

(i) . takes the unique input edge of L' to e;
(i) 7. takes the root rt of L'* to an external edge of T;
(iii) the image of v, does not contain any vertices of 7".

We then define Cprvy(e) = 7e(rt).

We introduce a special notation if 7" is the corolla cor,(T) of a vertex v of T', namely
Cy = Cicory (1) = €(T) = e(cory(T)) (33)

and call it v-contraction. If T is an ordered tree then e(T') and e(cor,(T')) are linearly
ordered. We will say that the ordered tree T' is planar if for each vertex v of T the v-
contraction preserves the linear orders up to cyclic permutation, which means that the
v-contraction becomes an order-preserving map after cyclic permutation of the set of
external edges of cor,(T).

If T is a rooted tree then the sets e(T) and e(cor,(T)) are pointed by the respective
roots and the v-contraction is a map of pointed sets which restricts away from the roots.
By abuse of notation we consider the v-contractions of a rooted tree as restricted to the
set of input edges. Accordingly, an ordered rooted tree is planar if and only if for each
vertex v the v-contraction is order-preserving.

The subcategories of planar and planar rooted trees are closed under graph insertion
and there is a graph insertion on isomorphism classes of the corresponding groupoids.
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14.2. HIGHER PLANAR ROOTED TREES. The notion of n-planar rooted tree generalises
linear and planar rooted trees. A partially n-ordered rooted tree T is a rooted tree equipped
with the structure of n-ordinal on the set of incoming edges of each vertex v of T. An
n-ordered rooted tree T' is a partially n-ordered rooted tree equipped with an n-ordinal
structure on the set of free flags of T'. Since each n-ordinal induces a linear order on its
underlying set, such a tree has a canonical structure of ordered rooted tree.

We say that T is an n-planar tree if for each v the contraction function C, is a map
of n-ordinals. For instance, O-planar trees are linear rooted trees and 1-planar trees are
planar rooted trees as previously defined. Each isomorphism class of partially n-ordered
rooted trees contains a unique planar representative. Therefore, an n-planar tree 7 is a
planar rooted tree with the following additional structure:

e Fach vertex v is decorated by an n-ordinal 7, whose underlying linear ordered set
coincides with the set of incoming edges of v;

e The leaves are labelled by natural numbers from 1 to p where p is the number of
leaves of T;

Such a labelled decorated tree becomes an n-planar tree if we fix as well an n-ordinal S
with underlying set |S| = {1, ..., p} such that the following compatibility condition holds:

Recall (cf. [5]) that the set L(7) of leaves of an n-ordered tree 7 has a canonical
structure of n-ordered set. Let k,l € L(7) be leaves of 7 and let v(k,1) be the upmost
vertex of 7 which lies below k and [ in 7. The shortest edge-path in 7 which begins with
k (resp. l) and ends at v(k,[) determines a unique incoming edge of v(k,[), and hence
a unique element ey, (resp. ¢;) of [T,p)|. By definition we have k <, [ in L(7) precisely
when e, <, ¢ in the n-ordinal 7, ).

The n-planarity of the pair (7,.5) amounts then to the requirement that S dominates
the n-ordered set L(7) in the sense of Definition 12.3. This “planar” description of n-
planar trees is quite efficient. For example, the decorated tree 7 on the left hand side

1 23 6 7 4 5
Figure 8: A 2-planar tree as a labelled decorated tree with dominating 2-ordinal.

acquires an n-planar structure if we just add that the induced 2-ordered set L(7) is
dominated by the 2-ordinal as depicted on the right hand side.
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14.3. REGULAR AND NORMAL n-PLANAR TREES AND THE GEOMETRY OF FULTON-
MACPHERSON OPERAD. An n-planar tree is called regular if all its decorated ordinals are
regular. An n-planar tree is called normal if all its decorated ordinals are normal.
Normal n-planar trees are closely related to the geometry of the Getzler-Jones decom-
position of the Fulton-MacPherson operad of point configurations in R” [5, 25, 47]. Recall
that the quotient of F'(R", k) by the Lie group generated by dilatations and translations
is called the moduli space of configurations Mod" (k). This moduli space has the same ho-
motopy type as F'(R™, k). The Fox-Neuwirth stratification descends to a stratification of
Mod" (k). Applying Fulton-MacPherson compactification to this stratification we obtain
the k-th space of the Fulton-MacPherson operad together with its Getzler-Jones decompo-
sition [25]. The cells of this decomposition are in one-to-one correspondence with labelled
decorated trees [5]. For instance, the labelled decorated tree of Figure 4 corresponds to the
following 6-dimensional Getzler-Jones cell (the so-called ‘bad’ cell of Tamarkin [5, 47]):

A normal n-planar tree 7 contains extra information about the corresponding Getzler-
Jones cell. Namely, the n-ordinal S on the leaves of 7 expresses that the boundary of the
closure of the Fox-Neuwirth cell F'Ng has a non-empty intersection with the Getzler-Jones
cell represented by 7, i.e. the latter lives in the S-space of the Getzler-Jones n-operad
constructed by the first author in [5]. For example, the tree of Figure 4 is a normal
2-planar tree with leaf 2-ordinal given by the 2-ordinal S. Example 12.5 tells us that the
6-dimensional Getzler-Jones cell above contains part of the boundary of the 6-dimensional
Fox-Neuwirth cell FNg C Mod?(6) (this part of the boundary is actually a 5-dimensional
contractible manifold with corners [5, 47]).

14.4. INSERTION AND CONTRACTION OF n-PLANAR TREES. Since n-planar trees are in
particular ordered rooted trees, graph insertion of an n-planar rooted tree inside a vertex
of another n-planar rooted tree is well defined. The result of this graph insertion is in
general just an n-ordered rooted tree unless we require a compatibility condition of the
corresponding n-ordinal structures. This compatibility condition is the following: an n-
planar tree 7/ inserts into a vertex v of an n-planar tree 7 if the bijection p, induced by
the n-order structures of 7 and 7’ (see 13.3) is an isomorphism between the leaf n-ordinal
of 7/ and the corolla n-ordinal 7,. It is now easy to check that the resulting tree has a



246 M. A. BATANIN AND C. BERGER

canonical n-planar structure. This operation preserves isomorphism classes of n-planar
trees. Normal and regular n-planar trees are closed under graph insertion and so are their
isomorphism classes.

For instance, graph insertion of the 2-planar tree of Figure 5 as shown in Figure 9

1 234 56 7 1

Figure 9: Insertion of a 2-planar tree to a vertex of another 2-planar tree.

yields the 2-planar tree of Figure 8.

If an n-planar tree 7" is obtained by an insertion of an n-planar tree 7’ into a vertex
of an n-planar tree 7 we will say that 7 is the result of contracting 7’ inside 7.

For instance, the graph insertion of Figure 9 corresponds to the following contraction:

Figure 10: Contraction of a 2-planar tree.

14.5. INSERTION OF NORMAL n-PLANAR TREES AND MULTIPLICATION IN FULTON-
MACPHERSON OPERAD. Insertion of normal n-planar trees is closely related to the mul-
tiplication of the Fulton-MacPherson operad [5]. In fact, it can be explained in terms of
infinitesimal substitutions of point configurations. For the example of Figure 9 we have
two infinitesimal configurations in the Fulton-MacPherson operad
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Then we substitute the configuration on the first line to the point 1 in the second picture,
the second line to the point 2 in the second picture and the third line to the point 3 in
the second picture. The resulting configuration is therefore

which corresponds exactly to the tree of Figure 8.

15. Other definitions of graphs

Since there are many different treatments of graphs in the literature we include several of
them and describe briefly the relationship with our definition. The order is not chrono-
logical nor it is related to the importance and popularity.

15.1. FEYNMAN GRAPHS OF JoYvAL-Kock. In [33] Joyal and Kock define a Feynman
graph I' as a span in finite sets:
E&SHSLY

equipped with a fixed point free involution ¢ : F — FE such that s is an injection. The
elements of V' are called vertices, the elements of H half-edges and the elements of E
oriented edges.

To any Feynman graph I' one can assign a graph G in our sense as follows. The set of
vertices of GG is the set V. The set of flags of GG is the set E. The set of edges of G is the

set of orbits of ¢. There is a unique morphism from a flag h to a v € V' if h = s(h). The

target v of this map is t(h). For any flag there is a unique map from it to its orbit. One
checks that this construction produces a graph in our sense.
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15.2. PROPOSITION. The set of isomorphism classes of Feynman graphs embeds into the
set of isomorphism classes of graphs in our sense. A graph in our sense is not a Feynman
graph if and only if it contains a connected component isomorphic to a free living loop.

PROOF. If a graph G does not contain free-living loops we can reconstruct a Feynman
graph I as follows. The set of vertices of I' will be equal to the set of vertices of G. The
set of half-edges will be the set of non-free flags of GG. The set of oriented edges will be
equal to the set of all flags of G and the involution exchanges the adjacent flags. Since G
does not contain free-living loop this involution is fixed-point free. ]

15.3. GETZLER-KAPRANOV GRAPHS. In [16, 19, 26| a slightly different definition of a
graph has been used (attributed to Kontsevich-Manin by Getzler and Kapranov) : a graph
I is a map of sets 7 : H — V together with an involution ¢ : H — H,0? = 1. We can
construct a Feynman graph I' in the sense of Joyal-Kock as follows. The set of vertices
of I' is V. The set of flags of I' is H and ¢t = 7. The set of oriented edges of I' is equal to
H U H? where H? is the set of fixed points of o (so we simply add to H one extra point
for each fixed point of o) and s is the first coprojection. The involution ¢ maps each fixed
point h to its copy in H? and coincides with o(h) if h is not a fixed point of o.

This shows that the set of isomorphism classes of Getzler-Kapranov graphs is a subset
of the set of isomorphism classes of Feynman graphs. The difference is in the treatment
of graphs without vertices which exist in the latter but not in the former setting.

15.4. JOHNSON-YAU GRAPHS. This type of graph was introduced in [46, 48] and studied
extensively by Johnson-Yau [32] paying special attention to free-living edges and loops.

15.5. DEFINITION. [32] A generalised graph G is a finite set Flag(G) with involution t,
together with a partition and choice of an isolated cell Gy such that there is a fixed-point
free involution m on the set of fixed points of v within Gy.

Here a partition is a presentation of a finite set as a finite coproduct of some finite sets
called cells (empty cells are allowed). An isolated cell of a partition with an involution is
a cell invariant under the involution.

For each Johnson-Yau graph we can construct a graph G in our sense as follows. A
vertex of G is a cell of G which is not an exceptional cell of Gy. The flags of G are
(Flag(G) \ Go) U (Flag(G) \ Go)* as well as all orbits of ¢ on Gg. For h € Flag(G) \ Gy
which is not a fixed point of ¢ we have an edge e(h) such that e(h) = e(th) and a unique
morphism in G from h to e. For a fixed point h of 7 in (Flag(G)\ Gy) its adjacent belongs
to (Flag(G) \ Gp)" and we have a morphism from h and its adjacent to e.

For a non-trivial orbit A of ¢ in Gy there are an edge in G and exactly two morphisms
from A to this edge in GG. Finally, for each orbit of 7 there is one edge in GG and a morphism
from each element of this orbit to this edge.

15.6. PROPOSITION. This construction determines a bijection between isomorphism class-
es of graphs in our sense and isomorphism classes of Johnson-Yau graphs.
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15.7. JOYAL-STREET GRAPHS. According to Joyal-Street [34] a topological graph is a
Hausdorff space G with a discrete closed subset G (the set of vertices of GG) such that
G \ Gy is a 1-manifold without boundary (empty 1-manifold is allowed).

A graph with boundary is a pair (I, OT') where I" is a compact topological graph and oI
is a subset of its set of vertices such that each x € 0T is of degree 1. The last thing means
that the space V'\z has one connected component, where V' is a sufficiently small connected
neighbourhood of x. Morphisms between graphs with boundary are homeomorphisms
taking vertices to vertices and boundary points to boundary points.

15.8. PROPOSITION. Geometric realisation provides a bijection between isomorphism class-
es of graphs in our sense and isomorphism classes of Joyal-Street graphs with boundary.

PROOF. Geometric realisation produces a topological graph with boundary where the
boundary points correspond to free flags. For the inverse correspondence we assume that
each closed edge of I' is parametrised by a bijective continuous function from the interval
[0, 1] so that it makes sense to consider ¢-points, ¢ € [0, 1], on the edges of T

For (I, 0T") we construct a categorical graph G by taking as its vertices the set of
vertices of I" minus the set OI' of boundary points. The set of edges of G is the set of
1/2-points on the edges of the topological graph I'. The set of adjacent flags is the set of
1/4- and 3/4-points on those edges of I' which connect two non-boundary points. For an
edge which connects a boundary point to a non-boundary point we take the non-boundary
point as a flag and the middle point of the interval between the non-boundary point and
the 1/2-point as its adjacent. If an edge connects two non-boundary points then we take
those points as flags of G. The morphisms in GG are obvious from the following example:

@
'w\\j

In this picture large dots correspond to the vertices of the topological graph and green
dots correspond to the vertices of the categorical graphs, white dots correspond to the
boundary points and the free flags of the categorical graph, black dots correspond to the
non-free flags of the categorical graph and red dots correspond to its edges. [

Proposition 15.8 justifies the representation of graphs and trees used in this paper.
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