
Lecture Notes of TICMI
Vol. 25, 2024, 57–69

The Functional Dissipativity of Linear Systems of PDEs: a Survey

Alberto Cialdeaa∗

aDepartment of Mathematics, Computer Sciences and Economics,
University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy

We survey some recent results obtained by Vladimir Maz’ya and myself concerning the func-
tional dissipativity of second order systems of PDEs. In the particular case of operators of
the form ∂h(A h(x)∂hu), where A h are m × m matrices, we have given algebraic necessary
and sufficient conditions. For such operators, we investigate the relations between different
notions of functional ellipticity and functional dissipativity.
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1. Introduction

Let A be a scalar second order partial differential operator

Au = div(A ∇u) (1)

defined in a domain Ω ⊂ R
N . The coefficients ahk are supposed to be essentially

bounded complex valued functions (ahk ∈ L∞(Ω)).
Given a function ϕ : R+ → R

+, the operator (1) is said to be functional dissipative
with respect to ϕ if

Re
∫

Ω
〈A ∇u,∇(ϕ(|u|)u)〉 dx > 0 (2)

for any u ∈ H̊1(Ω) such that ϕ(|u|)u ∈ H̊1(Ω).
The concept of functional dissipativity was given in [13]. A motivation for the

introduction of this notion will be given in Section 4.
When ϕ(s) = sp−2 (p > 1) we have the so-called Lp-dissipativity

Re
∫

Ω
〈A ∇u,∇(|u|p−2u)〉 dx > 0 (3)

for any u ∈ H̊1(Ω) such that |u|p−2u ∈ H̊1(Ω). In [7] necessary and sufficient
condition for the validity of (3) have been obtained. In a series of papers the Lp-
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dissipativity has been considered for several different scalar and matrix partial dif-
ferential operators (see [8, 9, 11, 12] and the monograph [10], where Lp-dissipative
operators are considered in the more general frame of semi-bounded operators).

A strengthening of the condition given in [7] for the Lp-dissipativity has led to
the concept of p-ellipticity, which is connected to the Lp solvability of the Dirichlet
problem for operators with complex coefficients.

The concept of functional dissipativity for second order systems has been con-
sidered in [14, 15]. The present paper aims to survey the main results obtained by
Vladimir Maz’ya and myself for a class of systems of PDEs. We mention that we
have also obtained peculiar results for the functional dissipativity in linear elastic-
ity, for which we refer to [15].

The present paper is organized as follows. After recalling the concept of Lp-
dissipativity for scalar operators in Section 2, we describe the notion of p-ellipticity
in Section 3 and present some applications of our results.

Section 4 is devoted to the functional dissipativity for scalar operators.
In Section 5 we consider the functional dissipativity for second order systems,

giving necessary and sufficient conditions for a particular class of systems. We also
give several notions of functional ellipticity and investigate the relations between
them and the functional dissipativity.

2. Lp-dissipativity for scalar operators

Let A be the scalar second order operator (1). The following result provides a nec-
essary and sufficient condition for its Lp-dissipativity (in all this paper we assume
1 < p <∞)

Theorem 2.1 [7]: Let the matrix Im A be symmetric, i.e. Im A t = Im A . The
operator A is Lp-dissipative if and only if

|p− 2| |〈Im A (x)ξ, ξ〉| 6 2
√
p− 1 〈Re A (x)ξ, ξ〉 (4)

for almost any x ∈ Ω and for any ξ ∈ R
N .

In [7] the result was proved considering more general operators with complex
measures coefficients. We remark that from condition (4) you can immediately
obtain some known results. Suppose that the operator A is such that

〈Re A ξ, ξ〉 > 0, a.e. x ∈ Ω, ∀ξ ∈ R
N .

Then A is always L2-dissipative. If A is a real coefficient operator, A is Lp-
dissipative for any p.

We remark also that, if Im A is not symmetric or if the operator A has lower
order terms, then Theorem 2.1 does not hold. You can find some examples in [7].

The condition (4) is equivalent to the positivity of some polynomial in ξ and η.
More exactly, (4) is equivalent to the following condition:

4
p p′

〈Re A ξ, ξ〉+ 〈Re A η, η〉 − 2(1− 2/p)〈 Im A ξ, η〉 > 0 (5)

for almost any x ∈ Ω and for any ξ, η ∈ R
N .
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More generally, if the matrix Im A is not symmetric, condition (5) is still nec-
essary for the Lp-dissipativity, but not sufficient. In this case, we can consider the
condition

4
p p′

〈Re A (x)ξ, ξ〉+ 〈Re A (x)η, η〉+2〈(p−1
Im A (x)+ p′−1

Im A ∗(x))ξ, η〉 > 0 (6)

for almost any x ∈ Ω and for any ξ, η ∈ R
N (p′ = p/(p− 1)). It turns out that (6)

is sufficient for the Lp-dissipativity, but not necessary.
We mention that recently Maz’ya and Verbitsky [27, 28] gave necessary and

sufficient conditions for the accretivity of a second order partial differential operator
E containing lower order terms, in the case of Dirichlet data. We observe that the
accretivity of E is equivalent to the L2-dissipativity of −E.

3. p-ellipticity and applications of Lp-dissipativity

Let A be a scalar operator with lower order terms:

Au = div(A ∇u) + b∇u+ au . (7)

The operator A is said to be p-elliptic if a strengthened version of inequality (6)
holds. More precisely, A is p-elliptic if there exists κ > 0 such that

4
p p′

〈Re A (x)ξ, ξ〉+ 〈Re A (x)η, η〉+

2
〈(

1
p
Im A (x) +

1
p′
Im A ∗(x)

)
ξ, η

〉
> κ(|ξ|2 + |η|2)

a.e. x ∈ Ω, ∀ ξ, η ∈ R
N .

Carbonaro and Dragičević [3, 4] showed that this condition implies some
bilinear embeddings, i.e. the boundedness of certain bilinear operators arising from
complex-valued second order differential operators. Their main result is the follow-
ing

Theorem 3.1 [4]: Let PA
t = exp (−tLA) , t > 0 and let p > 1. Suppose that the

matrices A,B are p-elliptic. Then for all f, g ∈ C̊∞
(
R

N
)

we have

∫ ∞

0

∫
RN

∣∣∇PA
t f(x)

∣∣ ∣∣∇PB
t g(x)

∣∣ dxdt 6 C‖f‖p‖g‖p′ , (8)

with constant depending on ellipticity parameters, but not dimension.

If A and B are real accretive matrices then (8) holds for the full range of expo-
nents p ∈ (1,∞).

Recently Carbonaro, Dragičević, Kovač and Škreb [5] extended this result
to trilinear embeddings.

In a series of papers [17–20] Dindoš and Pipher proved several results concern-
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ing the Lp solvability of the Dirichlet problem
∂i (aij(x)∂ju) + bi(x)∂iu = 0 in Ω
u(x) = f(x) a.e. on ∂Ω
Ñ2,a(u) ∈ Lp(∂Ω)

(9)

where f is in Lp(∂Ω). Here a > 0 is a fixed parameter and Ñ2,a(u) is a nontangential
maximal function defined using Lp averages over balls

Ñ2,a(u)(y) = sup
x∈Γa(y)

(
−
∫

Bδ(x)/2(x)
|u(z)|2dz

)1/2

(y ∈ ∂Ω), where the barred integral indicates the average and Γa(y) is a cone of
aperture a. To be precise, they say that the Dirichlet problem (9) is solvable for a
given p ∈ (1,∞) if there exists a C = C(p,Ω) > 0 such that for all complex-valued
boundary data f ∈ Lp(∂Ω) ∩ Ḃ2,2

1/2(∂Ω) the unique “energy solution” satisfies the
estimate ∥∥∥Ñ2,a(u)

∥∥∥
Lp(∂Ω)

6 C‖f‖Lp(∂Ω) .

Since the space Ḃ2,2
1/2(∂Ω) ∩ Lp(∂Ω) is dense in Lp(∂Ω) for each p ∈ (1,∞), there

exists a unique continuous extension of the solution operator f 7→ u to the whole
space Lp(∂Ω), with u such that Ñ2,a(u) ∈ Lp(∂Ω) and the relevant estimate∥∥∥Ñ2,a(u)

∥∥∥
Lp(∂Ω)

6 C‖f‖Lp(∂Ω) is valid.

Egert [21] has shown that the p-ellipticity condition implies extrapolation to a
holomorphic semigroup on Lebesgue spaces in a p-dependent range of exponents.

Our condition (6) and its strengthened variant are getting more and more im-
portant in many respects. We already considered the notion of p-ellipticity, but
there are also other applications.

We mention that Hömberg, Krumbiegel and Rehberg [24] used some of the tech-
niques introduced in [7] to show the Lp-dissipativity of a certain operator connected
to the problem of the existence of an optimal control for the heat equation with
dynamic boundary conditions.

Beyn and Otten [1, 2] considered the semilinear system

A∆v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ RN ,

where A is a m×m matrix, S is a N ×N skew-symmetric matrix and f is a suf-
ficiently smooth vector function. Among the assumptions they made, they require
the existence of a constant γA > 0 such that

|z|2 Re〈w,Aw〉+ (p− 2)Re〈w, z〉Re〈z,Aw〉 > γA|z|2|w|2

for any z, w ∈ C
m. This condition originates from our necessary and sufficient

condition for the Lp-dissipativity of certain systems (see [8, formula (79), p.261]).
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The results of [7] allowed Nittka [29] to consider the case of partial differential
operators with complex coefficients.

Ostermann and Schratz [30] have obtained the stability of a numerical procedure
for solving a certain evolution problem. The necessary and sufficient condition (4)
shows that their result does not require the contractivity of the corresponding
semigroup.

Chill, Meinlschmidt and Rehberg [6] used some ideas from [7] in the study of the
numerical range of second order elliptic operators with mixed boundary conditions
in Lp.

ter Elst, Haller-Dintelmann, Rehberg and Tolksdorf [22] considered second order
divergence form operators with complex coefficients, complemented with Dirichlet,
Neumann, or mixed boundary conditions. They proved several results related to
the generation of strongly continuous semigroups on Lp.

4. Functional dissipativity for scalar operators

Let Φ be a Young function, i.e. a convex positive function such that Φ(0) = 0 and
Φ(+∞) = +∞. Let us consider the Orlicz space of the function u such that there
exists α > 0 such that ∫

Ω
Φ(α |u|) dx < +∞ .

The relevant Luxemburg norm is defined as

‖u‖ = inf
{
λ > 0

∣∣∣ ∫
Ω

Φ(|u(x)|/λ) dx 6 1
}
.

For the general theory of Orlicz spaces see Krasnosel’skĭı, Rutickĭı [26] and
Rao, Ren [31].

Let us consider the Cauchy problem{
u′ = Au

u(0) = u0 .
(10)

where A is a certain linear operator. The condition for the decrease of the Luxem-
burg norm of solutions u of (10) is

Re
∫

Ω
〈Au, u〉|u|−1Φ′(|u|) dx 6 0 . (11)

Indeed, at least formally, we have

d

dt

∫
Ω

Φ(|u(x, t)|/λ) dx =
1
λ

∫
Ω

Φ′(|u(x, t)|/λ)
d

dt
|u(x, t)| dx

=
1
λ
Re
∫

Ω
〈ut, u〉|u|−1Φ′(|u|) dx =

1
λ
Re
∫

Ω
〈Au, u〉|u|−1Φ′(|u|) dx .
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This shows that condition (11) implies the decrease of∫
Ω

Φ(|u(x, t)|/λ) dx

as t increases. It follows the decrease of the Luxemburg norm of solutions u of
Cauchy problem (10).

Condition (11) can be written as

Re
∫

Ω
〈Au, u〉ϕ(|u|) dx 6 0 (12)

where ϕ : R+ → R
+.

The relation between the functions ϕ and Φ is

ϕ(t) =
Φ′(t)
t

⇐⇒ Φ(t) =
∫ t

0
sϕ(s) ds .

Therefore the convexity of Φ (that we require in the definition of Orlicz space) is
equivalent to the increase of the function sϕ(s). We note that we do not require
the increase of ϕ. For example, if Φ(s) = sp we have ϕ(s) = p sp−2, and when
1 < p < 2, ϕ is decreasing.

If A is the operator (1) and we make a formal integration by parts in (12), we
get (2).

In [13] the functional dissipativity of operator (1) was introduced, under the
following assumptions on ϕ:

(1) ϕ ∈ C1((0,+∞));
(2) (sϕ(s))′ > 0 for any s > 0;
(3) the range of the strictly increasing function sϕ(s) is (0,+∞);
(4) there exist two positive constants C1, C2 and a real number r > −1 such

that

C1s
r 6 (sϕ(s))′ 6 C2 s

r, s ∈ (0, s0)

for a certain s0 > 0. If r = 0 we require more restrictive conditions: there
exists the finite limit lims→0+ ϕ(s) = ϕ+(0) > 0 and lims→0+ sϕ′(s) = 0.

(5) There exists s1 > s0 such that

ϕ′(s) > 0 or ϕ′(s) 6 0, ∀ s > s1.

The condition (4) prescribes the behaviour of the function ϕ in a neighborhood
of the origin, while (5) concerns the behaviour for large s.

The function Φ(s) = sp, i.e. ϕ(s) = sp−2 (p > 1) provides an example of such
a function. Other noteworthy examples are given by the Young function corre-
sponding to the Zygmund space Lp logL, Φ(s) = sp log(s+ e) (p > 1), i.e. ϕ(s) =
psp−2 log(s+ e)+ sp−1(s+ e)−1, and Φ(s) = exp(sp)− 1, i.e. ϕ(s) = p sp−2 exp(sp).

Necessary and sufficient conditions for the functional dissipativity of the operator
(1) have been obtained in [13]. Our main result is the following
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Theorem 4.1 [13]: Let the matrix Im A be symmetric, i.e. Im A t = Im A . Then
the operator (1) is LΦ-dissipative if, and only if,

|sϕ′(s)| |〈Im A (x) ξ, ξ〉| 6 2
√
ϕ(s) [sϕ(s)]′ 〈Re A (x) ξ, ξ〉 (13)

for almost every x ∈ Ω and for any s > 0, ξ ∈ R
N .

We have also

Corollary 4.2 [13]: Let the matrix Im A be symmetric, i.e. Im A t = Im A . If

λ0 = sup
s>0

|sϕ′(s)|
2
√
ϕ(s) [sϕ(s)]′

< +∞,

then the operator (1) is LΦ-dissipative if, and only if,

λ0 |〈Im A (x) ξ, ξ〉| 6 〈Re A (x) ξ, ξ〉 (14)

for almost every x ∈ Ω and for any ξ ∈ R
N . If λ0 = +∞ the operator (1) is

LΦ-dissipative if and only if Im A ≡ 0 and

〈Re A (x)ξ, ξ〉 > 0 (15)

for almost every x ∈ Ω and for any ξ ∈ R
N .

We remark that λ0 may be finite or not. For example, if the Orlicz space is Lp or
the Zygmund space Lp logL (i.e. Φ(s) = sp or Φ(s) = sp log(s+ e) (1 < p <∞)),
then λ0 is finite and the operator A is is LΦ-dissipative if and only if (14) holds. If
the Orlicz space is the one related to Φ(s) = exp(sp) − 1, then λ0 = +∞ and the
operator A is LΦ-dissipative if and only if Im A identically vanish and (15) holds.

As for Lp-dissipativity, condition (13) is equivalent to the positivity of some
polynomial in ξ and η. To describe such results, let us introduce the function Λ,
which is defined by the relation

Λ
(
s
√
ϕ(s)

)
= − sϕ′(s)

sϕ′(s) + 2ϕ(s)
.

Assuming that Im A is symmetric, we have that (13) is equivalent to the following
condition:

[1− Λ2(t)]〈Re A (x) ξ, ξ〉+ 〈Re A (x) η, η〉+ 2 Λ(t)〈Im A (x) ξ, η〉 > 0 (16)

for almost every x ∈ Ω and for any t > 0, ξ, η ∈ R
N (see [13, Remark 2, p.23]).

If the condition Im A = Im A t is not satisfied, condition (13) is still necessary for
the LΦ-dissipativity of the operator A, but in general it is not sufficient, whatever
the function ϕ may be (see [13, p.23]).

If Im A is not symmetric, we have that, if

[1− Λ2(t)]〈Re A (x) ξ, ξ〉+ 〈Re A (x) η, η〉+

[1 + Λ(t)]〈Im A (x) ξ, η〉+ [1− Λ(t)]〈Im A ∗(x) ξ, η〉 > 0
(17)
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for almost every x ∈ Ω and for any t > 0, ξ, η ∈ R
N , then the operator (1) is

LΦ-dissipative. In general, condition (17) is not necessary for the LΦ-dissipativity
of A. Note that, if Im A is symmetric, then (17) coincides with (16).

In [13] the concept of functional ellipticity (Φ-(strong) ellipticity) was introduced
as well. If the principal part of the operator (7) is such that the left-hand side of
(17) is not merely non negative but strictly positive, i.e. there exists κ > 0 such
that

[1− Λ2(t)]〈Re A (x) ξ, ξ〉+ 〈Re A (x) η, η〉+

[1 + Λ(t)]〈Im A (x) ξ, η〉+ [1− Λ(t)]〈Im A ∗(x) ξ, η〉 > κ(|ξ|2 + |η|2)

for almost every x ∈ Ω and for any t > 0, ξ, η ∈ R
N , we say that the operator A is

Φ-elliptic.
Very recently Kovač and Škreb [25] proved bilinear embeddings in Orlicz spaces

by using conditions introduced in [13].

5. Second order systems

In [8] we have considered the Lp-dissipativity for second order systems, obtaining
several criteria. For all the details we refer to [8].

In this section, we describe some of the recent results we have obtained concerning
the functional dissipativity of systems in divergence form. In the first subsection,
we discuss the notion of functional dissipativity and give necessary and sufficient
conditions for a particular class of systems. In the other subsection, we investigate
different notions of functional ellipticity.

5.1. Functional dissipativity

Let us consider a general system of the form

A = ∂h(A hk(x)∂k) (18)

where ∂k = ∂/∂xk and A hk(x) = {ahk
ij (x)} are m × m matrices whose elements

are complex valued L1
loc-functions defined in a domain Ω ⊂ R

N (1 6 i, j 6 m, 1 6
h, k 6 N). We say that the operator (18) is LΦ-dissipative if

Re
∫

Ω
〈A hk ∂ku, ∂h(ϕ(|u|)u)〉 dx > 0

for any u ∈ [C̊1(Ω)]m such that ϕ(|u|)u ∈ [C̊1(Ω)]m.
We say that the operator (18) is strict LΦ-dissipative if there exists κ > 0 such

that

Re
∫

Ω
〈A hk ∂ku, ∂h(ϕ(|u|)u)〉 dx > κ

∫
Ω
|∇(
√
ϕ(|u|)u)|2dx

for any u ∈ [C̊1(Ω)]m such that ϕ(|u|)u ∈ [C̊1(Ω)]m.
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In the particular case of matrix operators defined as

Au = ∂h(A h(x)∂hu) (19)

where A h(x) = {ah
ij(x)} (i, j = 1, . . . ,m) are matrices with complex locally inte-

grable entries (h = 1, . . . , N), we have found necessary and sufficient conditions.
From now on we require also the following condition on ϕ:

(6) the function |sϕ′(s)/ϕ(s)| is not decreasing.

This implies that the function Λ2(t) is not decreasing on (0,+∞) (see [15, Lemma
8]). Since the function Λ does not change the sign, we have the monotonicity of
the bounded function Λ(t) and then the existence of the finite limit

Λ∞ = lim
t→+∞

Λ(t) .

We have also

Λ2
∞ = sup

t>0
Λ2(t) .

We are now in a position to describe the aforesaid necessary and sufficient con-
ditions

Theorem 5.1 [14]: The operator A is LΦ-dissipative if and only if

Re〈A h(x0)λ, λ〉 − Λ2
∞ Re〈A h(x0)ω, ω〉(Re〈λ, ω〉)2

+Λ∞ Re(〈A h(x0)ω, λ〉 − 〈A h(x0)λ, ω〉)Re〈λ, ω〉 > 0

holds for almost every x0 ∈ Ω and for any λ, ω ∈ C
m, |ω| = 1, h = 1, . . . , N .

A similar result concerns the strict functional dissipativity

Theorem 5.2 [14]: Let us assume that

Λ2
∞ < 1. (20)

The operator (19) is strict LΦ-dissipative if and only if there exists κ′ > 0 such
that

Re〈A h(x0)λ, λ〉 − Λ2
∞ Re〈A h(x0)ω, ω〉(Re〈λ, ω〉)2

+Λ∞ Re(〈A h(x0)ω, λ〉 − 〈A h(x0)λ, ω〉)Re〈λ, ω〉 > κ′ |λ|2

holds for almost every x0 ∈ Ω and for any λ, ω ∈ C
m, |ω| = 1, h = 1, . . . , N .

5.2. Functional ellipticity

It is well known that there are different notions of ellipticity for systems. Indeed let
us consider again the system (18), where A hk(x) = {ahk

ij (x)}m×m, ahk
ij ∈ L∞(Ω)

(1 6 i, j 6 m, 1 6 h, k 6 N). We have at least the following three notions.
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The operator A is said to be strong elliptic if the following Legendre condition
is satisfied

Re〈A hk(x)ζk, ζh〉 > κ|ζ|2, a.e. x ∈ Ω,∀ ζh ∈ C
m.

If the integral condition

Re
∫

Ω
〈A hk ∂kv, ∂hv〉 dx > κ

∫
Ω
|∇v|2dx (21)

holds for any v ∈ H̊1(Ω), we have the so-called integral ellipticity.
Finally, if the Legendre–Hadamard condition

Re〈(A hk(x)qhqk)λ, λ〉 > κ |q|2|λ|2 (22)

holds a. e. in Ω, for all q ∈ R
N , λ ∈ C

m, we have the so-called weak ellipticity.
In all these conditions κ is a positive constant.
It is clear that strong ellipticity implies integral ellipticity and it is well known

that integral ellipticity implies the Legendre–Hadamard condition (just take v =
λ ei q·xψ(x) in (21), ψ being a test function; see, e.g., [23, p.107]). If the operator
is a real scalar operator (N = 1), then the three conditions are equivalent, but in
general they are not. We recall that (22) implies the G̊arding inequality, which is
more general than (21) (see, e.g., [23, p.102]).

In [16] Dindoš, Li and Pipher gave three kinds of p-ellipticity for second or-
der elliptic systems, which generalize the concepts of strong, integral, and weak
ellipticity.

In [14] we have further extended these concepts within the theory of functional
dissipativity. These are the precise definitions for the operator (18).

We say that the tensor {ahk
ij (x)} satisfies the strong Φ-ellipticity condition if

there exists κ > 0 such that

Re〈A hk(x)ξk, ξh〉 − Λ2(t)Re〈(A hk(x)− (A kh)∗(x))ω, ξh〉Re〈ω, ξk〉

+Λ(t)〈A hk(x)ω, ω〉Re〈ω, ξk〉Re〈ω, ξh〉 > κ|ξ|2
(23)

a. e. in Ω, for any ξh, ω ∈ C
m, |ω| = 1, t > 0.

We say that the tensor {ahk
ij (x)} satisfies the integral Φ-ellipticity condition if

there exists κ > 0 such that

Re
∫

Ω

(
〈A hk ∂kv, ∂hv〉+ Λ(|v|) |v|−2〈

(
A hk−(A kh)∗

)
v, ∂hv〉Re〈v, ∂kv〉

−Λ2(|v|) |v|−4〈A hk v, v〉Re〈v, ∂kv〉Re〈v, ∂hv〉
)
dx > κ

∫
Ω
|∇v|2dx

(24)

holds for any v ∈ [C̊1(Ω)]m. We note that if there are no lower order terms, as in
the case we are considering here, the concepts of strong dissipativity and integral
ellipticity are equivalent, thanks to Lemma 2.2 in [14, p.294]. This is not the case
if there are lower order terms. The Φ-ellipticity is still given by (24), while the
formula for Φ-dissipativity has to be changed, taking into account the lower order
terms.
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As in the classical case, (23) implies that the integrand in (24) is non-negative
almost everywhere and therefore strong Φ-ellipticity implies integral Φ-ellipticity.

We say that the tensor {ahk
ij (x)} satisfies the Legendre-Hadamard Φ-ellipticity

condition (or weak Φ-ellipticity condition) if there exixts κ > 0 such that

Re〈(A hk(x)qhqk)λ, λ〉 − Λ2(t)Re〈(A hk(x)qhqk)ω, ω〉(Re〈λ, ω〉)2

+Λ(t)Re(〈(A hk(x)qhqk)ω, λ〉 − 〈(A hk(x)qhqk)λ, ω〉)Re〈λ, ω〉

> κ |q|2|λ|2
(25)

a. e. in Ω, for any q ∈ R
N , λ, ω ∈ C

m, |ω| = 1, t > 0.
If ϕ(t) = tp−2 and then Λ(t) = −(1−2/p), conditions (23), (24), and (25) coincide

with (17), (20), and (31) of [16], respectively.
We remark that, if condition (20) holds true, then inequalities (23) and (25) for

any t > 0 are equivalent to

Re〈A hk(x)ξk, ξh〉 − Λ2
∞ Re〈(A hk(x)− (A kh)∗(x))ω, ξh〉Re〈ω, ξk〉

+Λ∞〈A hk(x)ω, ω〉Re〈ω, ξk〉Re〈ω, ξh〉 > κ|ξ|2

and

Re〈(A hk(x)qhqk)λ, λ〉 − Λ2
∞ Re〈(A hk(x)qhqk)ω, ω〉(Re〈λ, ω〉)2

+Λ∞ Re(〈(A hk(x)qhqk)ω, λ〉 − 〈(A hk(x)qhqk)λ, ω〉)Re〈λ, ω〉

> κ |q|2|λ|2,

respectively (see [14]).
These concepts are interesting also in the case N = 1, when A is the ordinary

differential operator

Au = (A (x)u′)′ , (26)

A (x) = {aij(x)} (i, j = 1, . . . ,m) being a matrix with complex locally integrable
entries defined in the bounded or unbounded interval (a, b) ⊂ R.

It is natural to ask what are the relations between the functional dissipativity
and the different notions of functional ellipticity for the operator (19). Indeed we
have

Theorem 5.3 [14]: Let N = 1 and A be the operator (26). Assume (20) holds.
The following statements are equivalent:

(a) the operator A is strict LΦ-dissipative;
(b) there exists κ > 0 such that A− kI(d2/dx2) is LΦ-dissipative;
(c) the matrix {aij(x)} satisfies the strong Φ-ellipticity condition;
(d) the matrix {aij(x)} satisfies the integral Φ-ellipticity condition;
(e) the matrix {aij(x)} satisfies the weak Φ-ellipticity condition.

A slightly different result holds in higher dimensions for the operator (19).

Theorem 5.4 [14]: Let N > 2 and A be the operator (19). Assume (20) holds.
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The following statements are equivalent:

(a) the operator A is strict LΦ-dissipative;
(b) there exists κ > 0 such that A− k∆ is LΦ-dissipative;
(c) the matrix {aij(x)} satisfies the integral Φ-ellipticity condition;
(d) the matrix {aij(x)} satisfies the weak Φ-ellipticity condition.

Moreover, if the matrix {aij(x)} satisfies the strong Φ-ellipticity condition, then
(a)-(d) hold.
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[11] A. Cialdea and V. Maz’ya. The Lp-dissipativity of first order partial differential operators, Complex
Var. Elliptic Equ., 63, 7-8 (2018), 945-960

[12] A. Cialdea and V. Maz’ya. The Lp-dissipativity of certain differential and integral operators, In:
Differential equations, mathematical physics, and applications: Selim Grigorievich Krein centennial,
Contemp. Math., 734 (2019), Amer. Math. Soc., Providence, RI, 77–93

[13] A. Cialdea and V. Maz’ya. Criterion for the functional dissipativity of second order dif-
ferential operators with complex coefficients, Nonlinear Anal., 206 (36):112215 (2021),
DOI:10.1016/j.na.2020.112215

[14] A. Cialdea and V. Maz’ya. The functional dissipativity of certain systems of partial differential equa-
tions, J. Math. Sci. (N.Y.), 268, 3 (2022), 291-309

[15] A. Cialdea and V. Maz’ya. Criterion for the functional dissipativity of the Lamé operator, Eur. J.
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