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Jeffery-Hamel flow is the flow between two planes that meet at an angle and was analyzed
by Jeffery (1915) and Hamel (1917).

We consider the flow between two surfaces that meet at the edge of a dihedral (angle),
whose sides are the tangent planes, inclined, in general, of the surfaces at the edge of the
above dihedral.

In the zero approximation of hierarchical models for fluids the full accordance is shown
of peculiarities of setting the Dirichlet and Keldysh type boundary conditions by motion of
the fluids in pipes of angular cross-sections with the results of experiments carried out by
J. Nikuradse in L. Prandtl’s Laboratory at University of Göttingen.
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Introduction

Jeffery-Hamel flow is the flow between two planes that meet at an angle and was
first analyzed by Jeffery (1915) [1] and Hamel (1917) [2]. It has subsequently been
studied by von Kármán and Levi-Civita [3], Nikuradse Johann (Ivane) [4], [5], [6]
(see below Section 8), Dean [7], Rosenhead [8], Landau and Lifshitz [9], Fraenkel
[10].

We consider the flow between two surfaces that meet at the edge of a dihedral
(angle), whose sides are the tangent planes inclined, in general, of the surfaces at
the edge of the above dihedral.

In the zero approximation of hierarchical models for fluids we will show the full
accordance of peculiarities of setting the Dirichlet and Keldysh type boundary
conditions by motion of the fluids in pipes of angular cross-sections with the re-
sults of experiments carried out by J. Nikuradse (see [4]-[6], [11] and also [12]) in
L. Prandtl’s Laboratory at University of Göttingen.

In other words we will prove mathematically that usual (common) for viscous
fluid boundary condition of sticking (i.e., equality of the wall and the fluid ve-
locities) at a wall near the edge of the dihedral angle should be replaced by the
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boundedness of the fluid velocity in a neighborhood of the edge of the above dihe-
dral.

In Section 1 we give a brief exposition of the 3D prismatic shell-like domains
angular (tapered, cusped), in general, (see [13], [14], [15], [16]) and discuss a geom-
etry of their cross-sections which will serve as cross-sections of pipes and divergent
or convergent canals.

In Section 2 we introduce mathematical moments of functions.
In Section 3 we briefly sketch 3D governing equations of the Newtonian viscous

fluid.
In Section 4 we present the governing equations of the models of the first and,

second type in the N = 0 approximation (see also [17]).
In Section 5 we rewrite the governing equations of Section 4 for the case h = h0x

κ
2 ,

h0, κ = const > 0.
In Section 6 we formulate Dirichlet and Keldysh type BVPs for an equation with

type and order degeneracy and give criteria of their well-posedness as a theorem.
In Section 7 we investigate well-posedness of BVPs for the equations of Section 5.
In Section 8 we briefly describe two experiments of J. Nikuradse [5], [6], [11],

[12], compare results of Section 7 and Section 8, and make conclusions.

1. Prismatic shell-like 3D domains

First a few words about prismatic shells (see also [13]-[16]).
Let us consider prismatic shells (see, Figures 1 and etc., and also [13]-[16]),

occupying 3D domain Ω with the projection ω (on the plane x3 = 0) and the face
surfaces

x3 =
(+)

h (x1, x2) ∈ C2(ω) and x3 =
(−)

h (x1, x2) ∈ C2(ω), (x1, x2) ∈ ω.

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0, (x1, x2) ∈ ω, (1)

is the thickness of the prismatic shell. A part of ∂ω, where the thickness vanishes,
i.e., 2h = 0, is said to be a cusped edge. If in the symmetric case (see below
Figure 3) ∂ω contains it smoothly, we shall call it a blunt edge, otherwise, i.e., the
points of the cusped edge are points of nonsmoothness of ∂ω, we shall call it a
sharp edge (see Figures 2, 3). In the nonsymmetric case the cusp edge we shall call
blunt provided at least one tangent to a profile is orthogonal to the shell projection
(see Figures 6-12).

Let

2h̃(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2), (x1, x2) ∈ ω. (2)

In the case of the symmetric prismatic shell, i.e., when

(−)

h (x1, x2) = −
(+)

h (x1, x2),



Vol. 25, 2024 87

evidently

2h̃(x1, x2) ≡ 0, (x1, x2) ∈ ω.

Distinctions between the prismatic shell of a constant thickness and the standard
shell of a constant thickness are shown in the Figures 4, 5, where cross-sections of
the prismatic shell of a constant thickness with its projection and of the standard
shell of a constant thickness with its middle surface are given in red and green
colors, respectively, with common parts in blue. In other words, the lateral bound-
ary of the standard shell is orthogonal to the “middle surface” of the shell, while
the lateral boundary of the prismatic shell is orthogonal to the prismatic shell’s
projection on x3 = 0 (see [15], [16])

In particular, let ω be a domain bounded by a sufficiently smooth arc (∂ω \ γ0)
lying in the half -plane x2 > 0 and a segment γ0 of the x1−axis (x2 = 0). Let the
thickness look like (see Figures 2, 3)

2h(x1, x2) = 2h0x
κ
2 , h0, κ = const > 0, (3)

evidently

Figure 1. A prismatic shell of constant thickness. ∂Ω is a Lipschitz boundary

Figure 2. A sharp cusped prismatic shell
with a semicircle projection. ∂Ω is a
Lipschitz boundary

Figure 3. A cusped plate with sharp γ1

and blunt γ2 edges, γ0 := γ1∪γ2. ∂Ω is
a non-Lipschitz boundary

Figure 4. Comparison of cross-sections of
prismatic and standard shells

Figure 5. Cross-sections of a prismatic (left) and
a standard shell with the same mid-surface
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which corresponds to the case

(±)

h (x1, x2) =
(±)

h0xκ
2 ,

(±)

h0 = const,
(+)

h0 >
(−)

h0 , 2h0 :=
(+)

h0 −
(−)

h0 .

In this case we have to do with a blunt edge for κ < 1 and with a sharp edge for
κ ≥ 1, respectively.

In Figures 6-20 (ϕ̂ is the angle at the cusp between tangents
(+)

T and
(−)

T , ν
is an inward normal at O to ∂ω) we show some characteristic (typical) profiles
(cross-sections) of cusped prismatic shells.

2. Mathematical moments of functions

The rth order moment of the function f(x1, x2, x3) is defined as follows (see [13]-
[15], [18]):

fr(x1, x2) :=

(+)

h (x1, x2)∫

(−)

h (x1, x2)

f(x1, x2, x3)Pr(ax3 − b)dx3, r = 0, 1, 2, ..., (4)

Figure 6. A cross-section of a blunt cusped pris-
matic shell (ϕ̂ = π

2
). It has a Lipschitz boundary

Figure 7. A cross-section of a blunt cusped pris-
matic shell (ϕ̂ ∈]0, π

2
[). It has a Lipschitz boundary

Figure 8. A cross-section of a blunt cusped pris-
matic shell (ϕ̂ = 0). It has a non-Lipschitz bound-
ary

Figure 9. A cross-section of a blunt cusped plate
(ϕ̂ = π). It has a Lipschitz boundary

Figure 10. A cross-section of a blunt cusped pris-
matic shell (ϕ̂ = π

2
). It has a Lipschitz boundary

Figure 11. A cross-section of a blunt cusped pris-
matic shell (ϕ̂ ∈]π

2
, π[). It has a Lipschitz bound-

ary
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Figure 21. Divergent and convergent canals

where Pr Legandre Polynomials (see below (8)),

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)
h(x1, x2)

, (5)

we remined

2h(x1, x2) =
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0, (6)

2h̃(x1, x2) =
(+)

h (x1, x2) +
(−)

h (x1, x2) > 0, (7)

x
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Figure 12. φ̂ = π
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Figure 13. Wedge, φ̂ ∈]0, π[

T
(+)

T
(-) x

2

Figure 14. φ̂ = 0
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Pr(τ) =
1

2rr!
dr(τ2 − 1)r

dτ r
, r = 0, 1, · · · , (8)

τ = ax3 − b =
2

(+)

h (x1, x2)−
(−)

h (x1, x2)
x3

−
(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2)−
(−)

h (x1, x2)
, (9)

(
m +

1
2

)
a

(+)

h (x1, x2)∫

(−)

h (x1, x2)

Pm(ax3 − b)Pn(ax3 − b)dx3 = δmn.

Sufficiently smooth function f may be represented as the following Fourier-
Legendre series (see e.g. [13])

f(x1, x2, x3) =
∞∑

r=0

a
(
r +

1
2

)
frPr(ax3 − b). (10)

3. 3D governing equations of the Newtonian viscous fluid

Let us recall the governing equations of the Newtonian viscous fluid (see e.g., [19],
Ch. 2 Conservation of mass and Momentum, Ch. 6 Viscosity and the Navier-Stokes
equations and [20], Ch 1, §1 Classical fluids and Navier-Stokes system or [17]):

As is well known, motion of the Newtonian fluid is characterized by the following
equations

ρ
dvi(x1, x2, x3, t)

dt
= σji,j(x1, x2, x3, t) + Φi(x1, x2, x3, t), i = 1, 3, (11)

σji = −δjip + λδjiϑ(v) + 2µεji(v), i, j = 1, 3, (12)

εji(v) :=
1
2

(
vj,i+vi,j

)
, i, j = 1, 3, (13)

ϑ := εii = vk,k =: divv, (14)

λ := µ′ − 2
3
µ

where v := (v1, v2, v3) is a velocity vector, σij is a stress tensor, εij is a velocity
tensor, p is a pressure, Φi, i = 1, 3, are components of the volume force, µ is
the viscosity, µ′ is the second viscosity1, ρ is a density of the fluid. Throughout

1µ′ = 0 for the Stokes case, in gases µ′ may be positive [19]
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the paper we use, on the one hand Einstein’s summation convention on repeated
indices. Latin indices run values 1,2,3, while Greek indices run values 1,2 and on
the other hand, the simplified notation for the partial derivative e.g.,

∂σji

∂xj
=: σji,j . (15)

As well-known an incompressible fluid is defined as the fluid whose volume or
density doesn’t change with pressure (see e.g. [19], p. 6 and p. 17). In reality,
rigorous incompressible fluid doesn’t exist.

In the case of incompressible barotropic fluids, to the system (11)-(13) we add
the equation

divv = 0, (16)

which expresses a fact that the velocity of change of cubical dilatation of each
parcel of moving fluid is unchangeable (constant) during moving.

In general, for compressible fluids continuity equation has the form

dρ

dt
+ ρdivv = 0 (17)

[this last equation can also be written as

∂ρ

∂t
+ div(ρv) = 0 (18)

clearly, for ρ = const from (17) we get again (16) and should be also added the
state equation

χ(ρ, p) = 0, (19)

where χ is a certain function defining the state equation.

4. 2D governing equations of the models of the first and second type in the
N = 0 approximation

Considering the governing equations (11)-(14) and (16) in the prismatic shell-like
3D domain containing the fluid under consideration and integrating within the

limits
(−)

h (x1, x2) and
(+)

h (x1, x2) with respect to the thickness variable x3, we obtain

σαβ0,α +
0
Xβ = ρ

dvβ0

dt
, i = β = 1, 2 (20)

σα30,α +
0
X3 = ρ

dv30

dt
, i = 3 (21)
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where

0
Xi :=

(+)
σ 3i −

(+)
σ γi

(+)

h ,γ −
(−)
σ 3i +

(−)
σ γi

(−)

h ,γ + Φi0, i = 1, 3

Providing as known stresses on the face surfaces, and, bearing in mind

vk(x1, x2, x3, t) =
1

2h(x1, x2, t)
vk0(x1, x2, t),

from (12) we have correspondingly for j = β and j = 3

σαβ0 = −δαβp0 + λδαβ

(
vγ0,γ − h,γ

h vγ0

)

+µ
[(
−h,α

h vβ0 − h,β

h vα0

)
+ vβ0,α + vα0,β

]

= −δαβp0 + λδαβhṽγ0,γ + µh (ṽα0,β + ṽβ0,α) , α, β = 1, 2,

(22)

and

σ3β0 = µ

(
−h,β

h
v30 + v30,β

)
= µhṽ30,β, β = 1, 2; (23)

σ330 = −p0 + λvγ0,γ (24)

where

ṽj0 :=
vj0

h
. (25)

From (20) and (21) after substituting there (22) and (23) respectively, we obtain
the following governing equations

(h
0

p̃0),β +
[
λh

0

ṽγ0,γ

]
,β +

[
µh

(0

ṽα0,β +
0

ṽβ0,α

)]
,α +

0
Xβ = ρh

∂
0

ṽβ0

∂t
, β = 1, 2; 1 (26)

(
µh

0

ṽ30,α

)
,α +

0
X3 = ρh

∂
0

ṽ30

∂t
, (27)

provided ρ = ρ(x1, x2) and we consider Stoke’s approximation.

1In terms of
0
p0 moment for presure the first term in (26), (30) looks like

0
p0,β ,

because of

0
p̃0 :=

0
p0

h
.
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From (16) by virtue of (14), using integration by parts, we get to the system
(26), (27) the additional equation

vγ0,γ − h,γ
h

vγ0 = 0, (28)

i.e., in terms of weighted moments (see (25))

(h
0

ṽγ0),γ −h,γ
0

ṽγ0 = 0,

whence

0

ṽγ0,γ = 0. (29)

In the stationary case, bearing in mind (29), from (26) we obtain

(h
0

p̃0),β +(µh),α (
0

ṽα0,β +
0

ṽβ0,α) + µh
0

ṽβ0,αα +
0
Xβ = 0, β = 1, 2.

Differentiating the last with respect to xβ and then summing over β we get

(h
0

p̃0),ββ +(µh),αβ (
0

ṽα0,β +
0

ṽβ0,α) + (µh),α
0

ṽα0,ββ + (µh),β
0

ṽβ0,αα +
0
Xβ,β = 0,

So, having found
0

ṽ10,
0

ṽ20, from (26), we have got Poisson equation for p0 and

singular Poisson equation for
0

p̃.

4.1. The first type model

In the case of the first type model on the face surfaces stress vectors are assumed
to be prescribed, while the values of velocities on the face surfaces are replaced by
the first terms of their Fourier-Legendre expansions (see (10)):

(±)
v i(x1, x2, x3, t) := vi(x1, x2,

(±)

h (x1, x2), t) =
1
2h

vi0(x1, x2, t).

The governing system as it follows correspondingly from (26) and (27), respec-
tively, looks like:

(h
0

p̃0),β +
[
λh

0

ṽγ0,γ

]
,β +

[
µh

(0

ṽα0,β +
0

ṽβ0,α

)]
,α +

0
Xβ = ρh

∂
0

ṽβ0

∂t
, (30)

(
µh

0

ṽ30,α

)
,α +

0
X3 = ρh

∂
0

ṽ30

∂t
, (31)

provided ρ = ρ(x1, x2), we consider Stoke’s approximation, and β = 1, 2.
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From (16) we get the additional equation to system (30), (31)

vγ0,γ − h,γ
h

vγ0 = 0, (32)

i.e., in terms of weighted moments

(h
0

ṽγ0),γ −h,γ
0

ṽγ0 = 0, (33)

whence

0

ṽγ0,γ = 0. (34)

In the stationary case, bearing in mind (34), from (30) we obtain

(h
0

p̃0),β +(µh),α (
0

ṽα0,β +
0

ṽβ0,α) + µh
0

ṽβ0,αα +
0
Xβ = 0, β = 1, 2. (35)

Differentiating the last with respect to xβ and then summing with respect to β we
get

(h
0

p̃0),ββ +(µh),αβ (
0

ṽα0,β +
0

ṽβ0,α) + (µh),α
0

ṽα0,ββ (36)

+(µh),β
0

ṽβ0,αα +
0
Xβ,β = 0.

Therefore, if µh = const we have

(h
0

p̃0),ββ = − 0
Xβ,β. (37)

Further, in the stationary case from (35) and (31) it follows

0

ṽβ0,αα = − 1
µh

[ 0
Xβ + (h

0

p̃0),β
]
, β = 1, 2, (38)

and

(
µh

0

ṽ30,α

)
,α = − 0

X3. (39)

Remark 5. If h = const by virtue of (34), clearly, (30) takes the form

0

p̃0,β + µ
0

ṽβ0,αα + h−1
0
Xβ = ρ

∂
0

ṽβ0

∂t
, β = 1, 2, (40)

differentiating the last with respect to xβ and then summing over β we obtain

0

p̃0,ββ + h−1
0
Xβ,β =

[
ρ
∂

0

ṽβ0

∂t

]
,β = ρ,

β

∂
0

ṽβ0

∂t
. (41)
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4.2. The second type model

Now, we construct the second type of hierarchical models for Newtonian viscous
fluids, acting similarly as at the beginning of Section 4 but this time we assume
that on the face surfaces the velocities are prescribed and by calculations during
constructing the hierarchical models values of the stress vector components on the
face surfaces are replaced by the first term

(±)
σ ji(x1, x2, x3) =

1
2h

σji0(x1, x2) =
1
2
σ̃ji0(x1, x2), i, j = 1, 3. (42)

of their Fourier-Legendre expansions:

σji =
∞∑

r=0

a

(
r +

1
2

)
σjirPr(ax3 − b), i, j = 1, 3, (43)

we arrive at the governing system of the following form (see [17], and also [22])

−q0,β +
{

λ
[
(lnh),γ

0

ṽγ0 +
1
2

0
Ψl′l′

]}
,β +

{
µ
[
(
0

ṽα0,β +
0

ṽβ0,α) + (lnh),β
0

ṽα0

+(lnh),α
0
wβ0 + h−1

0
Ψαβ

]}
,α +

0
Y β = ρh−1 ∂vβ0

∂t
= ρ

∂ṽβ0

∂t
, β = 1, 2, (44)

{
µ
[0

ṽ30,α + (ln h),α
0

ṽ30

]}
,α +h−1

0
Ψα3,α +

0
Y 3 = ρh−1 ∂v30

∂t
= ρ

∂ṽ30

∂t
, (45)

where
0
Y j = 1

hΦj0, j = 1, 3,
0
Ψji depend linearly on the values of the velocities on

the face surfaces, namely,

0
Ψαβ := −ṽα(x1, x2,

(+)

h (x1, x2), t)
(+)

h ,β +ṽα(x1, x2,
(−)

h (x1, x2), t)
(−)

h ,β

−ṽβ(x1, x2,
(+)

h (x1, x2), t)
(+)

h ,α +ṽβ(x1, x2,
(+)

h (x1, x2), t)
(+)

h ,α ;

0
Ψα3 := ṽα(x1, x2,

(+)

h (x1, x2), t)− ṽα(x1, x2,
(−)

h (x1, x2), t)

−ṽ3(x1, x2,
(+)

h (x1, x2), t)
(+)

h ,α +ṽ3(x1, x2,
(+)

h (x1, x2), t)
(+)

h ,α ;

0
Ψ3β := −ṽ3(x1, x2,

(+)

h (x1, x2), t)
(+)

h ,β +ṽα(x1, x2,
(−)

h (x1, x2), t)
(+)

h ,β

+ṽβ(x1, x2,
(+)

h (x1, x2), t)− ṽβ(x1, x2,
(+)

h (x1, x2), t);

0
Ψα3 := ṽ3(x1, x2,

(+)

h (x1, x2), t)− ṽ3(x1, x2,
(−)

h (x1, x2), t).
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(h
0

ṽγ0),γ +
0
V = 0 (46)

with

0
V := −ṽα(x1, x2,

(+)

h (x1, x2), t)
(+)

h ,α +ṽα(x1, x2,
(−)

h (x1, x2), t)
(−)

h ,α

+ṽ3(x1, x2,
(+)

h (x1, x2), t)− ṽ3(x1, x2,
(−)

h (x1, x2), t).

In the case under consideration i.e., when functions prescribed on the face surfaces
are equal to zero (see notes before formula (48) and after formulas (48) and (49)
below) (46) turns into the identity 0 = 0.

Note that 2D approximate governing equations we have derived by direct in-
tegral averaging and then the obtained called the N = 0 approximation since it
may be also obtained, from the Nth order approximation of hierarchical models
constructed in [17] by I.Vekua’s dimension reduction method [13], [14], [15] applied
to fluids contained in prismatic shell-like domains, taking N = 0. I.Vekua himself
used own method to elastic prismatic shells (see [13], [14]), where he also pointed
out importance of investigation of BVPs for cusped prismatic shells (for survey of
results in this direction see [21]).

5. The governing equations of subsections 4.1 and 4.2 for the case (3)

Let now µ = const and

h(x1, x2) = h0x
κ
2 , κ = const ≥ 0, h0 = const > 0, 0 ≤ x2 ≤ L ≤ +∞

ω := {x1, x2 : 0 ≤ x2 ≤ L ≤ +∞, −∞ ≤ L1 < x1 < L2 ≤ +∞}.
(47)

Then in the stationary case, neglecting volume forces, from (45) we have

x2
2

(
0
w30,11 +

0
w30,22

)
+ κx2

0
w30,2 − κ

0
w30 = 0 (48)

provided on the face surfaces velocities are zero and from (39), we have

x2

(0

ṽ30,11 +
0

ṽ30,22

)
+ κ

0

ṽ30,2 = 0 (49)

provided on the face surfaces stress vectors are zero.
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6. On Dirichlet and Keldysh type problems for an equation with type and
order degeneration

Let us consider the equation

L(u) := ym ∂2u

∂x2
+ yn ∂2u

∂y2
+ a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = 0, (50)

m,n = const ≥ 0,

in a domain ω (see Figure 22) bounded by a sufficiently smooth arc ω1 lying in the
upper half-plane y ≥ 0 and by a segment ω0 of the x-axis;

a, b, c,∈ A(ω̄),

c ≤ 0 in ω̄, (51)

where A(ω̄) is the class of functions analytic on ω̄ with respect to x, y.

Figure 22. Projection of the 3D domain on plane x3 = 0

Let us examine two boundary value problems:

Problem (Dirichlet Problem). Find u ∈ C2(ω) ∩ C(ω̄) in ω from prescribed
continuous values of L(u) in ω and of u on the entire boundary ∂ω.

Problem (Keldysh Problem). Find bounded u ∈ C2(ω) ∩C(ω ∪ ω1) in ω from
prescribed continuous values of L(u) in ω and of u only on the part ω1 of the
boundary ∂ω.

C(ω̄) is a set of functions continuous on closure of ω. C2(ω) is a set of functions
with continuous derivatives of orders ≤ 2 in ω.

Let

Iδ := {(x, y) ∈ ω : 0 < y < δ, δ = const > 0}. (52)

Theorem 6.1 : If
either n < 1,

Nato
Typewritten text
o
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or n ≥ 1 and

b(x, y) < yn−1 on Īδ, (53)

the Dirichlet problem is well-posed while the Keldysh problem has an infinite number
of solutions.

If n ≥ 1 and

b(x, y) ≥ yn−1 in Iδ, (54)

and in addition

a(x, y) = O(ym), y → 0+ (55)

(O is the Landau symbol), the Keldysh problem is well-posed while the Dirichlet
problem, in general, has no solutions.

For the proof see [23] and compare with [24].

7. On well-posedness of BVPs for equations of Section 5

Clearly, when the effects of its viscosity may be supposed to be negligible, we
get models for perfect fluids. Initial, contact, and boundary value conditions from
classical ones we rewrite in the explained in the present paper way of passage to the
moments. The governing equations are singular differential equations, in the case
of angular 3D domains. On transparent examples it is shown that by investigating
well-posedness of BVPs, boundary conditions may be nonclassical, in general.

In order to illustrate it we analyse two concrete examples when geometry of
angular 3D domain is defined by

h(x1, x2) = h0x
κ
2 , κ ≥ 0, 0 ≤ x2 ≤ L ≤ ∞, L1 < x1 < L2. (56)

L1 = −∞, L2 = +∞ are admissible as well.
In this case we have to do with the two equations (48) and (49).
Equations (48) and (49) are singular PDEs, in other words PDEs with the order

and type degeneracy with the order degeneracy line x2 = 0.
Applying Theorem 6.1 we conclude:
For equation (48) m = n = 2 only (54), since κx2 ≥ x2 is fulfilled therefore. only

the Keldysh Problem is well-posed and it’s only then, when κ ≥ 1.
For equation (49) m = n = 1 and since (53) for κ < 1 and (54) for κ ≥ 1 are

fulfilled and, therefore when κ < 1 the Dirichlet and when κ ≥ 1 the Keldysh BVPs
are well-posed.

We consider fluid flow in prismatic shell-like 3D domain when at the edge of the
3D domain tangent half-planes to the face surfaces create dihedral angle with line
angle ϕ. It will be observed that considering viscous flow near the fixed dihedral an-
gle, replacing the boundary condition − velocity v = 0 on the edge by boundedness
of velocity v in a neighborhood of the edge for κ ≥ 1 i.e., ϕ ∈ [0, π[, in particular,
of the mathematical cusp it means κ > 1, i.e., ϕ = 0, as it is in the case of the
Keldysh problem. When the face surfaces smoothly pass each in other it means for
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κ < 1 i.e., ϕ = π the Dirichlet problem is well-posed and the boundary condition
should be v = 0. These results are in a good accordance with the viscous boundary
layer concept, according to experimental results of J. Nikuradse (see below Section
8).

A case of non-homogeneous viscosity is discussed as well.

7.1. Case of a non-homogeneous fluid

Let in addition

µ(x1, x2) = µ0x
κ∗
2 , µ0, κ

∗ = const ≥ 0, 0 ≤ x2 ≤ L, L1 < x1 < L2, (57)

then from (45) we have

x2
2

0

ṽ30,αα + (κ + κ∗)x2

0

ṽ30,α + κ(κ∗ − 1)
0

ṽ30 = 0.

Similarly to investigation of equation (48) for (κ + κ∗) ≥ 1 (53) is fulfilled and
hence only the Keldysh problem is well-posed under additional restriction κ∗ < 1
[the last is needed in order to satisfy the condition (51). From (39) we get

x2

0

ṽ30,αα + (κ + κ∗)xκ+κ∗−1
2

0

ṽ30,α = 0, (58)

(xκ+κ∗
2

0

ṽ30,α),α = 0, (59)

i.e.,

x2

0

ṽ30,αα + (κ + κ∗)
0

ṽ30,α = 0. (60)

Similarly to investigation of equation (49), for (κ + κ∗) < 1 the Dirichlet problem
is well-posed, while for (κ + κ∗) ≥ 1 the Keldysh problem is well-posed (see p. 17).

8. About two experiments of Johhan (Ivane) Nikuradse. Conclusions of the
present paper

While constructing and investigating hierarchical mathematical models for motion
in angular containers of viscous fluid by Ilia Vekua’s dimension reduction method
it turned out that a usual (common) condition of sticking of the fluid at fixed wall
was violated (inadmissible) which was mathematically expressed in that, that for
well-posedness of BVP it was necessary instead of sticking of the fluid at dihedral
edge to demand boundedness of the fluid velocity in a neighbourhood of the edge.
In other words, in this case the Dirichlet boundary condition should be replaced
by the Keldysh condition, i.e. the Dirichlet BVP is not well-posed in exchange for
the Keldysh BVP which is well-posed. All that caused my interest to results of
experiments in this field, e.g., to movement of fluids in pipes with angular cross-
sections. From [11], [12] I found out two works of J. Nikuradse: [6] and [4].
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[6] is devoted to experimental investigations of turbulent flows in non-circular
pipes.

Here I quote the author (Nikuradse): “The task of the present work was to
clarify the secondary movements in pipes with a non-circular cross-section on the
basis of system tests. For this purpose, turbulent flows in such pipes were exam-
ined, namely, in pipes: 1) of triangular cross-section: a) equilateral, b) equilateral-
rectangular and c) non-equilateral-rectangular; 2) of trapezoidal cross-section and
3) of circular cross-sections: a) with one groove and b) with two grooves. The
work disintegrates into two parts: In the first part, the velocity distributions were
measured and represented in the form of isotaches (i.e. lines of equal velocities
of the main stream) which clearly show that the liquid flows into angles of the
pipe cross-sections, divides into two parts there and returns. This causes whirls in
the angles of the cross-sections. It has also been proven that the velocity grows
along the bisectrix with the 5

7th power of the distance from the angle tip. From
the velocity distributions and the pressure slope, the shear stress distribution on
the wall is calculated and illustrated graphically over the circumference of the pipe
cross-section.”

In other words, leading in a dye in the main stream J. Nikuradse experimen-
tally established the existence of secondary transversal streams in angles of the
cross-section that at firsts flows parallel to bisectrix and then with the decreased
energy comes back along the isotach to core of the main stream which is out of the
boundary layer. Thus, near the edge of dihedral angles will be formed whirls.

The form of the isotaches, i.e. of the lines denoting the same velocities of the
main stream (see Fig. 23a) in the cross-section of the form of an equilateral triangle,
is obtained when we have the Secondary transversal streams shown in Fig. 23b.
L. Prandtl [25] theoretically justified the existence of these secondary transversal
streams by constructing the so-called streamlines (a streamline is a line whose
tangents at each point coincides with the direction of the velocity of a fluid particle
at the same point, which means that at any moment of time the particle moves
along the flow streamline).

Here from [4] I quote again the author (Nikuradse):
The report given here deals with the investigation of turbulent two-dimensional
flows in canal-shaped expanded and narrowed canals (see Figure 21). The cross-
section of the canal was a narrow rectangle, the narrow side was variable while
the width remained constant. With this shape of the canals, one can expect that
there will be a flat flow in the central part of each cross-section. The purpose of

              Figure 23.

                      a) equilaterally cross-section isotaches     b) equilaterally cross-section secondary

                                                                  transversal stream
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the current work was to advance to greater divergence of the canals and to reach
the area where the flow separates from the wall.

The velocity distribution was measured in two successive measuring transverse
sections using a Pitot tube. The static pressure was determined at various points
on the measuring plane by drilling into the wall. Since we were sufficiently far away
from the inlet, the velocity profiles now change affinal, i.e. u/U is the same function
of y/b in the two measuring cross-sections, where u is respective velocity, U means
maximum velocity, y is distance from the middle of the canal, b is a half of the
canal width (see Figure 21). Degrees below mean a half of opening angle, positive
for divergent, negative for convergent canals. The divergence did not go beyond 4◦,
since with a larger expansion, around 5◦, the flow already developed asymmetrical,
i.e. rested against one wall, was pushed away from the other wall, and detachment
from one wall occurred when the extension was only slightly elevated.

In [4] J. Nikuradse experimentally studied 2D turbulent flows in wedge shapely
enlarged and narrowed canals, i.e. in divergent and convergent canals. In other
words, the cross-section of the canal is a narrow rectangle. Moreover, a smaller
side is variable, while that longer remarks constant. A half of the linear angle of
the dihedral was -8, -4, -2, 0, 1, 3, 4, 6, 8. He found such an area when the flow
detaches from the wall. Besides, in the zone of detaching constructed longitudinal
velocity profile (it means he has measured velocities) (see also [11], [12]).

From the above it follows that our mathematical results of Section 7 show good
agrement with experimental result of I. Nikuradse.
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