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In this work we consider the issues of the approximate solutions and the results of numerical
computations for the following two practical problems: 1. Non-linear initial-boundary value
problem for the J. Ball dynamic beam. 2. Non-linear initial-boundary value problem for the
Kirchhoff dynamic string.

A mathematical model is formulated for an initial-boundary value problem associated with
the J. Ball integro-differential equation, which serves as a mathematical description of the
dynamic state exhibited by a beam. The solution to this problem is approximated through a
combination of the Galerkin method, a stable symmetrical difference scheme, and the Jacobi
iteration method. Our aim is to present an approximate solution to a problem, specifically
focusing on the numerical results obtained from the initial-boundary value problem pertaining
to a specific iron beam. Notably, the effective viscosity of the material is considered to be
dependent on its velocity.

We consider the numerical algorithm for the Kirchhoff type inhomogeneous integro-
differential equation describing the string oscillation. The algorithm has been approved by
tests and the results of calculations is presented in tables and graphs.

The presented article is a direct continuation of the articles [1]-[4] and [8]-[9] that consider
the construction of algorithms and their corresponding numerical computations for the ap-
proximate solution of nonlinear integro-differential equations for the J. Ball dynamic beam
(see [1]-[4]) and for the Kirchhoff dynamic string (see [8]-[9]).

Keywords: Nonlinear dynamic beam equation, J. Ball equation, Galerkin method, Implicit
symmetric difference scheme, Jacobi iterative method, Iron beam, Numerical realization,
Kirchhoff string wave equation, Galerkin’s method, Crank-Nicolson difference scheme,
Picard iteration process, Test results.

AMS Subject Classification: 65M60, 65M06, 65Q10, 65M15, 35L20, 65H10, 65N06,
74G15.

1. Statement of the Problem 1

Let us consider the nonlinear equation

utt (x, t) + δut (x, t) + γuxxxxt (x, t) + αuxxxx (x, t)

−

β + κ

L∫
0

u2
x (x, t) dx

uxx (x, t)− σ

 L∫
0

ux (x, t) uxt (x, t) dx


×uxx (x, t) = f (x, t) , 0 < x < L, 0 < t ≤ T,

(1)
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with the initial boundary conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , (2)

u (0, t) = u (L, t) = 0, uxx (0, t) = uxx (L, t) = 0. (3)

In the given context, let α, γ, κ, σ, β, and δ be constants, where the first four
are positive numbers. Furthermore, consider the functions u0(x) ∈ W 2

2 (0, L) and
u1(x) ∈ L2(0, L), satisfying the conditions u0(0) = u1(0) = u0(L) = u1(L) = 0.
The right-hand side function f(x, t) belongs to L2((0, L)× (0, T )). We assume the
existence of a solution u(x, t) ∈ W 2

2 ((0, L)× (0, T )) for problem (1)-(3).
The present article serves as a direct continuation of previous works [1]-[4], which

focused on developing algorithms and performing corresponding numerical com-
putations for approximating solutions to nonlinear integro-differential equations
of the Timoshenko type. In this particular study, we address an initial-boundary
value problem associated with the J. Ball integro-differential equation, which char-
acterizes the dynamic state of a beam (see [5]). To approximate the solution, we
employ the Galerkin method, a stable symmetric difference scheme, and the Jacobi
iteration method. The algorithms proposed in [2]-[3] have been validated through
various tests. Additionally, this article, along with [4], presents an approximate
solution to a practical problem. Specifically, we provide numerical results for the
initial-boundary value problem concerning an iron beam, which are presented in a
tabular form.

The physical model utilized by J. Ball in his publication [5] is derived from
the Handbook of Engineering Mechanics, authored by E. Mettler (see [6]). In this
model, the corresponding initial-boundary value problem for the integro-differential
equation governing the behaviour of a beam (denoted as equation (1)) is formu-
lated. The constants α, γ, κ, σ, β, and δ present in the problem are defined as
follows:

α =
E · I

ρ
, β =

E ·A ·∆
L · ρ

, γ =
η · I
ρ

, κ =
E ·A
2L · ρ

, σ =
Aη

L · ρ
.

Here, E denotes Young’s modulus, A represents the cross-sectional area, η signifies
the effective viscosity, I stands for the cross-sectional second moment of area, ρ
corresponds to the mass per unit length in the reference configuration, L symbolizes
the length of the beam, ∆ signifies the extension or change in the beam length,
and δ refers to the coefficient of external damping.

2. The numerical realization of the Problem 1

To approximate the solutions to initial-boundary value problems (1)-(3), a collec-
tion of programs was developed within the Maple software environment. Subse-
quently, several numerical experiments were conducted to facilitate this approxi-
mation process. The purpose of this paper is to present an approximate solution
to a practical problem. Specifically, the tables in this paper illustrate the results
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obtained from numerical computations of the initial-boundary value problem con-
cerning an iron beam.

Based on the observed numerical experiments, it is evident that as the effective
viscosity, denoted by η, increases (or decreases), the corresponding numerical val-
ues of the displacement function, u(x, t), for specific values of x and t exhibit a
decreasing (or increasing) trend. Specifically, when considering the case of velocity-
dependent effective viscosity, an increase in velocity leads to a decrease in viscosity,
resulting in amplified deflections (or bending) of the beam. Furthermore, for a fixed
value of η, the numerical values of the displacement function for a given x tend
to increase as time t progresses. Notably, the numerical values of the displacement
function at a particular t exhibit symmetry with respect to the midpoint of the
beam, located at x = L/2.

3. Statement of Problem 2

Consider the nonlinear inhomogeneous equation

wtt(x, t)−
(

λ +
2
π

∫ π

0
w2

x(x, t) dx

)
wxx(x, t) = f(x, t), (4)

0 < x < π, 0 < t ≤ T,

with the initial boundary conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x),

w(0, t) = w(π, t) = 0,
(5)

0 ≤ x ≤ π, 0 ≤ t ≤ T.

Here λ > 0 and T are given constants, while f(x, t), w0(x), w1(x) are given func-
tions.

The equation (4), when f(x, t) = 0, is proposed by Kirchhoff [7] in 1876. It is a
generalization of D’Alembert string’s oscillation model with equation wtt = c2wxx.
Many authors researched the homogeneous equation, corresponding to (4) and its
generalizations in terms of solvability.

Here we will generalize the numerical algorithm offered in [8]-[9] for the approx-
imate solution of problem (4), (5) for the case f(x, t) = 0. Then we solve test
examples using this algorithm and present the results in tables and graphs.

4. Test examples Problem 2

Here we present results of calculations of two test examples.

Example 4.1 Let T = 1, λ = 0.4,

f(x, t) = 6t sin 2x + (λ + 1 + 4t6)(sinx + 4t3 sin 2x),
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w0(x) = sin(x), w1(x) = 0. The exact solution is the function w(x, t) = sinx +
t3 sin 2x. The algorithm is applied with n = 5,M = 20 and τm = 0.05. The number
of iterations is k = 9. The error is ∆k

n = 0.0744789237. The results are presented
below in tables and graphs.

Example 4.2 Let T = 1, λ = 1.0,

f(x, t) =

[(x

π

)2
sin x−

(
λ +

e2t − 1
2t

)(
2t

π
cos x−

(
1−

(
t

π

)2
)

sinx

)]
e

1
π

xt,

w0(x) = sinx, w1(x) = 1
πx sinx. The exact solution is the function w(x, t) =

e
1
π

xt sinx. The algorithm is applied with n = 5,M = 20 and τm = 0.05. The
number of iterations is k = 10. The error is ∆k

n = 0.0441088504. The results are
presented below in tables and graphs.

If we increase the values of parametres n and M , the error improves. Namely,
if we take n = 12 and M = 160 in example 4.1, the error is ∆k

n = 0.0093695833.
If we take n = 12 and M = 80 in example 4.2, the error is ∆k

n = 0.0096361646.
Based on the obtained results, it can be concluded that the numerical algorithm
for solving problem (4), (5) is effective.
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