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Since the Laplace transform plays a central role in the solution of differential equations, it
seems natural to extend it in the field of fractional calculus, since many applications of this
topic have been proposed, and are becoming more and more important. In this paper we
extend the classical Laplace Transform by replacing the usual kernel with a suitable one,
both in the classical and Laguerre-type case, obtained by constructing the reciprocal of some
exponential-type functions with respect to an appropriate differential operator. Some exam-
ples are shown, derived using the computer algebra system Mathematica©.
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1. Introduction

In recent years several articles have been devoted to the study of generalized forms
of special polynomials and numbers (see e.g. [1–5]. At the same time, the study of
the fractional derivative and its applications has had an extraordinary expansion, as
can be seen in the monographs [6, 7]. These two fields of research can be combined
by studying special functions of index fractional, as is done, for example in [8, 9],
where even extensions to the Laguerre-type functions have been considered.

We recall that as the exponential function eax is an eigenfunction of the derivative
operator, since

Deax = aeax (1)

(where D := d/dx, and a is real or complex number), likewise the Laguerre-type
exponential

e1(x) :=
∞∑

k=0

xk

(k!)2
(2)
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is an eigenfunction of the so called Laguerre derivative,

D̂L := DxD = D + xD2 , (3)

since

D̂L e1(ax) = ae1(ax) . (4)

In preceding articles, we have shown the role of the Laguerre derivative in the
framework of the monomiality principle [10, 11], and its application to the mul-
tidimensional Hermite (Hermite-Kampé de Fériet or Gould-Hopper polynomials)
[12–14] or Laguerre polynomials [10, 15].

The above result has been extended as follows [16, 17].
Considering the differential operator, containind n + 1 derivatives

D̂(n−1)L := Dx · · ·DxDxD = D
(
xD + x2D2 + · · ·+ xn−1Dn−1

)
= S(n, 1)D + S(n, 2)xD2 + · · ·+ S(n, n)xn−1Dn,

(5)

and the function:

en(x) :=
∞∑

k=0

xk

(k!)n+1 . (6)

We have proven in [16] that the function en(ax) is an eigenfunction of the operator
D̂nL, that is

D̂nL en(ax) = aen(ax). (7)

Remark 1 : For completeness, we recall that the operators DL = DxD and
its iterates as DnL = DxDxDx · · ·DxD can be considered as particular cases
of the hyper-Bessel differential operators when α0 = α1 = · · · = αn = 1 (the
special case considered in operational calculus by Ditkin and Prudnikov [18]). In
general, the Bessel-type differential operators of arbitrary order n were introduced
by Dimovski, in 1966 [19] and later called by Kiryakova hyper-Bessel operators,
because are closely related to their eigenfunctions, called hyper-Bessel by Delerue
[20], in 1953. These operators were studied in 1994 by Kiryakova in her book [7],
Ch. 3.

The purpose of this article is to introduce some generalized types of the Laplace
transform.

We use expansions of the type g(x) =
∑∞

k=0 akx
k, converging in all the plane,

satisfying the eigenvalue property D̂xg(ax) = λ(a)g(x), with respect to a given
differential operator D̂x, similar to that of the exponential function. After con-
structing the reciprocal [g(x)]−1 of the considered expansion, we substitute this
reciprocal function in the place of exp(−xs) in the Laplace transormation. So we
get the new Laplace-type transform

Lg(f) :=
∫ +∞

0
[g(xs)]−1f(x)dx = Fg(s) .



Vol. 25, 2024 23

We use the fractional exponential function Expα(x), defined for every α, with
α > 0, by the equation

Expα(t) = 1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+ · · ·+ tnα

Γ(nα + 1)
+ . . . ,

as well as the generalized Laguerre-type fractional exponential function

ea,1(x) :=
∞∑

k=0

ak xkα

[Γ(kα + 1)]2
,

depending on a given sequence of coefficients denoted by the umbral symbol a :=
{ak} = {a0, a1, a2, . . . }, which is an eigenfunction of the operator Dα

L := Dα
xxαDα

x ,
since

Dα
x xαDα

xea,1(tx) = tαea,1(tx) .

Remark 2 : Recalling the Mittag-Leffler function [21] Eα(x), and substituting x
with xα, it results

Eα(xα) = Expα(x) , and Dα
xEα(xα) = Eα(xα) ,

so that the fractional exponential function can be reduced to the Mittag-Leffler
function.

Another possibility is to consider the hyperbolic function

cosh(x) :=
∞∑

k=0

x2k

(2k)!
, (8)

or, in general, the fractional Laguerre-type case, which includes all possibilities

coshn,α(x) :=
∞∑

k=0

x2kα

Γ(2kα + 1)n+1
. (9)

The basic function (8) satisfies

D2 cosh(ax) = a2 cosh(ax) , (10)

and the function (9), assuming n = 1, is an eigenfunction of the fractional operator
Dα

x xαDα
x , since

Dα
x xαDα

x cosh1,α(ax) := a2 cosh1,α(ax) . (11)

The general case is more involved, but the technique is the same.
We exploit the reciprocal of these unusual exponentials, obtained using an ex-

tension of the Blissard problem, to construct generalized forms of the Laplace
transform.

In all cases a generalized type of Laplace transform can be defined, and some
numerical check is performed using the computer algebra program Mathematica©.
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2. A general result

In literature there exists the following general result [22].
Consider the sequences a := {ak} = (a0, a1, a2, a3, . . . ), and b := {bk} =

(b0, b1, b2, b3, . . . ), Using the umbral formalism (that is, letting ak ≡ ak and
bk ≡ bk), the solution of the equation

1
∞∑

n=0

antnα

Γ(nα + 1)

=
∞∑

n=0

bntnα

Γ(nα + 1)
, i.e. Expα(a t) Expα(b t) = 1 , (12)

according to the Faà di Bruno formula, is given by

bn =
Γ(nα + 1)

n!

n∑
k=0

(−1)k k! a−(k+1)
0 ·

·Bn,k

(
1!a1

Γ(α + 1)
,

2!a2

Γ(2α + 1)
, . . . ,

(n− k + 1)!an−k+1

Γ((n− k + 1)α + 1)

)
, (∀n ≥ 0),

(13)

where Bn,k are partial Bell polynomials [22, 23].

3. The reciprocal of the fractional exponential operator

We consider the generalized fractional exponential operator

Expα(a, t) = a0 + a1
tα

Γ(α + 1)
+ a2

t2α

Γ(2α + 1)
+ · · ·+ an

tnα

Γ(nα + 1)
+ . . . , (14)

where the symbol a denotes the sequence of coefficients, that is {a} := {a0, a1,
a2, . . . }.

The equation

1
Expα(a, t)

= b0 + b1
tα

Γ(α + 1)
+ b2

t2α

Γ(2α + 1)
+ · · ·+ bn

tnα

Γ(nα + 1)
+ . . .

in terms of the unknown sequence {bn} can be solved by using the Blissard problem
and Bell’s polynomials.

In the particular case of the reciprocal of the Expα(t) function we must assume
{a} ≡ {1, 1, 1, . . . } and therefore, recalling that Bn,h(1, 1, . . . , 1) ≡ Sn,h, that is the
Stirling numbers of the second kind, it results

[Expα(t)]−1 = 1 +
∞∑

n=1

n∑
h=1

(−1)h Γ(hα + 1) Bn,h(1, 1, . . . , 1) tnα

=
∞∑

n=0

n∑
h=0

(−1)h Γ(hα + 1) Sn,h
tnα

Γ(nα + 1)
,

(15)

where we have put S0,0 := 1.
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3.1. A fractional-type Laplace transform

Using the above definition for the reciprocal of the fractional exponential, we can
introduce a fractional version (of order α, α > 0) of the Laplace Transform, by
setting

Lα(f) :=
∫ ∞

0
f(t) [Expα(st)]−1 dt = Fα(s)

=
∫ ∞

0
f(t)

( ∞∑
n=0

n∑
h=0

(−1)h Γ(hα + 1) Sn,h
tnα

Γ(nα + 1)

)
dt.

(16)

In what follows, we make a comparison among the classical Laplace Transform
of assigned functions and the fractional order Laplace transforms of order α = 1/2
and α = 3/2.

As it is shown in the obtained results, in all cases the graphs of the modulus
and argument of the ordinary Laplace Transform lies between the corresponding
graphs of the two considered fractional order Laplace transforms. This provides a
graphical evidence of the monotonicity property satisfied by the fractional order
Laplace transforms.

4. Numerical Examples

4.1. Example 1

Consider the fractional Laplace Transforms F1/2, F3/2 of the Bessel function
J0(2

√
t), compared with the classical LT F = F1 of the same function.

Figure 1. Comparing the fractional LTs F1/2, F1,F3/2, of the function J0(2
√

t) - the case of the modulus,
assuming s = σ + 5i
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Figure 2. Comparing the fractional LTs F1/2, F1,F3/2, of the function J0(2
√

t) - the case of the argument,
assuming s = σ + 5i

Figure 3. Comparing the fractional LTs F1/2, F1,F3/2, of the function J0(2
√

t) - the case of the modulus,
assuming s = 5 + i ω

Figure 4. Comparing the fractional LTs F1/2, F1,F3/2, of the function J0(2
√

t) - the case of the argument,
assuming s = 5 + i ω

4.2. Example 2

Consider the fractional Laplace Transforms F1/2, F3/2 of the function exp(−t2),
compared with the classical LT F = F1 of the same function.

Figure 5. Comparing the fractional LTs F1/2, F1,F3/2, of the function exp(−t2) - the case of the modulus,
assuming s = σ + i
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Figure 6. Comparing the fractional LTs F1/2, F1,F3/2, of the function exp(−t2) - the case of the argument,
assuming s = σ + i

Figure 7. Comparing the fractional LTs F1/2, F1,F3/2, of the function exp(−t2) - the case of the modulus,
assuming s = 1 + i ω

Figure 8. Comparing the fractional LTs F1/2, F1,F3/2, of the function exp(−t2) - the case of the argument,
assuming s = 1 + i ω

5. The reciprocal of the fractional Laguerre-type hyperbolic function

We consider the function coshα,1(a; t), where the symbol a ≡ {an} denote the
sequence of coefficients, according to the position

coshα,1(a; t) =

1 + a2
t2α

[Γ(2α + 1)]2
+ a4

t4α

[Γ(4α + 1)]2
+ · · ·+ a2n

t2nα

[Γ(2nα + 1)]2
+ . . . . (17)



28 Lecture Notes of TICMI

The equation

1
coshα,1(a; t)

=

b0 + b2
t2α

[Γ(2α + 1)]2
+ b4

t4α

[Γ(4α + 1)]2
+ · · ·+ b2n

t2nα

[Γ(2nα + 1)]2
+ . . . (18)

in terms of the unknown sequence b ≡ {bn} can be solved by using Bell’s polyno-
mials.

Recalling the general result, we find in this case that the solution of the equation

1
∞∑

n=0

a2nt2nα

[Γ(2nα + 1)]2

=
∞∑

n=0

b2nt2nα

[Γ(2nα + 1)]2
, i.e. coshα,1(a; t) coshα,1(b; t) = 1 ,

is given, ∀n ≥ 0, by

b2n =
[Γ(2nα + 1)]2

n!

n∑
k=0

(−1)k k! a−(k+1)
0 ·

·Bn,k

(
1!a2

[Γ(2α + 1)]2
,

2!a4

[Γ(4α + 1)]2
, . . . ,

(n− k + 1)!a2(n−k+1)

[Γ(2(n− k + 1)α + 1)]2

)
,

(19)

where B2n,k are partial Bell polynomials [22, 23].
In this case we have a0 = 1, and we have to consider the reciprocal of equation

(17), i.e.

1
1 + a2

t2α

[Γ(2α+1)]2 + a4
t4α

[Γ(4α+1)]2 + a6
t6α

[Γ(6α+1)]2 + . . .
(t ≥ 0) .

Then, according to the above general result, we find

1
∞∑

n=0

a2nt2nα

[Γ(2nα + 1)]2

=
∞∑

n=0

b2nt2nα

[Γ(2nα + 1)]2
= =

∞∑
n=0

t2nα

n!

n∑
k=0

(−1)k k!

×Bn,k

(
1!a2

[Γ(2α + 1)]2
,

2!a4

[Γ(4α + 1)]2
, . . . ,

(n− k + 1)!a2(n−k+1)

[Γ(2(n− k + 1)α + 1)]2

)
.

(20)

Therefore, for α = 1/2 and an = 1/(n+1), the first few values of the bn coefficients



Vol. 25, 2024 29

are found to be

b0 = 1 ,

b2 = −1
3

,

b4 =
11
45

,

b6 = − 29
105

,

b8 =
191
525

,

b10 = − 49
297

,

b12 = −1168697
315315

.

5.1. Hyperbolic Laguerre-type fractional-order Laplace transforms

Using the above definition of the reciprocal of the fractional Laguerre-type exponen-
tial function, we can introduce a fractional-order Laguerre-type Laplace transform
by setting

L1HLα(f) :=
∫ ∞

0
f(t) [coshα,1(a; st)]−1 dt = L1HFα(s)

=
∫ ∞

0
f(t)

[ ∞∑
n=0

(st)2nα

n!

n∑
k=0

(−1)k k!

×Bn,k

(
1!a2

[Γ(2α + 1)]2
,

2!a4

[Γ(4α + 1)]2
, . . . ,

(n− k + 1)!a2(n−k+1)

[Γ(2(n− k + 1)α + 1)]2

)]
dt.

(21)

In what follows, we make a comparison among the Hyperbolic Laguerre-type
Laplace Transform of assigned functions and the fractional order Hyperbolic
Laguerre-type Laplace transforms of order α = 1/2 and α = 3/2.

As it is shown in the obtained results, in all cases the graphs of the modulus and
argument of the Hyperbolic Laguerre-type Laplace Transform lie between the cor-
responding graphs of the two considered fractional order Hyperbolic Laguerre-type
Laplace transforms. This provides graphical evidence of the monotonicity property
satisfied by the fractional order Hyperbolic Laguerre-type Laplace transforms.
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6. Numerical Examples

6.1. Example 1

Consider the fractional hyperbolic Laguerre-type functions K(α, θ), defined as

K(α, θ) =
∞∑

n=0

anθ2nα

[Γ(2nα + 1)]2
. (22)

In what follows, assuming an = 1/(2n + 1), the hyperbolic-type fractional Laplace
transforms of the function

f(t) = ArcSinh(t/π) ,

using as kernels the [K(α, st]−1 functions, for α = 1/4 and α = 1/2, are depicted
showing the convergence behavior to the hyperbolic Laguerre-type LT of the con-
sidered function for α = 1. This has been checked even for other values of α such
that 0 < α < 1, while the same is not true for α > 1.

The graphs of the [K(α, θ)]−1 functions for α = 1/4, 1/2, 1 are presented in
Figure 9.

Figure 9. Graphs of the functions [K(α, θ)]−1, for α = 1/4, 1/2, 1

Graphs of the modulus and argument of the hyperbolic-type fractional Laplace
transforms of the ArcSinh(t/π) functions, for α = 1/4 and α = 1/2 are depicted
in Figures 10-13.

Figure 10. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

ArcSinh(t/π) - the case of the modulus, assuming s = σ + i
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Figure 11. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

ArcSinh(t/π) - the case of the argument, assuming s = σ + i

Figure 12. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

ArcSinh(t/π) - the case of the modulus, assuming s = 1 + i ω

Figure 13. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

ArcSinh(t/π) - the case of the argument, assuming s = 1 + i ω

6.2. Example 2

Consider the fractional hyperbolic Laguerre-type functions K(α, θ), defined in
equation (22), assuming an = exp(−2n).

In what follows the hyperbolic-type fractional Laplace transforms of the function

f(t) = exp(−t2) ,

using as kernels the [K(α, st]−1 functions, for α = 1/4 and α = 1/2, are depicted
showing the convergence behavior to the hyperbolic Laguerre-type LT of the con-
sidered function for α = 1. This has been checked even for other values of α such
that 0 < α < 1, while the same is not true for α > 1.

The graphs of the [K(α, θ)]−1 functions for α = 1/4, 1/2, 1 are presented in
Figure 14.

Graphs of the modulus and argument of the hyperbolic-type fractional Laplace
transforms of the exp(−t2) functions, for α = 1/4 and α = 1/2 are depicted in
Figures 15-18.
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Figure 14. Graphs of the functions [K(α, θ)]−1, for α = 1/4, 1/2, 1

Figure 15. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

exp(−t2) - the case of the modulus, assuming s = σ + i

Figure 16. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

exp(−t2) - the case of the argument, assuming s = σ + i

Figure 17. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

exp(−t2) - the case of the modulus, assuming s = 1 + i ω

Figure 18. Comparing the hyperbolic-type fractional LTs L1HF1/4, L1HF1/2, L1HF1, of the function

exp(−t2) - the case of the argument, assuming s = 1 + i ω
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7. Conclusion

We have shown that, using the Laguerre-type exponentials and their fractional
versions, it is possible to define Laguerre-type generalized forms of the classical
Laplace transform. We have used a general result to construct the reciprocals of
some exponential-type functions, and we have used these reciprocals in place of the
kernel of the usual Laplace transform.

Several worked examples of the new transformations, computed using the com-
puter algebra system Mathematica© have been reported in the preceding Sections.

The introduced transformations could be used in the framework of fractional
differential equations or in that of the Laguerre-type ones.

References

[1] H.M. Srivastava, M. Masjed-Jamei and M. R. Beyki. Some new generalizations and applications of
the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Rocky Mountain J. Math.,
49 (2019), 681-697

[2] H.M. Srivastava, B. Kurt and V. Kurt. Identities and relations involving the modified degenerate
Hermite-based Apostol-Bernoulli and Apostol-Euler polynomials, Rev. Real Acad. Cienc. Exactas F́ıs.
Natur. Ser. A Mat., (RACSAM) 113 (2019), 1299-1313

[3] Y. He, S. Araci, H.M. Srivastava and M. Abdel-Aty. Higher-order convolutions for Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi polynomials, Mathematics, 6 (2018), Article ID 329, 1-14

[4] M.A. Boutiche, M. Rahmani and H.M. Srivastava. Explicit formulas associated with some families of
generalized Bernoulli and Euler polynomials, Mediterr. J. Math., 14, 2 (2017), Article ID 89, 1-10

[5] L. Beghin, M. Caputo. Commutative and associative properties of the Caputo fractional derivative
and its generalizing convolution operator, doi.org/10.1016/j.cnsns.2020.105338

[6] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo. Theory and Applications of Fractional Differential
Equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers,
Amsterdam, London and New York, 2006

[7] V. Kiryakova. Generalized Fractional Calculus and Applications, Pitman Res. Notes in Math. Ser.,
301, Longman, Harlow, U.K., 1994

[8] D. Caratelli, P. Natalini, P.E. Ricci. Fractional Bernoulli and Euler Numbers and re-
lated fractional polynomials. A Symmetry in Number Theory, Symmetry 2023, 15, 1900.
https://doi.org/10.3390/sym15101900

[9] P.E. Ricci, R. Srivastava, D. Caratelli. Laguerre-type Bernoulli and Euler Numbers and related frac-
tional polynomials, Mathematics 2024, 12, 381. https://doi.org/10.3390/math12030381

[10] G. Dattoli. Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle,
Proc. of the workshop on Advanced Special Functions and Applications, Melfi 9-12 May, 1999, Ed.
by D. Cocolicchio, G. Dattoli and H. M. Srivastava, ARACNE Editrice, Rome, 2000

[11] Y. Ben Cheikh. Some results on quasi-monomiality, Proc. workshop on Advanced Special Functions
and Related Topics in Differential Equations, Melfi, June 24-29, 2001, in: Appl. Math., Comput., 141
(2003), 63–76
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