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ENRICHED LAWVERE THEORIES

Dedicated to Jim Lambek

JOHN POWER

ABSTRACT. We de�ne the notion of enriched Lawvere theory, for enrichment over
a monoidal biclosed category V that is locally �nitely presentable as a closed category.
We prove that the category of enriched Lawvere theories is equivalent to the category
of �nitary monads on V . Moreover, the V -category of models of a Lawvere V -theory
is equivalent to the V -category of algebras for the corresponding V -monad. This all
extends routinely to local presentability with respect to any regular cardinal. We �nally
consider the special case where V is Cat, and explain how the correspondence extends
to pseudo maps of algebras.

1. Introduction

In seeking a general account of what have been called notions of computation [13], one may
consider a �nitary 2-monad T on Cat, and a T -algebra (A; a), then make a construction of
a category B and an identity on objects functor j : A �! B. In making that construction,
one is allowed to use the structure on A determined by the 2-monad, and that is all. For
instance, given the 2-monad for which an algebra is a small category with a monad on it,
then one possible construction would be the Kleisli construction. For another example,
given the 2-monad for which an algebra is a small monoidal category A together with a
speci�ed object S, then a possible construction is that for which B(a; b) is de�ned to be
A(S 
 a; S 
 b), with the functor j : A �! B sending a map h to S 
 h.

We need a precise statement of what we mean by saying that these constructions only
use structure determined by the 2-monad. In general, one may obtain one such de�nition
by asserting that B(a; b) must be of the form A(fa; gb) for endofunctors f and g on A

generated by the 2-monad; similarly for de�ning composition in B. Thus we need to know
what exactly we mean by endofunctors on A and natural transformations between them
that are generated by the 2-monad. This paper is motivated by a desire to make such
notions precise.

In order to make precise the notion of functor generated by a �nitary 2-monad T on
a T -algebra (A; a), we �rst generalise from consideration of a �nitary 2-monad on Cat

to a �nitary V -monad on V for any monoidal biclosed category that is locally �nitely

This work has been done with the support of EPSRC grants GR/J84205: Frameworks for program-
ming language semantics and logic and R34723: The Structure of Programming Languages: syntax and
semantics.

Received by the editors 1998 December 14 and, in revised form, 1999 August 27.
Published on 1999 November 30.
1991 Mathematics Subject Classi�cation: 18C10, 18C15, 18D05.
Key words and phrases: Lawvere theory, monad.
c John Power 1999. Permission to copy for private use granted.

83



Theory and Applications of Categories, Vol. 6, No. 7 84

presentable as a closed category: we shall make that de�nition precise in the next sec-
tion. We move to this generality primarily for simplicity but also because the computing
application will need it later, for instance considering not mere categories but categories
enriched in Poset or in the category of !-cpo's.

To support our main de�nition, we prove a theorem: we de�ne the notion of a Lawvere
V -theory, and we prove that to give a Lawvere V -theory is equivalent to giving a �nitary
V -monad on V . So, for a �nitary V -monad T on V , there is a Lawvere V -theory L(T ) for
which the V -category of models of L(T ), which we de�ne, is equivalent to the V -category
T -Alg of algebras for the monad. Conversely, given any Lawvere V -theory T , there is
a corresponding �nitary V -monad M(T ); and these constructions yield an equivalence
between the category of �nitary V -monads on V and that of Lawvere V -theories.

Once we have such a correspondence, we have the de�nition we seek: given a 2-monad
T and a T -algebra (A; a), an endofunctor f on A is generated by T whenever it is in the
image of L(T ) in the model of L(T ) determined by the algebra (A; a). Similarly, a natural
transformation � : f ) g is is said to be generated by T whenever it is the image of a
2-cell of L(T ) in the model of L(T ) determined by the algebra (A; a).

For cognoscenti of enriched categories, the de�nitions and results here, at least as-
suming our enrichment is over a symmetric monoidal category, should come as no great
surprise. However, they are a little subtle. One's �rst guess for a de�nition of Lawvere
V -theory may be a small V -category with �nite products, subject to a condition asserting
single-sortedness. But that is too crude: not only does it not yield our theorem relating
Lawvere theories and �nitary monads, as in the case for Set (see [1]), but it does not
agree with the known and very useful equivalences between �nitary monads and universal
algebra as in [9], [6], and in application to computation in [11] and [10], with an account
for computer scientists in [14]. So we consider something a little more subtle: if V is
symmetric, we de�ne a Lawvere V -theory to be a small V -category with �nite cotensors,
subject to a single-sortedness condition. A model is therefore a �nite cotensor preserving
V -functor into V . In order to extend to nonsymmetric V , as for instance if V is the cate-
gory of small locally ordered categories with the lax Gray tensor product [11], we need to
introduce a twist: so a Lawvere V -theory is a small Vt-category with �nite cotensors, sub-
ject to a single-sortedness condition, and a model is a �nite cotensor preserving Vt-functor
into Vt: that allows us to speak of the V -category of models, and prove our equivalence
with �nitary V -monads on V and their V -categories of algebras. There has been con-
siderable development of categories enriched in monoidal biclosed categories [4, 5, 6, 11]
recently: the main problem with extending the usual theory is that functor V -categories
need not exist in general; but functor V -categories with base Vt do, and that suÆces for
our purposes here. If one is only interested in the case of symmetric V here, one may sim-
ply ignore all subscripts t, and one will have correct statements; of course, exponentials,
i.e., terms of the form [X;�]l and [X;�]r, may also be abbreviated to [X;�].

The special case that V = Cat also contains a mild surprise. Given a 2-monad T

on Cat, one's primary interest lies in pseudo maps of algebras, i.e., maps of algebras
in which the structure need only be preserved up to coherent isomorphism rather than
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strictly. Such maps are analysed in [2], with an explanation for computer scientists in [12].
One might imagine that, extending the above correspondence in this case, pseudo maps
of algebras would correspond exactly to pseudo natural transformations between the cor-
responding models of the corresponding Lawvere 2-theory. But the position is a little
more delicate than that: pseudo natural transformations allow too much exibility to
yield a bijection. However, given a pair of algebras, one still has an equivalence between
the category of pseudo maps of algebras between the two algebras and that of pseudo
natural transformations between the corresponding models of the corresponding Lawvere
2-theory. Hence one has a biequivalence between T -Algp and the 2-category of models of
the Lawvere theory, with pseudo natural transformations. We explain that in Section 5.

I am surprised I have not been able to �nd our main results, in the case of symmetric
V , in the literature on enriched categories. There has been work on enriched monads, for
instance [9] and [6], and there has been work on enriched �nite limit theories, primarily [8]
and [5]. But the closest work to this of which I am aware is by Dubuc [3], and that does not
account for the �nitary nature of Lawvere theories, which is central for us. Of course, what
we say here is not explicitly restricted to �nitariness: one could easily extend everything
to cardinality < � for any regular �.

The paper is organized as follows. In Section 2, we recall the basic facts about enriched
categories we shall use to de�ne our terms. In Section 3, we de�ne Lawvere V -theories
and their models, and prove that every �nitary V -monad on V gives rise to a Lawvere
V -theory with the same V -category of models. And in Section 4, we give the converse,
i.e., to each Lawvere V -theory, we discover a �nitary V -monad with the same V -category
of models. We also prove the equivalence between the categories of Lawvere V -theories
and �nitary V -monads on V . Finally, in Section 5, we explain the more fundamental
pseudo maps of algebras when V = Cat, and show how they relate to maps of Lawvere
2-theories.

For symmetric V , the standard reference for all basic structures other than monads
is Kelly's book [7]. For nonsymmetric V , a reasonable reference is [11], but the central
results were proved in the more general setting of categories enriched in bicategories as
in [4, 5, 6]. For 2-categories, the best relevant reference is [2], and for an explanation
directed towards computer scientists, see [12].

2. Background on enriched categories

Amonoidal category V is called biclosed if for every objectX of V , both�
X: V
Æ
�! V

Æ

and X 
� : V
Æ
�! V

Æ
have right adjoints, denoted [X;�]r and [X;�]l respectively. For

monoidal biclosed locally small V , it is evident how to de�ne V -categories, V -functors
and V -natural transformations, yielding the 2-category V -Cat of small V -categories. The
category V

Æ
enriches to a V -category with hom given by [X; Y ]r. Note that [X; Y ]r cannot

be replaced by [X; Y ]l here, using the usual conventions of Kelly's book [7]. One can
speak of representable V -functors and there is an elegant theory of V -adjunctions, see for
instance [4]. If V

Æ
is complete, then it is shown in [7] that V �Cat is complete. So we can



Theory and Applications of Categories, Vol. 6, No. 7 86

speak of the Eilenberg-Moore V -category for a V -monad. If V is also cocomplete, there
is an elegant theory of limits and colimits in V -categories generalising the situation for
symmetric monoidal closed V , see for instance [5]. Note that for a V -category C, there is
a construction of what should clearly be called Cop, but Cop is a Vt-category, not a priori
a V -category.

In general, there is no de�nition of a functor V -category. However, if V is complete,
for a small V -category C, one does have a functor V -category of the form [Cop; Vt], whose
objects are Vt-functors from Cop into Vt, and with homs given by the usual construction
for symmetric V . Details appear in [5], where it is denoted PC. This also agrees with
Street's construction [16], but the latter is formulated in terms of modules.

A V -monad on a V -category C consists of a V -functor T : C �! C and V -natural
transformations �: 1 ) T and �: T 2 ) T satisfying the usual three axioms. The
Eilenberg-Moore V -category T -Alg has as objects the T

Æ
-algebras, where T

Æ
is the or-

dinary monad underlying T , on the ordinary category C
Æ
underlying C. Given algebras

(A; a) and (B; b), the hom object T -Alg((A; a); (B; b)) is the equaliser in V of the diagram

C(A;B)
C(a; B) - C(T (A); B)

@
@
@
@
@

T
R �

�
�
�
�

C(T (A); b)

�

C(T (A); T (B))

(1)

Composition in T -Alg is determined by that in C. Moreover, there is a forgetful V -
functor U : T -Alg �! C, which has a left adjoint. If C is complete, then so is T -Alg, and
U preserves limits.

Given monads T and S on C, a map of monads from T to S is a V -natural transfor-
mation � : T ) S that commutes with the unit and multiplication data of the monads.
With the usual composition of V -natural transformations, this yields the ordinary cate-
gory Mnd(C) of monads on C.

A monoidal biclosed category V is called locally �nitely presentable as a closed category

if V
Æ
is locally �nitely presentable, if the unit I of V is �nitely presentable, and if x 
 y

is �nitely presentable whenever x and y are. Henceforth, all monoidal biclosed categories
to which we refer will be assumed to be locally �nitely presentable as closed categories.

A V -category C is said to have �nite tensors if for every �nitely presentable object x of
V , and for every object A of C, [x; C(A;�)]r:C �! V is representable, i.e., if there exists
an object x
 A of C together with a natural isomorphism [x; C(A;�)]r �= C(x
 A;�).
The V -category C has �nite cotensors if it satis�es the dual condition that for every
�nitely presentable x in V and every A in C, the Vt-functor [x; C(�; A)]l:C

op �! Vt is
representable, where Vt is the dual of V ; i.e., there exists an object Ax of C together
with a natural isomorphism [ x; C(�; A) ]l �= C(�; Ax). A V -category C is cocomplete

whenever C
Æ
is cocomplete, C has �nite tensors, and x
�:C

Æ
�! C

Æ
preserves colimits

for all �nitely presentable x. A cocomplete V -category C is locally �nitely presentable if
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C
Æ
is locally �nitely presentable, C has �nite cotensors, and (�)x:C

Æ
�! C

Æ
preserves

�ltered colimits for all �nitely presentable x. In general, a V -functor is called �nitary if
the underlying ordinary functor is so, i.e., if it preserves �ltered colimits. We therefore
denote the full subcategory of Mnd(C) determined by the �nitary monads on C by
Mndf (C). In [6], �nitary monads on an lfp V -category are characterized in terms of
algebraic structure.

For any V that is locally �nitely presentable as a closed category, V is necessarily
a locally �nitely presentable V -category. The cotensor AX is given by [X;A]l. Given a
small �nitely cotensored Vt-category C, we write FC(C; Vt) for the full sub-V -category
of [C; Vt] determined by those V -functors that preserve �nite cotensors. It follows from
Freyd's adjoint functor theorem, and from the fact that the inclusion preserves cotensors,
that FC(C; Vt) is a full reective sub-V-category of [C; Vt], i.e., the inclusion has a left
adjoint. It follows immediately from the de�nitions that the inclusion is also �nitary.

Note that, in all that follows, if V is symmetric, one may simply disregard all subscripts
t, and one will have correct statements, with correct proofs: if V is symmetric, then the
symmetric monoidal category Vt is isomorphic to V , and of course [X;�]l and [X;�]r
agree.

3. Enriched Lawvere theories

We seek a de�nition of a Lawvere V -theory. In order to validate that de�nition, we shall
prove that the V -category of models of a Lawvere V -theory is �nitarily monadic over
V ; and for any �nitary V -monad T on V , the V -category T -Alg is the V -category of
models of a Lawvere theory. More elegantly, we shall establish an equivalence between
the ordinary category of �nitary V -monads on V and the category of Lawvere V -theories.

First we shall give our de�nition of Lawvere V -theory. Observe that the full subcat-
egory Vf of V determined by (the isomorphism classes of) the �nitary objects of V has
�nite tensors given as in V and is small.

3.1. Definition. A Lawvere V -theory consists of a small Vt-category T with �nite

cotensors, together with an identity on objects strictly �nite cotensor preserving Vt-functor

� : V op
f �! T .

It is immediate that if V = Set, this de�nition agrees with the classical one. We
extend the usual convention for Set by informally referring to T as a Lawvere V -theory,
leaving the identity on objects Vt-functor implicit. A map of Lawvere V -theories from T
to S is a strict �nite cotensor preserving Vt-functor from T to S that commutes with the
Vt-functors from V

op
f . Together with the usual composition of Vt-functors, this yields a

category we denote by LawV .
We now extend the usual de�nition of a model of a Lawvere theory.

3.2. Definition. A model of a Lawvere V -theory T is a �nite cotensor preserving Vt-

functor from T to Vt. The V-category of models of T is FC(T ; Vt), the full sub-V -category
of [T ; Vt] determined by the �nite cotensor preserving Vt-functors.
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3.3. Example. Let T be a V -monad on V . Then, one can speak of the Kleisli V -category
Kl(T ) for T , and there is a V -functor j : V �! Kl(T ) that is the identity on objects,
has a right adjoint, and satis�es the usual universal property of Kleisli constructions, as
explained in Street's article [15]. Since j has a right adjoint, it preserves tensors. So
if we restrict j to the �nitely presentable objects of V , we have an identity on objects
(strictly) �nite tensor preserving V -functor from Vf to the full sub-V -category Kl(T )f of
Kl(T ) determined by the objects of Vf . Dualising, we have a Lawvere V -theory, which
we denote by L(T ). This construction extends to a functor L : Mnd(V ) �! LawV . Since
our primary interest is in �nitary V -monads, we also use L to denote its restriction to
Mndf (V ).

3.4. Theorem. Let T be a �nitary V -monad on V . Then FC(L(T ); Vt) is equivalent to
T -Alg.

Proof. There is a comparison V -functor from Kl(T ) to T -Alg, and it preserves tensors
since the canonical functors from V into each of Kl(T ) and T -Alg do. By composition
with the inclusion of Kl(T )f into Kl(T ), we have a V -functor c : Kl(T )f �! T -Alg,
and this yields a V -functor ~c : T -Alg �! [Kl(T )opf ; Vt] sending a T -algebra (A; a) to the
Vt-functor T -Alg(c(�); (A; a)). This V -functor factors through FC(Kl(T )opf ; Vt) since c
preserves �nite tensors and since representables preserve �nite cotensors. Moreover, it is
fully faithful since every object of T -Alg is a canonical colimit of a diagram in Kl(T )f .
So it remains to show that ~c is essentially surjective.

Suppose h : Kl(T )opf �! Vt preserves �nite cotensors. Let A = h(I), where I is the
unit of V . The behaviour of h on all objects is fully determined by its behaviour on I

since h preserves �nite cotensors and every object of Kl(T )opf , i.e., every object of V op
f , is

a �nite cotensor of I. The behaviour of h on homs gives, for each �nitely presentable x,
a map in V from Kl(T )(I; x) to [Ax; A]l, or equivalently, since cotensors in V are given
by a left exponential, and by the usual properties of maps in Kleisli categories and maps
from units, a map in V from [x;A]l 
 Tx to A. This must all be natural in x, thus, by
�nitariness of T , we have a map a : TA �! A. Functoriality of h, together with the
Vt-functor from V

op
f into Kl(T )op, force a to be an algebra map. It is routine to verify

that ~c((A; a)) is isomorphic to h.

4. The converse

In this section, we start by proving a converse to Theorem 3.4. This involves constructing
a �nitary monad M(T ) from a Lawvere V -theory T . Having proved that result, we
establish that L together withM form an equivalence of categories between the categories
of �nitary V -monads on V and Lawvere V -theories, for any monoidal biclosed V that is
locally �nitely presentable as a closed category.

First we recall Beck's monadicity theorem. Given a functor U : C �! D, a pair of
arrows h1; h2 : X �! Y in C is called a U-split coequaliser pair if there exist arrows
h : UY �! Z, i : Z �! UY , and j : UY �! UX in D such that h � Uh1 = h � Uh2, i
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splits h, j splits h1, and Uh2 � j = i � h. It follows that h is a coequaliser of Uh1 and Uh2,
and that coequaliser is preserved by all functors. Beck's theorem says

4.1. Theorem. A functor U : C �! D is monadic if and only if

� U has a left adjoint

� U reects isomorphisms, and

� C has and U preserves coequalisers of U-split coequaliser pairs.

For a detailed account of Beck's theorem, see Barr and Wells' book [1]. Now we are
ready to prove our main result.

4.2. Theorem. Let T be an arbitrary Lawvere V -theory. Then there is a �nitary monad

M(T ) on V such that M(T )� Alg is equivalent to FC(T ; Vt).

Proof. Recall from the de�nition of Lawvere V -theory, we have a �nite cotensor preserving
Vt-functor from V

op
f to T . By composition, this yields a V -functor U : FC(T ; Vt) �!

FC(V op
f ; Vt), but the latter is equivalent to V : one proof of this is by applying Theorem 3.4

to the identity monad. The V -functor U is given by evaluation at I. Moreover, it has a
left adjoint since the inclusion of FC(T ; Vt) into [T ; Vt] has a left adjoint, as mentioned
in Section 2, and since evaluation functors from V -presheaf categories have left adjoints
given by tensors. Moreover, it is �nitary since (�)x preserves �ltered colimits for �nitely
presentable x. It remains to show that U is monadic.

We shall apply Beck's monadicity theorem. It is routine to verify that U reects
isomorphisms, and one can readily calculate that U preserves the coequalisers of U -split
coequaliser pairs: since FC(T ; Vt) is a full reective sub-V -category of [T ; Vt], it is co-
complete; and the required coequaliser lifts to all objects as they are all �nite cotensors
of the unit I, so one need merely apply the associated cotensor to the given map and its
splitting. That proves monadicity of the underlying ordinary functor of U ; extending that
to the enriched functor follows immediately from the fact that U respects cotensors.

Our construction M extends routinely to a functor M : LawV �! Mndf (V ). Recall
from the previous section that we also have a functor L : Mndf (V ) �! LawV . In fact
we have

4.3. Theorem. The functors M : LawV �! Mndf (V ) and L : Mndf (V ) �! LawV

form an equivalence of categories.

Proof. Given a �nitary V -monad T on V , it follows from Theorem 3.4 and the construc-
tion ofM thatML(T ) is isomorphic to T . For the converse, given a Lawvere V -theory T ,
we need to study the construction of M(T ). It is given by taking the left adjoint to the
functor from FC(T ; Vt) to V given by evaluation at the unit I. The left adjoint, applied
to a �nitely presentable object x of V , yields the representable functor T (x;�) : T �! Vt:
this follows since x is a �nite tensor of I, and by preservation of �nite cotensors. Now
applying Yoneda yields the result that LM(T ) is isomorphic to T . Thus we are done.
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5. 2-Monads on Cat

We now restrict our attention to the case that V = Cat. So we consider �nitary 2-monads
on Cat. An example is that there is a �nitary 2-monad for which the algebras are small
monoidal categories with a speci�ed object S, as mentioned in the introduction. Another
�nitary 2-monad on Cat has an algebra given by a small category with a monad on it,
again as in the introduction. There are many variants of these examples: see [2] or [12]
for many more examples and more detail.

When one does have a 2-monad T , the maps of primary interest are the pseudo maps
of algebras. These correspond to the usual notion of structure preserving functor. They
are de�ned as follows.

5.1. Definition. Given T -algebras (A; a) and (B; b), a pseudo map of algebras from

(A; a) to (B; b) consists of a functor f : A �! B and a natural isomorphism

TA
Tf - TB

+
�f

A

a

?

f
- B

b

?

such that

T 2A
T 2f - TB T 2A

T 2f - TB

+T
�f

TA

Ta

? Tf - TB

Tb

?
= TA

�A

? Tf - TB

�B

?

+
�f +

�f

A

a

?

f
- B

b

?
A

a

?

f
- B

b

?
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and

A
f - B A

f - B

= TA

�A

? Tf - TB

�B

?

+
�f

A

idA

?

f
- B

idB

?
A

a

?

f
- B

b

?

A 2-cell between pseudo maps (f; �f) and (g; �g) is a natural transformation between f

and g that respects �f and �g.

By using the composition of Cat, it follows that T -algebras, pseudo maps of T -algebras,
and 2-cells form a 2-category, which we denote by T -Algp. This agrees with the notation
in some of the relevant literature, and this situation has undergone extensive study, in
particular in [2]; and for an account directed towards computer scientists, see [12].

Similarly, given a small 2-category C, one has the notion of pseudo natural transfor-
mation between 2-functors h; k : C �! Cat: one has isomorphisms where the de�nition
of natural transformation has commuting squares, and those isomorphisms are subject to
two coherence conditions, expressing coherence with respect to composition and identi-
ties in C. Thus, for any Lawvere 2-theory T , we have the 2-category FCp(T ; Cat), given
by �nite cotensor preserving 2-functors, pseudo natural transformations, and the evident
2-cells. If a �nitary 2-monad T corresponds to the Lawvere 2-theory T , one might guess
that the 2-equivalence between T -Alg and FC(T ; Cat) would extend to a 2-equivalence
between T -Algp and FCp(T ; Cat), but it does not!

5.2. Example. Let T be the identity 2-monad on Cat. Then T -Algp is 2-equivalent
to Cat. But FCp(T ; Cat) is not, as it contains more maps. First, all functors lie in
FCp(T ; Cat) via the inclusion ofCat, which is 2-equivalent to FC(T ; Cat), in FCp(T ; Cat).
But also, one may vary any component of a pseudo natural transformation �, say �2, by an
isomorphism, leaving every other component �xed, and vary the structural isomorphisms
of � by conjugation, and one still has a pseudo natural transformation.

So the correspondence we seek is a little more subtle. The notion of 2-equivalence be-
tween 2-categories is quite rare. More commonly, one has a biequivalence. This amounts
to relaxing fully faithfulness to an equivalence on homcategories, and similarly for es-
sential surjectivity. In our case, we already have essential surjectivity. So we could ask
whether our 2-functor ~c : T -Alg �! FC(T ; Cat) extends to giving, for each pair of al-
gebras ((A; a); (B; b)), an equivalence between T -Algp((A; a); (B; b)) and the category of
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pseudo natural transformations between ~c((A; a)) and ~c((B; b)), hence a biequivalence of
2-categories. In fact, we have

5.3. Theorem. The 2-functor ~c : T -Alg �! FC(T ; Cat) extends to a biequivalence

between T -Algp and FCp(T ; Cat).

Proof. If one routinely follows the argument for essential surjectivity of ~c as in the proof
of Theorem 3.4, and ones uses the 2-dimensional property of the colimit de�ning TA,
one obtains a bijection between pseudo maps of T -algebras from (A; a) to (B; b), and
those pseudo natural transformations between ~c((A; a)) and ~c((B; b)) that respect �nite
cotensors strictly, i.e., up to equality, not just isomorphism. Now, since cotensors are
pseudo limits, they are automatically bilimits, and so every pseudo natural transformation
is isomorphic to one that respects �nite cotensors strictly. Local fully faithfulness is
straightforward.
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