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INFINITESIMAL ASPECTS OF THE LAPLACE OPERATOR

ANDERS KOCK

ABSTRACT. In the context of synthetic differential geometry, we study the Laplace
operator an a Riemannian manifold. The main new aspect is a neighbourhood of the
diagonal, smaller than the second neighbourhood usually required as support for second
order differential operators. The new neighbourhood has the property that a function
is affine on it if and only if it is harmonic.

Introduction

Recall [3], [4], [5], [7] that any manifold M , when seen in a model of Synthetic Differential
Geometry (SDG), carries a reflexive symmetric relation ∼k (k = 0, 1, 2, ...), where x ∼k y
reads “x and y are k-neighbours”; x ∼0 y means x = y; x ∼k y implies x ∼k+1 y. Also,
x ∼k y, y ∼l z implies x ∼k+l z. The set of (x, y) ∈ M ×M with x ∼k y is denoted M(k),
the “k’th neighbourhood of the diagonal”, and for fixed x, the set {y ∈ M | y ∼k x} is
denoted Mk(x) (“the k-monad around x”). In Rn, Mk(0) is denoted Dk(n). Its elements
u are characterized by the condition that any homogeneous polynomial of degree k + 1
vanishes on u. In this context, a Riemannian metric on M can be given in terms of a
map

g : M(2) → R

with g(x, x) = 0, and with g(x, y) = g(y, x) to be thought of as the “square-distance
between x and y”, se [5], [6]. (Also g should be positive-definite, in a certain sense.)

Given a Riemannian metric g on M , in this sense, one can construct the Levi-Civita
connection [5], volume form [6], and hence also a notion of divergence of a vector field.
And to a function f : M → R, one can construct its gradient vector field, and hence one
can construct the Laplacian ∆ by ∆(f) = div(grad(f)). This is what we shall not do here,
rather, we shall exploit the richness of synthetic language to give a more economic and
more geometric construction of ∆. The construction is more economic in the sense that
the definition of ∆f(x) only depends on knowing f on a certain subset ML(x) ⊆ M2(x),
where M2(x) is what is required to make the usual div grad construction work, or for
defining the individual terms in the formula ∆f(x) =

∑
∂2f/∂x2

i (x).

The description of ML(x) ⊆ M , or equivalently, the description of the L-neighbour
relation ∼L, is coordinate free, see Definition 2.1 below, and therefore, too, is the descrip-
tion of ∆f and of the notion of harmonic function. We get a characterization of harmonic
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functions, in terms of an average-value property, which is infinitesimal in character and
does not involve integration, see Theorem 2.4 and Proposition 2.7.

In Section 3 we prove that diffeomorphisms which preserve the L-neighbour relation
are precisely the conformal ones. Section 4 deals with the special case of the complex
plane, and Section 5 explains the “support of the Laplacian” in systematic algebraic
terms.

1. Preliminaries

Although the notions we use are introduced in a coordinate free way, we have no intention
of avoiding use of coordinates as a tool of proof. This Section contains in fact mainly
certain coordinate calculations, which we believe will be useful also in other contexts
where Riemannian geometry is treated in the present synthetic manner.

Working in coordinates in M means that we are identifying (an open subset of) M
with (an open subset of) Rn; for simplicity, we talk about these open subsets as if they
were all of M and Rn, respectively; all our considerations are anyway only local. The
Riemannian metric g on M then becomes identified with a Riemannian metric on Rn,
likewise denoted g, and it may be written (for x ∼2 y) in the form of a matrix product,

g(x, y) = (y − x)T ·G(x) · (y − x),

where x − y ∈ Rn is viewed as a column matrix, and G(x), for each x, is a symmetric
positive definite n× n matrix.

Using coordinates, we may form affine combinations of (the coordinate sets of) points
of M , at least for sufficiently nearby points, and such combinations will in general have
only little geometric significance, since they depend on the choice of the coordinate system.
However, we have the following useful fact:

1.1. Proposition. Assume y1 ∼1 x and y2 ∼1 x (so (x+ y2 − y1) ∼2 x). Then

g(x, x+ y2 − y1) = g(y1, y2);

in particular, for x = 0,
g(0, y2 − y1) = g(y1, y2).

Proof. We may assume x = 0. Then g(0, y2 − y1) and g(y1, y2) are given, respectively,
by

(y2 − y1)
T ·G(0) · (y2 − y1) = −2yT

1 ·G(0) · y2

and
(y2 − y1)

T ·G(y1) · (y2 − y1) = −2yT
1 ·G(y1) · y2.

Now expand G(y) as G(0) + H(y) where H depends linearily on y ∼1 0. The difference
between our two expressions is then −2yT

1 ·H(y1) ·y2, which depends bilinearily on y1 and
therefore vanishes.
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We shall see below (Proposition 1.4) that the “coordinatewise” affine combination
considered in Proposition 1.1 does have an invariant geometric meaning, provided the
coordinate system is geodesic:

We say that the metric g on Rn (or equivalently, the coordinate system around x0 ∈ M)
is geodesic at 0 ∈ Rn (or at x0 ∈ M , respectively), if the first partial derivatives of G(x),
as functions of x ∈ Rn, vanish at 0; equivalently, if G(x) = G(0) for every x ∼1 0. (This
is in turn equivalent to the vanishing at x0 of the Christoffel symbols of the metric, in the
given coordinate system.) It is classical that for every point x0, there exists a coordinate
system which is geodesic at x0. If G(0) is the identity matrix, one talks about a normal
coordinate system at x, and such also exist. Cf. e.g. [1] for such notions.

Recall from [5] formula (2) that any Riemannian metric g : M(2) → R admits a unique
symmetric extension g : M(3) → R; in coordinates it is given by

g(x, y) = (y − x)T · (G(x) + 1/2(D(y−x)G)(x)) · (y − x). (1)

Recall also from [5] Theorem 3.6 that for x ∼2 z in a Riemannian manifold, and for
t ∈ R, there exists a unique y0 with y0 ∼2 x and y0 ∼2 z which is a critical point for the
function of y given by

tg(x, y) + (1− t)g(z, y); (2)

We call this y0 an (intrinsic) affine combination of x and z. We write it tx+ (1− t)z;
this raises a compatibility problem in case we are working in coordinates, since we can
then also form the “algebraic” affine combination of two coordinate n-tuples. However,
in geodesic coordinates at x, there is no problem, according to the following Proposition,
which extends Proposition 3.7 in [5]. Let us consider a coordinate system with x identified
with 0.

1.2. Proposition. The critical point y0 for the function in (2) is the algebraic affine
combination tx+ (1− t)z, if either x ∼1 z, or if the coordinate system is geodesic at x.

Proof. Since x is identified with 0 in the coordinate system, the affine combination in
question is just (1− t)z. To show that it is a critical value for (2) means that

tg(0, (1− t)z + v) + (1− t)g(z, (1− t)z + v) (3)

is independent of v ∼1 0. We write g in terms of the symmetric matrices G, as above.
Let us take a Taylor expansion of the function G(y), writing

G(y) = G(0) +H(y),

where the entries of the matrix H(y) are of degree ≥ 1 in y; and if the coordinate system
is geodesic at x = 0, H(y) is even of degree ≥ 2 in y. We then calculate. We get a
“significant” part from each of the two terms in (3), and then some “error” terms, each
of which will vanish for degree reasons, as we shall argue.

The two significant terms are the two terms in
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t(((1− t)z + v)T ·G(0) · ((1− t)z + v)) + (1− t)((−tz + v)T ·G(0) · (−tz + v)).

Expanding out by bilinearity and symmetry, the terms involving v linearly cancel each
other; and the terms involving v quadratically vanish because v ∼1 0. So the significant
terms, jointly, do not depend on v ∼1 0.

The “error” terms are of two kinds: partly, arising from the replacement of G(z) by
G(0); here, H(z) enters; and partly there are correction terms when passing from g to g
defined on pairs of third order neighbours. The error term of the first kind is a multiple
of

(−tz + v)T ·H(z) · (−tz + v);

we expand this out by bilinearity, and use that H(z) is of degree ≥ 1, and v ∼1 0. We get
four terms each of which vanish for degree reasons if either z ∼1 0 or if H(z) is of degree
≥ 2.

Finally, the correction terms for upgrading g to g do not occur if z ∼1 0, since then g
is only applied to pairs of second order neighbours. Thus the assertion of the Proposition
about the case z ∼1 x is already proved. In general, the upgrading involves first partial
derivatives of G, (see (1)), so in the case the coordinate system is geodesic at 0, no
correction term is needed for g(0, (1 − t)z), but only for g(z, (1 − t)z + v). Using the
formula (1), we see that the correction needed is a certain multiple of

(−tz + v)T · (D−tz+vG)(z) · (−tz + v),

hence a linear combination of terms

z ·DzG(z) · z, v ·DzG(z) · z, z ·DvG(z) · z,
and something that contains v in a bilinear way. All these terms vanish for degree reasons:
for, since H vanishes in the first neighbourhood of 0, DvG(z) is of degree ≥ 1 in z, and
DzG(z) is even of degree ≥ 2 in z.

Essentially the same degree counting as in this proof gives the following result:

1.3. Lemma. Let y ∼1 x and z ∼2 x; then using a geodesic coordinate system at x = 0,
the quantity g(y, z) may be calculated as (z − y)T ·G(0) · (z − y).

Given a Riemannian manifold. If x ∼2 z, the mirror image z′ of z in x is by definition
the affine combination 2x − z, i.e. the y which is critical value for 2g(x, y) − g(z, y), [5]
Theorem 3.6. Also, the parallelogram formation λ is described in [5]. Finally, if t is a
tangent vector D → M , its geodesic prolongation t : D2 → M is determined by the
validity, for all d1, d2 ∈ D of

t(d1 + d2) = λ(t(0), t(d1), t(d2)).

(Recall that D ⊆ R are the elements of square zero, D2 the elements of cube zero.) Now
Proposition 1.2 has the following Corollary:
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1.4. Proposition. Let x ∼2 z; then the mirror image z′ of y w.r.to x may be calculated
as follows: take a geodesic coordinate system at x with x = 0. Then z′ = −z.

Let y ∼1 x, z ∼1 x. Then λ(x, y, z) may be calculated as follows: take a geodesic
coordinate system at x with x = 0. Then λ(x, y, z) = y + z.

Let t be a tangent vector D → M at x ∈ M . Then the geodesic prolongation t : D2 →
M of t may be calculated as follows: take a geodesic coordinate system at x with x = 0.
Let u be the unique vector in Rn so that t(d) = d · u for all d ∈ D. Then for δ ∈ D2,
t(δ) = δ · u

(The vector u ∈ Rn appearing in the last clause is usually called the principal part of
t, relative to the coordinate system.)

If t and s are tangent vectors at the same point x of a Riemannian manifold M, g, we
define their inner product 〈t, s〉 by the validity, for all d1, d2 ∈ D, of

d1d2 〈t, s〉 = −1

2
g(t(d1), s(d2)). (4)

In this way, the tangent vector space TxM is made into an inner product space, (and this
is the contact point with the classical formulation of Riemannian metric).

If u and v are the principal parts of tangent vectors t and s at x ∈ M , in some
coordinate system at x = 0 (not necessarily geodesic), one has
〈t, s〉 = uT ·G(0) · v; this follows easily from Proposition 1.1.

Combining Lemma 1.3 and Proposition 1.4, one gets

1.5. Lemma. Let t be a tangent vector. Then for d ∈ D, δ ∈ D2, we have

g(t(d), t(δ)) = (δ2 − 2dδ) · 〈t, t〉.

We are going to define the orthogonal projection of z (z ∼2 x) onto a proper tangent t
at x. We first define the scalar component of z along t; this is the unique number α(z, t)
so that

d · α(z, t) = 1

2

(g(x, z)− g(t(d), z))

〈t, t〉 (5)

for all d ∈ D. Note that if z = x, α(z, t) = 0, and from this follows that for any z ∼2 x,
α(z, t) ∼2 0, in other words α(z, t) ∈ D2. From Lemma 1.5, applied twice (once with
d = 0, once with a general d ∈ D), it is immediate to deduce that if z is of the form t(δ)
for a δ ∈ D2, then α(z, t) = δ.

We define the orthogonal projection projt(z) by

projt(z) = t(α(z, t)).

Note that it is a second-order neighbour of x. It follows from the above that if z is of the
form t(δ), then projt(z) = z.
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2. Laplacian neighbours

Here is the crucial definition:

2.1. Definition. Let z ∼2 x. We say that z is a Laplacian neighbour of x (written
z ∼L x) if for every proper tangent t at x, we have

g(x, z) = n · g(x, projt(z)), (6)

where n is the dimension of the manifold.

Maybe one of the names “isotropic, harmonic, or conformal, neighbour” would be
more appropriate.

Clearly z ∼1 x implies z ∼L x; for if z is a first-order neighbour of x, then so is its
orthogonal projection, and hence both the g-quantities to be compared in (6) are zero. If
the dimension n is 1, ∼L is the same as ∼2 but in general, the set ML(x) of L-neighbours
of x is much smaller than the set M2(x) of second-order neighbours; in fact, the ring
of functions on ML(x) is a finite dimensional vector space which is just one dimension
bigger than the ring of functions on M1(x), as we shall see in the proof of Proposition
2.3 below.

We conjecture that the relation ∼L is symmetric, but we haven’t been able to do the
necessary calculations, except in the case of Rn, where the symmetry is easy to prove,
using Proposition 2.2 below.

Note the following curious phenomenon in dimension n ≥ 2: if z ∼L x, then z does
not connect to x by any geodesic D2 → M (given by a proper tangent vector t), except
perhaps in the trivial case when g(x, z) = 0. In other words, the L-neighbours of x
are genuinely isotropic, in the sense that they are in no preferred direction t (hence the
alternative name “isotropic neighbour” suggested). Nevertheless, there are sufficiently
many L-neighbours of x to define the Laplacian differential operator ∆, see Theorem 2.4
below.

Let us assume the manifold in question has dimension n. Then we have

2.2. Proposition. In any geodesic normal coordinate system at x = 0, z = (z1, . . . , zn)
is ∼L 0 if and only if

z2
i = z2

j for all i, j, and zizj = 0 for i �= j

(and z3
i = 0 for all i; this latter condition follows from the other two if n ≥ 2).

Proof. First, if t and s are tangent vectors at x = 0 with principal parts u and v,
respectively (meaning t(d) = du, s(d) = dv), then 〈t, s〉 = u• v, where • denotes the usual
dot product of vectors in Rn. Also, if t is a tangent at x = 0 with principal part u, then
α(z, t) = (z • u)/(u • u); for, calculating the enumerator in (5) gives (using Proposition
1.1)

z • z − g(du, z) = z • z − (z − du) • (z − du) = 2d z • u.
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From the third clause in Proposition 1.4, we then get the familiar looking

projt(z) =
z • u

u • u
u. (7)

In particular, if t is the (proper) tangent vector with principal part ei ∈ Rn (=
(0, . . . , 1, . . . 0) (with 1 in the i’th position, 0’s elsewhere), then projt(z1, . . . , zn) = ziei. In
particular g(0, projt(z)) = z2

i . If, on the other hand, t is the tangent vector with principal
part ei,j (the vector with 1’s in the i’th and in the j’th position, i �= j, 0’s elsewhere),
then projt(z) has (zi + zj)/2 in the i’th and in the j’th position, and 0’s elsewhere. In
particular,

g(0, projt(z)) =
1

2
(z2

i + z2
j ) + zizj.

If z therefore is an L-neighbour of 0, we conclude that z2
i = z2

j for all i, j, and that zizj = 0
if i �= j.

Conversely, assume that in some geodesic normal coordinate system at x = 0, the
coordinates (z1, . . . , zn) satisfy the equations z2

i = z2
j , zizj = 0 for i �= j, and let t be a

proper tangent vector at x with principal part u = (u1, . . . , un). Then

projt(z) =
z • u

u • u
u,

and therefore
g(x, projt(z)) = (

z • u

u • u
u) • (z • u

u • u
u),

which we calculate by arithmetic to be

(
∑

i uizi)(
∑

j ujzj)

u • u
=

∑
ij uiujzizj

u • u
,

but since zizj = 0 for i �= j, only the “diagonal” terms survive, and we are left with

∑
i uiuizizi

u • u
.

But zizi = z1z1 for all i, so this factor can go outside the sum sign in the enumerator, and
we get z2

1(
∑

i uiui)/u • u = z2
1 , which is 1/n times

∑
z2

i since all the z2
i are equal. This

proves the Proposition.

From Propositions 1.2 and 2.2, one immediately deduces that if z ∼L x, then also
z′ ∼L x for any affine combination z′ = tx+ (1− t)z (t ∈ R).

2.3. Proposition. If two functions f1 and f2: ML(x) → R agree on M1(x) there is a
unique number c ∈ R such that for all z ∼L x

f1(z)− f2(z) = c · g(x, z).
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Proof. Using a geodesic normal coordinate system at x = 0, it is a matter of analyzing
the ring of functions ML(0) → R for the case where M = Rn with standard inner-product
metric. The Proposition gives that ML(0) may be described as DL(n) ⊆ Rn, defined by

DL(n) := {(d1, . . . , dn) ∈ Rn | d2
i = d2

j , and didj = 0 for i �= j}, (8)

(for n ≥ 2; for n = 1, DL(1) = D2 = {δ ∈ R | δ3 = 0}). This is (for n ≥ 2) the
object represented by the Weil algebra O(DL(n)) := k[Z1, . . . , Zn]/I, where I is the ideal
generated by the Z2

i − Z2
j , and by ZiZj for i �= j. It is immediate to calculate that, as a

vector space, this ring is (n+ 2)-dimensional, with linear generators

1, Z1, . . . , Zn, Z
2
1 + . . .+ Z2

n.

By the general (Kock-Lawvere) axiom scheme for SDG [4], [8], this means that any func-
tion f : DL(n) → R is of the form

f(z1, . . . , zn) = a+
∑

i

bizi + c(
∑

i

z2
i ),

for unique a, b1, . . . , bn, c ∈ R, or equivalently

f(z1, . . . , zn) = a+
∑

i

bizi + cg(0, z).

Since the restriction of f to D(n) is given by the data a, b1, . . . , bn, the unique existence
of c follows.

The following Theorem deals with an arbitrary Riemannian manifold M, g of dimen-
sion n, and gives a coordinate free characterization of the Laplacian operator ∆.

2.4. Theorem. For any f : ML(x) → R, there is a unique number L with the property
that for any z ∼L x

f(z) + f(z′)− 2f(x) = L · g(x, z),
where z′ denotes the mirror image of z in x. We write ∆f(x) := nL.

Put differently,

f(z) + f(z′)− 2f(x) =
∆f(x)

n
g(x, z).

If the function f is harmonic at x, meaning that ∆f(x) = 0, it follows that it has a strong
average value property: the value at x equals the average value of f over any pair of points
z and z′ (L-neighbours of x) which are symmetrically located around x.

Proof. Again, we pick a normal geodesic coordinate system at x = 0, so identify ML(x)
with DL(n); then z′ gets identified with −z, by Proposition 1.4. The left hand side of
the expression in the Theorem then has restriction 0 to D(n), being (with notation as
above) (a+

∑
bizi) + (a+

∑
bi(−zi))− 2a. Hence the unique existence of L follows from

Proposition 2.3.
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The following Proposition serves to as partial justification of the use of the name
“Laplacian” for the ∆ considered in the Theorem. We consider the standard Riemannian
metric on Rn, g(x, z) = ||z − x||2, for z ∼2 x.

2.5. Proposition. Let f : Rn → R and let x ∈ Rn. Then

∆f(x) =
∑

i

∂2f

∂x2
i

(x).

Proof. For simplicity, let x = 0, so that z′ = −z. We Taylor expand f(z) and f(−z)
from 0, and consider f(z) + f(−z)− 2f(0); then terms of degree ≤ 1 cancel, and we get

∑
ij

∂2f

∂xi∂xj

zizj + higher terms;

now the calculation proceeds much like the one in the proof of Proposition 2.2 above: if
z ∼L 0, only the diagonal terms in the sum survive, all the z2

i are equal to z2
1 , which we

move outside the parenthesis, and get z2
1 times the classical Laplacian

∑
∂2f/∂x2

i (0). But
z2
1 = 1/n · g(0, z).

Similarly, one proves by Taylor expansion

2.6. Proposition. If z ∼L x in Rn, then for any f : Rn → R,

f(z) = f(x) + dfx(z − x) +
1

2n
∆f(x)||z − x||2.

Recall that any function M → R looks affine on any 1-monad M1(x); functions that
look affine on the larger L-monads ML(x) are precisely the harmonic ones:

2.7. Proposition. Assume f : M → R is harmonic at x. Then for an z ∼L x, f
preserves affine combinations of x and z. Conversely, if for given x, f preserves affine
combinations of x and z for every z ∼L x, then f is harmonic at x. (“Harmonic” at x
here in the sense: ∆f(x) = 0.)

(Recall that the affine combination tx + (1 − t)z is defined as the critical point y0 in
(2).)

Proof. Assume z ∼L x, and pick a geodesic normal coordinate system at x = 0. With-
out loss of generality, we may assume f(0) = 0. Then to say that f preserves affine
combinations of x and z is to say that for all s ∈ R, f(sz) = sf(z). For z ∼L 0, we
have by Proposition 2.6 that f(z) =

∑
aizi + c

∑
z2

i for unique ai and c (c = ∆f(0)/2n);
f(sz) and sf(z) have the same terms of first order in z; their second order terms are
respectively cs2 ∑

z2
i and sc

∑
z2

i , and if these two expressions are to be equal for all s and
all z, we must have c = 0. This means that f is harmonic at x. Conversely, if f preserves
affine combinations of the kind mentioned, it preserves the affine combination 2x− z, or
equivalently, the left hand side of the expression in Theorem 2.4 is 0, hence it follows that
L and hence ∆f(x) is 0.
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Remark. With some hesitation, I propose to call a map f : M → N between Riemannian
manifolds harmonic if it preserves affine combinations of L-neighbours in M and if it
preserves the property of being L-neighbours. I have not been able to compare the
proposed definition with a certain classical concept of harmonic map between Riemannian
manifolds. But at least, when the codomain is R, the definition is the basic classical one of
harmonic function, by Proposition 2.7. For, preservation of the ∼L relation is automatic
when the codomain is R, since in R, ∼L is the same as ∼2.

3. Conformal maps

We consider a diffeomorphism f : M → N between Riemannian manifolds (M, g), (N, h).
To say that f is an isometry at x ∈ M is to say that for all z ∼2 x, g(x, z) = h(f(x), f(z)).
To say that f is conformal at x ∈ M with constant k = k(x) > 0 is to say that for all
z ∼2 x, h(f(x), f(z)) = k(x)g(x, z) (so if k(x) = 1, f is an isometry at x). The terminology
agrees with classical usage, as we shall see below. We first prove

3.1. Proposition. Assume f : M → N is conformal at x ∈ M with
h(f(x), f(z)) = kg(x, z). Then for all y1 ∼1 x, y2 ∼1 x,

h(f(y1), f(y2)) = kg(y1, y2),

and conversely.

Proof. We choose coordinates, and assume x = 0 and f(x) = 0; the metrics in M and N
are then given by functions g and h, respectively, and they are in turn given by symmetric
matrices G(y), and H(z) for all y ∈ M and z ∈ N . We now calculate kg(y1, y2). We have,
by Proposition 1.1 that

kg(y1, y2) = kg(0, y2 − y1) = h(0, f(y2 − y1)).

Now there is a bilinear B(−,−) such that for all pairs of 1-neighbours y1, y2 of 0, we have
f(y2 − y1) = f(y2)− f(y1) +B(y1, y2). So the calculation continues

= h(0, f(y1)− f(y2) +B(y1, y2))

= (f(y1)− f(y2) +B(y1, y2))
T ·H(0) · (f(y1)− f(y2) +B(y1, y2)).

Since f depends in a linear way of y1 ∼1 0 and y2 ∼1 0, this whole expression multiplies out
by linearity, and for degree reasons all terms involving B, as well as some others, vanish,
and we are left with −2f(y1)

T · H(0) · f(y2). On the other hand, h(f(y1), h(f(y2)) =
h(0, f(y2)− f(y1)), by Proposition 1.1, and writing this in terms of H(0) gives the same
expression.

The converse is proved in the same way for z ∼2 0 of the form y2 − y1 with y1 ∼1 0
and y2 ∼1 0, but this suffices to get the result for all z ∼2 0, by general principles of SDG
(“R, and hence any manifold, perceives the addition map D(n) × D(n) → D2(n) to be
epic”.)
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Call a linear map F : U → V between inner product vector spaces conformal with
constant k > 0 if for all u1, u2 ∈ U

〈F (u1), F (u2)〉 = k〈qu1, u2〉.
It follows immediately from Proposition 3.1, and from the construction of inner product
in the vector space of tangents at x, and at f(x), that if f is conformal at x with constant
k, then dfx : TxM → Tf(x)N is a conformal linear map with the same constant k. The
converse also holds; for if dfx is conformal with constant k, we deduce that for all pairs
of tangents t and s at x

g(f(t(d1)), f(s(d2))) = k · g(t(d1), s(d2)),

and hence
g(f(y1)), f(y2)) = k · g(y1, y2) (9)

for all yi’s of the form t(d) for a tangent vector t and a d ∈ D. Again by general principles,
any manifold N “perceives all 1-neighbours of x to be of this form”. From Proposition
3.1 we therefore deduce that f is conformal at x with constant k.

3.2. Theorem. A diffeomorphism f is conformal at x ∈ M if and only if f maps ML(x)
into ML(f(x)).

Proof. Assume f maps ML(x) into ML(f(x)). We may pick normal coordinates at x
as well as at f(x). The neighbourhoods ML(x) and ML(f(x)) then both get identified
with DL(n), and x = 0, f(x) = 0. The restriction of f to D2(n), f : D2(n) → Rn, takes
0 to 0 and is therefore of the form f(y) = A · y +B(y), where A is an n× n matrix, and
B(y) is a map Rn → Rn which is homogeneous of degree 2 in y ∈ Rn, i.e. an n-tuple of
quadratic forms Bi.

Assume now that f maps DL(n) into itself. For z ∈ DL(n), the i’th coordinate of f(z)
is

fi(z) =
∑
k

aikzk +Bi(z).

Squaring this, only the terms in (
∑

k aikzk)(
∑

l ailzl) survive for degree reasons (using that
z ∈ D2(n)). But using further that zkzl = 0 for k �= l, only the “diagonal” terms survive,
and we get

fi(z)
2 =

∑
k

a2
ikz

2
k = z2

1

∑
k

a2
ik. (10)

Similarly for i �= j
fi(z)fj(z) = z2

1(
∑
k

aikajk). (11)

If now f(z) ∈ DL(n) for all z ∈ DL(n), we get that the expression in (10) is independent
of i, and from the uniqueness assertion in Proposition 2.3 we therefore conclude

∑
k

a2
ik =

∑
k

a2
jk for all i, j;
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and similarly we conclude from (11) that∑
k

aikajk = 0 for i �= j.

These two equations express that all the rows of the matrix A have the same square
norm k, and that they are mutually orthogonal. This implies that the linear map dfx

represented by the matrix is conformal, and hence f is conformal at x.
The proof that conformality of f at x implies that f maps ML(x) into ML(f(x)) goes

essentially through the same calculation, and is omitted.

4. A famous pseudogroup in dimension 2

The content of the present section is partly classical, namely the equivalence of the various
ways of describing the notion of holomorphic map from (a region in) the complex plane
C = R2 to itself. Synthetic concepts enter essentially in two of the conditions in the
Theorem below, namely 1) and 6).

An almost complex structure on a general manifold M consists in giving, for each
x ∈ M , a map Ix : M1(x) → M1(x) with Ix(x) = x and Ix(Ix(z)) = z′ for any z ∼1 x;
Here, z′ denotes the mirror image of z in x, i.e. the affine combination 2x − z; recall
[7] that affine combinations of 1-neighbours make “absolutely” sense, i.e. do not depend
on, say, a Riemannian structure. It is clear what it means for a map f to preserve such
structure at the point x: f(Ix(z)) = If(x)(f(z)).

The manifold R2 carries a canonical almost-complex structure, given by

I(x1,x2)(z1, z2) = (x1 − (z2 − x2), x2 + (z1 − x1)).

Identifying R2 with the complex plane C, this is just

Ix(z) = x+ i(z − x).

Utilizing the multiplication of the complex plane C, we may consider the set DC of
elements of square zero in C (recalling the fundamental role which the set D of elements
of square zero in R plays in SDG). We have, by trivial calculation,

4.1. Proposition. Under the identification of C with R2,

DC = DL(2).

Having DC , we may mimic the basics of SDG and declare a function f : C → C to be
complex differentiable at x ∈ C if there is a number f ′(x) ∈ C so that

f(z) = f(x) + f ′(x) · (z − x) for all z with z − x ∈ DC .

(The uniqueness of such f ′(x), justifying the notation, follows from the general axiom
scheme of SDG, applied to D1(2), the 1-jet classifier in R2. Note D1(2) ⊆ DL(2).) — The
notion of course makes sense for functions f which are just defined locally around x.
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4.2. Theorem. Let f : R2 → R2 be a (local) orientation preserving diffeomorphism. Let
x ∈ R2 = C. Then the following conditions are equivalent:

1) f maps ML(x) into ML(f(x))
2) f is conformal at x
3) f satisfies Cauchy-Riemann equations at x
4) f preserves almost complex structure at x.

Also the following conditions are equivalent, and they imply 1)-4):
5) f is complex-differentiable at x
6) f maps ML(x) into ML(f(x)), and f preserves affine combinations of x and z for

any z ∼L x.
Finally, if 1)-4) hold for all x, 5) and 6) hold for all x.

(Note that 6) says that f is harmonic at x, in the sense of Remark at the end of
Section 2.)

Proof. The equivalence of 1) and 2) is already in Theorem 3.2, and this in turn is,
as we have seen, equivalent to conformality of the linear dfx. But conformal orientation
preserving 2× 2 matrices are of the form

[
a −b
b a

]
. (12)

Since the entries of the matrix for dfx are ∂fi/∂xj, this form (12) of the matrix therefore
expresses that the Cauchy-Riemann equations hold at x, i.e. is equivalent to 3). On
the other hand, a simple calculation with 2 × 2 matrices gives that a matrix commutes

with the matrix I =

[
0 −1
1 0

]
for the almost complex structure iff it has the above

“Cauchy-Riemann” form (12).
Now assume 5). If f is complex differentiable at x, we prove that condition 1) holds

at x as follows. Let z ∼L x. Then (z − x)2 = 0 Proposition 4.1, and by complex
differentiability

f(z)− f(x) = f ′(x)(z − x), (13)

so since the right hand side has square zero, then so does the left hand side, but again
by Proposition 4.1, this means that f(z) ∼L f(x), proving 1), and hence also the first
part of 6). But also, if f is complex-differentiable at x, f preserves affine combinations
of the form tx + (1 − t)z for z ∈ ML(x); this follows from (13), since z − x ∈ DC(x)
by Proposition 4.1, so also the second part of 6) is proved. Conversely, if 6) holds, f is
conformal at x by Theorem 3.2, so dfx is if the form (12). Then f ′(x) = a + ib will serve
as the complex derivative; for, since f preserves affine combinations of x and z for z ∼L x,
we have the first equality sign in

f(z) = f(x) + dfx(z − x) = f(x) + f ′(x) · (z − x)

for such z, i.e. for z − x ∈ DL(2) = DC .
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Finally, assume 1)-4) hold for all x. Then we may differentiate the Cauchy-Riemann
equations for f = (f1, f2) by ∂/∂x1 and ∂/∂x2 and compare, arriving in the standard way
to ∆f1 ≡ 0 and ∆f2 ≡ 0. From the “Taylor expansion” in Proposition 2.6, applied to
f1, we conclude that f1(z) = f1(x) + (df1)x(z − x) for z ∼L x, and similarly for f2, so
f(z) = f(x) + dfx(z− x) for such z, i.e. for z− x ∈ DC . Since dfx is given by a conformal
matrix (12), by 2), this proves that a+ ib will serve as the complex derivative of f at x.

5. Support of the Laplacian

We arrived at DL(n) from the geometric side, namely as the ∼L-neighbours of 0 in the
Riemannian manifold M = Rn; the differential operator ∆ was then seen to provide the
top term in the Taylor expansion of functions defined on DL(n).

Here, we briefly indicate how to arrive at DL(n) from the algebraic side, starting with
∆ =

∑
∂2/∂x2

i . More precisely, we consider ∆ as a distribution at 0 ∈ Rn. So ∆ is the
linear map

k[X1, ..., Xn] → R

given by

f �→ ∑
i

∂2f

∂x2
i

(0). (14)

The algebraic concept that will give DL(n) out of this data is the notion of coalgebra, and
subcoalgebra, as in [9]. If we let A denote the algebra k[X1, ..., Xn], then the distribution
∆ of (14) factors

A → B → k,

where A → B is an algebra map, and B is finite dimensional (take e.g. B = A/J where
J is the ideal generated by monomials of degree ≥ 3). The set Ao of linear maps A → k
having such a factorization property constitute a coalgebra, [9] Proposition 6.0.2. Every
element in a coalgebra generates a finite dimensional subcoalgebra, by [9] Theorem 2.2.1.
In particular, ∆ ∈ Ao generates a finite dimensional coalgebra [∆] of Ao, and this coalgebra
“is” DL(n). More specifically, the dual algebra of [∆] is the coordinate ring O(DL(n))
of DL(n), i.e. the Weil algebra O(DL(n)) := k[Z1, ..., Zn]/I considered in the proof of
Proposition 2.3, as we shall now argue.

The following “Leibniz rule” for ∆ is well known,

∆(f · g) = ∆f · g + 2
∑

i

∂f

∂xi

· ∂g

∂xi

+ f ·∆g.

This means that in the coalgebra Ao, we have the following formula for ψ(∆) (ψ = the
comultiplication of the coalgebra; δ the Dirac distribution “evaluate at 0”):

ψ(∆) = ∆⊗ δ + 2
∑

i

∂

∂xi

⊗ ∂

∂xi

+ δ ⊗∆, (15)
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where now ∆, ∂d/∂xi, δ are viewed as distributions at 0, like in (14), meaning that one
evaluates in 0 after application,

f �→ (∆f)(0), f �→ ∂f

∂xi

(0), f �→ f(0).

From (15), (and from ψ(∂/∂xi) = ∂/∂xi ⊗ δ+ δ⊗∂/∂xi, which expresses the Leibniz rule
for ∂/∂xi) we see that the subcoalgebra [∆] generated by ∆ is generated as a vector space
by the elements

δ,
∂

∂x1

, ...,
∂

∂xn

, ∆,

and since these are clearly linearly independent, we see that [∆] ⊆ Ao is (n + 2)-
dimensional. The dual algebra of [∆] is a quotient algebra A/I of A, where I is the
ideal of those f ∈ A which are annihilated by the elements of [∆]. This ideal I contains
x2

i − x2
j , and xixj for i �= j. Since the quotient of A by the ideal generated by x2

i − x2
j ,

and xixj for i �= j is already (n+2)-dimensional, as calculated in the proof of Proposition
2.3, it follows that the quotient algebra there is actually the dual of [∆].

The idea that a coalgebra like [∆] is itself an infinitesimal geometric object goes back
to Gavin Wraith in the early seventies, [10]. The specific way of generating Weil algebras
from differential operators was considered by Emsalem [2] (without coalgebras).
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