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The paper discusses a fast method for computing the Riesz potentials in the framework of
the method approximate approximations. By combining high-order cubature formulas with
tensor product approximations, we derive an approximation of the potentials which is fast,
accurate and provides approximation formulas of high order. The action of volume poten-
tials on the basis functions introduced in the theory of approximate approximations allows
one-dimensional integral representations with separable integrands, i.e. a product of functions
depending on only one of the variables. Then a separated representation of the density, com-
bined with a suitable quadrature rule, leads to a tensor product representation of the integral
operator. Since only one-dimensional operations are used, the resulting method is effective
also in the high-dimensional case.
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1. Introduction

The Riesz potential is known to be defined as

Rα(f) =
1

γn(α)

∫
Rn

f(y)
|x− y|n−α

dy, 0 < α < n (1.1)

where the normalizing constant is given by the relation

γn(α) =
πn/22αΓ

(
α
2

)
Γ
(
n−α

2

) .

The function f is called the density of the potential Rα. The Riesz potential is
strictly related to the fractional Laplace operator (−∆)α/2, α ∈ (0, 2) in R

n, also
known as the Riesz fractional derivative. Namely,

(−∆)α/2Rαf = f, 0 < α < n,

(cf., e.g., [24], [26]). The fractional Laplacian appears in different fields of mathe-
matics (PDE, harmonic analysis, semigroup theory, probabilistic theory, cf., e.g.,
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[4], [8], [9] and the references therein) as well as in many applications (optimization,
finance, materials science, water waves, cf., e.g., [21], [5], [6], [23] and the references
therein).

It is well known that, due to the singularity of the integral (1.1), usual cubature
methods are very time consuming and often exceed the capacity of available com-
puter systems. In this paper, we propose a method of an arbitrary high order for
the approximation of Rαf which is based on the approximation of the function f
via the basis functions introduced in the theory approximate approximations (cf.
[20] and the references therein), which are product of Gaussians and special poly-
nomials. Then the n-dimensional convolution (1.1) applied to the basis functions
is represented through a one-dimensional integral where the integrand has a sepa-
rated representation, i.e., it is a product of functions depending only on one of the
variables.

An accurate quadrature rule and a separated representation of the density f
provide a separated representation for Rαf . Thus, only one-dimensional operations
are used and the resulting approximation procedure is fast and effective also in
high-dimensional cases, and provides approximations of high order, up to a small
saturation error.

The concept of approximate approximations and first related results were in-
troduced by V. Mazya in [17], [18]. Various aspects of a general theory of these
approximations were further developed and formulas of various integral and pseudo-
differential operators have been obtained (cf. [20] and the review paper [25]). By
combining cubature formulas for volume potentials based on approximate approx-
imations with the strategy of separated representations (cf., e.g., [3], [7]), it is
possible to derive a method for approximating volume potentials which is accurate
and fast also in the multidimensional case and provides approximation formulas
of high order. This procedure was applied successfully for the fast integration of
the harmonic [10], biharmonic [14], diffraction [13], elastic and hydrodynamic [15]
potentials. In [11], [12] this approach was extended to parabolic problems. The
method described in this paper has been obtained in [16] and applied for the fast
approximation of the fractional Laplacian.

The outline of the paper is the following. In Section 2, we describe the method
and provide error estimates. In Section 3 we derive the one-dimensional integral
representations of the Riesz potential applied to our basis functions. In Section 4,
for densities f with a separated representation, we derive tensor product repre-
sentations for Rαf which admit efficient one-dimensional operations. Finally, we
report on numerical results, illustrating that our formulas are accurate and pro-
vide the predicted approximation rates 2, 4, 6, 8 in dimension n = 3 and also if the
dimension is high (n = 10k, k = 1, 2, 3, 4).

2. Description of the method

Approximate quasi-interpolants have the following form

Mh,Df(x) := D−n/2
∑

m∈Zn

f(hm)η
(

x− hm
h
√
D

)
(2.1)
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with fixed positive parameters h and D and with some generating function η suffi-
ciently smooth and of rapid decay such that η satisfies suitable moment conditions
(see (2.3)). Then the sum

Rα(Mh,Df)(x) =
(h
√
D)α

Dn/2
∑

m∈Zn

f(hm)Rα(η)
(

x− hm
h
√
D

)
(2.2)

provides an approximation formula for (1.1), provided Rα(η) can be computed
analytically or at least efficiently. Due to the semi-analytic cubature nature of
the formula (2.2), the fractional gradient ∇α−1f = −∇R2−αf and the fractional
Laplacian (−∆)α/2f = −∆R2−αf can be approximated by −∇R2−α(Mh,Df) and
−∆R2−α(Mh,Df), respectively. Hence, from (2.2) we deduce approximation for-
mulas for the fractional gradient and the fractional Laplacian (cf. [16]).

We denote by S(Rn) the Schwartz space of smooth and rapidly decaying func-
tions and by WN

p (Rn), N ∈ N, the Sobolev space of the Lp(Rn) functions whose
generalized derivatives up to the order N also belong to Lp(Rn). In the following,
∇kf denotes the vector of partial derivatives {∂βf}|β|=k. The norm in WN

p (Rn) is
defined by

||f ||WN
p

=
N∑
k=0

||∇kf ||Lp
, ||∇kf ||Lp

=
∑
|β|=k

||∂βf ||Lp
.

If η ∈ S(Rn) satisfies the moment condition of order N ,∫
Rn

η(x)xαdx = δ0,α, 0 ≤ |α| < N, (2.3)

then for any f ∈ WN
∞(Rn) the approximation error of the quasi-interpolation can

be estimated pointwise by

|f(x)−Mh,Df(x)| ≤ cη(
√
Dh)N‖∇Nf‖L∞ +

N−1∑
k=0

εk(D)(
√
Dh)k

∣∣∇kf(x)
∣∣

with

0 < εk(D) ≤
∑

m∈Zn\{0}

∣∣∇kFη(
√
Dm)

∣∣,
lim
D→∞

∑
m∈Zn\{0}

∣∣∇kFη(
√
Dm)

∣∣ = 0

([20, p.34] ). Similar approximation properties in integral norms are valid. The
following theorem was proved in [20, p.42].

Theorem 2.1 : Suppose that η ∈ S(Rn) satisfies (2.3). Then for any f ∈
WL
p (Rn), 1 ≤ p ≤ ∞ and L > n/p, L ≥ N , the quasi-interpolant (2.1) satis-
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fies

||f −Mh,Df ||Lp
≤ cη(

√
Dh)N ||∇Nf ||Lp

+
N−1∑
k=0

εk(D)
(2π)k

(
√
Dh)k||∇kf ||Lp

where the constant cη does not depend on f , h and D.

Let us estimate the approximation error of the cubature formula (2.2) for the
Riesz potential Rαf . By construction, the cubature error equals to

Rα(Mh,Df)−Rαf = Rα(Mh,Df − f).

From Sobolev’s theorem, the operator Rα is a bounded mapping from Lp(Rn) into
Lq(Rn), 1 < p < n/α, 1/q = 1/p− α/n ([26, p.119]). Then,

||Rαf −Rα(Mh,Df)||Lq
≤ A(α)

pq ||f −Mh,Df ||Lp
(2.4)

where A(α)
pq denotes the norm of Rα : Lp(Rn) → Lq(Rn). Theorem 2.1 and (2.4)

immediately give the following error estimate.

Theorem 2.2 : Suppose that η ∈ S(Rn) satisfies (2.3). Let n ≥ 3, 0 < α < 2,
1 < p < n/α, 1/q = 1/p− α/n and let f ∈WL

p (Rn) with L > n/p, L ≥ N . Then

||Rαf −Rα(Mh,Df)||Lq

≤ A(α)
pq

(
cη(
√
Dh)N ||∇Nf ||Lp

+
N−1∑
k=0

εk(D)
(2π)k

(
√
Dh)k||∇kf ||Lp

)
.

The previous theorem shows that if the function η and the parameter D are
chosen such that the values εk(D) are sufficiently small, then the cubature of
Rα approximates with order hN up to the prescribed accuracy. However, by the
smoothing properties of Rα ([26, p.131]), also the saturation error converges to
zero with rate hα. Indeed, quasi-interpolation has the remarkable property that it
converges in certain weak norms since the saturation error, which is caused by fast
oscillating functions, converges weakly to zero. We denote by

Ff(x) =
∫
Rn

f(y)e2πix·ydy

the Fourier transform of f and by F−1 its inverse. Let Hs
p(R

n) be the Bessel
potential space, equipped with the norm

||f ||Hs
p

= ||F−1((1 + 4π2| · |2)s/2Ff)||Lp
= ||(I −∆)s/2f ||Lp

(cf., e.g., [26, p.130], [19, p.516]). Instead of Theorem 2.1 we use the following
result, a direct consequence of [20, Theorem 4.6].

Theorem 2.3 : Suppose that η ∈ S(Rn) satisfies (2.3). For any ε > 0, there
exists D > 0 such that for any f ∈ HL

p (Rn), 1 < p <∞, L > n/p, L ≥ N ≥ 2 and
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α ∈ (0, 2), the quasi-interpolant (2.1) satisfies

||f −Mh,Df ||H−α
p
≤ cη(h

√
D)N ||f ||HL

p
+ εhαcp,α

N−1−[α]∑
k=0

(
√
Dh)k

k!
||∇kf ||Hα

p

where [α] denotes the integer part of α, the constants cη and cp,α do not depend on
f , h and D.

We can formulate the following.

Theorem 2.4 : Suppose that η ∈ S(Rn) satisfies (2.3). Let 0 < α < 2, 1 < p <
n/α, 1/q = 1/p− α/n. For any f ∈ WL

p (Rn) with L ≥ N ≥ 2 and L > n/p, there
exist positive constants C,Cp,α, Cq,α not depending on f , h and D such that

||Rαf −Rα(Mh,Df)||Lq
≤ C(h

√
D)N ||f ||WL

p
+

εhα
N−1−[α]∑
k=0

(h
√
D)k

k!

(
Cp,αA

(α)
p,q ||∇kf ||Hα

p
+ Cq,α||∇kf ||Hα

q

)
.

Proof : We have ([26, p.117])

||Rαf ||Lq
= ||(−∆)−α/2(I −∆)−α/2(I −∆)α/2f)||Lq

= ||(−∆)−α/2(I −∆)−α/2f ||Hα
q
.

The norm ||u||Hα
q

is equivalent to ||u||Lq
+ ||(−∆)α/2u||Lq

([24, Theorem 7.16]).
Hence, keeping in mind (2.4), we deduce

||Rαf ||Lq
≤ c1(|||Rα(I −∆)−α/2f ||Lq

+ ||(I −∆)−α/2f ||Lq
)

≤ c1(A(α)
pq ||(I −∆)−α/2f |||Lp

+ ||(I −∆)−α/2f ||Lq
)

= c1(A(α)
pq ||f −Mh,Df ||H−α

p
+ ||f −Mh,Df ||H−α

q
).

We use Theorem 2.3, the fact that Hs
p(R

n) are interpolation spaces that coincide
with the Sobolev spaces for s ∈ N, Hs

p(R
n) = W s

p (Rn)([19, p. 458]) and the contin-
uous embedding WL

p (Rn) ⊂WL−2
q (Rn) ([2, p.97] ) to obtain the required estimate.

�

After having estimated the cubature error, to construct high order cubature
formulas for (1.1) it remains to choose η which satisfies the moment condition
(2.3), such that the values εk(D) can be made arbitrarily small by a proper choice
of D and the integral Rαη can be computed analytically or at least efficiently. If
the integral Rαη is expressed analytically then (2.2) is a semi-analytic cubature
formula: by simple differentiation of (2.2) one obtains immediately approximations
of the corresponding derivative of (1.1).
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3. One-dimensional integral representations

For second order approximations we choose η2(x) = π−n/2e−|x|
2
. It satisfies (2.3)

withN = 2. The convolution of the Gaussian with a radial function can be obtained
from the following formula proved in [20, (5.15)]

∫
Rn

Q(|x− y|)e−|y|2dy =
2πn/2e−|x|

2

|x|n/2−1

∞∫
0

Q(r)In/2−1(2|x|r)rn/2e−r
2
dr

with the modified Bessel function of the first kind Is ([1, p.374]). In our case we
get

Rα(e−|·|
2
)(x) =

2πn/2e−|x|
2

γn(α)|x|n/2−1

∞∫
0

rα−n/2e−r
2
In/2−1(2|x|r)dr. (3.1)

The integrand in the last integral is summable in (0,+∞) because α ∈ (0, 2),
In/2−1(r) ≈ rn/2−1

2Γ(n/2) , r → 0+ ([1, 9.6.7]) and In/2−1(r) ≈ er
√

2π
√
r
, r →∞ ([1, 9.7.1]).

The one-dimensional integral in (3.1) can be expressed by means of the confluent
hypergeometric functions 1F1 ([22, 2.15.5.4])

Rα(e−|·|
2
)(x) =

Γ(n−α2 )
2αΓ(n2 )

e−|x|
2

1F 1(
α

2
,
n

2
, |x|2) . (3.2)

By using Kummer transformation ([1, 13.1.27]) we can also write

Rα(e−|·|
2
)(x) =

Γ(n−α2 )
2αΓ(n2 ) 1F 1(

n− α

2
,
n

2
,−|x|2). (3.3)

The formula (2.2) together with (3.2) gives rise to second order semi-analytic
cubature formulas for Rα up to the saturation error.

The second order cubature formula for the approximation of Rα on the uniform
grid {hk} leads to the convolutional sum

Rα(Mh,Df)(hk) =
(h
√
D)α

(πD)n/2
∑

m∈Zn

f(hm)Rα(e−|·|
2
)
(

k−m√
D

)
. (3.4)

The computation of the multidimensional convolutional sum (3.4), even for the
space dimension n = 3, is very time consuming and often exceed the capacity of
available computer systems. We propose a method which reduces the computational
effort and gives rise to fast formulas. We write (3.2) in a different way by using the
integral representation of the hypergeometric functions 1F1 ([1, 13.2.1])

1F1(a, c, z) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

e zττa−1(1− τ)−a+c−1dτ, Re (c) > Re (a) > 0 .
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With the substitution τ = t/(1 + t) we get

1F1(a, c, z) =
Γ(c)

Γ(a)Γ(c− a)

∞∫
0

e
t

1+t
z ta−1

(1 + t)c
dt, Re (c) > Re (a) > 0 .

Hence, from (3.2) we obtain

Φ2(x) := Rα(e−|·|
2
)(x) =

1
2αΓ(α2 )

∞∫
0

t−1+ α

2 e−
|x|2

1+t

(1 + t)n/2
dt. (3.5)

The representation of Φ2 in (3.5) is very advantageous because the integrand is
expressed by elementary functions and it has a separated representation. Then a
separated representation of Φ2 is obtained by applying an accurate quadrature rule
with nodes {τs} and weights {ωs}:

Φ2

(
k−m√
D

)
≈ π−n/2

2αΓ(α2 )

∑
s

ωs
τ
−1+ α

2
s

(1 + τs)n/2
e−

|k−m|2

D(1+τs) . (3.6)

The computation of the sum in (3.4) with Rαη2 = Φ2 in (3.6) is very efficient
for densities that allow a separated representation, i.e., for given accuracy ε, they
can be represented as a sum of products of vectors in dimension 1

f(x) =
P∑
p=1

n∏
j=1

f
(p)
j (xj) +O(ε), x = (x1, ..., xn). (3.7)

We infer that an approximation of Rαf(hk) can be computed by the sum of prod-
ucts of one-dimensional convolutions

(Rαf)(hk) ≈

1
(πD)n/2

(h
√
D)α

2αΓ(α2 )

P∏
p=1

∑
s

ωsτ
−1+ α

2
s

(1 + τs)n/2

n∏
j=1

∑
mj∈Z

f
(p)
j (hmj)e

− (kj−mj)2

D(1+τs) .

To derive high order approximation formulas, we assume as basis functions the
tensor product of univariate functions

η2M (x) =
n∏
j=1

η̃2M (xj); η̃2M (xj) =
(−1)M−1

22M−1
√
π (M − 1)!

H2M−1(xj)e−x
2
j

xj
(3.8)

where Hk are the Hermite polynomials

Hk(x) = (−1)kex
2

(
d

dx

)k
e−x

2
.

The function η2M satisfies the moment conditions of order 2M and the values
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εk(D) = O(Pk(
√
D)e−π

2D) ([20, Theorem 3.5]). Then (3.8) gives rise to approxi-
mation formulas of order 2M plus the saturation error.

We provide one-dimensional integral representations for Rαη2M similar to that
obtained in (3.5). Using the relation ([20, p.55])

η̃2M (x) =
1√
π

M−1∑
s=0

(−1)s

s!4s
d2s

dx2s
e−x

2
,

integrating by parts and making use of (3.5), we get

Rα(η2M )(x) =
1

γn(α)πn/2

n∏
j=1

M−1∑
sj=0

(−1)sj

sj !4sj

d2sj

dx
2sj

j

∫
Rn

e−|y|
2

|x− y|n−α
dy

=
1

πn/2

n∏
j=1

M−1∑
sj=0

(−1)sj

sj !4sj

d2sj

dx
2sj

j

(Rα(e−|·|
2
))(x)

=
π−n/2

2αΓ(α2 )

n∏
j=1

M−1∑
sj=0

(−1)sj

sj !4sj

d2sj

dx
2sj

j

∞∫
0

t−1+ α

2 e−
|x|2

1+t

(1 + t)n/2
dt .

Due to the relation

d2s

dx2s
e−ax

2
= asH2s(

√
ax)e−ax

2
, a > 0, s ≥ 0,

we obtain the following one-dimensional integral representation with separated
integrand for Rα(η2M )

Φ2M (x) := Rα(η2M )(x) =
π−n/2

2αΓ(α2 )

∞∫
0

n∏
j=1

SM (
1

t+ 1
, xj)

e−
x2

j

1+t

(1 + t)1/2
t−1+ α

2 dt, (3.9)

where we introduced the polynomials in x

SM (a, x) =
M−1∑
s=0

(−1)sas

s!4s
H2s(

√
ax), a > 0.

For example, we have

S1(a, x) = 1

S2(a, x) = 1 +
a

2
− a2x2;

S3(a, x) = S2(a, x) +
a2

8
(
4a2x4 − 12ax2 + 3

)
;

S4(a, x) = S3(a, x) +
a3

48
(
−8a3x6 + 60a2x4 − 90ax2 + 15

)
.
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4. Implementation and numerical results

From representations (2.2),(3.9), we derive the approximating formula

Rαf(x) ≈ R(M)
α,h f(x) :=

(h
√
D)α

Dn/2
∑

m∈Zn

f(hm)Φ2M

(
x− hm
h
√
D

)
. (4.1)

The computation of (4.1) on a uniform grid hk = (hk1, ..., hkn) leads to discrete
convolutions

Rαf(hk) ≈ R(M)
α,h f(hk) =

(h
√
D)α

Dn/2
∑

m∈Zn

f(hm)a(M)
k−m, (4.2)

where

a
(M)
k =

π−n/2

2αΓ(α2 )

∞∫
0

n∏
j=1

SM (
1

t+ 1
, kj)

e−
k2

j

1+t

(1 + t)1/2
t−1+ α

2 dt.

For functions f with a separated representation (3.7), by applying an accurate
quadrature rule, we derive the approximation of the convolutional sum in (4.2) via
separated representations.

It is known that the double exponential formulas for numerical integration, pro-
posed by Takahasi and Mori ([27], see also [28]), are highly efficient. The idea is
to transform a given integral to an integral over the real line through a change of
variable t = φ(u) such that the integrand has a double exponential decay, and then
apply the trapezoidal formula to the transformed integral. For the transformation
function φ(u), we make the substitution proposed in [27]

t = φ(u) with φ(u) = eψ(u), ψ(u) = a(b(u− e−u) + eb(u−e−u))

with positive constants a and b. After the substitution we have

a
(M)
k =

π−n/2

2αΓ(α2 )

∞∫
−∞

n∏
j=1

SM (
1

φ(u) + 1
, kj)

e−
k2

j

1+φ(u)

(1 + φ(u))1/2
(φ(u))

α

2 ψ′(u)du .

The quadrature with the trapezoidal rule with step size τ gives

a
(M)
k =

τπ−n/2

2αΓ(α2 )

∑
s

n∏
j=1

SM (
1

φ(sτ) + 1
, kj)

e−
k2

j

1+φ(sτ)

(1 + φ(sτ))1/2
(φ(sτ))

α

2 ψ′(sτ) .

In the remainder of the paper, we provide results of some experiments which show
the accuracy and the convergence orders of the method. The sum R(M)

α,h f in (4.1)
approximates Rαf with order O(h2M + hαe−π

2D). Therefore, if D is large enough,
then R(M)

α,h f behaves in numerical computations like a high-order formula. We com-
pute the volume potential Rα of f(x) = e−|x|

2
which has the exact value in (3.2)
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Table 1. Absolute errors, relative errors, and approximation rates for the 3-dimensional volume potential

Rα(e−|·|
2
) at (.6, .6, .6) using R(M)

α,h (e−|·|
2
), with α = 1.5.

M = 4 M = 3
h−1 absolute error relative error rate absolute error relative error rate
10 0.137D-06 0.454D-06 0.214D-05 0.709D-05
20 0.620D-09 0.205D-08 7.79 0.386D-07 0.128D-06 5.79
40 0.251D-11 0.832D-11 7.95 0.625D-09 0.207D-08 5.95
80 0.977D-14 0.324D-13 8.01 0.986D-11 0.327D-10 5.99

160 0.278D-15 0.920D-15 5.14 0.154D-12 0.509D-12 6.00

M = 2 M = 1
h−1 absolute error relative error rate absolute error relative error rate
10 0.123D-04 0.409D-04 0.484D-02 0.160D-01
20 0.556D-06 0.184D-05 4.47 0.122D-02 0.404D-02 1.99
40 0.311D-07 0.103D-06 4.16 0.305D-03 0.101D-02 2.00
80 0.188D-08 0.624D-08 4.04 0.763D-04 0.253D-03 2.00

160 0.117D-09 0.387D-09 4.00 0.191D-04 0.632D-04 2.00

Table 2. Absolute errors, relative errors and approximation rates for the 3-dimensional volume potential

Rα(e−|·|
2
) at (1, 1, 1) using R(M)

α,h (e−|·|
2
), with α = 0.5.

M = 4 M = 3
h−1 absolute error relative error rate absolute error relative error rate
10 0.146D-06 0.173D-05 0.502D-05 0.594D-04
20 0.602D-09 0.714D-08 7.92 0.837D-07 0.991D-06 5.91
40 0.238D-11 0.283D-10 7.98 0.133D-08 0.157D-07 5.98
80 0.930D-14 0.110D-12 8.00 0.208D-10 0.247D-09 5.99

160 0.971D-16 0.115D-14 6.58 0.326D-12 0.386D-11 6.00

M = 2 M = 1
h−1 absolute error relative error rate absolute error relative error rate
10 0.134D-04 0.158D-03 0.182D-03 0.215D-02
20 0.883D-06 0.105D-04 3.92 0.473D-04 0.560D-03 1.94
40 0.560D-07 0.663D-06 3.98 0.119D-04 0.141D-03 1.99
80 0.351D-08 0.416D-07 3.99 0.299D-05 0.354D-04 2.00

160 0.220D-09 0.260D-08 4.00 0.748D-06 0.886D-05 2.00

(or (3.3)), by using the approximating formulas (4.1). In Tables 1-2 we report on
absolute errors, relative errors and the approximation rates

(log |Rαf(x)−R(M)
α,2hf(x)| − log |Rαf(x)−R(M)

α,h f(x)|)/ log 2

for the computations of the 3-dimensional volume potential Rα(e−|·|
2
) at a fixed

point by assuming α = 1.5 (Table 1) and α = 0.5 (Table 2). The numerical results
confirm the h2M convergence of the approximating formula when M = 1, 2, 3, 4.
For small h, the 8th-order formula reaches the saturation error.

Table 3 shows that the method is effective also for higher space dimensions. We
assumed n = 10k, k = 1, 2, 3, 4 and α = 1.5. The approximate values are computed
by the formulas R(M)

α,h for M = 1, 2, 3, 4. We use uniform grid size h = 0.1 × 2−k,
k = 0, ..., 4. For high dimensional cases the second-order formula fails whereas the
8th-order formula R(4)

α,h approximates with the predicted approximation rates.
In all the experiments we choose D = 5 to have the saturation error comparable

with the double precision rounding errors.
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Table 3. Absolute errors and approximation rates for Rα(e−|·|
2
) at (1, 1, 0, . . . , 0) using R(M)

α,h (e−|·|
2
) with α =

1.5, n = 10k, k = 1, 2, 3, 4 and M = 1, 2, 3, 4.

n 10 102 103 104

h−1 error rate error rate error rate error rate
M = 4 10 0.964D-07 0.344D-06 0.645D-06 0.114D-05

20 0.434D-09 7.80 0.153D-08 7.81 0.287D-08 7.81 0.513D-08 7.80
40 0.176D-11 7.95 0.619D-11 7.95 0.116D-10 7.95 0.207D-10 7.95
80 0.696D-14 7.98 0.244D-13 7.99 0.457D-13 7.99 0.817D-13 7.99

160 0.486D-16 8.00 0.118D-15 7.69 0.170D-15 8.07 0.313D-15 8.03
M = 3 10 0.231D-05 0.827D-05 0.152D-04 0.234D-04

20 0.397D-07 5.86 0.142D-06 5.86 0.266D-06 5.84 0.474D-06 5.63
40 0.636D-09 5.96 0.228D-08 5.96 0.426D-08 5.96 0.761D-08 5.96
80 0.100D-10 5.99 0.358D-10 5.99 0.669D-10 5.99 0.120D-09 5.99

160 0.157D-12 6.00 0.561D-12 6.00 0.105D-11 6.00 0.187D-11 6.00
M = 2 10 0.701D-04 0.203D-03 0.262D-03 0.805D-04

20 0.461D-05 3.93 0.140D-04 3.86 0.251D-04 3.38 0.351D-04 1.20
40 0.292D-06 3.98 0.889D-06 3.97 0.164D-05 3.94 0.288D-05 3.61
80 0.183D-07 4.00 0.558D-07 3.99 0.103D-06 3.99 0.184D-06 3.97

160 0.115D-08 4.00 0.349D-08 4.00 0.645D-08 4.00 0.115D-07 4.00
M = 1 10 0.288D-02 0.239D-02

20 0.762D-03 1.92 0.118D-02 1.02
40 0.193D-03 1.98 0.365D-03 1.70 0.358D-03 0.805D-04
80 0.485D-04 1.99 0.964D-04 1.92 0.146D-03 1.29 0.789D-04 0.03

160 0.121D-04 2.00 0.244D-04 1.98 0.421D-04 1.80 0.502D-04 0.65

Table 4. Absolute errors and approximation rates for Rα(e−|·|
2
) at (0.8, 0, 0) using R(3)

α,h(e−|·|
2
) with α = 1.5

and α = 0.5, for different h and D.

D = 1 D = 2 D = 3
h−1 error rate error rate error rate

α = 1.5 5 0.641D-04 0.102D-04 0.327D-04
10 0.205D-04 1.65 0.172D-06 5.90 0.585D-06 5.80
20 0.702D-05 1.54 0.146D-08 6.87 0.949D-08 5.95
40 0.246D-05 1.51 0.419D-09 1.81 0.150D-09 5.99
80 0.869D-06 1.50 0.162D-09 1.37 0.233D-11 6.01
160 0.307D-06 1.50 0.573D-10 1.50 0.311D-13 6.23

α = 0.5 5 0.202D-02 0.271D-04 0.871D-04
10 0.128D-02 0.65 0.212D-06 7.00 0.161D-05 5.75
20 0.882D-03 0.54 0.163D-06 0.39 0.264D-07 5.93
40 0.620D-03 0.51 0.116D-06 0.48 0.405D-09 6.03
80 0.437D-03 0.50 0.816D-07 0.51 0.267D-11 7.25
160 0.309D-03 0.50 0.576D-07 0.50 0.158D-11 0.63

In Table 4 we report on the absolute errors and the convergence rate of the 3-
dimensional volume potential Rαe−|·|

2
(0.8, 0, 0) with α = 1.5 and α = 0.5 using

the cubature formulas R(3)
α,h, for different values of h and D. The results indicate

approximations of order α if D = 1 or D = 2 and h is small, caused by the
relatively large saturation error O(hα e−π

2D). If D = 3 the rate of convergence 6 is
obtained because the saturation error is negligible compared to the first term of the
approximation error. On the other hand, due to the rapid decay of the functions
η2M , one has to take into account only a finite number of terms in the sum (4.1)
to compute the value of Rαf at a given point within a given accuracy, and the
number of summands for fixed h increases in D ([20, p.65]).
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For all the calculations the same quadrature rule is used for computing the
one-dimensional integrals, the parameters are a = 6, b = 5, τ = 0.004 and 600
summands in the quadrature sum.
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