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n-PERMUTABLE LOCALLY FINITELY PRESENTABLE
CATEGORIES

MARINO GRAN AND MARIA CRISTINA PEDICCHIO

ABSTRACT. We characterize n-permutable locally finitely presentable categories
Lex[Cop, Set] by a condition on the dual of the essentially algebraic theory Cop. We
apply these results to exact Maltsev categories as well as to n-permutable quasivarieties
and varieties.

Introduction

In recent years there has been a considerable interest in expressing properties of an essen-
tially algebraic category (i.e. a locally finitely presentable category) in terms of proper-
ties of the corresponding essentially algebraic theory. From this point of view, complete
answers have been given with respect to basic properties such as regularity, exactness, ex-
tensivity, cartesian closedness and so on (see [8], [9], [4] and [7]). In this note we analyse
the condition of n-permutability of the composition of equivalence relations for a regular
locally finitely presentable category K = Lex[Cop, Set].

It is known [5] that n-permutability can be equivalently stated by saying that, for
any reflexive relation R, the corresponding generated equivalence relation R is given by
a finite construction, more precisely R = R ◦ Ro ◦ R ◦ Ro ◦ . . . (n − 1)-times. So, if we
want to characterize n-permutability of K in terms of a corresponding condition on the
essentially algebraic theory Cop, or more simply on its dual C (where C is considered as a
dense subcategory of K), we must interpret such a finiteness condition in C. The answer to
this problem is given in theorem 2.5, where we show that K is (n+1)-permutable (n ≥ 1)
if and only if C is weakly regular and certain relations RX,C

n , defined for any reflexive graph
X in C and C ∈ C, are transitive. The formal definition of RX,C

n simply corresponds to
the syntactic interpretation in C of the following relation: if X : X1

��
�� X0 denotes a

reflexive graph in C and I : I
��
�� X0 is its regular image in Lex[Cop, Set], two parallel

arrows C
f0 ��

f1

�� X0 are RX,C
n -related if and only if (f0, f1) factorizes through the n-iterated

composite I ◦ Io ◦ I ◦ Io ◦ . . . (n-times). Notice that in C we must now consider reflexive
graphs instead of reflexive relations; in fact conditions on reflexive relations do not suffice
to force permutability in K. This theorem admits interesting applications in the case
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of an exact K and mainly in the case of quasivarieties and varieties. In these two last
contexts the existence of a projective cover of C makes the syntactic conditions on C
much simpler: indeed, for any P regular projective, the functor Hom(P,−) : C → Set will
preserve images and generated equivalences.
Acknowledgement: The authors would like to thank Francis Borceux for his useful

comments on a earlier version of this article.

1. Preliminaries on regular n-permutable categories

In this section we fix the notations and recall some properties of regular categories.
A category A is regular [3] if it is finitely complete, every kernel pair has a coequalizer and
regular epimorphisms are stable under pullbacks. If A is regular, any arrow f : A → B
can be factored as f = i ◦ p with p a regular epimorphism and i a monomorphism. A
regular category A is exact when any equivalence relation is effective (a kernel pair).

A relation R from A to B will be denoted by (r0, r1) : R � A × B; for a relation

R on an object A we shall also write R
r0 ��

r1

�� A . The set of equivalence relations on

an object A ∈ A is denoted by Eq(A). For any relation (r0, r1) : R � A × B we can
consider the opposite relation Ro given by (r1, r0) : R � B × A. Given two relations
(r0, r1) : R � A × B and (s0, s1) : S � B × C in a regular category A, the composite
S ◦R is defined as the image of the morphism (r0 ◦ u0, s1 ◦ u1) : R ×

B
S → A× C:

R ×
B

S

u0

����������
u1

����������

R

r0����
��

��
�

r1
����

��
��

��
�� S

s0
����

��
��

��
��

s1 ���
��

��
��

A B C

In this section we always assume that the categoryA is regular: this assumption will assure
that the composition of relations is associative. If R and S are equivalence relations on
an object A, we have the increasing sequence

R ⊆ R ◦ S ⊆ R ◦ S ◦R ⊆ R ◦ S ◦R ◦ S ⊆ . . .

which we denote by

(R,S)1 ⊆ (R,S)2 ⊆ (R,S)3 ⊆ (R,S)4 ⊆ . . .

The smallest equivalence relation containing both R and S, denoted by R ∨ S (when
it exists), contains all the terms of this sequence, and these terms are all different in
general. If there is an n ≥ 2 for which the relation (R,S)n is an equivalence relation, then
R ∨ S = (R,S)n.
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1.1. Definition. A regular category A is n-permutable (n ≥ 2) if for any R,S ∈ Eq(A)
and A ∈ A, it holds (R,S)n = (S,R)n.

Of course, if n = 2 we get the notion of Maltsev category: this notion was introduced
in [6] as a weakening of the notion of abelian category. Since the Maltsev property can
be expressed without the assumption of regularity of the category A, we shall adopt the
simpler and classical

1.2. Definition. A category A is Maltsev if, for any A ∈ A, any reflexive relation
R � A× A on A is an equivalence relation.

The equivalence between the Maltsev axiom, the 2-permutability of the composition
of equivalence relations and two other nice properties is recalled in the following

1.3. Theorem. [6] Let A be a regular category. The following statements are equivalent:

1. A is a Maltsev category

2. A is 2-permutable

3. for any A ∈ A any reflexive relation R on A is transitive

4. for any A ∈ A and for any R, S ∈ Eq(A), we have R ◦ S = R ∨ S

1.4. Examples. A classical result of Maltsev [12] asserts that a finitary variety is Malt-
sev precisely when its theory contains a ternary operation p(x, y, z) satisfying the axioms
p(x, y, y) = x, p(x, x, y) = y; for instance in the variety of groups such a term p(x, y, z) is
given by xy−1z. Among Maltsev varieties are then those of groups, abelian groups, mod-
ules over a fixed ring, rings, commutative rings, associative algebras and Lie algebras. The
variety of quasi-groups is also Maltsev, as is the variety of Heyting algebras. There are
non-varietal examples of exact Maltsev categories: any abelian category is exact Maltsev,
as is the dual of the category of sets and, more generally, the dual of any topos. Finally,
the category of topological groups is regular Maltsev [5].

It is interesting to know that the properties in theorem 1.3 remain equivalent in the
n-permutable case (n ≥ 2): indeed, we have the following

1.5. Theorem. [5] Let A be a regular category. The following statements are equivalent:

1. for any reflexive relation R on an object A ∈ A the relation (R,Ro)n−1 is an equiv-
alence relation

2. A is n-permutable

3. for any reflexive relation R on an object A ∈ A the relation (R,Ro)n−1 is transitive

4. for any A ∈ A and for any R, S ∈ Eq(A), we have (R,S)n = R ∨ S
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1.6. Examples. Hagemann and Mitschke [11] proved that a finitary variety is n-per-
mutable if and only if there exist n+1 ternary terms p0(x, y, z), p1(x, y, z), . . . , pn(x, y, z)
satisfying

p0(x, y, z) = x

pi(x, x, y) = pi+1(x, y, y) for 0 ≤ i ≤ n− 1

pn(x, y, z) = z.

This result clearly includes Maltsev theorem, this latter being the special case where n = 2.
The property of (n+1)-permutability can be shown to be strictly weaker than the one of n-
permutability for each n ≥ 2. In particular there are examples of 3-permutable varieties
that fail to be Maltsev as, for instance, the variety of generalized right complemented
semigroups: these algebras have two binary operations · and ∗ satisfying

x · (x ∗ y) = y · (y ∗ x)
x · (y ∗ y) = x.

In this case the theorem of Hagemann and Mitschke can be applied by choosing p1(x, y, z)
= x · (y ∗ z) and p2(x, y, z) = z · (y ∗ x).

We recall that 3-permutable categories are called Goursat categories [5]. The property
of 3-permutability, unlike 4-permutability, is strong enough to force the modularity of the
lattice Eq(A) of equivalence relations on any object A of the category.

2. Regular locally finitely presentable categories

A locally finitely presentable category K (see [10] or [2]) is a cocomplete category which
admits a small set S of finitely presentable objects such that any object K ∈ K is a filtered
colimit of objects of S. Any such category is equivalent to a category Lex[Cop, Set] of
finite limit preserving functors from a small finitely complete category Cop to the category
of sets. Via the Yoneda embedding sending an object C ∈ C to the functor Hom(−, C)
the category C is a full subcategory of Lex[Cop, Set] and the objects of C form a family of
dense generators. The dual category of C is called the essentially algebraic theory, while
Lex[Cop, Set] is the category of models of the theory. Many properties of a locally finitely
presentable category can be expressed just in terms of its essentially algebraic theory C
and various results in this direction can be found in the literature, for instance in [7],
[8],[9] and [4]. In this paper we are interested in the property of n-permutability of the
composition of the equivalence relations; the regularity of Lex[Cop, Set] will be always
required in order to express this kind of property.

Regular locally finitely presentable categories have been characterized in [7] as cate-
gories of finite limit preserving functors from the dual of a finitely cocomplete “weakly
regular” category to the category of sets. We recall the definition:
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2.1. Definition. [7] A category C is weakly regular if every commutative diagram

A
f ′

��

g′
��

B

g

��
C

f �� D

in C in which f is a regular epi factors through a commutative diagram

A
f

��

g

��

B

g

��
C

f �� D

where f is a regular epi.

Observe that any regular category is weakly regular: moreover one has the following

2.2. Theorem. [7] Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is regular

2. C is weakly regular

In order to express our main results we now introduce two important notions. The
first one is the notion of n-iterated graph:

2.3. Definition. Let X

X1

x0 ��

x1 ��
X0

e		

be a reflexive graph, x0 ◦ e = 1X0 = x1 ◦ e. A graph K

K1

k0 ��

k1

�� X0

is a n-iterated of X (where n ≥ 1) if there exist n arrows h0, h1, . . . , hn−1 from K1 to X1

such that

x0 ◦ h0 = k0, x1 ◦ h0 = x1 ◦ h1, x0 ◦ h1 = x0 ◦ h2, . . . , xi ◦ hn−2 = xi ◦ hn−1, xj ◦ hn−1 = k1

with i = 1 and j = 0 if n is even, while i = 0 and j = 1 if n is odd.

The conditions above can be expressed by the commutativity of the diagram below
(in which we assume that n is odd)
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K1

hn−1


������������������������

h2

��h1
�����������������

h0

��																																	
k1



k0

��

X1

x0��













x1 ���
��

��
��

� X1

x1��













x0 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

�

X0 X0 X0 X0 X0 X0

By means of the notion of n-iterated graph, we now define a relation on the set
Hom(C,X0):

2.4. Definition. Let X

X1

x0 ��

x1 ��
X0

e		

be a reflexive graph and n ≥ 1. Two arrows C
f0 ��

f1

�� X0 are defined to be in the relation

RX,C
n , and we write f0R

X,C
n f1, if there exists a factorisation of the graph C

f0 ��

f1

�� X0

through a regular quotient B
b0 ��

b1
�� X0 of a n-iterated graph K

k0 ��

k1

�� X0 of X:

K
k0 ��

k1

��

β

����

X0

B

b0

�����������������������

b1

�����������������������
Cγ

		

f0

��

f1

��

where
b0 ◦ γ = f0, b1 ◦ γ = f1, b0 ◦ β = k0, b1 ◦ β = k1,

and β is a regular epi.

Remark that the relation RX,C
n is always reflexive: indeed, for any arrow f0 : C → X0 the

arrow e ◦ f0 : C → X1 shows that f0R
X,C
n f0.

2.5. Theorem. Let C be a category with finite colimits. The following conditions are
equivalent (n ≥ 1):

1. Lex[Cop, Set] is regular (n+ 1)-permutable

2. C is weakly regular and the relation RX,C
n is transitive for any reflexive graph X in

C and C ∈ C.
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Proof. We first prove that RX,C
n = Hom(C, (I, Io)n) for any C ∈ C and any reflexive

graph X1

x0 ��

x1

�� X0 in C with regular image in Lex[Cop, Set] given by I
x0 ��

x1

�� X0 .

For this, we consider (f0, f1) in RX,C
n and we’re going to show that (f0, f1) belongs to

Hom(C, (I, Io)n). By assumption there is a factorisation as in the diagram

K
k0 ��

k1

��

β

����

X0

B

b0

�����������������������

b1

�����������������������
Cγ

		

f0

��

f1

��

where K
k0 ��

k1

�� X0 is a n-iterated of the reflexive graph X1

x0 ��

x1

�� X0 . Remark then that

any n-iterated K
k0 ��

k1

�� X0 factors through the limit (L; l0, l1, . . . , ln−1)

L

ln−1




l2
��l1������������������

l0
��																																	

X1

x0��













x1 ���
��

��
��

� X1

x1��













x0 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

�

X0 X0 X0 X0 X0 X0

over the diagram

X1

x0��













x1 ���
��

��
��

� X1

x1��













x0 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

� X1

x0��













x1 ���
��

��
��

�

X0 X0 X0 X0 X0 X0

(in the diagrams above we have assumed that n is odd). This limit can be clearly obtained
by iterated pullbacks in Lex[Cop, Set]. There is then an arrow η : K → L verifying, in
particular, x0 ◦ l0 ◦ η = k0 and x1 ◦ ln−1 ◦ η = k1.

The regularity of Lex[Cop, Set] implies that the induced arrow ε from (L; l0, l1, . . . , ln−1)
to the limit (M ; m0,m1, . . . ,mn−1)
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M

mn−1



������������������������

m2

��
m1

������������������

m0

��																															

I

x0����
��

��
��

x1 ���
��

��
��

� I

x1����
��

��
��

x0 ���
��

��
��

� I

x0��













x1 ���
��

��
��

� I

x0����
��

��
��

x1 ���
��

��
��

�

X0 X0 X0 X0 X0 X0

over the diagram

I

x0����
��

��
��

x1 ���
��

��
��

� I

x1����
��

��
��

x0 ���
��

��
��

� I

x0����
��

��
��

x1 ���
��

��
��

� I

x0����
��

��
��

x1 ���
��

��
��

�

X0 X0 X0 X0 X0 X0

is a regular epi. By recalling the definition of the composite of relations in a regular
category, one then has a regular epi q ◦ ε : L � (I, Io)n as in the diagram

L
ε �� �� M

(x0◦m0,x1◦mn−1) ��

q

�� ��������������������� X0 ×X0

(I, Io)n

��

(i0,i1)

�����������������������

The arrow q ◦ ε ◦ η : K → (I, Io)n is such that

i0 ◦ q ◦ ε ◦ η = x0 ◦m0 ◦ ε ◦ η = x0 ◦ l0 ◦ η = k0 = b0 ◦ β

and similarly i1 ◦ q ◦ ε ◦ η = b1 ◦ β. The commutativity of the diagram

K
β

�� ��

q◦ε◦η

��

B

(b0,b1)

��
(I, Io)n

�� (i0,i1) �� X0 ×X0

gives a unique σ : B → (I, Io)n with σ ◦ β = q ◦ ε ◦ η and (i0, i1) ◦ σ = (b0, b1). It
follows then that i0 ◦ σ ◦ γ = b0 ◦ γ = f0 and i1 ◦ σ ◦ γ = b1 ◦ γ = f1. This shows that
(f0, f1) ∈ Hom(C, (I, Io)n).



Theory and Applications of Categories, Vol. 8, No. 1 9

Let us then prove that (f0, f1) ∈ Hom(C, (I, Io)n) implies (f0, f1) ∈ RX,C
n . Indeed, let

α : C → (I, Io)n be an arrow with i0 ◦ α = f0 and i1 ◦ α = f1. Keeping in mind that the
regular epi q ◦ ε : L → (I, Io)n is a directed colimit of regular epis (q ◦ ε)j : Lj → [(I, Io)n]j
in C (see for instance [1]) and that C is finitely presentable, we obtain an arrow αj as in
the diagram

L
q◦ε �� �� (I, Io)n

i0 ��

i1
�� X0

Lj
(q◦ε)j

�� ��

nj

��

[(I, Io)n]j

mj

��

C

f0

��

f1

��

α

�����������������

αj

		

with α = mj ◦αj. Since the graph Lj

i0◦q◦ε◦nj��

i1◦q◦ε◦nj

�� X0 is a n-iterated of X1

x0 ��

x1

�� X0 , it follows

that f0R
X,C
n f1.

1. ⇒ 2. By theorem 2.2 we know that C is weakly regular. The relation (I, Io)n

is transitive in Lex[Cop, Set] by assumption (and by theorem 1.5): this implies that
Hom(C, (I, Io)n) = RX,C

n is a transitive relation in the category of sets.
2. ⇒ 1. By theorem 2.2, the category Lex[Cop, Set] is regular. By theorem 1.5 we just

need to show that any reflexive relation A
d ��

c
�� A0 is such that (A,Ao)n is transitive.

Since any reflexive relation in Lex[Cop, Set] can be written as a filtered colimit of reflexive
graphs in C and a filtered colimit of transitive relations is a transitive relation, then it

suffices to check the property for a reflexive graph in C. Let X1

x0 ��

x1

�� X0 be a reflexive

graph and let I
x0 ��

x1

�� X0 denote its regular image in Lex[Cop, Set]. We must prove that

(I, Io)n

i0 ��

i1
�� X0 is transitive. We recall that the category C is a dense generator in

K = Lex[Cop, Set]: this means that the inclusion of K into SetC
op

(via the restriction of
the Yoneda embedding) is fully faithful. From this it follows that the relation (I, Io)n �
X0 ×X0 is transitive in K if and only if the relation Hom(C, (I, Io)n) � Hom(C,X0) ×
Hom(C,X0) is transitive in Set for any C ∈ C. Since RX,C

n is exactly Hom(C, (I, Io)n),
the result follows from RX,C

n transitive.

2.6. Corollary. Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is regular Maltsev

2. C is weakly regular and the relation RX,C
1 is transitive for any reflexive graph X in

C.
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3. Exact locally finitely presentable categories

We now turn to the problem of characterizing the locally finitely presentable categories
that are exact Maltsev. From this point of view the property described in the following
definition will have an essential role:

3.1. Definition. A category C with coequalizers is pro-maltsev if for any reflexive graph
X

X1

x0 ��

x1 ��
X0

e		

and for any pair of arrows f0, f1 : C → X0 with q ◦ f0 = q ◦ f1, where q is the coequalizer
of x0 and x1, (f0, f1) is in the relation RX,C

1 , i.e. there exists a factorization of C through

a quotient of a 1-iterated K
k0 ��

k1

�� X0 of X:

K
k0 ��

k1

��

β

����

X0

B

b0

�����������������������

b1

�����������������������
Cγ

		

f0

��

f1

��

We first remark that this property is stronger than the one expressed by the transitivity
of the relation RX,C

1 :

3.2. Lemma. If C is a pro-maltsev category, then the relation RX,C
1 is transitive, for any

reflexive graph X in C and any C ∈ C.
Proof. Let X

X1

x0 ��

x1 ��
X0

e		

be a reflexive graph and let (f0, f1) ∈ RX,C
1 and (f1, f2) ∈ RX,C

1 ; this means that there
exist two configurations in C as in the diagrams

K
k0 ��

k1

��

β

����

X0

B

b0

�����������������������

b1

�����������������������
Cγ

		

f0

��

f1

�� K ′
k′
0 ��

k′
1

��

β′

����

X0

B′

b′0

�����������������������

b′1

�����������������������
C

γ′
		

f1

��

f2

��
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where both K
k0 ��

k1

�� X0 and K ′
k′
0 ��

k′
1

�� X0 are 1-iterated of the reflexive graph X1

x0 ��

x1

�� X0 .

If q : X0 � Q denotes the coequalizer of x0 and x1, then

q ◦ b0 ◦ β = q ◦ b1 ◦ β,
hence, since β is a regular epi,

q ◦ b0 ◦ γ = q ◦ b1 ◦ γ,
so that q ◦ f0 = q ◦ f1. Similarly q ◦ f1 = q ◦ f2 and then q ◦ f0 = q ◦ f2: by the pro-maltsev
assumption f0R

X,C
1 f2, proving that the relation RX,C

1 is transitive.

3.3. Lemma. Let Lex[Cop, Set] be an exact category. If the relation RX,C
1 is transitive

for any reflexive graph X in C, then C is pro-maltsev.

Proof. By corollary 2.6 the category Lex[Cop, Set] is exact Maltsev. With the same
notations as in the lemma 3.2, if there are two arrows f0, f1 : C → X0 such that q ◦ f0 =

q ◦ f1, these must factorize through the regular image I
x0 ��

x1

�� X0 in Lex[Cop, Set] of the

reflexive graph X1

x0 ��

x1

�� X0 , since this relation is necessarily the kernel pair of q. Hence

(f0, f1) is in RX,C
1 = Hom(C, I).

We then get the following

3.4. Proposition. Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is exact Maltsev

2. C is weakly regular and pro-maltsev

Proof. 1. ⇒ 2.
It follows by corollary 2.6 and lemma 3.3.
2. ⇒ 1.
By corollary 2.6 and lemma 3.2 one knows that Lex[Cop, Set] is regular Maltsev. By using

the pro-maltsev property it is possible to show that, given a reflexive graph X1

x0 ��

x1

�� X0

in C, its image factorisation I
x0 ��

x1

�� X0 in Lex[Cop, Set] is an effective equivalence relation.

Indeed, one can easily prove that the pro-maltsev property implies that the kernel pair

in Lex[Cop, Set] of the coequalizer of the arrows x0 and x1 factorizes through I
x0 ��

x1

�� X0 :

this certainly suffices to conclude that I is a kernel pair in Lex[Cop, Set].
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Now, for any equivalence relation A
d ��

c
�� A0 in Lex[Cop, Set], write it as a filtered

colimit of reflexive graphs in C: since the regular image of any of these reflexive graphs

is an effective equivalence relation, we get that A
d ��

c
�� A0 is an effective equivalence

relation.

More generally, one can define the notion of pro-n-permutable category:

3.5. Definition. A category C is pro-n-permutable (n ≥ 2) if for any reflexive graph X

X1

x0 ��

x1 ��
X0

e		

and for any pair of arrows f0, f1 : C → X0 with q ◦ f0 = q ◦ f1, where q is the coequalizer
of x0 and x1, (f0, f1) is in the relation RX,C

n−1.

By adopting the same technique as above, theorem 2.5 allows to generalize these results
to the n-permutable case (n ≥ 2):

3.6. Proposition. Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is exact n-permutable

2. C is weakly regular and pro-n-permutable

3.7. Remark. The notion of weakly regular pro-n-permutable category is clearly stronger
than the one of pro-exact category in the sense of [7]: to see it, one just needs to remark
that any n-iterated graph (in our sense) of a reflexive and symmetric graph X is an “it-
eration” of X as defined in that paper. Observe that pro-exactness corresponds, with the
same notations as in definition 3.5, to

q ◦ f0 = q ◦ f1 ⇒ ∃n ≥ 1, (f0, f1) ∈ RX,C
n .

The pro-n-permutability of a weakly regular category C can be accordingly thought as a
synthetic way to express at the same time the “exactness” of the category Lex[Cop, Set]
and the fact that the join of two equivalence relations in Lex[Cop, Set] can be obtained in
a “finite number of steps”. This last condition precisely expresses the n-permutability of
the composition of equivalence relations.

4. Quasivarieties and varieties

By a quasivariety is meant a class of many-sorted finitary algebras that can be defined by
implications of the form

α1 ∧ α2 ∧ . . . ∧ αn → β,
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where n ∈ ω and αi and β are equations (with both sides of the same sort). Any quasiva-
riety is a locally finitely presentable category; in [1] Adámek and Porst characterized (the
dual of) those essentially algebraic theories whose models form a quasivariety as being
the finitely cocomplete categories which have enough regular projectives:

4.1. Theorem. [1] Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is a quasivariety

2. C has enough regular projectives

Any quasivariety is a regular category: it seems then natural to investigate the condi-
tion of n-permutability for quasivarieties. For this, we begin with the following

4.2. Definition. Let A be a regular category and n ≥ 1. A n-pseudo transitive relation

is a reflexive graph X1

x0 ��

x1

�� X0 such that its image factorisation I
x0 ��

x1

�� X0 has the

property that (I, Io)n is a transitive relation.

Of course, if A is regular Maltsev, any reflexive graph is a 1-pseudo transitive relation,
since I = (I, Io)1 is an equivalence relation. We then define a notion of n-permutable
object:

4.3. Definition. An object P in a category C is n-permutable (n ≥ 2) if the functor
Hom(P,−) sends reflexive graphs to (n− 1)-pseudo transitive relations (in Set).

We can then give our characterization of n-permutable quasivarieties:

4.4. Proposition. Let C be a category with finite colimits and n ≥ 2. The following
conditions are equivalent:

1. Lex[Cop, Set] is a n-permutable quasivariety

2. C has enough n-permutable regular projectives

Proof. 1. ⇒ 2. By theorem 4.1 the category C has enough regular projectives. It suffices

to prove that, for any regular projective P and for any reflexive graph X : X1

x0 ��

x1

�� X0 ,

the relation
(J, Jo)n−1 � Hom(P,X0) ×Hom(P,X0)

is transitive (where J
j0 ��

j1
�� Hom(P,X0) is the image factorisation in Set of the reflexive

graph Hom(P,X1)
��
�� Hom(P,X0) ). Since P is regular projective then (J, Jo)n−1 =

Hom(P, (I, Io)n−1), where I
x0 ��

x1

�� X0 is the image of X in Lex[Cop, Set]. The result then

follows from theorem 2.5 and RX,P
n−1 = Hom(P, (I, Io)n−1).
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2. ⇒ 1. By theorems 2.5 and 4.1 we just have to prove that the relation RX,C
n−1 is

transitive for any reflexive graph X in C and C ∈ C. Since C has a regular projective
cover by assumption, it suffices to check that RX,P

n−1 is transitive for P regular projective.

This follows by RX,P
n−1 = Hom(P, (I, Io)n−1) = (J, Jo)n−1 and P is n-permutable.

As a corollary of this result, we now give a characterization of n-permutable finitary
varieties. For this, we first recall the notion of effective projective object, due to Pedicchio
and Wood:

4.5. Definition. An object P in a category C is an effective projective object if the
functor Hom(P,−) preserves coequalizers of reflexive graphs.

This notion plays an essential role in a recent work [14] by Pedicchio and Wood. In this
paper the authors characterized (the dual of) those essentially algebraic theories whose
models form a finitary variety of algebras: these are precisely the finitely cocomplete
categories which have enough effective regular projectives:

4.6. Theorem. [14] Let C be a category with finite colimits. The following conditions
are equivalent:

1. Lex[Cop, Set] is a variety

2. C has enough effective regular projectives

This theorem, together with proposition 4.4, gives the following corollary:

4.7. Corollary. Let C be a category with finite colimits. The following conditions are
equivalent:

1. Lex[Cop, Set] is a n-permutable variety

2. C has enough n-permutable effective regular projectives
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[1] J. Adámek and H. Porst, Algebraic Theories of Quasivarieties, Journal of Algebra, 208,
379-398, 1998.
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