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Preface

The present work is devoted to construction and investigation of high de-
gree precision decomposition schemes for evolution problem, on the basis of
approximation of its solving operator (semigroup).

In the first chapter there are constructed the third order accuracy decom-
position schemes. In the first and second sections there are constructed third
order precision exponential and rational splittings for two-dimensional evolu-
tion problem. In the third section there is constructed decomposition scheme
for multi-dimensional evolution problem. Fourth and fifth sections are devoted
to construction of third order precision sequential type decomposition schemes
for two and multi-dimensional cases.

In the second chapter there is constructed the fourth order accuracy de-
composition schemes for evolution problem. In the sixth and seventh sections
there are constructed fourth order precision exponential and rational splittings
for two-dimensional evolution problem, and in the eighth section is constructed
fourth order precision decomposition scheme for multi-dimensional case. Ninth
section is devoted to construction of fourth order precision sequential type de-
composition scheme.

In the third chapter there are constructed the third order accuracy decom-
position schemes for an evolution problem with variable operator. Namely,
there is considered the case when main operator is a product of scalar function
depending on ¢ and constant operator.

In the tenth and eleventh sections there are constructed third order preci-
sion differential and rational splittings for an evolution problem with variable
operator.

In the appendix there are given results of numerical calculations for heat
transfer equation. These calculations are carried out using existing first and
second order and constructed in this work third order accuracy decomposition
schemes. Comparative analysis of numerical calculations for different order
decomposition schemes is carried out.

Authors



Introduction

It is known that mathematical simulation of processes taking place in
the nature frequently leads to consideration of boundary-value problems for
partial-differential evolution (nonstationary) equation. These kind of prob-
lems can be considered as a Cauchy abstract problem in a Banach space for
an evolution equation with an unbounded operator.

Study of approximated schemes for solution of evolution problems leads to
the conclusion that a certain operator (solution operator of the discrete prob-
lem) corresponds to each approximated scheme. This operator approximates
the solution operator (semigroup) of the initial continuous problem. For exam-
ple, if we use the Rotte scheme for the solution of an evolution problem, then
the solution operator of the difference problem thus obtained will be a discrete
semigroup and we will have the approximation of a continuous semigroup by
discrete semigroups (see [40], Ch. IX). On the other hand, on the basis of the
approximation of a continuous semigroup, we can construct an approximated
scheme for solution of an evolution problem.

Decomposition formulas approximate a continuous semigroup by means of
the combination of the semigroups generated by the addends of the operator
generating this semigroup.

The first decomposition formula for an exponential matrix function was
constructed by Lie in 1875. Trotter generalized this formula for an exponential
operator function-semigroup in 1959 (see [60]). The resolvent analogue of this
formula for the first time was constructed by Chernoff in 1968 (see [8],[9]).
At the same time, in the sixties of the XX century, in order to elaborate
numerical methods for solution of multi-dimensional problems of mathematical
physics, the subject of construction of decomposition schemes has naturally
raised. Decomposition schemes allow to reduce a solution of multi-dimensional
problems to the solution of one-dimensional problems.

First works dedicated to construction and investigation of decomposition
schemes were published in the fifties and sixties of the XX century (see V. B.
Andreev [2], G. A. Baker [3], G. A. Baker, T. A. Oliphant [4], G. Birkhoff, R. S.
Varga [6], G. Birkhoff, R. S. Varga, D. Young [7], J. Douglas [13], J. Douglas,
H. Rachford [14], E. G. Diakonov [10],[11], M. Dryja [15], G. Fairweather, A.
R. Gourlay, A. R. Mitchell [17], I. V. Fryazinov [18]), D. G. Gordeziani [28],
A. R. Gourlay, A. R. Mitchell [32], N. N. Tanenko [33], [34], N. N. Ianenko, G.
V. Demidov [35], A. N. Konovalov [41], G. I. Marchuk, N. N. Ianenko [45], G.
I. Marchuk, U. M. Sultangazin [46], D. Peaceman, H. Rachford [47], V. P. Ilin
[38], A. A. Samarskii [54]-[56], R. Temam [59]). These works became a basis
of the further investigation of decomposition schemes.

We can show that the split problem, obtained by means of a decomposition
method, generates the Trotter formula (see Trotter H. [60]), or the Chernoff
formula (see Chernoff P. R. [8], [9]), or a formula which is a combination of
these formulas. Thus, an estimate of decomposition method is equivalent to



the study of approximation of continuous semigroup by Lie-Trotter and Lie-
Chernoff type formulas. The works of T. Ichinose and S. Takanobu [36], T.
Ichinose and H. Tamura [37], J. Rogava [49], (see also [50], T. II) are devoted
to estimate of error of Lie-Trotter and Lie-Chernoff type formulas.

We call Lie-Trotter type formulas the formulas which approximate a semi-
group by a combination of semigroups generated by the addends of the operator
generating this semigroup.

We call Lie-Chernoff type formulas the formulas which are obtained from
Lie-Trotter type formulas if we replace semigroups by the corresponding ratio-
nal operator functions (resolvents).

Decomposition schemes conditionally can be divided into two groups - dif-
ferential and difference. Lie-Trotter type formulas correspond to differential
decomposition schemes and Lie-Chernoff type formulas - to difference schemes.

Decomposition schemes, associated with the Lie and Trotter formulas, allow
to split a Cauchy problem for an evolution equation with the operator A =
A; + A, into two problems, respectively with the operators A; and Ay, which
are solved sequentially on the time interval with the length ¢/n.

Decomposition schemes associated with the Chernoff formula are known as
the fractional-step method (see N. N. Tanenko [34]).

Decomposition schemes in view of numerical calculation can be divided
into two groups: schemes of sequential account (see for example G. I. Marchuk
[44] ) and schemes of parallel account ( D. G. Gordeziani, H. V. Meladze [30],
[31], D. G. Gordeziani, A. A. Samarskii [29], A. M. Kuzyk, V. L. Makarov
[43]). In [50] (see chapter II), there are obtained explicit a priori estimations
for decomposition schemes of parallel account considered in [30]. There exist
a lot of works devoted to decomposition schemes. For example, see [34], [44],
[57] and the references therein.

In the above-stated works the considered schemes are of the first or second
precision order. As it is known to us, the high accuracy order decomposition
schemes in case of two addends (A = A; + A,) for the first time were obtained
by B. O. Dia and M. Schatzman (see [12]). Note that the formulas constructed
in these works are not automatically stable decomposition formulas. Decom-
position formula is called automatically stable if a sum of the absolute values
of split coefficients is equal to one. Q. Sheng has proved (see [58]) that, on the
real number field, there does not exist such automatically stable splitting of
exp (—tA), the accuracy order of which is higher than two.

The present work is devoted to construction and investigation of the high
order accuracy decomposition schemes for an evolution problem.

In this work, by introducing a complex parameter, the third and fourth
order accuracy decomposition schemes are constructed for a two and multi-
dimensional evolution problems. The main operator of the evolution problem
conditionally is called the m-dimensional split operator if it represents a sum
of m (> 1) addends (A = A; + ... + A;,). The formulas, corresponding to the
constructed schemes, are automatically stable decomposition formulas. For



the considered schemes, there are obtained explicit a priori estimations. Under
the explicit estimation we mean such a priori estimation for the solution error,
where constants in the right-hand side do not depend on the solution of the
initial continuous problem, i.e. are absolute constants.

In the works [19]-[27], [51]-[53],[61],[62] we have constructed the third and
fourth order accuracy decomposition schemes for two and multi-dimensional
homogeneous and inhomogeneous evolution problems. In the present work
these schemes are discussed on the basis of conception that any decompo-
sition formula generates the certain decomposition scheme and, vice versa,
every decomposition scheme generates certain decomposition formula, which
approximates the solving operator (semigroup) of evolution problem.

In Banach space there are constructed the third and fourth order accuracy
decomposition schemes for evolution problem with operator A = A; + Ay +

..+ A, (m > 2), which generates strongly continuous semigroup U (¢, A) =
exp (—tA). These schemes are based on the following decomposition formulas
of semigroup approximation:

Vi(t) =

Va(t) =

where o = 1i17 (i:\/—l),

(t,a) = Ul(t,ady)..U(t,aA,_1)U (t,aA,),
(t,a) = Ul(t,aA,)..U(t,ads) U (t,aAy).

NN

Here upper index defines dimension (Number of addends of the operator A)
of evolution problem. It is meant that the operators (—vA4;), v =1, a, @
(j=1,...,m) generate strongly continuous semigroups and ||U(t,vA4,)| <
et w = const > 0.

For the above stated formulas the following estimations are true:

|(venar-wer) e = 069, ven(ay, j-12
H( (tr, A V(T)]k>90H = O(t"), veD(A), j=34,



where t;, = k7, 7 > 0 is a time step.

In case of homogeneous evolution problem works the obvious rule, accord-
ing to which can be constructed decomposition schemes corresponding to the
above-mentioned formulas. For instance, to Vj (¢) (in case of m = 2) corre-
sponds the following decomposition scheme:

dvl (t
flt( ) + OzAﬂHi (t) = 0, Uli (te-1) = w1 (te-1)
dv? (t
D anf () = 0 R ) = o} (8).
dv3 (t =
_flt( ) +advi(t) = 0, vi(ter) =i (t);
dw} (t =
#() +adowy (t) = 0, wy(te-1) = wer (i),
dw? (t =
£t< ) + Anu;% (t) = 0, wl% (tk-1) = w,i (),
dw? (¢ =
#() +adywp(t) = 0, wp(tys)=wj(t),
1
ug (t) = 2 [op (1) +wi (1)), t€ltemr,tn], k=1,2,...,

where ug (0) is initial value of the u (¢) exact solution of evolution problem. As
an approximate value of u (t) at point t = t; we declare wy, (tx). Precision of
the above-mentioned scheme is O (77).

This estimations remain true if U (¢, A) will be changed corresponding by
the third and the fourth order accuracy rational operator functions:

L1
J— Z—,
37 °3v2

Wit4) = (1-35t4) <I+§tA)_l (I—%tA) (1+5t )_1.

There is shown the stability of the constructed decomposition scheme and
explicit a prior error estimations for approximate solutions are obtained. In the
present work there is also considered case when the main operator is depending
on t, namely it is a product of scalar function dependant on ¢ and the constant
operator.

1

Wt A = (I—%tA) (I+MA)T(T+NMA) T, A=



Chapter 1

The Third Order Accuracy Decomposition
Schemes

81. The third order accuracy decomposition
scheme for non-homogeneous evolution
problem

1. Decomposition scheme and theorem on error estimation
Let us consider Cauchy abstract problem in Banach space X

du (t)
dt

FAut)=f(t), t>0, u(0)=e. (1.1)

Here A is a closed linear operator with the domain D (A), which is every-
where dense in X, ¢ is a given element from D (A), f(t) € C' (X;]0;00)).

Suppose that (—A) operator generates a strongly continuous semigroup,
then solution of the problem (1.1) is given by the formula (see [39],[42]):

t

u(t) =U(t, A)p + / Ut —s,A)f(s)ds, (1.2)

where U (t, A) = exp(—tA) is a strongly continuous semigroup.

Let A= A; + A,, where A; (j = 1,2) are compactly defined, closed linear
operators in X.

Let us introduce a difference net domain:

W, ={ty =kr,k=1,2,....,7 > 0}.
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Along with problem (1.1) we consider two sequences of the following prob-
lems on each [ty_1,t;] interval.

dv,i (t) 1 o /
—g Hadi () 5 f (te) = 200 (te — 1) ' (t),
v (te_1) wp—1 (tr—1) ,
dvl% (t) 2 1 /
—n + Ay (t) §f (ty) — 201 (t — ) f' (L), (1.3)
Vi (tr-1) oy, (tr)
Wl mand () = S0 200 -0 7 )+ B g,
vp (tr—1) vi (tr) 5
dwjt(t) + adywy (1) %f (te) — 200 (ts — t) f' (tr) ,
wy (th_1) uk—1 (te—1),
W)y A (1) = 5 () — 200 (1) ' (t0) (1.4)
wi (tr-1) wy (t)
W) | wawid () = S0 200 (1) 7 () + B g )
wy (tr-1) wi () -

Here 0y, 01, 02 and « are numerical complex parameters with Re («) > 0,
up (0) = ¢. Suppose that (—yA4;), v =1, a, @ (j = 1,2) operators generate
strongly continuous semigroups.

On each [ty_1,tx] (k=1,2,...) interval uy (t) are defined as follows:

1

ur (t) = 5 [0} (6) + 0} ()] (L5)

We declare uy, (t) function as approached solution of the problem (1.1) on
[tkfl, tk] interval.

We shall need natural degrees of the operator A = A; + As. Usually they
are defined as follows:

A2 - (A% + Ag) + (AlAQ + A2A1) 5
AP = (AT + AY) + (ATAs + . 4+ AJA) + (A1 As Ay + Ay AL Ay),

Analogously are defined A%, s > 3. Obviously, the domain D (A®) of the
operator A® is the intersection of the domains of its addends.
Let us introduce the following definitions:

lella = Al + | Axpll, € D(A);

o] 42 | A3e|| + ||A3e|| + A1 Aol + [ A2Arell, @ € D (A?%),

11



where ||-|| is a norm in X. Analogously are defined ||¢]| 4., s > 2.

Theorem 1.1 Let the following conditions be satisfied:

(a)oz—lzlzz%/g (i=v-1);

(b) (—A)), v=1, a, @ (j =1,2) and (—A) operators generate strongly
contmuous semigroups;

(¢) There exist such real number w, that

U, A)|| < Me*, M = const >0,
U4 < et (=12 7v=1Laa);

(d) U (s,A) ¢ € D(AY) for every fized s > 0;
(¢) f(t) € C3([0,00); X):  f(t) € D (A%, fO(t) € D(AF), k=12
fg)ED(A4) for every fized t and s (t,s > 0);

and U (s, A)
(f) o0 = iigal, = st — 220y (04 is any complex number).
Then the followmg estzmatzon §wl CH

lur(t) —u(tn)l| < cetyr? ( sup 1U (s, A) | s
s€[0,tg

+te sup [[U (s, 4) f (D)l 40 + sup [1f (8)]] go

$,6€[0,tx] te(0,tr]

+ sup [|f (042 + sup [Lf7 ()], + S[Lolp]Hf"'(t)H),
t€|0,ty,

te[0,tx] t€[0,ty]
where c,wqy are absolute positive constants.

2. Third order accuracy exponential splitting of semigroup

The solving operator of the homogeneous evolution problem corresponding
to the decomposed problem (1.3)-(1.4) is V* (1), where

V() = 5 W @A, AU (r,ady) + Ur,aAn)U (r, AU (T, ady)]

It is clear that operator V* (7) must approximate solving operator of the ho-
mogeneous evolution problem - semigroup.

The following theorem takes place.

Theorem 1.2 [f the conditions (a), (b), (¢) and (d) of the Theorem 1.1
are satisfied, then for every natural k the following estimation holds:

|[U (te, A) = VE(D)] ¢|| < ce™ 7 sup ||U (s, A) @] pa , (1.6)

s€[0,tg]

where c,wqy are positive constants.

12



Proof. According to the formula (see Kato. T. [40], p. 603):

t
A/U(S,A)ds:U(r,A)—U(t,A), 0<r<t,

r

we can get the following expansion:

E

-1

S
Ut A) =37 (~1) ZA + Re (1, 4), (1.7)
i=0 ’
where
t s1 Sk—1
R (t,A):(—A)’“//... / U (s, A) dsds_1...ds1 (1.8)
0 0 0

Let us consider V(7) and decompose both its items from the right to left
according to the formula (1.7) so that each residual member is of the fourth
order. Then, using elementary algebraic transformations, we shall get:

1 1 ~
V(r)=I—-1A+ ETQAQ - 67'3/13 + Ry (1), (1.9)
where .
R4 (7’) = 5 [RLQ (7') —|—R271 (7’)] s (110)
and where

1
Ri7j (7—) - R4 (7_7 aAl) - TR3 (7—7 aAz) A] + §T2R2 (T, EAZ) A?

1
—éTgRl (’T, EAZ) A? + U (T, aA» R4 (T, AJ>
—OéTRg (T, EAZ) A,L -+ O[TzRQ (T, aA» AjAz

—%CMT3R1 (1,aA;) A?A —atU (1,04;) Rs (1, A;) A

1 1
—1—504272]%2 (1,aA;) A? — §a2¢3R1 (r,ad;) A;A
1 3

1
—|—§oz27'2U (1,aA;) Ry (1, Aj) A7 — 6% TRy (t, @A) A?

— P (A By (7, 4)) A3

+U (’T, EAZ) U (T, AJ) R4 (T, OéAz) 5
ij = 1,2.

According to the formula (1.7) we have:
1 1
U(r, A) :I—TA+572A2 - 673A3+R4 (1, A). (1.11)

13



From equalities (1.9) and (1.11) we have:
U(r,A) =V (1) = Ry (7, A) — Ry (7).

Hence, according to the formula (1.11) and condition (c) of the theorem
we get the following estimation:

U (7,4) =V (D)l < e ol as, ¢ € D(AY). (1.12)
The following decomposition is obvious:

(Ut A) = VE(M)] e = [UF(r,A) = VE(7)] ¢
= Y VDU A -V (DU (7, A).

=1

Hence, according to the formula (1.11) and condition (c) of the theorem
we get the sought estimation. [J

Remark 1.3. [t is obvious that according to the condition of the Theorem
(|U(t,vA;)|| < e*') the norm of the operator V¥ (1) is less or equal to e*0'.
From here follows stability of the above-stated decomposition schema on each
finite time interval.

3. Error estimation for approximate solution

Let us prove the auxiliary Lemmas on which the proof of the Theorem
1.1 is based.

Lemma 1.4. If the conditions (a), (b) and (c) of the Theorem 1.1 are
satisfied, then the following estimation holds:

T

[ ot ay - (§vie0+ i+ §vm)] vl <

< e gl 45, p € D (A%, (1.13)
where
Volrt) = 5 [UG@A)U(r AU (tad) + U (n @A) U (r, AU (1, ads)]
Vi(rt) = % U (7 @A) U (£, As) + U (r,@45) U (£, Ar)]
Vo () = %[U(t,aAl)JrU(t,aAg)].

Here ¢ and wy are positive constants.
Proof. Let us consider Vj (7,t) and decompose both its items from the
right to left according to the formula (1.7) so that each residual member is of

14



the third order. Then, using elementary algebraic transformations, we shall

get:
1 _ t _ t
Vo (r,t) = 5 2l -7 |a+a—+1 ) A+ |a+a—+1) A,
T T
1 t t?
+=7? (@ + 2aa— + o= + 1] 43
2 T T2
—2 _t o 1 2
+ (" +2aa- +a"— +1) A
T T
t _ t _
+ (2&— + 206) A1A2 + <206— + 2@) A2A1):|
T T
+R1,0 (7-7 t) ) (114>
where

1 1
RI,O (T, t) = 5 |:R3 (’T, aAl) — TR2 (T, aAl) AQ + §T2R1 (T, aAl) Ag
+U (7', aAl) Rg (T, AQ) — OétRQ (T, aAl) Al — OZtRQ (T, aAl) Al
+OéTtR1 (7', aA1> A2A1 —atU (7', @Al) R2 (T, Ag) Al
1
+§Q’2t2R1 (7', 6141) A% —+ %@2t2U (T, aAl) R1 (T, Ag) A%
+U (T, aAl) U (T, Ag) Rg (t, OéAl) + R3 (7', aAg)
—TR2 (7’, EAQ) Al + 7'2R1 (7', EAQ) A% + U (7’, 6142) Rg (7’, Al)
—OétRQ (T, aAQ) A2 + OéTtRl (T, aAg) A1A2

1
—atU (T, aAg) RQ (T, Al) AQ + §Oé2t2R1 (T, EAQ) A%

1
+§a2t2U (1,a@A) Ry (1, Ay) A2
+ U (7', aAg) U (T, Al) Rg (t, OéAQ)] .

Let us similarly decompose V; (7,1) :

Vi(rt) — % {21—7 ((a+§> A+ (a+§) Ag)

1y ((, P 2 L, 2
+§T o 4+ ﬁ Al + | o +§ A2 (1.15)
t t
Y2RT AL Ay + 2@;A2A1>] 4 Ruy(mh), (1.16)

where
Rii(rt) — % [Rg (1. TAY) — tRy (7, TA) Ay + %tQRl (r.TA) AZ
+U (1,@A1) Rs (t, A2) + Rs (T,@As) — tRy (1,00 A2) Ay
+%t2R1 (1,0A5) A2 + U (1,a4,) Ry (t, Ay)] .

15



Finally for V5 (¢), we have:
1 t t
() = |27 (atasata)
2 T T
1Ly (ot 5 ot o
+§T (0] ﬁAl + §A2 + RLQ (t) s (117)
where ]
RLQ (t) - 5 [Rg (t,aAl) + Rg (t,aAQ)] .
Finally using decompositions (1.14),(1.16) and (1.17) we have:

« 1 o
Vol 1) + 5 Vilr,0) + S Vall)

1 1 1 1

1_ 1., 1 1 L 5\ 2
— - - —at+-—t" | A
<12a+4oz —|—4a—|—67_oz +4T2 ) 1T

1_ 1., 1 1 I 5\ .2
— - - —at+—t" | A
+(12a+4a —|—404—|—67_oz —|—47_2 ) 2

1 1 1 1
4= 4 (1)
5 + 37_75) A A + (6 + 37_25) AQAl] + RY(7,t), (1.18)

where

1 —
R(l) (7', t) = %Rl,o (7', t) ‘l‘ §R171 (T, t) + %Rl,g (t) .

Let us integrate equality (1.18) from 0 to 7 and group together similar

members:
T

a 1 a 1 1
5 = - = (71— A+ oA
/{2%(T,t)+2‘/1(7‘,t)+2‘/2(t)}g0dt (7 ST A ST )¢
0

+ / R (7,t) pdt.  (1.19)
0

According to the formula (1.7) we have:
A L, L 340 I
Ut,A)pdt = (11 — 57 A+ &7 A% | o+ | Rs(t,A)pdt. (1.20)
0 0

From equalities (1.19) and (1.20) we have:

/ [U (t, A) — (%Vo (1, t) + %Vl (1,t) + g‘/? (t))l odt

T T

= /33 (t, A) cpdt—/R(l) (7,t) . (1.21)

0 0

16



Let us consider the second addend of a right member of the formula (1.21)
and use the formula (1.8). We shall get the following estimation:

T

/R(l) (1,t) pdt|| < ce” 14| plls, @ €D (A3) ) (1.22)
0
Similarly for the first addend we have:

T

/Rg (t, A) pdt|| < ce” 1% ||l 45, ¢ € D (A?). (1.23)
0

From equality (1.21), using inequalities (1.22) and (1.23) we get estimation
(1.13). O

Lemma 1.5. If the conditions (a), (b) and (c) of the Theorem are satisfied,
then the following estimation holds:

/ (U (5, A) — 2 (00Vi (7. 8) + 01Vi (72.8) + 02V (s))] spds
0
< e gl e, 9 € D(A%), (1.24)

where Vo (1,t), Vi(1,t), Va(t) are defined in Lemma 1.4; c¢,wo are posi-
tive constants.

Proof. Let us consider V; (7,t) and decompose it similarly as in Lemma
1.4 with the difference that each residual member is of the second order. Then
we get:

ar+ 717+ at

%(T7t):[_ 2

A + R270 (T, t) y (125)

where

Roo(rit) = 3 [Ro(r,@A) — 7Ry (r,5A) Ao + U (7,341) By (7, Ao)
—atRy (1,@A1) Ay — atU (1,0 A1) Ry (1, Ag) Ay
+U (1,@A;) U (1, As) Ry (t, A1) + Ry (1,0 As) —
TRy (1,@A) Ay + U (1,@A3) Ry (1, A1) — at Ry (1, @A) Ay
—atU (1,@As) Ry (1, A1) Ay + U (1,0 A2) U (1, A1) Ra (t, aAs)] .

Similarly for Vi (7,t) we have:

« t
Vi(rt)=1-2TF

A + RQ,I (Tu t) ) (126)
where

1
RQJ(T, t) = 5 [RQ (7’, aAl) — tRl (T, @Al) A2 + U (7’, aAl) R2 (t, Ag)
+R2 (’T, @Ag) — tRl (7', @Ag) Al + U (7', aA2> R2 (t, Al)] .
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Similarly for V5 (t) we have:
1
Vo(t)=1— §@tA + Ro5 (1), (1.27)

where Ry (t, @A) + Ry (t, @A
R (1) = (6 OA) T (L 04)

Taking into account equalities (1.25),(1.26) and (1.27) we get:

2(ooVo (1,8) + o1 Vi (1, 8) + 02V ()

@ t
= 2 [00 (I — WA + Ro (T, t))

+01 ([ B 7'012+ A + Rg’l (7', t>> + 09 (I — EatA + R272 (T, t))

= 2(op+o01+09) I —|og(ar + 7+ at)+ oy (@1 +t) + orat] A
RO (7 1), (1.28)

where
R(Z) (T, t) =2 (UORQ’O (T, t) —+ 0'1R271 (T, t) + O-QRQ,Q (t)) .

Let us multiply (1.28) on s, integrate it from 0 to 7 and group together
similar members, then we get:

T

/2 (ooVo (1, 8) + 01 V1 (1, 8) + 02Va (8)) spds

0

1 1 1
= [T2(00+01+02)]—73(<§a+§+§@) 0'0+

11 1 [
+ (56—1— §> o1+ ga@) A} 0+ / sRY (1, ) @ds.
0

According to relations between parameters g, o1, 0o we have:

(70—|-0‘1+(72 =

L1 A S
2CY 5 30[ oy 20[ 3 o1 304(72 =

Wl N

18



Taking into account these equalities we get

T

/2 (o0Vo (1, 8) + 01 Vi (1, 8) + 02V () spds

0

1 1
= (57'2[ — 57314) ©

T

+/8R(2)<T, s)pds. (1.29)
0
According to formula (1.7) we have:
T 1 ) 1 \ T
U (s, A) spds = 57 I— 37 A)o+ [ Ry(s,A)spds. (1.30)
0 0
From (1.29) and (1.30) we get:

T

/ [U (s, A) —2(0oVo (1, 8) + 01 Vi (1, 8) + 02V (8))] spds

0
r

= / (Ra(s, A) + R (7, s)) seds. (1.31)

Let us take into account the formula (1.8) and estimate second addend of
a right side of equality (1.31), we obtain:

/sR(Q) (1,8) pds|| < ce*T |l@|l 42, @ € D (A4%). (1.32)
0

Also the following estimation holds:

T

/5R2 (s, A) pds|| < ce™t |lpll 4o, p € D (A4%). (1.33)
0

From the equality (1.31), using inequalities (1.32) and (1.33) we obtain
estimation (1.24). O

Lemma 1.7. If the conditions a)), b)) and c)) of the Theorem are satisfied,
then the following estimation holds:

T

2
S
J06s.) = Va(9) ods| < et gl o€ D),
0
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where Va (s) is defined in the Lemmal.4; co,wy are positive constants.
Proof. According to the formulas (1.7), (1.8) we obtain the following
estimation:

2

[U(s. 4) = Vas)] Fepds

Ul(s, A) — % (U(s, @A) + U(s,aAg))} "

2

1
I+ Rl(s, A) — 5 (I + R1<S,aA1) + 1+ Rl(S,aAQ)):| %gods

I
O\ﬂ O\ﬂ O\ﬂ

_ / Ru(s Ry(s,@A1) + Ri(s,@Ay) —(pds
2 2
0
1 T S 2
< o [ [#106 Allanas 4]
00
1 T S , B B
+1 s [[U(s1, @A) dsids [ [| Arel]
00
1 T S , B B
+ s [|U(s1, @Ay dsyds [a] [| Asp|
0
<

1 1 T S
§M//526”51d81ds | Al + 1 [al //326“’51(131(15 | A1
00

0

1
+ \&|//526”81d31ds\|A2g0H
00

< et olly, peD(4). O

Let us return to the proof of the Theorem 1.1.
Proof of Theorem 1.1. According to the property of a semigroup, the
solution of the problem (1.1) in ¢ = ¢, point can be written as follows:

20



where

S (ot s) = / / / 17" (€) dEdéadé,.

s & &

21
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Similarly wy (t;) can be written as follows:

ug (ty) = V(1) ug—1 (tx—1)

+ / Vo (r,ti = 8) | 5 £(tr) — 200t — s)f ()| ds
4 / Vi (7t — 5) %f (b) — 200 (t — 5) f' (tk)} ds
+ / ‘/2 (tk — 8)
X [gf (tk) — 209 (tk - 8) f/ (tk> + (tk ; S) f” (ka)] ds
= V (7’) Uk—1 (tk—l)
* « 1 [a]
+ / [5% (T,tk —S) +§‘/1 (T,tk —8) + 5‘/2 (tk —8)] f(tk)ds
_ / (ooVi (1.t — 5) + Vi (ot — 5) + 02Va (t4 — )]
X2_(tk — S) f’ (tk) ds
+ / Va (ty — 5) & —th) £ (ty) ds
k
= Ve + > Vi) R, (1.35)

. _
r® = / {%VO (1.t — s) + §V1 (1,ti —s) + %VQ (ti—s)| [ (&)

ti—1
t;

_ / 00V (7,11 — 8) + 01 Vi (7o ti — 5) + 03V (6 — )] 2 (t; — ) f () ds
+/V2(ti—s) @f” (t:) ds.
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From (1.34) and (1.35) we obtain:
up () —u(ty) = [U"(r,4) = VE(r)] ¢

+i[UkZTA ~ Vi) B

7

- W& A) - V()] ¢
+Z( (UF (r, A) = VE (7)) Y

V() (B - FPY). (1.36)
Let us consider the following difference:

O _ p@

- j[U(zﬁ-—s A)

)+ 3T (=54 G- 9) )| £ (e as

2 (0’0V0 (1,ti — 8) + o Vi (1,6, — 8) + 0aVa (t; — 5)) (t; — s)] f' (t;) ds

2
2

+/[U(tz~—s,A)—Vg(ti—s)] 1" (t;) ds

ti—1

t;
+ / U(tz'—saA)ﬁ:a(f,ti,S)dS

ti—1

_ / {U (5, A) — (gvo(f, )+ 5V (r,5) + %VQ(S)>] f (1) ds

[e=]

(U (s, A) —2(coVo (7,8) + 01 Vi (7,8) + 02Va (8))] sf' (t;) ds

2

[ U(s.4) = Va ()] 5" (1) ds

+ [ U(s,A)Rs (f,t;,t; — s) ds. (1.37)

S O, O,

23



Hence, according to the Lemma 1.5, Lemma 1.6 and Lemma 1.7 we
obtain the following estimation:

-

wor 4 (1.38)
x (Hf (t)llas + 1L @) llgz + 17 (Ee)llo s 1 (t>ll>

According to the Theorem 1.2 the following inequality holds:

-

(U*i(r, A) = VF=i(7)) FY

)

=1

ti

_ Z Uk i(7, A) = VE=i(r) /U(ti_s,A)f(s)dS

=1

=

ti—1

= Z / (U (7, A) = V(1) U(t; — 5, A) f(5)ds

kool
< et Z / b Ut — s, A) f(5)ds]| 4s
=1,

< 27t sup [[U(s, A)F ()l e (1.39)

$,6€[0,tx]

From the equality (1.36) according to the estimations (1.38), (1.39), con-
dition (c) of the Theorem 1.1 and Theorem 1.2 we get:

[k (£) = w ()
I[U* (7. A) = VE ()] o

+ i [0+ (7, ) = v ()] B

(e =)

< ce“”‘)t’“tm?’(sup 1U (s, A) ol s + i sup IIU(S,A)f(t)\|A4>

s€[0,tx] $,6€[0,tx]
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k
ISy ( sup 11 0l

i=1 te[0,t;]

+ sup |[f (t)ll 42 + sup [I/* (D)l[4 + sup Hf”’(ﬂH)

te(0,t,] te(0,t,] t€[0,t;]

< ce“’OtktkT?’(sup 1U (s, A) @llas +te sup (U (s, A) f (£)]| o +

s€[0,tx] 5,t€[0,tx]
+ sup [If (Oll4s + sup [[f()]42+ sup [f" ()[4 + sup Hf’"(ﬂH)- 0
te[0,tg] te[0,tx] te[0,t] te[0,tx]

Remark 1.8. In case operators A; and A, are matrizes, it is obvious,
that conditions of the theorem are automatically met. Also conditions of the
Theorem are met, if A1, Ay and A are self-adjoint, positive definite operators.

Remark 1.9. Third degree precision is reached by introducing complex
parameter. Because of this, the each equation of the given decomposed system
1s changed by a pair of real equations, unlike lower order precision schemes. To
solve the specific problem, for example the matrixz factorization may be used,
where the coefficients are the matrixzes of the second order, unlike lower order
precision schemes, where may be used common factorization.

Remark 1.10. The sum of absolute values of coefficients of V (1) tran-
sition operator equals to one. Because of this, the considered scheme is stable
for any Ay and As bounded operators.
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§2. Third order accuracy rational splitting

1. Construction of rational splitting algorithm and theorem on
error estimation

Let us consider (1.1) evolution problem. Let A = A; + Ay, where A,
(7 = 1,2) are compactly defined, closed, linear operators in X.

In the previous paragraph there is constructed the following decomposition
formula with the local precision of fourth order:

Vi(r)= % (U (1,aA) U (1, Ay) U (1,0A1) + U (1,0A) U (1, A1) U (7, 0 Ag)]
(2.1)

where o = % + @ﬁ
In means that that:

U(r,A) =V (r)=0, (74) ,

where O, (7%) is the operator, norm of which is of the fourth order with respect
to 7 (more precisely, in the case of the unbounded operator [|O, (74) p|| =
O (7%) for any ¢ from the definition domain of O, (7%)). At the same time, we
will constructed the semigroup approximations with the local precision of the
fourth order using the following rational approximations:

W(r,A) = al +b(I+ A" +c(I+IA)>, (2.2)
Wi(r,A) = (I — %TA) (I 4 rA)~ (1 —l—XTA)_l,

where in the first formula \ = %—i—ﬁg, a= 1—%—1—#, b= %—%, c= -1

and in the second A = % + Zﬁi (z = \/—_1)

The approximations defined by formulas (2.2) in the scalar case represent
the Pade approximations for exponential functions (see [5]).

Using simple transformation, we can show that the operator W (7, A) de-
fined by formula (2.2) coincides with the transition operator of the Calahan
scheme (see [63]). The stability of the Calahan scheme for an abstract parabolic
equation is investigated in [1].

On the basis of formulas (2.1) and (2.2) we can construct the following
decomposition formula (Analogously we can construct a decomposition formula
for another rational approximations):

Vir) = %[W(T,aAl)W(T,AQ)W(T,QAl)

+W (1, @A) W (1, A1) W (1, 0 Ag)] . (2.3)
Below we shall show that this formula has the precision of the fourth order:

U(r,4) =V (1) =0, ().
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In the present paragraph, on the basis of formula (2.3), a decomposition
scheme with the third order precision will be constructed for the solution of
problem (1.1).

From formula (1.2) we have:

u(ty) = U(1, A)u (tg—1) + / Ut — s, A)f(s)ds.

Let us rewrite this formula in the following form:

u(ty) = U(r, Au(te)
( U (T, %A) (t—1y3) + U (T, A)f(tk—l)) + Riea(7),
1 (2.4)

-

§

+
S

u(to) = 2,.

where Ry 4 (7) is the residual member of the quadrature formula

©
| |

=

tg

Rpa(r) = / Uty — s, A)f(s)ds

tk—1

T 1
~1 (3U (T, §A> f (tk_1/3) +U (1, A) f(tk_l)) - (2.5)
For the sufficiently smooth function f the following estimation is true (see.

Lemma 2.3):
[Ria (T)| = O (77) .

On the basis of formula (2.4) let us construct the following scheme:

Uk

Vir
% (35 (%T) f(terys) +S(7) f (tkz—l)) ) (2.6)
1

+
w = ¢ (k=1,2..),
where

Vir) — % W (1, @A) W (7, A) W (. ;)
+W (1,@Ag) W (1, A1) W (1, aAg)],

Str) = K <T, %A1> K (r, Ay K (T, %Al) |

K(r,A) = (1 - %TA) (1 + %TA) -
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14, 1 14 1 —1_2_4 1 -3 _ 1 -1 _1
anda—ziz%/g, )\—24—2\/3, a=1-5+53z, b=3—5, ¢c= 3

Let us note that the operator K(7, A) is the transition operator of the Krank-
Nickolson scheme.
Let us perform the computation of the scheme (2.6) by the following algo-

rithm: -
we =+ 7 (30 +?)

where uy o is calculated by the scheme:

Vk—2/3 = w (7'7 OéA1) Uk—1, Wg-2/3 = w (7', 06A2) Uk—1,
Vg—1/3 = w (7'7 A2) Vk—2/3, Wg—-1/3 = w (7', A1) Wk—2/3,
v, = W(r, @A) ve_1/3, wy, = W (7, @As) wy_1/3,

1
u/(CO) = 5[?]]6 + wk]u Uy = @, (27)

and uj (s =1,2) - by the scheme:

. 1
u]ijQ/g = K (Ta 5’73141) f (tk’ - 757—)7

ui(gs—)1/3 = K(Ta’YsAz)ugw:’ﬂ

S 1 S
i) = K (rgd) ol

with 7, = % and v, = 1.

The following theorem takes place.

Theorem 2.1 Let the following conditions be satisfied:

(a) There exists such 19 > 0 that for any 0 < 7 < 1 there exist operators
(I+’y)\7'Aj)_1, j =12, v = 1,a,@ and they are bounded. Besides, the
following inequalities are true:

W (1,74;)|| < e*", w = const > 0;
(b) The operator (—A) generates the strongly continuous semigroup U (t, A) =
exp (—tA), for which the following inequality is true:
(U, A)|| < Me**, M,w = const > 0;
) € D[AY for any s > 0;

A
(d) f(t) € C*([0,00); X);  f(t) € DIAY], f'(t) € DI[A®], f"(t) € D[A]
f(t) € D[AY for any fized t and s (t,s > 0).
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Then the following estimation holds:

Ju(te) —ull < CewotktkT?)(SUp 1U (s, A)pl] s
s€[0,tx]

+te sup [[U(s, A)f ()] 44

stG[Otk]
()l + sup [|F ()] 42
te(0,tg] te[0,tx]
+ sup [If"@)ll4+ sup [[f"(t )II>, (2.8)
te[0,tx] te[0,tx]

where ¢ and wy are positive constants.
2. Third order accuracy rational splitting of semigroup

The following theorem takes place.
Theorem 2.2 If the conditions (a), (b) and (c) of the Theorem 2.1 are
satisfied, then the following estimation holds:

|[U (te, A) = VE(D)] ¢|| < ce ;7 sup ||U(s, A)pl| 44, (2.9)

86[0 tk]

where ¢ and wy are positive constants.
For the proof of this theorem we need the following lemma.
Lemma 2.3 If the condition (a) of the Theorem 2.1 is satisfied, then for

the operator W (t, A) the following decomposition is true:

E
—_

o
Wi(t, A) = (—1)1514Z + Rwyi(t,A), k=1,2,3,4, (2.10)

i

I
=)

where, for the residual member, the following estimation holds:

| Rwi(t, A)p|| < coe®tth HAIC(,D” , p€D [Ak} , Co,wo = const > 0. (2.11)

Proof. We obviously have:

(T+7A)" = T—T+(T+~A) "'=T—(I+~A) "I +~v4-1)
= J—qA(I+A"!
From this for any natural k£ we can get the following expansion:

k—1
(T+7A) =D (—1) y A R AR (T +7A) (2.12)

=0
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Let us decompose the rational approximation W (7, A) according to the
formula (2.12) up to the first order, we obtain:

W(r,A) = al +b(I+ A +c(I+ArA)?
= (a+b+c)l+ Rwi(r, A), (2.13)

where
Rwi(m,A) = —(b+ ) ANA +ATA) ™ — e ATA (I + AT A) 2.

Since (I + ArA)~" is bounded according to the condition (a) of the Theo-
rem 2.1, therefore:

[Bw,i (7, Al < coe "7 || A, ¢ € DI[A]. (2.14)
Substituting the values of the parameters a,b and ¢ in (2.13), we obtain:
W(r, A) =1+ Ry, (T, A). (2.15)

Let us decompose the rational approximation W (7, A) according to the
formula (2.12) up to the second order:

W(r,A)=(a+b+c) I — (b+2c) \TA+ Rya(r, A), (2.16)
where
Rwa(m, A) = (b + 2¢) N2 72 A% (I + M\t A)H 4 €\272 (1 + ArA) % A%
According to the condition (a) of the Theorem 2.1 we have:
|Rwa(T, A)gll < coe™ 7 || A%¢]|, ¢ € D[A%]. (2.17)
If we substitute the values of the parameters a, b and ¢ in (2.16), we obtain:
W(r,A) =1—7A+ Rya(r, A). (2.18)

Let us decompose the rational approximation W (7, A) according to the for-
mula (2.12) up to the third order:

W(r,A) = (a+b+c)l— (b+2c) \TA+ (b+ 3c) N272A?
+RW73(7', A), (219)

where
Ryws(1, A) = — (b+3¢) N37° (I + A1 A) " A% — X378 (1 4+ AT A) 2 A3,
According to the condition (a) of the Theorem 2.1 we have:

| Rwa(r, A)p|| < coeo77? || A3

, peDI[A]. (2.20)
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If we substitute the values of the parameters a, b and ¢ in (2.19), we obtain:
1
W(r,A)=1—-1A+ 57'2142 + Rws(T, A). (2.21)

Finally let us decompose the rational approximation W (7, A) according to
the formula (2.12) up to the fourth order:

W(r,A) = (a+b+ec)I— (b+2c) \A+ (b4 3c) N2 A2
—(b+ 4c)N* TP A% + Ryya(r, A), (2.22)

where
Rua(r, A) = (b4 4c) N'r* (I + AT A)H A+ X7 (14 A7 A) 2 A%,
According to the condition (a) of the Theorem 2.1 we have:

| Riva(r, A)p|| < coeoT7 || A%p

, peD[AY]. (2.23)

If we substitute the values of the parameters a, b and ¢ in (2.22), we obtain:
L 50 1 3,3
W(r,A)=1—-71A+ 57 A® — i A° + Ry4(1, A). (2.24)

Uniting formulas (2.15),(2.18),(2.21) and (2.24) we obtain formula (2.10),
and uniting inequalities (2.14), (2.17), (2.20) and (2.23) we obtain estimation
(2.21). O

Proof of Theorem 2.2. Let us decompose all the rational approximations
in the operator V(1) according to the formula (2.10) from right to left, so that
each residual member be of the fourth order. We shall have:

1 1
V(r)=I1-1A+ 572142 — 673A3 + Ry (7), (2.25)
where

Ry () = % [Ri2(7) + R (7)],

and

1
Rij(r) = RWA(T,aAi)—TRW,g(T,aAi)Aﬁ§TZRW,2(T,aAi)A§.

1
— 57 B (7 AV A+ W (7, @A) Rua(7, Ay)

—OéTRW;J, (7', @Al)Al

1
+ar? Ry (1, @A) Aj A; — éaTsRW’l(Tv aA)AjA;
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—OCTW(T, aAl)RW’g (’7', AJ>A1
1 1
+§OZ2TQRW72(T, aAz)Af — §Q2T3RW71(T, aAz)AJA?

1 1
+504272W(7', @Ai)RW,g (’7', AJ)A? — 6043T3le(t, aAl)A?

1
—6a37'3W(7', @A) Rw(r, Aj) A

+W(T, aAJW(T, Aj)RW4(T, OzAZ'),
ij = 1,2.

Hence according to the condition (a) of the Theorem 2.1 we have the fol-
lowing estimation:

[Rva (7)ol < ce” ol ga, ¢ € D[AY]. (2.26)
From the (1.7) (k = 4) and (2.25) it follows:
U(r,A) =V (1) = Ry (1, A) — Rya (7).

From here according to inequalities (1.8) and (2.26) we obtain the following
estimation:

U (7. A) =V ()] ¢l < ce" gl 0, ¢ € D[AT]. (2.27)
The following representation is obvious:

[0t A)=VE] e = [UF(mA) - VEm)] e
= 2 VU A = VU A,

Hence, according to the conditions (a), (b), (¢) of the Theorem 2.1 and
inequality (2.27), we have the sought estimation. O
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3. Error estimation for approximate solution

Let us prove the auxiliary Lemmas on which the proof of the Theorem
2.1 is based.

Lemma 2.4 Let the following conditions be satisfied:

(a) The operator A satisfies the conditions of the Theorem 2.1;

(b) f(t) € C3([0,00); X), and f (t) € D[A®] for every fized t, f® (t) €
D [A3F]  k=1,2.

Then the following estimation holds

T

Ju=sayseas-|vearos (gra)s(5)

0

< cetomrd 'A?’f (27) ’-i- sup HAQf/ (f)“
3 ¢€fo,7]
+£1[1p] IAf" (Ol +£1[1p] 1" (5)“] , (2.28)

where ¢ and wy are positive constants.
Proof. Using the simple transformation, we will obtain the following rep-

resentation:

T

/U<T — 5, A)f (s)ds — = {U (v, A) £ (0) +3U (% A) f (;)}
= (1) = U(nA) () = R(r, A) f (§T> | (229)

where

and
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According to formula (1.7) for r (7) we can obtain the following represen-
tation:

3

rir) = A/T /SA/U(T—n,A)dndg/Sf’(é)dg ds

0

T

—A// rAdf//f” )dnde | ds.

0

Hence we obtain the following estimation:
I (7)< cem LSl[lp] [A%f ©)  Sup, IAS" (f)H] : (2.30)
clo,T clo,T

For the function (—z (7)) the following representation is valid:

n

)=t / / 7 / £V dCdndeds + / / / / £"(¢)d¢dndeds.
0

Hence we obtain the following estimation:

U (7, A) 2 (7] < ceT7* sup ||f"(s)]| - (2.31)

s€lo,7]
And finally let us transform the integral R (7, A) according to formula (1.7):

T

o

0 2,

n

13
0//U T — ¢, A)d¢dndéds

0

R(1,A) =

A~ w

T S

]

0

U(r — ¢, A)d¢dndéds.

N
o\m
o\d

Hence we obtain the following estimation:

' . (2.32)

2
Agf <§T>

From equality (2.29) according to inequalities (2.30), (2.31) and (2.32) we
obtain the sought estimation.

HR(T, A)f (gr) H < ce¥Trt
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According to the Lemma 2.3 for Ry 4 (7) (see formula (1.7)), the following

estimation holds:
2
A3
(3)

+ sup  [JAf (Ol +  sup ||f”’(§)||]- (2.33)

EE€[tp—1,tk] E€[tp—1,tx]

+ sup  [|ARF ()|

[Rea (T)| < ce™r!
EE€tp—1,tk]

Let us return to the proof of the Theorem 2.1.
Proof of Theorem 2.1. Let us write formula (2.4) in the following form:

u(ty) = UH(r, A+ 3 U (7 4) (FY + Rea (1) (2.34)

where

FY = % (3U (%T A) f(tiays) +U (T, A) f (ti_l)) . (2.35)

Analogously let us present uy, as follows:

k
)+ > VI E?, (2.36)
where
(2) T 1
F7 = 1 (35 <§T) f (ti—l/S) +8(7) f (ti—l)) : (2.37)
From equalities (2.34) and (2.36) it follows:

u(ty) —w, = [US(r,A) = V*(1)] ¢

+ Z [Uk—i(r, A)Fi(l) _ Vk—z‘(T)Fi@)}
+ Z Uk7i<7—, A)RkA (7-) — [Uk<7', A) _ Vk(T)} o

+Z[U’“ i(r, A) = VEi(r)) FV
+Vk—z(7) <Fz( ) Fi@)ﬂ

k
+ Z UR= (7, A) Ry, (7). (2.38)
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From formulas (2.35) and (2.37) we have:

FY - F® = % (3 <U (%7 A) ~ S (%)) F(tioas) +
4 (U (r. A)— S (%)) f (ti_l)) | (2.39)

The following inequality can be easily obtained:

U (7, 4) = K (D] oll < e [lpll4s, © € D[A].
Hence analogously to estimation (2.27) we obtain:

U (7, 4) = S(T)] el < e ||l s, 9 € D[AT].

According to this inequality, from equality (2.39) we obtain the following esti-
mation:

|FD = BO|| < cewomrt sup |1£(0)]4s- (2.40)

te[th—1,tk]

According to the Lemma 2.1 we have:

k
Z Uk ‘1, A) Vk*i(T)) Fi(l)

< cetpr® sup |U(s, A)f (t)]] s -
$,t€[0,tk]

(2.41)
From equality (2.38) according to inequalities (2.40), (2.41), (2.9), (2.41)
and the condition (b) of the Theorem 2.1 we obtain:

lu(ty) —ugl] < ce@otkt, 3 < sup ||U(s, A)pl| 44
s€[0,tx]

+tp sup ||U(s, A)f (t)]| 44 + sup ”f()||A3>

S,tE[O,tk.] tE[O k
+ sup [[f'(#)ll42 + sup [f" @), + sup [If7@)). O
te[0,tg] tel0,tr] te[0,tg]

Remark 2.5. The operator V(1) is the solution operator of the above-
considered decomposed problem. It is obvious that, according to the condition
of the Theorem 2.1 (||W(t,vA;)| < e*'), the norm of the operator V* (1) is
less than or equal to e“°' . From this follows the stability of the above-stated
decomposition scheme on each finite time interval.

Remark 2.6. In the case of the Hilbert space, when Ay, Ay and Ay + A,
are self-adjoint non negative operators, in estimation (2.8) wo will be replaced
by 0. Alongside with this, for the transition operator of the splitted problem,
the estimation ||V* (7)|| < 1 will be true.

Remark 2.7. In the case of the Hilbert space, when Ay, A and A1+ Ay are
self-adjoint, positive definite operators, in estimation (2.8) wy will be replaced

36



by —ag, ag > 0. Alongside with this, for the transition operator of the splitted
problem, the estimation HV’c (7')H <e % aq >0 will be true.

Remark 2.8. According to the classical theorem of Hille-Philips-losida
([48]), if the operator (—A) generates a strongly continuous semigroup, then
the inequality in the condition (b) of the Theorem 2.1 is automatically satis-
fied. The proof of this inequality is based on the uniform boundedness principle,
according to which the constants M and w exist, but generally can not be ez-
plicitly constructed (according to the method of the proof). That is why we
demand satisfying of the inequality in the condition (b) of the Theorem 2.1.

4. Stability of the splitted problem

In this paragraph we state the sufficient conditions, from which follows the
inequality:

IVE(r)||<e, c=const>0 (k=1,2,..).

Fulfilment of this inequality means the stability of splitted problem.

Let us examine first the stability of non split problem. Below we will
prove the theorems, concerning the stability of non split problems with the
transition operators given by formulas (2.2). These theorems obviously have
an independent value, and the proof of the stability of split problem is based
on them.

Theorem 2.9 Assume that A is a linear, closed, densely defined operator
in the Banach space X. Assume the sector S = {z:|argz| < o, 2z #0,
0 < o < g}completely includes the spectrum of the operator A and for any
2z &8 (z#0) the following inequality holds:

C

|z — A)_l) | < ¢ = const > 0. (2.42)

KN

Then, for any T > 0 and natural k, the following estimation is valid:
||Wk (T, A)H <e¢, c¢=const>0,

where

Wi(r,A) = <I — %TA) (I+ A" (I—l—XTA)_l, A= % + z%

The proof of the Theorem 2.9 is based on the following lemma.

Lemma 2.10 Assume that the operator A satisfies conditions of the The-
orem 1.1.

Then for any T > 0 and natural k the following inequality is valid:

H([ + TA)ikH <e¢, c¢=const>0.
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Proof. Let us compare the operator (I + 7A4) ™" to the operator (I + (,/2) A) ™
(ty = k7). With this purpose we present their difference by means of the
Danford-Taylor integral (see [16] Ch. VII):

(I+7A) " — <[ + %A) B = % F <(1 +72)7F — (1 + %’“z) _2>

x (21 — A)""dz, (2.43)
where I' is a bound of the sector {|argz| < ¢, @9 < ¢ < Z}. Let us estima-

tion the absolute value of the integrand scalar function. With this purpose we
use the following representation:

(1+72)7F = <1+%’“z)_2 = /d% [(1+t’“2_sz>_2 <1+%z>_k] ds

0
s \ —k-1
X (1 + Ez) ds (2.44)
Obviously we have:
s (k+1 s k+1
}14—%,2 = ‘1+Ep(cosg0+isingo)’

k+1
S

S 2 9\ 2
= (1+2- —
po= cosp, p=arg(z), |z/=p
From here follows the inequality:

! k+1

S k+1 1
> (142 ) >
_<+kup > 1+ ksup
k+1222 k2_1333

T TR g S

1 1
> 1+ sup+ 552u2p2 + §s3u3p3 (k>2).

‘1+8
—Z
2
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With account of this inequality we have:

ty k+1
‘1+— ' ‘1+ 2

v

1 1
(14 (0= ot g (0= o 4 5 (0 ")

1 1
X <1 + spp + 252,u2p2 - 853,u3p3)

v

1
Lt tipp+ 5 (52 + (e — 9)°) w20
1
5 (7 + (b — 9)°) 1"

1 1
> L+ tipp + e’ + 32ti/f’p3 (2.45)

> (14 potep)’,  po =

375“'

From (2.44), with account of (2.45), it follows:

t _
< 3/< K S) ds
1+,U0tkp

0

(I+72)* (1 + %’%:) B

< (tep)?

SR (2.46)
(14 potrp)’
From (2.43), with account of (2.46) and (2.42), it follows:
e\ I P
(I+7A)" - (I + —A) < ct} / ——dp=c (2.47)
2 k ) (1 + potep)’
Due to inequality (2.42) we have:
te N\

From (2.47) and (2.48), according to the triangle inequality, the sought
estimation follows. [

Proof of the Theorem 2.9.

Let us compare the operator W* (7, A) to the corresponding powers of the
operator W (1, A) = (I +7A)~". Obviously the representation is valid:

kol
—_

Wé“ (1, A) = Wk (1, A) = (W, (1, A) — W (1, A)) Wi (r, A) W1 (1, A),

%

I
=)

(2.49)
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In order to estimate the norm of the operator in the right hand-side of this
equality let us estimate the absolute values of the scalar functions W (7, z) , Wy (7, 2) ,
and Wy (1,2) — W (7, 2) (2 € I'). We obtain:

P (12)
W -
(7—7 Z) P2 (TZ)’
where
1
Pl (Z) = 1- gZ,
2 1
PQ(Z) = 1+—Z+622.

Let us calculate the squares of the modules of the polynomials P; (7z) and
Py (12):
2

2 1
=1- STHP + §7'2p2, (2.50)

1
|P (r2)]? = ‘1 — 37 (cosp +isiny)

2 .
|P (m2)]° = ‘1+§Tp(cos<,0+zsmgo)

2

1
+67'2p2 (cos (2¢) + isin (2¢))

= 1+ é7',up + (1 + g/ﬂ) % p?
3 9 3
2 3, 3 1 4 4

where p = cosp, ¢ = arg(2), |z] = p.
From (2.50) and (2.51) it follows:

1
L+ 71pp)’ [Py (r2) P < [P ()P, = S

From here we obtain:

B | Py (12)] < 1

Wit z)|l = < i
W (7, 2)] |Py (12)] = 14+ uatp

(2.52)

Let us estimate the absolute value of the function Wy (7,2) — W (7, 2). We
obviously have:

1,2 2
i

(14 2rpp + 72p%)% | Py (72)]

|W0 (T’ Z) - W(Tv Z)| =

From here, taking into account the inequality | P, (72)| > (1 + 7u1p)”, it fol-
lows:
720°

Wol(r,z) =W (1,2 —.
W () =W (2 <

(2.53)
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For the absolute value of Wy (7, 2), the following estimation holds:

1

|1+ 7p(cosp +isiny)|

1 1
- < : (2.54)

(L4 27pp + 7'2,02)% ~ Lt

Wo(r,2)| =

Let us present the operator-function W (7, A) — W* (7, A) by means of the
Danford-Taylor integral:

1
i

WE (7, A) = W (7, A) = / (W (1,2) = W (7,2)) (2] — A) " dz,

r

where I' is the bound of the sector {\arg 2| <@, wo<p< g} From here,
according to (2.49), we obtain:

Wé“ (1, A) =Wk (r,4) = % (Wo (1,2) =W (T,2))
= |
X Z W§ (1, 2) Wh==1 (7, z)) (21 — A)_l dz,

From here, with account of inequalities (2.42),(2.52),(2.53) and (2.54), we ob-
tain the following estimation:

k k
0 ) - ) =
W5 (7, A) = WF (7, 4)|| < c/(
+Tﬂlp

k—1 1 1
S ) b

p 1+wp L+ 7pp

=0
r d
Tpdp
ckt / I<:+1
s (1+ TH1p)
(1

IN

= ck =c.
k 1
z) +

0

From this inequality and the estimation of Lemma 2.10, according to the tri-
angle inequality, follows the sought estimation. [

Theorem 2.11 Assume that the operator A satisfies conditions of the The-
orem 2.1.

Then, for any T > 0 and natural k, the following estimation holds:

||Wk (1, A)|| <¢, c=const >0, (2.55)
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where

W(r,A) = al +b(I+ A +c(I+ArA)7?,
1

A= L
- 3t 3
_ 2,1
“ = NN
3 1
po— 2
N A2
1
T vy

Proof. Estimation (2.55) was proven by Alibekov and Sobolevskii (see [1]),
for the case when the operator A, instead of condition (2.42), satisfies the
following condition:

c
zI — Al < —, ¢ =const > 0. 2.56
1 4l < 7 (2.56)

The above-mentioned authors present the operator W¥ (1, A) as the sum of
the following three addends:

Wh(r,A) = ((a+b+c)+ (2a+b) ATA + aX*T?A?)
X (I+ArA) W (1, A)
= (14 (2a+b) M\A+aX*T?A%) (I + ATA) 2 WEL (7, A)
= Jig (1 A)+ Jog (T, A) + I3 (1, A) (2.57)

where

Jig (1, A) = (I+ AW (1, A),
Jog (T, A) = 2a0ATA (I + Xt A) > W* (1, A), ag = 2a+ b,
Jap (1, A) = aXT2 A2 (I + M\ A) 2 WEL (1 A).

It should be noted that the estimations (for any 7 > 0 and natural k):
|k (1, A)]| <e¢, 1=2,3, c=const>0 (2.58)

are valid in the case when the operator A satisfies condition (2.42). The
above-mentioned authors need rather heavier condition (2.56) to obtain for
the operator Jy (7, A) an estimation, analogous to estimation (2.58), since
in this case they use fraction powers of the operator A. Below we give the
estimation of the operator J; ; (7, A) in the case of condition (2.42).

Let us estimate the norm of the operator Jy (7, A). At first we estimate
the module of the scalar function W (7, z). Obviously we have:

_ Py(12)

W(T,z)—m,
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where
Ps(2) = 1+ aghz + ar?2?
Pi(z) = (1+4X2)°.
Let us calculate the modules of the polynomials P (72) and Py (7z):
|Ps (72)]° = |14 agAtp (cos p + isin p)
+ aX*7%p? (cos (2¢) + i sin (2¢p)) ‘2
= 14 2aopAtp + 2 (14 2ap®) N>7°p? (2.59)
+2aaopuNm?p? + a®Atript,
|Py (12)] = |1+ Arp(cosg +isingp)|’
= 14 2uXtp+ N272p% (2.60)
From (2.59) and (2.60) it follows:
[Py (r2)|” < |Pa(72)]".
From here follows the estimation:
W (r,2)| < 1. (2.61)

In order to estimate the norm of the operator J ;. (7, A), we compare it to
the following operator:

Wi (r, A) = (I + aghtA) (1 +7A4) ) 7 (T + ArA) 2,

Let us present the difference between the operators .Jy x (7, A) and W (7, A) in
the form:

Jig (1, A) = Wi (1, A) = (I+ A rA)~
x (W’H (1, A) = ((I + aphrA) (I + ATA)*Q)’H)
= (T+ XA 2 (W (1, A) — (I +aghtA) (I +ArA)7?)

k—2 '
XY (I +aghrA) (I + A7 A) ) WH2 (1, A)
=0
1 1

2mi J (1+ )\72)2
(1—|—a0)\72—|—a)\2 7222 1+ao)\7z)

X

(1+ Ar2)? (1+ Ar2)?
k—2
x (—1 T doAT= ) WHh=i=2 (£, 2) (2 — A) "' dz
P (1+ )\Tz)
_ Lkz_f/ a\>12z ( 1+ (Io)\TZ)i
21 = (1+ )\Tz) (1+ )\72)2
XWHE=2 (7, 2) 2 (2] — A) " dz. (2.62)
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By simple calculations we obtain:

‘ 14 agA7z 11+ agATp (cos v + isinp)|
(14 Ar2)? 114 A7p (cos p + isin )|
1 1
< < : (2.63)

(14 2A7pup + )\2T2p2)% L+ ATpp

From (2.62), with account of inequalities (2.42), (2.61) and (2.63), we ob-
tain:

k-2 ¢ 2
p
lhatr )= Wi A < ey [Tl
;0 (1 + Arpp)™
k—2 .
= C dl‘
ZOO/(l—l—a:)H
k—2
1 1 )
= C dI
;0/<(1+ ) 1)
2 1
T z+2_i+3)
1 1
_ L < o 2.64
(2 k+1)c—c (2:64)

In order to obtain the final estimation, we need to estimate the norm of
the operator Wy (1, A). According to the Lemma 2.10 and the inequality ag =
2a + b < 1, we have:

Wi (r A < [|(( 4+ aodr) (14 Ar4) ) (14 A7)

N

H ((I + aphrA) (I + )\TA)’l)kH H(I + )\TA)’(’“”)H

IN

¢ H (aol + (1 — ag) (I + )\TA)_l)kH

(3,) ab (1 — ao)"||(T + )\TA)_(k_i)

-

IN

c

=0

|

< ¢y (p)ah(1- a)" " =c.
i=0

From here and (2.64), due to the triangle inequality, it follows:
|Jig (1, A)]| <¢, ¢=const>D0. (2.65)

From (2.57), with account of inequalities (2.58) and (2.65), we obtain the
sought estimation. [
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Theorem 2.12 Assume that the linear, closed, densely defined operators
Ay and A, in the Banach space X satisfy the following conditions:

(a) The sector S = {z: |argz| < @o, 2 # 0, 0 < g < %} completely in-
cludes spectrums of the operators Ay and Ay and for any z ¢ S (2 #0) the
imequality holds:

H(z]—Aj)_lH Si c=const >0, j=1,2;

KN

(b) There exists such point zo & S that the resolvents of the operators A;
and As are commutative at the point zg.

Then, for any T > 0, for the transition operators corresponding to the
decomposition schemes defined by formulas (1.4), the following estimation is

valid:
HV’g (T)H <e¢, c=const>0 (k=1,2,..),

where

Vi) = S+ ),
Vi(r) = W (r,aAy) W (1, Ay) W (1,@Ay),
Vo(r) = W(r,ad) W (1, A)) W (1,@As) .

Proof. 1t follows from the condition (b) of the theorem that the resolvents
of the operators A; and A, are commutative at any points z1, zo ¢ S, respec-
tively. From here it follows that the operators W (7, A;) and W (1, Ay) are
commutative. Therefore the equalities are valid:

VE(r) = WF(r,ad) Wk (1, Ay) WF (r,@A,), (2.66)
VE(r) = WF(r,ady) WE(r, A) WF (1,@A,) . (2.67)

It is obvious that if the operators A; and A, satisfy conditions of the Theo-
rem 2.12; then the operators yA; and vAs (v = 1, o, @) will satisfy conditions
of the Theorem 2.9. Therefore, from formulas (2.66) and (2.67), due to the
Theorem 2.9 (Theorem 2.11), follow the estimations:

IVF ()| <e, 1=1,2, c=const>D0. (2.68)

From the commutativity of the operators W (7, A;) and W (7, Ay) follows
the commutativity of the operators V; (1) and V5 (7), hence the representation
is valid:

Vk(7>=(§(V1()+V2 )I_ki VI (1) V(7).
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From here, according to inequalities (2.68), follows the estimation:

V¢ )] s%i G [ @ I @l siki e O

Theorem 2.13 Assume that Ay and As are linear, normal, densely de-
fined operators in the Hilbert space H. Assume further that the sector S =
{z Clarg z] < o, 2 £ 0, 0 <@ < %} completely includes the spectrums of the
operators Ay and A,.

Then, for any T > 0, for the transition operators corresponding to the
decomposition schemes defined by formulas (2.2), the following estimation is
valid:

V() < 1.

Proof. Since the operators A; and A, are normal, their corresponding
resolvents also will be normal operators (see T. [40], Ch. 5, §3). From here it
follows that W (7,vA;) and W (7,vAs) are also normal operators. Therefore,
due to inequalities (2.52) and (2.61), the estimation is valid:

W (. 74yl < sup [W (7, 72) < 1.

From here follows the sought estimation. [J

Remark 2.14. Estimation (2.8) holds when the operators Ay and As sat-
1sfy the conditions of the Theorem 2.12, the operator A satisfies the conditions
of the Theorem 2.9, and besides the conditions (c¢) and (d) of the Theorem 2.1
are valid.

Remark 2.15. [t is obvious that if the resolvents of the operators Ay and
Ay are commutative, then for exponential splitting we have an exact coinci-
dence. As regards resolvent splitting, it has an essential value even for the
commutative case, as the exact coincidence does not take place and therefore,
it 15 important to construct a stable splitting with the high order precision.

In the case when the operators A;, Ay are matrices, it is obvious that the
conditions of the Theorem 2.1 are automatically satisfied. The conditions of
Theorem 2.1 are also satisfied if A;, Ay and A are self-adjoint, positive definite
operators. Moreover, the conditions of the Theorem 2.1 are automatically
satisfied if the operators A;, Ay and A are normal operators. However, in this
case, certain restrictions are imposed on the spectrums of this operators: the
spectrum of the operator A have to be included in the right half-plane and the
spectrums of the operators A; and A, have to be included in the sector with
angle of 120°, in order the spectrums of the operators A; and A, to remain in
the right half-plane after turning by +30° (this is caused by multiplication of
the operators A; and A, on the parameters o and @).

The third order precision is reached by introducing a complex parameter.
For this reason, each equation of the given decomposed system is replaced by
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a pair of real equations, unlike the lower order precision schemes. To solve the
specific problem, (for example) the matrix factorization may be used, where
the coefficients are the matrices of the second order, unlike the lower order
precision schemes, where the common factorization may be used.

It must be noted that, unlike the high order precision decomposition schemes
considered in [12], the sum of absolute values of coefficients of the addends of
the transition operator V (7) equals to one. Hence the considered scheme is
stable for any bounded operators Ay, As.
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§3. Third order accuracy decomposition
scheme for multidimensional evolution
problem

1. Decomposition scheme for homogeneous equation and theorem
on error estimation

Let us consider the Cauchy abstract problem in the Banach space X :

du(t)

i Au(t) =0, t >0, u(0) = . (3.1)

Here A is a closed linear operator with the domain D(A), which is every-
where dense in X, ¢ is a given element from D (A).

Suppose that (—A) operator generates a strongly continuous semigroup
{exp(—tA)},s,, then the solution of the problem (3.1) is given by the following
formula (see [39],[42]):

u(t) =U(t,A)p, e D(A), (3.2)

where U(t, A) = exp(—tA) is a strongly continuous semigroup.

Let A=A+ Ay + ... + A, where A; (j = 1,2,...,m) are compactly
defined, closed linear operators in X.

Let us introduce a difference net domain:

W, ={ty =kr,k=1,2,...,7 > 0}.

Along with the problem (3.1) we consider two sequences of the following
problems on each interval [t;_1, ;] :

dvk( ) dwk( )
aA aA =
Vi (teo1) = up_1(te1), wi(te—1) = up_1(tp_1),
dUk( ) dwk( )
aAsv aA
Vi (tr-1) = vy (t), wi(te-1) = wi(ts),
do (1) m— dw (1) e
—kdt + oA, v (t) =0, —kdt + aAyw () = 0,
v (teer) = o2 (t), wiH(te—1) = wi (M),

48



dv*(t) m dwy(t) m
]th + A0 (t) =0, gt + Ajw*(t) =0, (3.3)
vt (tr—1) = v (), wi (tr—1) = wi " (tr),
dvm+1(t) dwm+1(t) _ .
— L T AT () =0, AT () = 0,
o (tm) = v (t), wi (o) = wil(tr),
dvy" 2 (t) e dw;™(t) -
kT + @A™ 2 () = 0, kT + @A, w3 (t) = 0,
0P A () = v (), w2 (te—1) = w0 (),
kdt()+aA1U2m 1():07 kdt ()+aAmw]3m 1(t)—0,
v (temr) = 0 (), Wi (tr-1) = w7 ()

Here av is a numerical complex parameter with Re(a) > 0, uo(0) = ¢.
Suppose that (—A4;), (—aA,) and (—@4;) (j =1,2,...,m) operators generate
strongly continuous semigroups.

On each [ty_1,tx] (k=1,2,...) interval ux(t) are defined as follows:

uglt) = 12" 0) + 1) (34)

We consider the function wu(t) as an approximate solution of the problem
(3.1) on the interval [t_1, tx].

We will need natural degrees of the operator A = A; + Ay + ... + A,
(A®, s=2,3,4). In case of two addends (m = 2) they are defined in para-
graph 1. Analogously are defined A® (s = 2,3,4) when m > 2.

Let us introduce the following definitions:

lella = 1Al + - + [[Amell, 0 € D (A),

lelle = > 40l » €D (A%,
ij=1
where ||-|| is a norm in X, similarly are defined |||, (s =3,4).

Theorem 3.1. Let the following conditions be satisfied:

(a) =3 +i= 53 (i=+v-1) ;

(b) (—4;), v = La,a (j=1,2,....,m) and (—A) operators generate
strongly continuous semigroups, for which the following estimations hold cor-
respondingly:

QWt,
Me“t, M,w = const > 0;

1U(E, v Al
1U(t, A
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(c) U(s,A)p € D(A*) for every fived s > 0.
Then the following estimation holds:

lun(tk) = u(te)|| < cetyr? sup 1U (s, A) | aa »
s€|0,tg

where ¢ and wqy are positive constants.
2. Construction of solving operator of splitted problem
It is obvious, that according to the formula (3.2) for the system (3.3) we
have:

vl (ty) = U(r,ad) vl (), j=1,....,m—1,
W) = UlnAn) o (1)
UIZ’H_J (tk) = U (T7aAm—j) UZH_J_l (tk) ) j = 17 sy T — 1a

where k =1,2, ...,
vp (te) = wr—y (Bie1), w0 (0) = ¢

Hence we have:
v () = Vi (7) upey (Ermr)

where

Vi(r) =U(r,aAy)..U(r,aAm_1) U (1, Ap) U (1, aAp—1) ..U (T, 0Ay) .
Analogously we obtain that:
wi T (k) = Va (1) upa (te-a)

where

Vo(r) = U (1,aAn) ..U (1,aAs) U (1, A1) U (1, 0As) ..U (1, aA)
So according to the formula (3.4) we obtain:
ug (tk) = V(1) up—1 (1) = VF (1) g, (3.5)

where

V(r) =5 () + 12 (7).

Remark 3.2: The operator V¥ (1) is a solving operator of the above
considered decomposed problem. It is obvious that according to the condition
of the Theorem 3.1 (U(t,vA;) < e“)

[VF (7)) < e, (3.6)
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where wy = (2m — 1)w. From here it follows the stability of the above-stated
decomposition schema on each finite time interval.

Let us suppose that W (1) is a combination (sum, product) of semigroups,
generated by operators (—vA4;) (i =1,2,...,m). Let us decompose all semi-
groups including in the operator W (1) according to the formula (1.7), multiply
these decompositions, group together the similar members and define the coef-
ficients of the members (—7A4;), (T2A;A;) and (T°A;A; Ax) (4,7, k = 1,2,...,m)
to be correspondingly [W (7)];, [W (1), ; and [W ()], ;, in the obtained de-
composition.

i’j
3. Error estimation for approximate solution

Proof of the Theorem 3.1.

If we decompose all semigroups in the V(1) from right to left according to
the formula (1.7) so that each residual member is of the fourth degree, we get
the following formula:

V(r) = I-7) [V (1), Ai+7 Z

=1 4,7=1

_7312 V(7)) Aidj A + BE (7). (3.7)

Similarly to Rff), according to the first inequality of the condition (b) of
the Theorem 3.1 the following estimation is true for R{™ (1) (m > 2):

|R @) < et gl e D(aY, (3.8)

where ¢ and wy are positive constants.
It is obvious that:

V@ = GEL @D, i=12..m,
vl = 5 (M@, W), hi=12..m
Vs = 5 (Vs + 0o0lis),  ik=12.m

Let us compute coefficients [Vi(7)],. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multipliers
(semigroups) of the operator V; (7) which are generated by operators (—vA;).
From decomposition of other semigroups only first addends (identical opera-
tors) will be used. So we have:

Vi(n); = [U (7, A, =

o1



Analogously
Va(7)]; = [U (1, Ai)]; = 1.

So we have
V(r)], =1, i=1,2,....,m.

Let us compute coefficients [V1(7)], ;. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V; (7) which are generated by operators
(—yA;)and (—vA;) . From decomposition of other semigroups only first ad-
dends (identical operators) will be used. So we have:

Vi(r)l;; = U (1, @A) U (7, Ay, ) U (7, Ay -
Analogously

[VZ(T)]i,j = [U (Tv aAiz) U (Tv An) U (T> O‘Alé)]i,j )
where (i1,42) is a pair of ¢ and j indices, arranged in an increasing order.
According to the (1.9) we have:

% ([U (T7 aAil) U (T7 Alz) U (7-7 aAil)]i,j + [U (7-7 aAiz) U (7-7 All) U (7-7 aAlé)]z’,j) -

So we have

Let us compute coefficients [Vi(7)]; ;. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator Vi (), which are generated by operators
(—7A4;), (—=vA;) and (—yAy). From decomposition of other semigroups only
first addends (identical operators) will be used. So we have:

[Vl (T)]i,j,k = [U (Tv aA’il) U (7-7 aAiz) U (7-7 Als) U (Tv aAiz) U (Tv aAil)]i,j,k :
Analogously

[VQ (T)]i,j,k = [U (7—7 aAis) U (7-7 aAiQ) U (7-7 All) U (T7 aAiz) U (Tv aAis)]

i7j7k ’

where (i1, 49,143) is a triple of 7, j and k indices, arranged in an increasing order.
Firstly let us consider the case when ¢ = 7 = k,we have:

[Vl(T)]i,j,k =[U(r, AZ)]zzz = é
and ]
[VZ(T)]”k = [U (r, Az)]“z = 6
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Now let us consider the case when only two of 7, j, k indices are different.
In this case we have:
[Vl (T)]i,j,k = [U (7—7 aAil) U (7_7 Ai2) U (T7 OZAil)]@j,k;
and
[VQ (T)]i,j,k = [U (7—7 aAiQ) U (7-7 All) U (T7 aAlé)]

where (iy,172) is pair of different indices of ¢,7 and k triple, arranged in an
increasing order. According to the (1.9) we have:

i7j7k :

V=5

Now let us consider the case when i, j, k indices are different. We have six
variants. Let us consider each one separately:
Case 1. If 1 < j < k, then

Vi(D)]ije = U (T aA)U(r,@A;) U (r, Ax) U (1,a4;) U (1, a4;)]
= [U(r,aA)]; [U (r, @A)} [U (1, Ay)], = @

J

i7j7k

and

Va(D)iyse = U (r,@de) U (r, @A) U (7, A) U (1,aA;) U (1, aAyp)]
= [U (1, A)); [U (1, 0A))]. [U (1, 0 Ay)],, = o

J

i7j7k

So we have

i?j?k —

1 _ 1
[V(T)] = 5 (062 -+ 062) = 6
Case 2. If 7 < k < j, then

[‘/1(7')]1.%/,f = [U(r,ad;,) U (r,ady) U (1,A;) U (1,aA) U (1, a4;)]
= [U(r. @A)}, [U (7, A4))]; U (1, ¢ Ay)], = o

1;7]-7]{:

and
[Va(T)], e = (U (7.0@A;) U (1,0AR) U (7, Ai) U (1, 0y U (1, 0 4y)] 5 = 0.
So we have
1 _ 1
VT)ijp = 500 = 5.
Case 3. If j <i < k, then
Vi(m)], e = U (1.@A) U (1,@A) U (1, Ap) U (7, 0A;) U (1, a4y)]; 5, = 0
and
[VQ(T)]”k = [U(r,ad;) U (r,a4;) U (1,A,) U (1,a4;) U (1, ozAk)]mJ€

= (U (@A) 1U (7, A), [U (.04, = oa.
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So we have

Case 4. If j < k <1, then

Vi (T)]ij: = [U(r,aA;) U (1, 0A) U (7, A) U (7, aAg) U (T, aAj)]z’,j,k =0
and
Va(T)lije = (U (T @A) U (1, 0d) U (1, A5) U (1, aAp) U (7, Ay,
= [U (7—7 aAl)]z [U (7—7 Aj)]j [U (Tv O‘Ak)]k = aa.
So we have ] ]
VT)ij0 = 500 = ¢
Case 5. If k <1 < 7, then
Vi) = WU (m @A) U(r,ad) U (r, 4;) U (1, ad) U (7, aAp)], 1
= [U(r,ad)]; [U (7, 4)]; [U (7, aAp)], = o
and
[VQ(T)]”k = [U (1,aA;) U (1,aA;) U (1, Ax) U (1, 0A;) U (r, OzAj)]m’k =0.
So we have 1 ]
[V(T)]i,j,k = 50@ = 6

Case 6. If £ < j <1, then

[Vl(’r)]”k; = [U(r,ady) U (1,a@dA;) U (1, A) U (1,0A;) U (1, 0 Ay.)]
= [U(r, A); U (r, aAj)]j U (7, 04)], = o

,L‘?j?k

and

[VZ(T)]Z',J',k = [U(r,aA) U (r,aA;) U (1, Ar) U (1,04;) U (1, aA;)]
= UG @A U (@A, [U (7, A, = 7

7:7j7k
J

So we have . .
[V<T)]i,j,k ) (a2 +62) = 6

Finally, for any triple (7, j, k) we have:

1

V(= ¢

Inserting in (3.7) the obtained coefficients, we will get:
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Vi(r) = —TZ/H-T ZAA——T3ZAAAk+R (1)

- —TZA—}— —T (ZA) — <2A> +R4 (1)
= [—TA+§TA—673A3—|—R47” (7). (3.9)

According to the formula (1.7) we have:
1 1
U(r,A)=1—-1A+ 57214 - 673A3 + Ry (1, A). (3.10)

According to the second inequality of the condition (b) of the Theorem
3.1 the following estimation is true for Ry (7, A):

1Ry (7, A) o] < cemr* [|A%|| < ce 7" [l ga (3.11)
According to the formulas (3.9) and (3.10) we have:
U(r,A) = V (1) = Ry (1, A) = R{™ (7).
Hence using inequalities (3.8) and (3.11) we can get the following estimation:
U (7, A) =V (1)) ]l < ce” 7" o]l gs - (3.12)
According to the formulas (3.2) and (3.5) we have:

u(te) —ur(ts) = [Ults, A) =V* ()] ¢ = [U* (1, 4) =V ()] ¢
k

= D VMU EA) -V@OIU (-1 A)e

i=1

Hence according to the inequalities (3.6) and (3.12) we can obtain the following
estimation:

lutr) = un(te)]l - < ZHV OV (7, A) =V (D] U (i = 1) 7, A) |

IN

Z e =0T 2T | T (1 — 1) 7, A) @) 4a

IA

k
cewotr 4 Z ||U ((Z - 1) T, A) SOHA4
—1

ce0t, 3 sup U (s, A4) @|| 4 - O

s€lo,ty]

IN
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84. Sequential type third order accuracy

decomposition scheme
Let us consider the problem (3.1). Let A = A; + Ay, where A; (i =1,2)
are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tx_y,t;], we consider a se-
quence of the following problems:

d?},il) (t) a (1)

A () = 00 0 (teer) = e ().
dv’iz(t)+a,4mi” (0 = 0, o () = o (1),
dv;i;(t) tadw® ) = 0, o (o) =0 (1),
d](c:t(t)JF%Alwf) ) = 0, v (1) =0t (te),

where « is a complex number with the positive real part, Re () > 0; u(0) =
¢. Suppose that the operators (—A;), (—ad;),(—aA;), j = 1,2 generate
strongly continuous semigroups.

uk(t), k=1,2,.., is defined on each interval [t;_1, ;| as follows:

we(t) = v ().

We declare function ug(t) as an approximated solution of problem (3.1) on
each interval [t_1,tx].

Theorem 4.1. Let the conditions (a), (b) and (c) of Theorem 1.1 be
fulfilled. Then the following estimation holds:

(4.1)

lu(tr) — ur(ti)|| < ce't,r® sup 1U (s, A) @] 41
se O,tk

where ¢ and wy are positive constants.

Proof. From formula (4.1) we obtain:
u(te) = V* (1) o, (4.2)

where
1 J—
V(r)=U <T, %AQ U (7,0ds) U <T, §A1) U (1,@A:) U <T, %A1> .

Remark 4.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 1.1.
In this case, for the solving operator, the following estimation holds:

IVE ()| < e, (4.3)
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where wy is a positive constant.

We introduce the following notations for combinations (sum, product) of
semigroups. Let T (7) be a combination (sum, product) of the semigroups,
which are generated by the operators (—vA;) (i =1,2). Let us decompose
every semigroup included in operator 7' (7) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (—74;),
(72 A;A;) and (=1°A;A;Ay) (4, 4,k = 1,2) respectively by [T'(7)],, [T (7)], ; and
[T (T)]i,j,k‘

If we decompose all the semigroups included in the operator V' (7) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

Vir) = I=13 VELA+7 > V(e
_7312 [V (7)), AiAj AR + Ra (7). (4.4)

According to the first inequality of the condition (b) of the Theorem, for
R, (7), the following estimation holds:

HR; (1) goH < ce¥omrt ol ga, @€D (A4) , (4.5)

where ¢ and wg are positive constants.

Let us calculate the coefficients [V(7)], corresponding to the first order
members in formula (4.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V' (1), which are generated by the operators
(—vA;), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: ¢+ = 1 and i = 2. Let us consider the
case ¢ = 1. We obviously have:

V(n)l, = U (7, A, = 1. (4.6)
Analogously for ¢ = 2 we have:
V()] = U (7, A2)], = 1. (4.7)
By combining formulas (4.6) and (4.7), we will obtain:
V), =1, i=12. (4.8)

Let us calculate the coefficients [V/(7)], ; (i,7 = 1,2) corresponding to the
second order members included in formula (4.4). On the whole we have two
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cases: (i,7) = (1,1), (1,2), (2,1), (2,2) . Let us consider the case (i,j) = (1,1).
We obviously have:

V= 0 (Al = 5. (1.9
Analogously for (i, j) = (2,2) we have:
Vs = U (7. Ad)ly, = 5. (4.10)

Let us consider the case (i,7) = (1,2), we obviously have:

Ve = [U(n54)] U(mad),

o a_ _1 alat+a)+a 1
For (i,5) = (2,1) we have:
1
Vil = ©atl, U (nya)]
1
e}
+[U (1, aAs)], [U (7’, EAI)}
1
_ e}
+[U (1, @A), {U T, §A1)}
1
1 a _a oata(at+a) 1
— A= - — = = —. 4.12
ag +a 5 +a 5 5 5 (4.12)
Here we used the identity o + @ = 1.
By combining formulas (4.9) - (4.12), we will obtain:
1
[V(T>]z‘,j -y ;,j =12 (4.13)
Let us calculate the coefficients [V (7)), ;, (i,7,k = 1,2) corresponding to
4).

the third order members in formula (4. On the whole we have eight cases:
(1,3, k) = (1,1,1), (1,1,2), (1,2,1), (1,2,2), 2, 1,1), (2,1,2), (2,2, 1), (2,2,2).
Let us consider the case (3, j, ) = (1,1,1). We obviously have:

1

[V<7'>]1,1,1 = [U (m, Al)]l,l,l = 6 (4.14)
Analogously for (7, j) = (2,2,2) we have:
V(r)haz = U (r Ay = 5. (4.15)
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Thus Let us calculate the case (i,7,k) = (1,1, 2).

v(

+

e

=

N——

V(s |, [0 (rad),

™o |

=
N

=

8N

+

=

ol NS N2

_|_

a? _ L oal_ 1
—a+ —a+ -+ -«

1
8 8 22 8
o (a+a)+20a+a

We have:

)], [0,

o’ +oa+oa+a

8
ala+@) +aa+a

(a + @)+ aa

8

8 =
For (i,7,k) = (2,2,1) we have:

V(D)os = [U(rad),, [U <T, %Alﬂ

v~

8

1

Here we used the identities « + @ =1, aa = 3
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Thus Let us calculate the case (7,7, k) = (1,2,2). We have:

Vs = |U(r54)] 0 ad),

For (i,7,k) = (2,1,1) we have:
Vhy = [U(nady), {U (
+[U (1, 0Az)), _U

i
+[U (7, aAy)], _U (7,
(

+[U (1, @A), -U

1 a? la
T gTem ety
a+a*(a+a)+ 20

8
at+ala+a)+aa ata
4 B 4
d

=z (4.19)

Here we used the identities a + @ =1, aa =

Wl
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Thus Let us calculate the case (7,7, k) = (1,2,1). We have:

[V(T)]LQ,l = [U (Tv gAl L U (,

o
I
N
=
| — |
-
7 N
:]
N | —
o~
o S N
—_

Q a
+|U (n 54| U ad), [U (T, = 2)}1
o o]
+ U (T, 5141)] . [U (T, OdAQ)]2 |:U (T, 5142)1 X
1 a
+|U (7’, —Al)] U (1,@As)], [U (7’, —A2>:|
i 2 1 2 1
22 22 272 22
2 | =2 = =
_ (a —i—oz)-l—aa(oﬂ—a):l (4.20)
4
For (i,7,k) = (2,1,2) we have:
1 _
Vile = Wnatl, [V (n54)] 0@,
1
1 1
= a-a=-. 4.21
450 == (4.21)
Here we used the identities a + @ =1, aa = % and o? +a? = %
By combining formulas (4.14) - (4.21), we will obtain:
r
[V(T)]i7j7k = 67 YR k= 1,2 (422)

From equality (4.4), taking into account formulas (4.8), (4.13) and (4.22),
we will obtain:

Vir) = —TZA+ TZAA——T3ZAAAk+R4()
4,j=1 i,5,k=1
= —TZA+ =7 (ZA) - (ZA) + Ry (7
= I—TA+§T2A2—67'3A3—|—R4(T). (423)

According to formula (1.7) we have:
1 1
U(r,A)=1—-1A+ §T2A2 - 67'3/13 + Ry (1,A), (4.24)
where Ry (7, A) is defined form (1.8).
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According to condition (b) of the second inequality of the Theorem, for
Ry (1, A), the following estimation holds:

1R (7, A) ol < cem 7 [|A%p]| < ce 7 [lop]| 4a (4.25)
According to equalities (4.23) and (4.24):
U(r,A) =V (1) = Ry (1, A) — Ry (7).

From here, taking into account (4.5) and (4.25), we will obtain the following
estimation:

U (7, A) = V (D)) ]l < ce” " ]l gs - (4.26)

From equalities (3.2) and (4.2), taking into account inequalities (4.3) and
(4.26), we will obtain:

luts) —un(te)ll = [[[U(t, A) = VE ()] of| = [ [U" (7, 4) = VE(7)] ¢

_ ' SV U A) =V (U (G~ )7 A

i=1
7

¥

IV @I IV (7, A) = V(D] U (= 1) 7, A) |

M-

1

g1 (k=0)T powat 14 WU ((i—1)7,A) | 4a

M-

1

]

k
ety U ((i = 1) 7, A) @]

<
i=1

< kee*™rt sup |U (s, 4) @] ga
s€lo,tg]

< ceolity 3 sup [|U (s, A) @] 44 - 0
s€o,tr]
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85. Sequential type third order accuracy
decomposition scheme for
multidimensional evolution problem

Let us consider the problem (3.1). Let A = Ay + ... + A,,, where A; (i =
1,..,m) are closed operators, densely defined in X.

Together with problem (3.1), on each interval [t;_1,%], we consider a se-
quence of the following problems:

dvl (¢ a
dv (1) + A () = 0, o (o) = ey (tea)

dt 2
d'U(Z) t a i i i—
—'zlt()+§Aiv,i)(t) = 0, o (tey) =00 (),
i = 2,..,m—1,
dvi™ (¢ m .
#O+aAmvk () = 0, o™ (ti1) ="V (ta),

dv(2m_i) t a m—i m—i m—i—
kT()JFEAWI(f ") = 00 v () = oY (1)

dv®™ Y (¢ 1 o — i
WO 2anf ) = 0 oD ) = o 1),

dvi(c2m_2+i) (1)
dt

d (3m—2) ¢ . . .
WO 0 ) = 0 T () = o (),

dU;(fmiQii) (t) o, (m—2-i) (4m—2—i) (4m—3—i)
— o T 3Au @) = 0, vy (te—1) = vy (te)
i = m—1,..,1.
where «v is a complex number with the positive real part, Re () > 0; uo(0) = ¢.
Suppose that the operators (—A;), (—ad;),(—aAd;), j = 1,...,m generate

strongly continuous semigroups.
uk(t), k=1,2,.., is defined on each interval [t;_1,t]| as follows:

we(t) = v (1) | (5.1)

We declare function u(t) as an approximated solution of problem (3.1) on
each interval [t 1, ;]

Theorem 5.1. Let the conditions of Theorem 3.1 be fulfilled. Then the
following estimation holds:
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lu(te) = u(t)|| < ce”ty7? sup 1U (s, A) @l 44,
s€|0,tg

where ¢ and wy are positive constants.
Proof. From formula (5.1) we obtain:

u(ts) = V(1) @, (5-2)

where

<
S
I
-
N
A
| QR
I
Nl
!
S
o
| o
o
3
N
-
=
Q
0
3

X
-
/N
R
|9
o
;
N
-
/N
R
Do Q
&
N—
-
VR
o
DO |
s
N~

X
3

(T, A2) U( ,gAml) U (7, aA,)

xU (T, %Aml) U (T, %fh) .

Remark 5.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 3.1.
In this case, for the solving operator, the following estimation holds:

V@) < e, (53)

| oo B2

where wy is a positive constant.

We introduce the following notations for combinations (sum, product) of
semigroups. Let T (7) be a combination (sum, product) of the semigroups,
which are generated by the operators (—yA4;) (i = 1,...,m). Let us decompose
every semigroup included in operator 7' (7) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (—7A4;),
(T2A;A;) and (—7°A; A Ax) (4,4, k = 1, ..., m) respectively by [T (7)],, [T (7)]
and [T (7))

If we decompose all the semigroups included in the operator V' (7) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

Vi(r) = —TZ A—l-TQZ

2,7=1

—73 Z )i AiAj Ay + Ry (7). (5.4)

i,j,k=1

0]

~ According to the first inequality of the condition (b) of the Theorem, for
Ry (1), the following estimation holds:

HR; (1) goH < ce¥om lollae, w €D (A4) , (5.5)
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where ¢ and wy are positive constants.

Let us compute coefficients [V (7)],. Obviously, we get the corresponding
members of these coefficients from decomposition of only those multipliers
(semigroups) of the operator V (7) which are generated by operators (—vA;).
From decomposition of other semigroups only first addends (identical opera-
tors) will be used. So we have:

V(r),=1, i=1,..m.

Let us compute coefficients [V/(7)], ;. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator Vj (7) which are generated by operators
(—yA;)and (—vA;) . From decomposition of other semigroups only first ad-
dends (identical operators) will be used. So we have:

V), = [U (7 94.,) U r.aa,)U (T, %Ail> U (r, @A) U <T, gA)]]

where (i1,42) is a pair of ¢ and j indices, arranged in an increasing order.
According to the Theorem 4.1 we have:

« 1 _ o 1
{U (7‘, §A¢1> U(r,ad,)U (7’, 5A,~1> U(r,aA;,)U (7‘, §Ai1)L’j =3

So we have
[V(T)]i,j =5 1,7=12..m.

Let us compute coefficients [V/(7)]; ;.. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V (7), which are generated by operators
(—vAi), (—v4;) and (—yAy). From decomposition of other semigroups only
first addends (identical operators) will be used. So we have:

VO, = U (T, %Ai1> U (T, %AiQ) U (r,ady) U (T, %Ah) U (T, lAil)

2
a . a a
U <7’, §Ai2> U(r,aA;,)U (7’, §AZ~2> U (7’, EAh) ,

where (i1, 149,143) is a triple of 4, j and k indices, arranged in an increasing order.
Firstly let us consider the case when 7 = j = k,we have:

Ve =10 (7 A = 5.

Now let us consider the case when only two of 7, j, k indices are different.
In this case we have:
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0% 1 a a
V()]0 = {U <T, EA“) U(r,ad;,)U <T, §Ai1) U(r,ad;,)U (T, §Ai1>:|i,j,k7

where (i1,12) is pair of different indices of i,;7 and k triple, arranged in an
increasing order. According to the Theorem 4.1 we have:

1

(67 1 [ .
|:U (7_’ 51411) U (7-’ &Aig) U (T, 51411) U (7—, OéAi2> U (T, §A11>:| ik o 6

So we have ]
V()i = 3 i,J,k=1,2,...,m.
Now let us consider the case when i, j, k indices are different. We have six
variants. Let us consider each one separately:

Case 1. If 1 < j < k, then

Vi(T)]ije = U (T, aA)U(r,@A;) U (1, Ax) U (1,a4;) U (1, a4;)]
= [U(r,ad)]; [U (r, @A)} [U (1, Ay)], = @

J

i?jIk

and

[‘/2 (T)]i,j,k = [U (7-7 aAk) U (7—7 aA]) U (7-7 AZ) U (T7 aAj) U (Ta aAk:)]
= [U(r,A)};[U (T, aAj)]j U (7, ady)], = o

i?j’k

So we have

V()i = % (o +37) = é

Case 2. If 7 < k < j, then

ViD= U (nad) U(r, @A) U (1, A;) U (7, ady) U (1,0 4;)]
= [U(raA)}; [U(r, 4); [U (1, 0dp)], = o

i’j’k

and
Va(T)i 0 = [U (1, @A) U (1,@Ar) U (7, A4;) U (1, adi) U (1, 04;)], 5, = 0.
So we have
11
V{T)ijp = 500 =¢.
Case 3. If j <i < k, then
[‘/1 (T)]i,j,k = [U (7-7 a"4J) U (7-7 aAl) U (7—7 Ak) U (T7 aAZ) U (7—7 aAj)]i%k =0
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and

Va(T)li e = U (m,@dn) U (r,@A) U (1, A;) U (7, a4;) U (1, Ay
= [U(r,add)]; [U (7, A4))]; [U (1, aAy)], = adr.

J

i7j7k

So we have 1 )
VT)ijp = 500 = 5.
Case 4. If j < k <1, then
[Vl (T)]i,j,k = [U (T7 aAj) U (T7 aAk) U (T7 Ai) U (T, aAk’) U (T, aAj)]z’,j,k =0
and
[VQ(T)]”k = [U(r,ad,) U (r,ady) U (1,A;) U (1,aA;) U (7, ozAi)]m.’k
= [U(nad); [U(r, 4); [U (1, adp)], = oav.
So we have
1 _ 1
VT)ij0 = 500 = 5.
Case 5. If k < i < j, then
Vi)l = U adn)U(r,ad) U(r, A U (r,ad;) U (7, 0Ay)], 4
= [U(rad)}; U (7, 4); [U (1, 0dp)],, = o
and
Va(7)];j = U (1,@A) U (1,@4:) U (7, A) U (7,0 4;) U (7, aAj)]i,j,k =0.
So we have
1 _ 1
V()i = R
Case 6. If k < j <1, then
[Vl (T)]i,j,k; = [U (7_7 aAk) U (7_7 aAj) U (7_7 Az) U (T’ aAj) U (7—7 aAk)]i,j,k
= [U(r, ), [U (r,04))]; [U (1,04;)], = o
and
Va(Mlije = WU (T @A) U(r, @A) U(r, Ap) U (1, 0d;) U (T, i),

= [U(r,ad)),[U (r,@A))], [U (1, A)], = @*.

J

So we have ) .
[V(T)]i,j,k = B (062 +@2) = 6

Finally, for any triple (i, j, k) we have:

V=g
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Inserting in (5.4) the obtained coefficients, we will get:

Vi) = —TZA+ 373 A -5 3 A B (0

1,j=1 i,5,k=1
= _TZA+ 7 (ZA) - (ZA) + R{"™ (7)
= I—TA+%T2A—6T3A3+R4WL (7). (5.6)

According to the second inequality of the condition (b) of the Theorem
3.1 the following estimation is true for Ry (7, A):

1Ry (7, A) o] < cemr* [|A%|| < e 7" [l ga (5.7)
According to the formulas (1.7) and (5.6) we have:

U(r,A) = V (1) = Ry (1, A) = R{™ (7).
Hence using inequalities (5.7) and (5.5) we can get the following estimation:
U (7, A) =V (7)] ¢l < ce” 7 [p]] ga (5-8)

Analogously of two-dimensional case, from equalities (3.2) and (5.1), taking
into account inequalities (4.3) and (5.8), we will obtain sought estimation. [J
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Chapter 11

The Fourth Order Accuracy Decomposition
Schemes

§6. The fourth order accuracy decomposition
scheme for evolution problem

1. Differential splitting and error estimation of approximate
solution

Let us consider the problem (3.1). Let A = A; + Ay, where A; (i =1,2)
are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tx_y,t;], we consider a se-
quence of the following problems:

do'V (¢ Q@
kd—t() * §A1”l(cl) ) = 0, v (1) = ukor (tx)

@ + %Agv;(f) (1) = 0, o (ter) =0 (1),
dog” (1)
dt
% + %sz;&) (1) = 0, o (ter) = v (W),

LSO

gAY () = 00 o7 (te) =00 (1),

+adn @) = 0, o (o)) =0 (),

dt +§A2wk ) = 0, w (te1) = wer (te),
dw(Q) t 1
L aw® ) = 0wl () = o (1),

+adw? () = 0, w? (o) = w (),
—k 2 A () = 0, wl () = w0l (),

—k 2 T Al () = 0, w () = w (1),
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where « is a complex number with the positive real part, Re () > 0; u(0) =
¢. Suppose that the operators (—A;), (—ad;),(—aA;), j = 1,2 generate
strongly continuous semigroups.

uk(t), k=1,2,.., is defined on each interval [t;_1,t]| as follows:

uslt) = 31o(0) + wf? (1)) (6.)

We declare function u(t) as an approximated solution of problem (3.1) on
each interval [t_q,x].

Theorem 6.1. Let the conditions (a) and (b) of Theorem 1.1 be fulfilled
and U (s, A) o € D (A®) for each fived s > 0.Then the following estimation
holds:

Ju(te) — up(ty)]| < ce”*™ e sup [|U (s, A) @l 45 ,

s€[0,tx]
where ¢ and wy are positive constants.
Proof. From formula (6.1) we obtain:
u(ty) = V* (1) ¢, (6.2)
where )
V(r) =5+ Va ()],
and where
o 1 N 1 o
Vi(r) = U <7’, §A1> U (T, §A2) U(r,aA)U (7’, 5142) U (7’, §A1) ,
a 1 N 1 e}
Vo(r) = U (7‘, §A2> U (7‘, §A1> U(r,aAy)U (7’, §A1) U (7‘, EAQ) )

Remark 6.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem1.1.
In this case, for the solving operator, the following estimation holds:

V@] < e, (6.3)

where wy is a positive constant.

We introduce the following notations for combinations (sum, product) of
semigroups. Let T (7) be a combination (sum, product) of the semigroups,
which are generated by the operators (—vA;) (i =1,2). Let us decompose
every semigroup included in operator 7' (7) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (—7A4;),

(T2A;A;), (T3 A AjAg) and (T A A; AA)) (i, 4, k, 1 = 1,2) respectively by [T (7)),

T (T)]i,j’ T (T)]zjk: and [T (T)]i,j,k,l'
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If we decompose all the semigroups included in the operator V(1) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

Vir) = —TZ A—i—TZ

4,7=1
—73 Z )] AiAj A
i,7,k=1
2 ~
+70 Y V(D)) s AiAjARAL+ Rs (7). (6.4)
3,5,k 1=1

According to the first inequality of the condition (b) of the Theorem, for
Rs (1), the following estimation holds:

Rs (

‘ < e gl s, p € D(A), (6.5)

where ¢ and wy are positive constants.
It is obvious that, for the coefficients in formula (6.4), we have:

V@l = 5 )+ A, =12

Vil = 5 (M@, +060,), #i=12

Vi lx = 5 (M@t W), idk=12,
Vi ne = 5 (GO + Weign) . Gdiki=12

Let us make two remarks which will simplify a calculation of coefficients in
decomposition (6.4):

Remark 6.3. Operator V (1) will not change if we replace with each other
the operators Ay and Ay in its expression, as in this case Vi (1) will coincide

with Vo (1), and Vo (1) - with Vi (7). Therefore we have:

VDl = V0, i=L2%

14 (T)]” = [V(7)l;- s LJI=12
14 (T)LJk = [V (7')]3 i,3—§,3—k > i, J,k=1,2;
V(D ijwe = VDlssisjspss bk 1=1,2

Remark 6.4. Operators Vi (1) and Vo (1) are symmetrical in the sense
that in their expressions the factors (semigroups) equally remote from the ends
coincide with each other. Therefore we have:

V), = VO, i=12
[V (T)]i,j,k: = [V (T)]k,j,z‘ ) ia ja k - 1a 2;
14 (T)]i,j,k,l = [V (T)]l,k,j,z” i, J, k0 =1,2.
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Let us calculate the coefficients [V (7)], corresponding to the first order
members in formula (6.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V (1), which are generated by the operators
(—vA4;), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: ¢ = 1 and ¢ = 2. Let us consider the
case 1 = 1. We obviously have:

Wi(n)], = U (1, Al = 1

and
Va(r)ly = U (7, Ay)], = L.

Thus
V(n)l =

According to Remark 6.3:

(Vi(n)]; + Va()ly) = 1.

V(r)l, =V, =1. (6.6)

Let us calculate the coefficients [V/(7)], ; (¢, = 1,2) corresponding to the
second order members included in formula (6.4). On the whole we have two
cases: (i,7) = (1,1), (1,2), (2,1), (2,2) . Let us consider the case (i,j) = (1,1).
We obviously have:

Vir)lay = U (r A =
and 1

[‘/2(7)]1,1 =[U (7, A1>]1,1 9
Therefore

V), = % <[V1(T>}171 t [VQ(T)]LJ B %

According to Remark 6.3:

Vs =Vl = 5 (6.7

Let us consider the case (i,7) = (1,2), we obviously have:

W, = U (ﬂ%f‘l)]l[U <T’%A2>L
o[ esa)) [o(am)

2
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and

Thus

1
[V(T)]Z,l = [V(T)]w = 9 (6.8)
Here we used the identity a + o = 1.
By combining formulas (6.7) and (6.8), we will obtain:
[V<T)]i,j = Z7] = 1a 2. (69)

1
>
Let us calculate the coefficients [V (7)), ;, (i,7,k = 1,2) corresponding to
the third order members in formula (6.4). On the whole we have eight cases:
(1,7,k) = (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1, 2), (2,2,1), (2,2,2).
Let us consider the case (3, j, ) (1,1,1). We obviously have:

Vi(M)sas = U (7 Ay = =

and 1
[‘/2(7')]1,1,1 = [U (r, Al)]1,1,1 =z
Thus:
1
V(I a = 5 (V) an + Va0haa) =
According to Remark 6.3:

V(o = V(s = 5 (6.10)
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Let us calculate the case (i, j,k) = (1,1,2). We obviously have:

Vi = |U (Ta%fh)]m [U (T’%AQ)L

B 1cv2+ 2+04_1+§21_1+a2
- 299 T 927 Ty
and
1
[‘/2(7)]1,1,2 = {U (7'7 §A1 ] [U (1,aAs)],
1,1
) . , .
+lo(r3a0)) (5],
1 1 1 o
o (ram)] o (mga)] [ (5]
- ) - .
+ -U (7—7 5141)_ o [U (T, §A2>i|2
B 1_+1a+11a+1a_ 14+«
T 8YTR2 7292782 T TR
Thus
1 2+a@+a 1
[V(T)]l,m — 9 <[VI(T>]1,1,2 + [‘/2(7')]1,1,2> -7 16§

Here we used the identities o + @ = 1, aa = % and a + a2 = %
According to Remark 6.3 and Remark 6.4:

V()1 = Vs = V@ )laan = Va2 = é.

74

(6.11)



Let us consider the case (4,7, k) = (1,2,1). We obviously have:

Vi()as = [U <r, %Al ]1 {U (T,%Ag)} U (r, @A),

1 o
+[U (@A), _U <T,§A2>L U (r, §A1>L
_ alg,ale ola clo 1 o
22 222 2292 22 6 4
and
1 o 1 a
Va(r)] 101 = {U (7', 5141)] U (1,@As)], {U <7’, §A1>] =7
1 1
Thus

1
2

[V(T)h,m = ([‘/1(7')]1,1,2 + [VQ(T)]LLQ> -1 + s — &

2

Here we used the identity o? + @ = 3

According to Remark 6.3:

1
[V(T)]2,1,2 = [V(T>]1,2,1 = 6 (6.12)
By combining formulas (6.10), (6.11) and (6.12), we will obtain:
1
[V(T)]i,j,k = 67 i, J, k=1,2. (613)

Let us calculate the coefficients [V/(7)]; ;. (i, 4, k,l = 1,2) corresponding to
the fourth order members in formula (6.4). On the whole we have sixteen cases:
(1,7,k,0) = (1,1,1,1), (1,1,1,2), ..., (2,2,2,1), (2,2,2,2). Let us consider the

case (i,7,k,1) = (1,1,1,1). We obviously have:

1
[‘/1(7')]1,1,1,1 = [U (r, Al)]1,1,1,1 = 2
and 1
[‘/2(7')]1,1,1,1 = [U (7, Al)]1,1,1,1 = o0
Thus:

[V(T)]l,l,l,l - % <[V1(T)]1’1’1’1 * [VQ(T)]LLLJ B i

1)



According to Remark 6.3:

1

oL (6.14)

[V(T)]2,2,2,2 = [V(T)]1,1,1,1 =

Let us consider the case (4,7, k,1) = (1,1, 1,2), we obviously have:

a 1
Vi(T)]1110 Pf(Tf§/h>]LLl{57<T»§fb>]2
r a 7 1
—A —A
(5], v (),
r a 7 1
+ _U (T, §A1>_ L1 [U (7’, OéAl)]l |:U (T, §A2>:| )
r o 7 1
+ _U (7‘, §A1>_ X U (r, OéAl)]Ll [U (7‘, §A2)] 2
1
+ [U (7', @Al)]LM |:U (T, §A2>:|
2
B a31+a31 a2_1+a621 a1
T Ry 182 T8 922 62
P +a+4a’+2a  1+3a°+a
N 48 N 48
and
1 _
Vs = [0(nga)| ),
1,1,1
i 1 1 a
+|u ( éAl)_ v (- 2a)]
[ 1 1 1 Q
+ -U (T, 5141)- » |iU (T, 5141)1 X [U <T, 5142):| )
[ 1 | 1 b
—|— -U (7', 5141)- X |:U (T, §A1):| » [U <T, 5/12)} )
i 1 1 a
+|u ( éAl)_ v (= 2a)]
B 1—+ 1 04+1104+11a+ lLa 143«
T R T182 7822 T282 Tu82 T T 48
Thus
1
[V(T)]1,1,1,2 -9 ([‘/1(7')]1,1,1,2 + [‘/2(7')]1,1,1,2>

2+3@+a)+a 1

96

Here we used the identities 3 (@® + o) = 2 — @,
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According to Remark 6.3 and Remark 6.4:

[V(T)]Ll,m = [V(T)]Q,l,l,l = [V(T)]Lm,z = [V(T>]2,2,2,1 = 2_14 (6.15)

Let us consider the case (i, 7, k,1) = (1,1,2,1). We obviously have:

+
|q|

=

a

+
d
Ve /\']\ /N
N[RN[R N
~
N———

+
IQI

A’ a?la a?la a_la a’la

= — _— _— —_ _— _—

$2°T 532275322 73% 373533
30 +3a+2a 3ot +a+2

48 48
and
1 N 1
[‘/2(7')]1121 = U754 U (, CVA2)]2 Ul ;A
T 2 1,1 2 1

S

- 3" T 16
Thus

[V(T)]1,1,2,1 = % <[V1(T)]1,1,2,1 + [‘/2(7)]1,1,2,1>

3 +a+2+3a  3(@P+a)+a+2 1

96 96 24

Here we used the identity @ + a3 = 0.
According to Remark 6.3 and Remark 6.4:

[V(T)]l,l,Z,l = [V(T)]2,2,l,2 = [V(T)]l,z,l,l = [V(T)]2,1,2,2 = 2_14 (6.16)
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Let us consider the case (i, 7, k,1) = (1,1,2,2). We obviously have:

and

[‘/2(7)]1,1,2,2 =

Thus

VOhsns = 3 (6 + 4 10) =

v (n5a)] [U ( gAQ)]

+[u

o
oy
N——
—
| — |
=
VR
=
N |
o
no

LU (raA)], [U (T, 1142)}
’ 2 2.2
a?1l %11 a?1 o 1 @a?1
s37822 7882987 28
o +aa+a’ 1
16 Y

la 1 _ a 1a? 11a® 102
82 "8"278% T228 8%
a’+an+a® 1

16 Yy

1

According to Remark 6.3:

1

[V(T)]1,1,2,2 = [V(T)]2,2,1,1 = o
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Let us consider the case (i, 7, k,1) = (1,2,2,1). We obviously have:
« 1 _
or = |U(n54)] [U (T, 5@)} UEaa),
' U

rpt)| (5],
1

b

[uin
—
[

—
—
—_

I
[\
~_
I no

«
U (r 4]
2 }2,2 " 2" 1
al ala alla a1a+_1a
= _—— _—— —_——— _—— o——
28 282 2222 282 82
. o? + aa
- 8
and
1 _ 1
[‘/2(7')]1,2,271 = [U (TaéAl):| [U(T;OéAQ)]zg [U <T,§A1>}
1 1
_1a*1  @?
222 8
Thus

Vi hass = 5 (A0haa +0a0h0))

According to Remark 6.3:

1

[V(T)]Lg,z,l = [V(T)]Q,l,l,Q = 2 (6.18)

Let us consider the case (4,7, k,1) = (1,2,1,2). We obviously have:

Vihre = |U(m54)]) {U (T’%AQ)L[U (r ol [U (T’ %AQ)L

al_1 1
2272 24

79



and

Va()io1s = {U (T, %Al)] (U ad), [U <T, %Alﬂ 1 U (rga4)],

1l _la 1
- 2%22 T
Thus ) )
[V(T)]1,2,1,2 = B) <[VI(7)]1,2,1,2 + [‘/2(7)]1,2,1,2) = 2%’
According to Remark 6.3:
1
[V(T)]l,Q,l,Z = [V(T)]2,1,2,1 = o0 (6.19)
By combining formulas (6.14)-(6.19), we will obtain:
1 o
[V(T)]i,j,k,l =50 b k,l=1,2. (6.20)

From equality (6.4), taking into account formulas (6.6), (6.9), (6.13) and
(6.20), we will obtain:

V(r) = —TZA+ TQZAA ——T3ZAAAk

,j=1 i,5,k=1

1
+op7 4 Z A A;ALA + Ry (1)
4,5,k 0=1

- —TZA+ =7 (ZA) —173 (ZAZ)S
<ZA) + R (7

1 ~
= ] — TA -+ 57’2142 — 67'3143 + ﬂT4A4 + R5 (T) . (621)
According to formula (1.7):

+ ﬂT4A4 + Rs (1, A). (6.22)

According to condition (b) of the second inequality of the Theorem, for
Rs (1, A), the following estimation holds:

1 1
U(r,A)=1—-1A+ 57'2142 - 67'3143

1Rs (7, A) ol < ce*"7° [| A% < ce™7° [lop]l 45 (6.23)
According to equalities (6.21) and (6.22):

U(r,A) =V (7) = Rs (1,A) — R5 (1) .
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From here, taking into account inequalities (6.5) and (6.23), we will obtain the
following estimation:

U (7, 4) = V(D] ]l < ce” 77 ]l 45 - (6.24)

From equalities (3.2) and (6.2), taking into account inequalities (6.3) and
(6.24), we will obtain:

luty) —w(t)l = [[[Ut, A) = V()] ¢ = [[[U" (7, A) = VE(7)] ]

_ ' SV U (R A) = V(U (G- )7 A

i=1
i

¥

V@I IV (7, A) =V (D] U (= 1) 7, A) |

M-

1

et (k=i)T powa .5 U ((i —1)71,A) |

M-

A5
1

)

k
e 5N U (= 1) 7, A) @ 4o

<
=1

< kee®t S sup 1U (s, 4) @]l 5
s€[o,tg]

< ettt sup ||U (s, A) @l 45 -
s€lo,ty)

Remark 6.5. In case of a Hilbert space, if Ay, Ay and A; + Ay are self
adjoint nonnegative operators, then wy will be replaced by 0 in the estimation
of the Theorem. In addition, for the solution operator of the split problem, the
following estimation holds: ’Vk (7’)H <1.

Remark 6.6. In case of a Hilbert space, if Ay, Ay and Ay + Ay are self
adjoint positive defined operators, then wy will be replaced by (—ay), ag > 0
in the estimation of the Theorem. In addition, for the solution operator of the
split problem, the following estimation holds: ‘Vk (T)H <e ™k o > 0.

2. Connection between decomposition formulas with different
accuracies

It is interesting if there exists a certain regularity, on the basis of which it is
available to construct automatically stable decomposition formulas with accu-
racy of any order. Concerning the above-mentioned let us consider the concrete
first and second order accuracy decomposition formulas and see whether there
exists a connection between them.

VO (1) = U(r,A)U (1, A), (6.25)

VA (r) = U (T, %A1> U(r,A)) U (7, %/h) : (6.26)
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In this formula and the formulas given below, the upper indices of the opera-
tor V' denote the order of the corresponding decomposition formula. Formula
(6.25) represents the first order accuracy decomposition formula (see [60]),
while formula (6.26) represents the second order accuracy decomposition for-
mula (see [4]). In order to show more clearly the connection between them, let
us rewrite formula (6.26) in the following form:

o = e ()] o ) 20
= v (%7) v (%7) :

In this formula and the formulas given below, we denote by V the multiplica-
tion of factors of the operator V' in the reverse order.

The regularity of the same type exists between the third and fourth order
accuracy decomposition formulas, constructed by us (see [19]-[62]). In order
to show this, let us introduce the following notations:

VO = L[ 0+ o), (6.27)

V(1) = U(r,ad) U (r, A) U (1, @A),
Vi (1) = Ul(r,ads) U (r, AU (,@4,),

and
1
v () = S W@+ @), (6.28)
@y _ o 1 - 1 o
V() = U <7’, 2A1> U (7', 2A2) U(r,aA)U (7’, 2A2> U <T, 2A1> ,
@y _ o 1 - 1 o
VW(r) = U <7’, 2A2> U (7’, 2A1) U(r,aAs)U (7’, 2A1) U (7’, QAQ) .

In order to reveal the connection between formulas (6.27) and (6.28), let rewrite
the addends of formula (6.28) in the following form:

V() = [U (r.54)U (r, %AQ) U <7, %Al)}
o 1 «
X |:U T, 5141) U <T, 514.2) U (T, §A1>:|
1\ =@ (1
- W ()W ()

1 _
\/'2(4) (1) = {U T, %Ag) U (7’, §A1) U (7’, %Ag):|

1 \o3 /1
- (57) 7 (),



Finally we obtain:

1 1\ /1 1 \Tm /1
VO (r) = {Vf?’) (§T> o (57) v (57) e (57)} |
Unfortunately, the following formula constructed by the same rule:
1 1 N\ /1 1\ /1
vO(r) = o {Vf‘” (57) @ (57) Ly (§T> @ (57)]
1 « 1 a 1 «
= 5 |:U <T, ZA1> U (7—74_1A2) U (7’, 5141) U (7', ZAQ) U (’7'7 5141)

does not represent the fifth order accuracy decomposition formula. To check
this out, it is sufficient to calculate, for example, the coefficients [V(5) (Tﬂ
We see that

1,2,1,2,1°

1

[V(S) (T)]1,2,1,2,1 7 5l

In our opinion, it is interesting and important to find the general regularity,
by means of which it will be available to construct recurrently an automatically
stable decomposition formula with accuracy of any order, or to prove that,
on the complex number field, there does not exist an automatically stable
decomposition formula with accuracy of order more than four (as well as on the
real number field there does not exist an automatically stable decomposition
formula with accuracy of order more than two). In addition, it is not excluded
that, to obtain the higher order accuracy, it will be necessary to use as split
parameters, for example, quaternions instead of complex numbers,

In our opinion, these questions are very interesting and difficult, and we
work in this direction, but we have not yet obtain actual results.
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§7. The fourth order accuracy rational
splitting

1. Construction of rational splitting algorithm

Let us consider (1.1) evolution problem. Let A = A; + Ay, where A,
(j = 1,2) are compactly defined, closed, linear operators in X.

In the previous paragraph there is constructed the following decomposition
formula with the local precision of fifth order:

T(r) = S +T0), (7.1)
Ti(r) = U ( ,%Al) U (T, %Az) U(r,aA,) U (T, %AQ) U (T, %Al) ,
T(r) = U <T, %AQ) U (T, %Al) U (r,aAs) U (T, %Al) U (T, %Ag) .

where a = § iz (i=+v-1).
In the above-mentioned work it is shown that:

U(r,A)=T(1) =0, (75) ,

where O,, (7°) is the operator, norm of which is of the fifth order with respect to
7 (more precisely, in the case of the unbounded operator ||O, (7°) ¢|| = O (7°)
for any ¢ from the definition domain of O, (7°)). In the present work (see
Section 2) we construct the semigroup approximations with the local precision
of the fifth order using the following rational approximation:

W(r4) = (1-Sra) (1 + %TA) B (1 - gm) (r+574) 712

The approximation defined by formula (7.2) in the scalar case represent the
Pade approximations for exponential functions (see [5]).

On the basis of formulas (7.1) and (7.2) we can construct the following
decomposition formula:

Vi) = )+, (73)
Vi) = W (T, %fh) W <7’, %Ag) W(r,aA) W <7‘, %Ag) w <7’, %fh) ,

«a 1 o 1 a
‘/2 (T> = W (7—7 §A2> W <Ty 5141) w (7'7 OZAQ) w <7', 5141) %74 <T, §A2>
Below we shall show that this formula has the precision of the fifth order:
U(r,A) = V(1) =0, (7°) .
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In the present paragraph, on the basis of formula (7.3), a decomposition
scheme with the fourth order precision will be constructed for the solution of
problem (1.1).

According to formula (7.2), we have:

u(ty) = U(T, A)u (tg—1) + / Uty — s, A)f(s)ds.

th—1

Let us use Simpson’s formula and rewrite this formula in the following form:

w(ty) = U(r, Au(tey) +% (f (t) + 4U (g,A) F (teejo)
+U (1, A) f (te—1)) + Rs1. (1) (7.4)
u(te) = o, k=1,2,...

For the sufficiently smooth function f the following estimation is true (see.
Lemma 2.3):
|Ri.5 (7)|| = O (75) . (7.5)

On the basis of formula (7.4) let us construct the following scheme:

u, = V(T)up_q

2 (P +V () f () +V (D f ). (T6)
u = @, k=1,2,.....

Let us perform the computation of the scheme (7.5) by the following algorithm:

2T T
up = ul” + ?u,ﬂ}) + 5! (t)

where uy o is calculated by the scheme:

« T a
U;(;)_)4/5 = W (7', §A1> (Uk—l + gf (tk—1)> w;io_)4/5 =W (T, §A2> Uk—1,

0 1 (0) 0 _ 1 (0)
Vk—3/5 = W (7'7 §A2) Vp—as50  Wi_3/5 = 4 <7'7 §A1) Wy_4/5

0 — 0 0 — 0
U](ﬁ_)g/g) = W (7_7 aAl) U](c_)3/57 U}( ) =W (Ta aAQ) w](f_)3/57

k—2/5 —
©  — wilsLla),® w14 ) @
V-1 = T 542 | kg5 Wi—1/5 = T | Wh—gy5)
(0% (0%
v,(go) = W (7’, §A1> “/@1/5’ w,(go) =W <7‘, §A2> w,(f(l)l/g),
1 T
i = S ] w=p+5f0), (7.7)
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and u,(gl) - by the scheme:

Ul(fl)4/5 = <_ _A1> tk‘ 1/2 wl(c 4/5 — W( AZ) f (t’f—l/Q)7
Ul(f )3/5 = >Uk 2/3 wk 3/5 — =W (2 2A1> IE:I)4/5>
Ul(cl)2/5 = (270“41) Uk; 1/3 wl(cl)2/5 =W ( O‘A2> wk; 3/57
Ulil)1/5 = (;7 ; > UIE:I)I/37 wk1)1/5 =W <; ;Al) w/ilzg/5,
v,(gl) = <% %A1> vk 1/3) w,(cl) =W (; g/h) w,(:)l/S,
uf = S+ ul!) (7.8)

2. Theorem on error estimation

The following theorem takes place.

Theorem 7.1. Let the following conditions be satisfied:

(a) There exists such 19 > 0 that for any 0 < 7 < 7y there exist operators
(I + T)\fij)fl ,J=12 v=1a,a, A= «a,a andthey are bounded. Besides,
the following inequalities are true:

W (1,74))|| < €7, w = const > 0;

(b) The operator (—A) generates the strongly continuous semigroup U (t, A) =
exp (—tA), for which the following inequality is true:

Ut A)|| < Me**,  M,w = const > 0;

(c) U(s,A)p € D(A®) for any s > 0;
(d) f(t) € CY([0,00;X); [f(t) € D(AY), f(t) € D(A%), f'(t) €

D (A%), f"(t) € D(A) and U (s, A) f (t) € D (A*) for any fived t and s (t,s > 0).
Then the following estimation holds:

u(ty) —ugl] < i ( sup ||U(s, A)el| s
SE[O,tk]

+te sup [[U(s, A)f (D45 + sup [[f(8)]]as

5,t€[0,tx] te[0,tx]
+ sup [[f' ()]s + sup ||f"()]] 42
te[0,tx] te[0,ty]
+ sup [f" ()], + sup Hf“v’@ﬂ‘)? (7.9)
t€[0,tx] t€[0,tk]

where ¢ and wy are positive constants.
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Let us prove the auxiliary lemmas on which the proof of the Theorem 7.1
is based.

Lemma 7.2. If the condition (a) of the Theorem 7.1 is satisfied, then for
the operator W (t, A) the following decomposition is true:

N
—_

S
Wi(t,A) = (—1)ZﬁAZ+RWJ€ (t,A), k=1,..5, (7.10)

%

I
o

where, for the residual member, the following estimation holds:

R (8, A) pl| < coe 0t || Akg

co, wog = const > 0.

, peD(AY), (7.11)

proof. We obviously have:
(T+~7A) " = T—T4+ T +~7A) " =T —(T+~A) ' I+vA-1)
= [ —~yA(I+A)!

From this for any natural k£ we can get the following expansion:

k—1
(T+7A) =D (—1) y A AR (T +yA) (7.12)

=0

Let us rewrite W (7, A) in the following form:
W (r, A) = S (r, A) — %TAS (r, A) + 1—1272/125 (7, A)
where _ . B
S (7, A) = (1 + §TA) (1 + %TA) .

Let us decompose S (7, A) by means of the formula (7.12), we obtain the
following recurrent relation:

« 0" -1«
S(r,A)=1-2rA (1 + 57,4) — STAS (1, A). (7.13)

Let us decompose the rational approximation W (7, A) according to the
formula (7.13) up to the first order, we obtain:

W (1, A) = I — Ry (1, A) (7.14)

where




Since (I + AtA)~" is bounded according to the condition (@) of the Theo-
rem 7.1, therefore:

[Bw.a (7, A)pll < coe” "7 [[A]l, v € D(A). (7.15)

Let us decompose the rational approximation W (7, A) according to the
formula (7.13) up to the second order:

a o’ a -1 1+«
W(r,A) = I—7A (51— A <I+§TA> T
a+aa a N1 a+a?
T TA <I + §TA) - TAS (T, A))
L 540
+ET A°S (’7’, A)
= I—TA—FRW,Q(T,A)
where
o’ + o+ aw a N\l
Ria (1,4) = “———74 (1 n §TA>
3a+3a’+ 1
A
12 S<7_7 )
a—i4+a+i —1
3 3 @
= v A(1+574)
a+3a—1+1
+3a+3a i S(r,A)
12
_ 22 (@ a_ Ntoa
— 724 (2 (1+ 27’A> + 25(T,A)).
According to the condition (a) of the Theorem 7.1 we have:
|Rwa(7, A)g|| < coe”™ 7 [|A%]|, ¢ € D (4%). (7.16)

Let us decompose the rational approximation W (7, A) according to the
formula (7.13) up to the third order:

2

-1
W(rA) = I-71A+72A (%1 - A (1+574)

4
[ « a -1«
S r—%a(r+%74) —%745(r 4
—|—2< 27’ ( +27' ) 27 S (T, )))
1
= I—TA+§T2A2+RW73(T,A), (7.17)
where
1+ 3a? a -1 a?
_ 343 _ -
Rys(t,A) = TA( 13 <I—|—27'A> + 4R(7’,A))
N I I S
— %A (4 ([—|—2TA> + 4R(T,A))



According to the condition (a) of the Theorem 7.1 we have:

| Rws(r, A)p|| < coe7* || AP

. peD(AY). (7.18)
Let us decompose the rational approximation W (7, A) according to the
formula (7.13) up to the fourth order:

2

1 -1
W(rA) = [—7A+ 74— 74" (91 - SrA(1+574)

4 8
a? « Q -1«
— ([ —=T7A(]+—=7TA — —TA A
+ < 57 ( t57 ) 57 S (T, )))
1 1
= [—TA+§7'2A2—ETSA?’—FRWA(T,A), (719)

where

2 —2 _ —3
4o taa a 1 a’
Rwa(r,A) = 74 (—8 (1+374) + SS(T,A))

-1 =3
— At (2 (4% LS A
T (12< +27 ) + 85(7’, )

According to the condition (a) of the Theorem 7.1 we have:

| Rw.a(r, A)p|| < coeo77 || Atp

, peD(AY). (7.20)

Let us decompose the rational approximation W (7, A) according to the for-
mula (7.13) up to the fifth order:

1 1

W(T,A) = I—TA+§7'2A2—67'3A3
2 -1
g g—O‘—A<I gA)
’ (12 a AT

% « o oY
+5 <I - STA (1 + 57A> - STAS (7, A)))

1 1 .
= I —TA+ 572A2 — 673A5

1
_ﬂT4A4 + RW,S(Ta A)7 (721)

where

22 3—3
o’ + aa(l

545
Rys(1,A) = 1°A ( 13

« -1 at
+§TA) +1—65(T,A))

-1 54
— S (2 (1% Y5 A
’ (24( a7 ) 160 A
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According to the condition (a) of the Theorem 7.1 we have:
| Rws (7, Al < coe0T 77 ||A5<,0H , €D (A5) ) O (7.22)

Lemma 7.3. If the conditions (a), (b) and (c) of the Theorem 7.1 are
satisfied, then the following estimation holds:

|0 (7, 4) = VE ()] o < cetar® sup [U(s, Apllgs,  (723)

SG[O,tk]

where ¢ and wy are positive constants.

Proof.

Let us decompose W (7, A) operators in the expression of V(1) according
to the formula (7.10) from right to left, so that each residual member be of
the fifth order. We shall have:

1 1 1
VA7) =1 = 1A+ or? A% = 27?0 o7 AN Ry (7)) (7.24)

where for the residual member according to the condition (a) of the Theorem
7.1 we have the following estimation:

1Rvs (7)ol < e [loll4s, ¢ € D (A%). (7.25)
From the (1.7) and (7.24) it follows:
U(r,A) =V (1) = Rs(1,A) — Ry (7).
From here according to (1.8) and (7.25) we obtain the following estimation:
U (7, 4) =V (T)] ol < ce”™ 7 [l 45, 9 € D(A). (7.26)

The following representation is obvious:

(U (7, A) = VE(D)] o =Y VI () [U(r,A) =V (1)U (1, A) .

=1

Hence, according to the conditions (a), (b), (c) of the Theorem 7.1 and
inequality (7.26), we have the sought estimation. [J

Lemma 7.4. Let the following conditions be satisfied:

(a) The operator A satisfies the conditions of the Theorem 7.1;

(b) f(t) € C4([0,00); X), f(t) € D(A*) and f*¥)(t) € D (A4_k) (k=1,2,3)
for every fized t > 0.

Then the following estimation holds

4
[R5k (7)]] < ce*™r®> " max ||fD(s)]| s, (7.27)

s€E[tL—1,t
o [th—1,tx]
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where

Ry (1) = / Uty —s,A) f(s)ds
—% (f (t) + AU <g,A> f (o)

+ U (1, A) f(tr—1)) (7.28)

and where ¢ and wy are positive constants, and f© (s) = f (s).
Proof. By means of changing variables, the integral in the equality (7.28)
takes the following form:

/ U(tk—S,A)f(s)ds:/U(T—S,A)f(tk1—|—8)d8.
tha 0

If we decompose the function f (tx—; + s) into the Taylor series, and expand
the semigroup U (7 — s, A) according to formula (1.7), we obtain:

U(r—5,A) f(tg-1+35) = Psi(s) + }N24’k. (1,5), (7.29)

where

Py (s) = (I —(T—s) A+ - 8)2A2 B ﬂfﬁ) f(tr-1)

2 6
+s (I —(T—s)A+ r _2 s) A2> I (tr_1)
82 83
KL= (7= ) A) 7 ) + 1" 1)
Rurlris) = GUG=s.) [ (=" 17 (trs + ) dg

+Ry (1 =8, A) f (tr1)
+(r—5)AR3 (1 — s, A) f' (tp_1)

(r — 3)2

+ ARy (1 — 5, A) f" (ty—1)

(1 — 5)3

+ ASRl (’7' — S, A) f”/ (tk,1> .

Hence according condition (b) and (d) of the Theorem 7.1 we obtain the fol-
lowing estimation:

4
§4,k (1,5) < ceo™rt max Hf(i) (s)”A‘H . (7.30)

sE[tL_1,t
o [th—1,tx]
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From equality (7.28) with account of formula (7.29), we have:

T

Rsy (1) = /U (1 —8,A) f(ty—1 + s)ds

0

ST+ a0 (5 A) F (o) + U (7 4) £ (1)

T T

= /P&k (s) ds—l—/éwc (7,5)ds

0 0

—2 (P (1) +4Ps (5) + Pon 0))

_% Rup (7,0) + ARy, (T, %) + Ry (1,7, (7.31)

T

Because of Simpson’s formula is exact for polynomial of the third order, for
Rs 1. (1) we have:

T

Rsy (1) = /R47k (1,8)ds — g <R4,k: (1,0) + 4Ry (7’, 5) + Ry (T, 7')) .
0

hence according to inequality (7.29), we have:
[tk—1.tk]

4
B ()] < ce™7* 3" max [fO@)| 0 O (732)
i=0

Let us return to the proof of the Theorem 7.1.
Let us write formula (7.4) in the following form:

u(te) = UM(r, Ao + DU (r, 4) (FY 4+ Rop (7)), (733)
where :
FO = % ( F(ty) +4U (% A) f(toorpe) + U (7, A) f (t,H)) . (7.34)

Analogously let us present uy, as follows:

k
up = VE(r)p + Y V() EP, (7.35)
where
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From equalities (7.33) and (7.35) it follows:
u(ty) —up = [Uk(T, A) — Vk<7')} ©

k
+ Z [Uk_i(T, A)Fi(l) _ Vk—i(T)Fi(Q)}
1=0

k
+> UR (1, A)Rs i (7)
=0

= [Vt A) = VO o+ 3 (U A) - V() B
k
V() (B = FP)| 4 Y U (r AR (7). (7.37)

From formulas (7.34) and (7.36) we have:

1) @ _ T T

RO = 7 (10 () V) Sl

+ (U (1,A) =V (1,A4)) f (tp-1)) (7.38)

From here, according to inequality (7.24) and Lemma 7.2 we obtain the
following estimation:

F,ﬁl) B Fk(z)

| < sup Ol (7.39)

t€[tk—1,tk

According to the Lemma 7.2 we have:

k
> (UFi(r, A) = VEi(r) BV
=1
< cetirt sup [[U(s, A)f ()]s (7.40)

$,t€[0,tx]

From equality (7.37) according to inequalities (7.39), (7.40), (7.27) and the
condition (b) of the Theorem 7.1 we obtain sought estimation. [J

Remark 7.5. The operator V¥ (1) is the solution operator of the above-
considered decomposed problem. It is obvious that, according to the condition
of the Theorem 7.1 (||W(t,vA;)| < e*'), the norm of the operator V* (1) is
less than or equal to e“°'% . From this follows the stability of the above-stated
decomposition scheme on each finite time interval.

Remark 7.6. In the case of the Hilbert space, when Ai, Ay and Ay + A,
are self-adjoint non negative operators, in estimation (7.7) wo will be replaced
by 0. Alongside with this, for the transition operator of the split problem, the
estimation ||V* (7)|| < 1 will be true.

Remark 7.7. In the case of the Hilbert space, when Ay, Ay and A1+ Ay are
self-adjoint, positive definite operators, in estimation (7.7) wy will be replaced
by —ap, ag > 0. Alongside with this, for the transition operator of the split
problem, the estimation HV’c (7')H <e % oy >0 will be true.
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§8. The fourth order accuracy decomposition
scheme for a multi-dimensional evolution
problem

1. Differential splitting and error estimation of approximate
solution

Let us consider the problem (3.1). Let A = A; + Ay + ... + Ay, m > 2,
where A; (i =1,...,m) are closed operators, densely defined in X.

Together with problem (3.1), on each interval [t;_1,%], we consider a se-
quence of the following problems:

dv,gl) (t) 4 (6] (1)
dt 2 Tk
dv,(;) (t) 8% (@)

T S A (1) = 0. o () = o7 (1),

) = 0, o (thor) = wer (1)

t = 2,...,m—1,
dvzim) (t) 1 (m)
Tk g
dt +2 Uk
dvy (1)
dt

) = 0, oy (trr) =0 (th),

a i i i
 SAme () = 00 o (tm) = o (1),
i = m+1,..,2m—2,

dU;(fm_l) (1) (2m—1) (2m—1)

+aAe™ V) = 0, o () = 0P (1)

dt
dU(Z) t a i i i—
kdt( ) + EAi*ZerQ'UI(g) (t) = 07 UIE:) (tkfl) = UI(C ) <tk> ’

1 = 2m,....,3m — 3,

d (3m—2) t 1 — m— 3m
i ®) + -A, ;(gg ? (t) = 0, v;(f Y (th—1) = v,(f K (k) .
dt 2
dv” (¢ « i i i
D i) = 0. ol () =Y (1),
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dw® (¢ «
Qi (0 24w @) = 0, 0 () = s (),

dt 2
dw(Z) t Q i i i—
]Zi—t() + §Amf¢+1w;§) (1) = 0, w (ter) = w ™ (t),
i = 2,...m-—1,
k—<) + _Alw’(C ) (t) = 0, w}(c ) (th—1) = w,i Y (te)
dt 2
I(Cit( ) + §Ai—m+1wl(g) (t) = 0, wi(c) (tr—1) = wl(g ! (k) ,

i = m+1,..,2m—2,

s aAw T (1) = 0w () = w0 (1),
&()+§AM4aw?@>-o,zéwm4>—w£”@w,
1 = 2m,....,3m — 3,

dw®m 2 (¢ 1 " — "
—izgll+§Awf 20 = 0, W () =0l (1),

dw(z) t (0] i i i—
e () + _Ai73m+3wlg;) (t) = 0, w,(c) (th—1) = w;r(f Y (tx),

dt 2
1 = 3m—1,...,4m — 4,

dof™ () o, e (4m—1) (4m-3)

— + §Amwk (t) = 0, w, (t—1) = wy, (tr),
where « is a complex number with the positive real part, Re () > 0; ug (0) =
¢. Let the operators (—A;), (—ad;),(—a4,), j = 1,...,m generate strongly
continuous semigroups.

ug (t), k=1,2,.., is defined on each interval [tx_1,tx], as follows:

17 .
u (1) = [v}f D) + ™Y )] . (8.1)
We declare function wy (t) as an approximated solution of problem (3.1) on
each interval [t_1,x].

The following theorem takes place.

Theorem 8.1 Let the following conditions be fulfilled:

(a) a:%iiﬁ (i =+-1);

(b) Let the operators (—yAj), vy =1, a, @ (j=1,...m, m>2) and
(—A) generate strongly continuous semigroups, for which the following estima-
tions are true:

t
e,

Me*t, M, w = const > 0;

1U(t,vA;)]

<
U@, Al <
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(c) U(s,A)p € D (A>) for each fived s > 0 .
Then the following estimation holds:

Ju(te) — ur(ty)]| < ce”*™ e sup [|U (s, A) @l 45 ,

s€[0,tx]
where ¢ and wy are positive constants.
Proof. From formula (8.1) we obtain:
u(ty) = V(1) ¢, (8.2)
where 1
Vi) =5 i)+ %), (53)
and

xU (T, 2A2> U (T, gAml) U (7’, ;Am)

U (T, %Am,l) U <T, %A2) U (T, %Al) , (8.4)
Vo(r) = U (7‘, %Am) U T,%AQ U <7‘, %A1>

xU

U (m %AQ) U <¢, %Am_l) U (r, %Am> . (8.5)

Remark 8.2 Stability of the considered scheme on each finite time interval
follows from the first inequality of the condition (b) of the Theorem 8.1. In
this case, for the solving operator, the following estimation holds:

[VF ()| < e, (8.6)

where wy is positive constant.

Let us introduce the following notations for combinations (sum, product)
of semigroups: Let T'(7) be a combination (sum, product) of the semigroups,
which are generated by the operators (—vA;) (i = 1,...,m). Let us decompose
every semigroup included in operator T'(7) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (—7A4;),

96



(T2 A A;)), (—T*A;A; AL) and (THA A AGA)) (4,7, k, 1 = 1,...,m) respectively by

[T (7)];, [T (T)]i,j7 [T (7')]ka and [T (T)]i,j,k,l'
If we decompose all the semigroups included in the operator V(1) according
to formula (1.7) from left to right in such a way that each residual term appears

of the fifth order, we will obtain the following formula:

Vir) = —TZ A—i—TZ

i,5=1
—f‘§: )i AiAj A
z]k 1
4§: T)igns AiAjAcA + Ry (7). (8.7)
,7,k,l=1

According to the first inequality of the condition (b) of the Theorem 8.1,
for R (7), the following estimation holds:

| )| < cem P ligls, e D (A7), (8.8)

where ¢ and wy are positive constants. It is obvious that, for the coefficients
in formula (8.7), according to formula (8.3), we have:

V) = 3 )+ ). (8.9
t = 1,....m,
[V(T)]i,j = %([‘/1<T>]z]+[‘/2<7—>]2])7 (8.10)
ij = 1,..,m,
Ve = 5 (M@t W) (8.11)
ijk = 1,.,m,
Vg = g (g + a0 (8.12)
gkl = 1,..m.

Let us state the auxiliary lemma, which will be basis of the proof of the
Theorem 8.1.
If conditions (a) and (b) of the Theorem 8.1 are fulfilled and m = 2, then

the following expansion is true (see 7.24 ):
2 -3 A _
V(r)=1—-71A+ —A>— A3+ —A* + Rs (1), (8.13)
2 6 24
where for the remainder term Rj (1), the following estimation takes place:

| ye] < e s liole e D).

s€[0,7]
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Let us make a remark which will simplify a calculation of coefficients in
decomposition (8.7).

Remark 8.3 The operators V; (1) and V5 (7) are symmetric in the sense
that in their expressions the factors equally remote from the ends coincide with
each other. Therefore we have:

[V (T)]zd - [V (T)]jﬂ" Z?.] = ]-7'“7m;
14 (T)]z]k = [V (7)]/&31 s g k=1 0m
V ijrs = VOlgjir HakI=1.,m.

Let us calculate the coefficients [V (7)], (¢ =1, ..., m) corresponding to the
first order members in formula (8.7). It is obvious that the members, corre-
sponding to these coefficients, can be obtained from the decomposition of only
those factors (semigroups) of the operators V; (1) and V3 (1), which are gener-
ated by the operators (—vA4;), and from the decomposition of other semigroups
only first addends (the members with identity operators) will participate.

According to formulas (8.4) and (8.5), for any ¢ have:

Vi)l =0 (m A, =1, [Va(n)]; = [U (7, 4)]; =
From here, according to formula (8.9), we obtain:
V), =1 (8.14)

Let us calculate the coefficients [V/(7)],; (4,7 = 1,...,m) corresponding to
the second order members in formula (8.7). It is obvious that the members,
corresponding to these coefficients, can be obtained from the decomposition of
only those factors (semigroups) of the operators V; (7) and V5 (7), which are
generated by the operators (—vA;) and (—vA4;), and from the decomposition
of other semigroups only first addends (the members with identity operators)
will participate. Let i; = min (4,j) and i = max (¢, 7), then from formula
(8.10), with account of (8.4) and (8.5), we obtain:

V), = % ([U <r, %Ah> U (7’, %Ab) U (r, @A)

xU(T,A> (oa)]

; )

U <7’,% 11) U(r,@A;,) }
1
2

XU(T, A“> Am)] )
),

From here, according to (8.13), we obtain:

V)l =5 (8.15)

| = 1\3|Q

+
o

/\/\

R

oo Y
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Let us calculate the coefficients [V/(7)]; ;. (i,7,k = 1,...,m) corresponding
to the third order members in formula (8.7). For i = j = k, according to

formulas (8.4) and (8.5), we have:

[Vl(T)]uz = [U(r, AZ)]zzz = é;
Ve s = W0 A =5
From here, according to formula (8.11), we obtain:
Vi =5 (8.16)

Let us consider the case when only two of the indices 7, j and k differ from
each other. Let iy = min (4,7, k) and iy, = max (i, 7, k), then from formula
(8.11), with account of (8.4) and (8.5), we obtain:

V()i = % (U (T, %An) U (T, %Ai2> U(r,ady)

U (T, %Ab) U (7‘, %Ah)] |

/L?j?k

+ [U (T, %Aiz U (T, %Ail> U (r,aAs)

+U (T, %Ail U (T, %A)]]) .

From here, according to (8.13), we obtain:

1
[V(T”i,j,k s (8.17)
for any indices i, j and k, where only two of them differ from each other.
Let us consider the case when the indices i, j and k differ from each other.
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If i < j < k then, according to formula (8.4), the representation is valid:

Vi) = {U (n2a)v(=24)0 ( gAk)
U (7, gAj) U (r, @A) U (7, gAJ)

W (ry) U (n5a) 0 (n54)]
A} 

+ :U (7‘,

_HUﬁﬁ%mi?<ﬂ%Aj}:U<ﬂ%%)L
2

aa1+(1a1+&&1+a

222 222 222 2

o +oa+at 1

- - ' 8.18
1 5 (8.18)

Here we used the identities: o® +@® = 5, a@ = 5. Analogously from (8.20) we

obtain:

.
Va()]i 0 = 5 ! <j<k. (8.19)

From formula (8.11), with account of formulas (8.18) and (8.19), we obtain:

L i<j<k (8.20)

| =

V()i =

From here, due to Remark 8.3, we obtain:
1 o
[V(T)]i,j,k ~ 5 k<j<u. (8.21)

Now consider the case j < i < k. Due to formula (8.4), the representation
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is valid:

Vi(D)lye = [U <T,%Aj)U(T,9A,.>U(T,

a_l «a_1 oa+a” a
2%ty T T T (8.22)
Analogously, from (8.20) we obtain:
ao+ « .
[‘é(T)]i,j,k == <1<k (8.23)

From formula (8.11), with account of formulas (8.22) and (8.23), we obtain:

atoaat+a 1

[V(Tﬂi,j,k = 3 =5 J<i<k. (8.24)
From here, due to Remark 8.2, we obtain:
1 o
[V(T>]i7]‘,k R k<i<y. (8.25)

Now consider the case j < k < i. According to formula (8.4), the representa-
tion is valid:

Vi = [U <T, %Aj) U(r %AQ U (T, %Ai)




Analogously, from (8.20) we obtain:

o+ o

[‘/2(7—>]z]k =71 J<k<u (8.27)

From formula (8.11), with account of formulas (8.26) and (8.27), we obtain:

a+aa+a_ 1

[V(T)]i,j,k = 3 =5 J<k<a. (8.28)
From here, due to Remark 8.3, we obtain:
1
V()i = G’ 1 <k<j (8.29)

Uniting formulas (8.16),(8.17),(8.20),(8.21),(8.24),(8.25),(8.28) and (8.29),
we obtain:

1
[V(Tﬂi,j,k = G’ 1,5, k=1 ..m. (8.30)

Let us calculate the coefficients [V/(7)], ;. (i,7,k,l = 1,...,m) correspond-
ing to the fourth order members in formula (8.7). In the case when i = j =
k =1, due to formulas (8.4) and (8.5), we obtain:

1
Vil = WA = 24
1
Va(Dliiis = WU (T A0 = 24
From here, according to formula (8.12), we obtain:
1
740 | PP — 831
Vi =53 (8.31)

Let us consider the case when only two of the indices ¢, 7, k and [ differ from
each other. Let iy = min (4, j, k,1) and iy = max (i, j, k, ) , then from formula
(8.12), with account of (8.4) and (8.5), the representation is valid:

V) = % ([U (7‘, gAh) U (T, %AZ-2> U (1, @A)

i7j7k“7l

+ {U (7-7% i2> U (T, %Ah) U (1,aA;,)

+U (T’ %A“> U~ %A”)]i,j,k,l) |

From here, due to (8.13), we obtain:

V()i = 2_147 (8.32)
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for any indices i, j, k and [, where only two of them differ from each other.
Let us consider the case when only two of the indices i, j, k and [ coincide
with each other. On the whole, we have six cases, namely:

Case 1. (i,4,k,1) = (i, 7, k, 1),
Case 2. (1,5, k,1) = (i, 7,1, k),
Case 3. (i,5,k,1) = (i,4, ], k),
Case 4. (i,5,k, 1) = (i,7,k,7),
Case 5. (i,5,k,1) = (4,4,7, k),

Case 6. (i,7,k, 1) = (i,],k, k).

Comparing 4, j and k indices we get six different subcases for each case.
Let us consider Case 1 and calculate its corresponding coefficients. The coef-
ficients, corresponding to five other cases, can be calculated analogously.

Let us consider the subcases of Case 1:

Subcase 1.1. i < j < k. Due to formula (8.4) we have:

« o' 1
\% (T)]z]kl = {U <7'7 §Az> U (7'7 EAj) U (Ta EAk)
xU <7', %AJ) U (T, EAZ) U <7', %AJ)

<t (rgh ) U (n54) U (r54)]

i7j7k77:
aal oaaoala aalao
= —— = —_— —_———
222 2222 2222
aala aala _ala

5222 1323233 75373
o +20%a+a?a o (a+a)+aala+a)

8 8
2 J—
= M—aa. (8.33)
8
Analogously we obtain
=2
a
[‘/2<T>ijz = ] (8.34)
From formula (8.12), with account of (8.33) and (8.34), we obtain:
V(= 00t ® Lk (3.35)
L= = — 1 . .
i 16 o T

Subcase 1.2. k < j < i. From formula (8.35), due to Remark 8.2, we
obtain:

1 o
[V(T)]i,j,k,i o k<j<u. (8.36)
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Subcase 1.3. j < k < i. According to formula (8.4), we have:

Vs = [0 2a)0 (500 v (1)

xU (T, %Ak) U(r,@A;)U (T, EAk)

1 «Q Q
xU (T, §A1> U (T, EAk> U (7', §A]>:|Z]kz
1 @l a?
Analogously we obtain:
aa + o
[‘/2(7—)]1'7]'7]@71' = s (8.38)

From formula (8.12), with account of (8.37) and (8.38), we obtain:

o? + aa + o? 1 ) )
[V(T)]i,j,k,i -~ 16 o <k <u. (8.39)

Subcase 1.4. i < k < j. From formula (8.39), due to Remark 8.2, we
obtain:

1 : .
[V(T)]i,j,k,i = o’ 1<k <y (8.40)

Subcase 1.5. j <i < k. According to formula (8.4), we have:

Vi) ]jps = P(ﬂ%AQU(@%&)U<ﬂL%)

2
xU(ﬁ%AOLMﬂaAQU(ﬁ%AO
o a
XU ( QAk) v (240 (- 5,4])]
_ ogle @ila oG+l
2722 222 8
aa(a+a@) 1
_ _ 1 41
8 24 (8.41)
Analogously, from (8.20), we obtain:
1
[VQ(T)]ZJIH = BYR (8.42)
From formula (8.12), with account of (8.41) and (8.42), we obtain:
1 .
[V(T)]i,j,k,i =5 J <i<k. (8.43)
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Subcase 1.6. k < i < j. From formula (8.43), due to Remark 8.2, we

obtain:
1

[V(T)]i,j,k,i = o k<< (8.44)
Uniting formulas (8.35),(8.36),(8.39),(8.40),(8.43) and (8.44), we obtain:
1
[V(T)]i7j7k7i = or (8.45)

for any indices 7, j and k different from each other. Analogously, for other five
cases, we obtain:

[V(T)]i7j7i7k = [V(T)]i7i7j7k = [V(T)]i,j,k,j
1
= [V(T)]i,j,j,k = {V(T)]zjkk = 2’ (8.46)
for any indices i, j and k different from each other.
Uniting formulas (8.45) and (8.46), we obtain:
1
[V(T)]i,j,k,l YR (8.47)

for any indices i, j, k and [, where only two of them coincide with each other.
Now let us consider the case when the indices 4, j, k and [ are different. It is
obvious that comparing i, j, k and [ indices we get twenty four different cases.
Let us consider one of them and calculate its corresponding coefficients (the
coefficients corresponding to other cases can be calculated analogously).
Let i < j < k <, then according to formula (8.4), we obtain:

Vi) = [U (7‘, %Ai) U (7‘, %Aj> U (7’, %Ak>

1 a a
xU <T7 5141) U (T; §Ak) U (7’, EAJ)

xU (t,aA;) U (7‘, %Aj) U (7‘, %Ak
«U (r. 1A U( O‘A)
T>2 { 7—72 k
[0 (8]
><U< ,-A-)U( ,—Ai>]
T 2 T 2 i3kl
B ozaoz1+aozoz1+aozal
2222 2222 2222
+aaa aaal aaa+_al
222 72222 222 "%
 @atad’+oi+a’a
N 8 2
a4+ a? 1
= = . 8.48
8 24 (8.48)



Analogously, from (8.20), we obtain:

1 .
ValT)]; ks = o 1<J< k<l (8.49)

From formula (8.12), with account of formulas (8.48) and (8.49), we obtain:

1 o
[V(T)]i,j,k,l o5 ! <j<k<l

Analogously we can show that this equality is valid for other twenty three

cases. Therefore we have: )

[V(T)]i,j,kJ ~ o (8.50)
for any indices ¢, 7, k and [, which differ from each other.
Uniting formulas (8.31), (8.32), (8.47) and (8.50), we obtain:
Vv _ L0kl =1 1
[ (T)]i’j’k’l =g5p bhkI=1..m. (8.51)

From equality (8.7), with account of formulas (8.14), (8.15), (8.30) and
(8.51), we obtain:

V(r) = —TZAJr TZZAA ——T3ZAAAk

i,j=1 i,5,k=1

L
T 4 Z A A;ALA + Ry (7)

2
4,5,k 0=1

= —TZA+ e <2A>
_éTS (iAZ>3+ (ZA> + s (7

i=1

1
= I —7A -+ 57’2142 — 67'3143 + 2—47'4144 -+ R5 (T) . (852)

According to formula (1.7), we have:
Low Lagm 1 44
U(T,A):I—TA+§TA —ETA +ﬂ7—A + R5(1,A). (8.53)

According to the second inequality of condition (b) of the Theorem 3.1 for
Rs (1, A), the following estimation is valid:

IRs (1, A) || < ce 7" || A%

<
< e gl s, pE€D(A). (8.54)
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According to equalities (8.52) and (8.53), we have:
U(r,A) =V (1) = R5 (1, A) — Rs (7).

From here, with account of inequalities (8.8) and (8.54), the following estima-
tion can be obtained:

U (7, 4) =V ()]l < e oll4s, ¢ € D(A%). (8.55)

From equalities (3.2) and (8.2), with account of inequalities (8.6) and (8.55),
we obtain:

lu(te) —ux(te)ll = [[[U(ts, A) = VE ()] o]
= [IU* @A) =vE@)] ¢l
= ZV'H (MU, A) =V O U =17 A) |

IN

ZHV (I

x II[ (r, A) =V (DU (i = )7, A) o

k
Z ewl(k_i)Tceo‘)QT’]‘E) HU ((Z - 1) T, A) 30HA5

=1

IN

IN

k
e 2N U (i — 1) 7, A) ]| 4
=1

kee*™ 7% sup ||U (s, A) @] 45

<
s€lo,tx]

< et sup U (s, A) ol 45 - 0
s€lo,tg]

2. Relation between two-dimensional and multi-dimensional
decomposition formulas

In this section we propose a method by means of which in our opinion it is
available on the basis of two-dimensional decomposition formula to construct
a multi-dimensional decomposition formula with the same precision order. Let
the two-dimensional decomposition formula has the following form:

V® (7, Ay, Ag) = Z@HU( ) U (T, 5§“A2) , (8.56)

% and BJ@ satisfy the following conditions (weights o;

where parameters o;, a;
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are real numbers, and ag-i) and ﬁj@ are generally complex numbers):
q
oo =1, (8.57)
i=1

iaiiay) = zq:aiiﬁ](-i)zl. (8.58)
=1 =1 i=1  j=1

In the formula (8.56) we mean, that U (17,7A4;) =1 (I =1,2), when v = 0.
For the given method it is necessary that the parameters ay) and ﬁ]@
additionally satisfy the following conditions:

Yol =30 i=1...q (8.59)
j=1 j=1

At the first step of the method the formula (8.56) is written in such a form
that one can clearly see its generalization for the multi-dimensional case. For
this reason the formula (8.56) is written in the following form:

Ve (T; Ay, AQ) = i a; ﬁ U <T, ,uggvA1> U <7’, Mggfb)
=1 j=1

xU <7’, ug%fh) U (T, ,ug;}/h)

i=1  j=1 \I=1
2

x (HU (r, Mgf;A3_1)> . (8.60)
=1

where

J
= Y (ol - ).

iy = (A -af).

k=1

<.

For the formula (8.60) to be the equivalent to the formula (8.56), it is
necessary to fulfill the following equalities:

e = 0
#é@ﬂtﬁzﬂ = a;‘ih

,Ugiznl = 67(2)17

108



It is easy to check that these equalities are fulfilled if the equalities (8.59) are
fulfilled.

Let us construct the following decomposition formula on the basis of the
formula (8.60):

Vv (m) (15 Aq,..., A Zq:%ﬁ (ﬁU (T 'ulJAl)>

=1 7j=1

X (ﬁU <T 1) A, m)) . (8.61)

=1

Naturally the operators As, ..., A,, (m > 2) have to satisfy the same condi-
tions as operators A; and Ay. In our opinion, the formula (8.61) constructed
for m summands (A = A; + As + ... + A,,) will be of the same order as the
decomposition formula (8.60) constructed for two summands (A = A; + Ay).

In the present work, using this method there are constructed third and
fourth order precision multi-dimensional decomposition formulas.

To illustrate the method, let us consider the following case of Streng formula
in detail (V (1541 A2) =U (T, %Al) U(r,A)U (7', %Al)). We write it in the
form as (8.60):

Ve (A, = U (r. 34 ) U (r30) U (gt ) U (7301 ).

Hence, for a multi-dimensional case we obtain the following formula:

1 1 1
Vi (1 Ay, Ay) = U <T, 5141) U (7'7 §Am1) U <T’ §Am>
1 1 1
xU <T, §Am> U (TaiAm1> LU (775141)
1 1
= U (7'7 5141) U (T, §Am—1) U(TJ Am)

1 1
xU <T, éAm_l) U <T, 5141) .

The given method has not been proven yet, though below we prove the
theorem which partially justifies this method.

Theorem 8.4 Let the decomposition formula (8.61) has the precision order
p (> 2) at m = p. Then the decomposition formula (8.61) will have the same
precision order for any m (> 2).

Proof. As following to the condition of the Theorem 8.1, the decomposition
formula (8.61) has the precision order p at p = m, therefore the equalities are
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valid:

[V(p)(T;Al,...,Ap)L =1, i=1,..,p, (8.62)
1
VO (r, Ay 4], = (8.63)
T genes is s!
11y ls = 1,..,p, S=2,...D

Therefore it follows that, for any m < p, the following equalities are valid:

(VO (1AL AR)], = 1, i=1,..m, (8.64)
1
VO (r Ay s )], =5, (8.65)
Tl yeeny 1s s!
Uy ents = 1,0e,m, s=2,...,p.

It means that the decomposition formula (8.61) has the order p for any m < p.
Now let us show that equalities (8.64) and (8.65) are valid for any m > p.
Validity of equalities (8.64) can be easily checked, as, according to formula
(8.58), we have:

S
=1 j=1

Let us prove the validity of equalities (8.65) for any m > p. Coefhi-
cients [V(m) (1, Ay, ...Amﬂle ., can be obtained from the decomposition of
only those semigroups which are generated by the operators (—A4;,), ..., (—A4;,),
where (j1, .., Jjr) is a system of different indices from (i1, ...,5) sorted ascend-
ing (for example, if s =5 and (i1, is,43,44,75) = (3,3,1,2,1), then r = 3 and
(71,72, 73) = (1,2, 3)). From the decompositions of other semigroups, there will
participate only first summands (terms with identity operators). Therefore we

have:

(V™ (1, Ay, .y An)],

= [VO (A, LA, (8.67)

As r < s < p in the right-hand side of equality (8.67), therefore, according to
(8.65) we have:

1
VO (r Ay AL =0 s =2,0p. (8.68)
Bl yeeny s s!
From (8.67) and (8.68) we obtain:
1
VO (r, Ay A, = = (8.69)
~~~~~ s s!
2.17 yls = ]-7 U S:2a » D, m>p



From (8.65), (8.66) and (8.69) it follows that decomposition formula (8.61)
has a precision order p for any m > 2. [J

From this theorem it follows that if formula (8.56) has second order preci-
sion, then decomposition formula (8.61) will automatically have second order
precision (obviously, according to conditions (8.57) and (8.58), decomposition
formula (8.61) will always have first order precision).

Below, on basis of the above-described method, we will construct a general-
ization of third and fourth order precision Schatzman decomposition formulas
for any number m (> 2) of summands. In case of two summands, these for-
mulas have the following form (see [12]):

2 1 1
‘/1(2) (7', A17 AQ) = g [U (T, 5141) U (T, Ag) U <T, §A1>

+U (T, %Ag) U(r,A)U (7’, %Ag)}

—é U (7, Ay) U (7, Ay)
LU (r AU (7, Ay (8.70)

4 1 1
‘/2(2) (T; Al, AQ) = gU <7’, ZA1> U (T, 5142)
1 1 1
xU (T, 5141) U (7', 5142) U <7', ZA1>
Aol ia\ v a)u(ria (8.71)
3 T, 92 1 T, A2 T, 92 1) .

Decomposition formula (8.70) has third order precision, and decomposition
formula (8.71) has fourth order precision. Generalization of these formulas for
any number m (> 2) of summands will be written as follows:

2 1 1
Vl(m) (T3 A1,...,An) = = {U (T, _Al) U (T> §Am—1) U (7, Ap)

+ U (1,An) ..U (1, Ay)]. (8.72)
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4 1 1
V3™ (1 Ary ooy A) = §U (7’, ZAI) U <7'7 Am—1>
1
2

1 1
xU <7', §Am1> U (T, §A1> (873)

As a result of some calculations, we have obtained that decomposition for-
mula (8.72) has third order precision for m = 3 summands, and decomposition
formula (8.73) has fourth order precision for m = 4 summands. From here,
due to Theorem 8.1 it follows that decomposition formulas (8.72) and (8.73)
have respectively third and fourth order precision for any number m (> 2) of
summands.
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89. The fourth order accuracy sequential
type decomposition scheme for evolution

problem

Let us consider the problem (3.1). Let A = A; + Ay, where A; (i =1,2)

are closed operators, densely defined in X.

Together with problem (3.1), on each interval [t;_1, ], we consider a se-

quence of the following problems:

% T (1) = 0, o () = w (6),
@ S (1) = 0, o ()= (),
dv’i(t) ﬁAwS’) (1) = 0, o (tir) = o (1),
dv'(“;l(t) FA0 (1) = 0, o () = o (1),
dvli:ll(t) %Aw;E;B) (1) = 0, v (temr) = v (1),
dvi(ﬂ SA00 () = 0. o (te) = v (1),
dvlg;)t(t) iz‘lw;(;) ) = 0, v (1) =0 (1),
d“’(“Z“) §A2 S =00 v () = v (8,
dvg)t(t) %Alvff) ) = 0, o (teer) =0 (),

where « is a complex number with the positive real part, Re () > 0; u(0) =
¢. Suppose that the operators (—A;), (—ad;),(—aA;), j = 1,2 generate
strongly continuous semigroups.

uk(t), k=1,2,.., is defined on each interval [t;_1, ;| as follows:

wp(t) = o (t) | (9.1)

We declare function ug(t) as an approximated solution of problem (3.1) on
each interval [t_1,tx].

The following theorem takes place.

Theorem 9.1. Let the conditions (a) and (b) of Theorem 1.1 be fulfilled
and U (s, A) ¢ € D (A®) for each fired s > 0.Then the following estimation
holds:

lu(tn) — u(te)|| < ce'tyr sup 1U (5, 4) @l 45
s€(0,ty
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where ¢ and wy are positive constants.
Proof. From formula (9.1) we obtain:

u(ts) = V(1) @, (9-2)

where
[ 1 a a
14 (T) = U (T7 ZAI) U ( A2) U <T Z__LA1> U( T, 2A2> U ( 5141)
« 1 « [
xU <7', §A2> U (T, 1A1) U (T, 5142) U (T, ZAI) )

Remark 9.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 1.1.
In this case, for the solving operator, the following estimation holds:

[VF ()| < e, (9.3)

where wy s a positive constant.

We introduce the following notations for combinations (sum, product) of
semigroups. Let T (7) be a combination (sum, product) of the semigroups,
which are generated by the operators (—vA4;) (i =1,2). Let us decompose
every semigroup included in operator 7' (7) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (—7A4;),
(T2A;A;), (—T3AAjAg) and (—7*A;A;ALA) (4,7, Kk, 1 = 1,2) respectively by
[T (7)];, [T (T)]i,j7 [T <T>]z]k and [T (T)]i,j,k,l‘

If we decompose all the semigroups included in the operator V(1) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

Vi(r) = —TZ A—i—TZ

i,j=1
—73 Z )] AiAj A
,7,k=1
2 ~
7t Y VAT, s AiAAGAL + Rs (7). (9.4)
i,k l=1

According to the first inequality of the condition (b) of the Theorem, for
Rs (1), the following estimation holds:

| )| < ce gl e D (A7), (9.5)
where ¢ and wy are positive constants.
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Let us calculate the coefficients [V (7)], corresponding to the first order
members in formula (9.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V' (7), which are generated by the operators
(—vA4;), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: ¢ = 1 and ¢ = 2. Let us consider the
case 1 = 1. We obviously have:

VDl = U (m A, = L. (9.6)
Analogously for ¢ = 2 we have:
V()] = U (7, A2)], = 1. (9.7)
By combining formulas (9.6) and (9.7), we will obtain:
V(r), =1, i=1,2. (9.8)

Let us calculate the coefficients [V/(7)], ; (i,7 = 1,2) corresponding to the
second order members included in formula (9.8). On the whole we have two
cases: (4,7) = (1,1), (1,2), (2,1), (2,2) . Let us consider the case (i,j) = (1,1).
We obviously have:

Vi = U (7, Al = 5 (9.9
Analogously for (7, j) = (2,2) we have:
Vs = U (7, As)]y = 5 (9.10)

Let us consider the case (i,7) = (1,2), we obviously have:

I

=
2
»
Il
| — |
-
N\
\]
| Qf
o
oy
~_

+
|IQI
/N

m

_ a(a+ta) 6+2a+a( + +a
B 4 8 4 8
20+ 1 2 a 1
_ Lo +§+ O‘+O‘:§, (9.11)
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For (i,75) = (2,1) we have:

1
[V(T)]m = 9 (9.12)
Here we used the identity a + o = 1.
By combining formulas (9.9) - (9.12), we will obtain:
V), = i,j=1,2. (9.13)

1

2’

Let us calculate the coefficients [V/(7)]; ;. (4,4, k = 1,2) corresponding to

the third order members in formula (9.4). On the whole we have eight cases:
1,2,2), (

(i, k) = (1,1,1), (1,1,2), (1,2, 1), (1,2,2), (2,1,1), (2,1,2), (2.2, 1), (2,2,2).
Let us consider the case (3, j, ) (1,1,1). We obviously have:
1
[V(T)h,m =[U(r, Al)]m,l ~ 5 (9.14)
Analogously for (7, j) = (2,2,2) we have:
1
[V<7'>]2,2,2 = [U (r, A2)]2,2,2 = 6 (9.15)

Thus Let us calculate the case (i, 7, k) = (1,1,2). We have:

Ve = [7(n50)] (v (m50)] 2l (-50),)

=

+
3
/N
N
A= N[
a~
N—

— 7 N
d
7 N
=
| Ql
N
)
N———
(I

o
_I._
d
=
R
N
)
N—
2o
N———

116



+
d

n

| 2

e
N————

_|_

X
T~

S — S

R
N
=~
N———

+

. + «
B 32 6i T 16
aa (@ + ) a_2+a(a—|—a)
16 32 16

For (i,7,k) = (2,1,1) we have:

[V(T)}Q,l,l = 6

Here we used the identities o + @ = 1, aa = % and o? + a2 = 3

Thus Let us calculate the case (7,7, k) = (1,2,2). We have:
1
1% =—
[ <T>]1,2,2 6
For (i,5,k) = (2,1,1) we have:
1
1% =-
[ (7)}2,1,1 6

Here we used the identities o +@ =1, o = 3 and o +a* = 3.
Thus Let us calculate the case (7,7, k) = (1,2,1). We have:

V0l = [ (r50)], [ (34,

1

(9.16)

(9.17)

(9.18)

(9.19)



(9.20)
(9.21)

—|_U

N —— < < —
\no./_a_4\|2/

AT = _a_a4 D

1
5

1
1
ol =

32
32

32
— 2 2
4+2a—-3+2a 6-—3
32
or (i,7,k) = (2,1,2) we have:

L N = NN T N~ L T N~ L

1_.3
Il
[a\]
I
+ g
~ E
SER
- O
S =
a.l
1_3W
g
IS =
—
~ X
([
° <
—
S
g 2
=
J=i=!
O =
<8
O oo
= =
a
d.l
o Q
2 g
uO
o O
E oo
mB
[eb}
T

(9.22)



Analogously we can show that

1 .
[V(T)]i,j,k:,l o1 b k,l=1,2. (9.23)

From equality (9.4), taking into account formulas (9.8), (9.13), (9.22) and
(9.23), we will obtain:

Vi(r) = —TZA + T X:IAA ——73 Zk:IAAAk
1,7 7,

— 7t Z AiA; A AL+ Rs (1)

= —TZA + 7' <2A> —17'3 (iAZ>
‘f‘iTZl <ZA1) +§5(T)

=1

1 1 ~
= [—TA+ 57'2142 — 673A3 + ﬂT4A4 + R5 (7). (9.24)
According to formula (1.7) we have:
Lo L, 1 4
U(T,A):I—TA+§TA —ETA +ﬂTA + R5(1,A). (9.25)

According to condition (b) of the second inequality of the Theorem, for
Rs (7, A), the following estimation holds:

1Rs (7, A) ol < ce"7° [| A% < ce”"7° [lop]l 45 (9.26)
According to equalities (9.24) and (9.25) we have:
U(r,A) =V (1) = R5 (1, A) — Rs (7).

From here, taking into account inequalities (9.5) and (9.26), we will obtain the
following estimation:

U (7, A) =V (1) @l < ce” 77 ||| g5 (9.27)

From equalities (3.2) and (9.2), taking into account inequalities (9.3) and
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(9.27), we will obtain:

u(te) — uk(te)|| = H [U(ty, A) — vk (1)] SDH = || [Uk (r,4) = V* (7)] <PH
= ' S VFIHO) U (HA) =V (@OU((i-1)7,A)| ¢
< D WWVEITINU (1, A) =V (@IU (- 1) 7, A) ¢l

et (k=0T powaT .5 WU (i —1)7,A) ¢l 45

M-

k
Cewotk7_5 Z HU ((Z — 1) T, A) 80”A5
=1
< kee**s 7t sup ||U (s, A) @] 4s

s€lo,ty]

< ceoligy sup [|U (s, A) ]| 45 - 0

s€lo,tr]

IN

Remark 9.3. The fourth order of accurate decomposition formula in case
of Multidimensional problem has the following form:

ym) (1)

U (T, %Al) U (r, %Am_l) U (T, gAm> U (7, %Am_l)
U (T, %Ag) U <T, iA1> U ( ,%AQ)
A,H) U <7, %Am> U <T, %Am,l)

AQ) U (T, %A1> U (T, %Ag)

R

A ,—:] —_

a

X
d
—
R
O OO

X

Q
T~

=
| Q

N

3
~

d
N

A
o | Q)

N

3
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Chapter 111

The Third Order Accuracy Decomposition

Schemes for an Evolution Problem with
Variable Operator

§10. Differential splitting

Let us consider Cauchy problem in the Banach space X

du (t)
o +A(t)u(t) =0, t >0,

u(0) = ¢, (10.1)
where @ is a given element from D (A) and operator A (t) satisfies the following
conditions:

(a) The domain of the operator A (t) do not depend on ¢ and is everywhere
dense in X;

(b) For every fixed ty,t2,s € [0;T], the following inequality is valid
[(A(t) = A(ta)) A7 (s)|| < ety —ta],
(c) For any complex number z

Re (z) > 0, there exists operator (zI + A (t))~"
and the following inequality is valid:

€ (0;1], ¢ = const > 0;

|z +A@) < j?z\’ ¢y = const > 0.

Then the solution of the problem (10.1) is given by the following formula
(see [39],[42])::

u(t) = U(t,0; A)gp,
Where U(t,0; A) is a solving operator of the problem

(10.1).
Let A(t) =b(t) Ap = b(t) (A1 + As), where A; (i = 1,2) are compactly
defined, closed linear operators in X, the function b(t) > b
condition of Helder.

o > 0 satisfies the
Let us introduce difference net domain

W, ={tpy =kr,k=1,2,....7 > 0}.
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Along with problem (10.1) we consider two sequences of the following prob-

lems on each interval [t_1, tx]:

1
W) L o (1) Al () =0,
di
v (tr1) = up_1(te1),
2
PR 4 b (1) Ani(t) =0,
i (te1) = vg(t),
du(t)

e ab () A (t) =0,

Up(ti—1) = vi(te),

dwl(t
wk()+

g ab () Aywi(t) = 0,

Wy (tg—1) = up—1(ty—1),
dwy(t)

T + b (t) Aﬂui(t) = O,

wi(tr—1) = wi(te),
dwii(t)
dt

+ab (t) Aqwi (t) =0,

wi(tr—1) = wi(te),

Here o is a numerical complex parameter with Re (a) > 0, uo(0) = .
Suppose that U (t1,t2;74;), v = L,a,@ (j = 1,2) operators exist. On each
[tk—1,tx] (K =1,2,...) interval ui(t) are defined as follows:

L3

ur(t) = 5[68(0) + wh(t)]

We consider the function wu(t) as an approximate solution of the problem
(10.1) on the interval [t;_1, tg].

Theorem 10.1. Let the following conditions be satisfied:

(a) a:%iiﬁg (i=+v-1) ;

(b) The solving operators U(t,to;vb(-) A;),
the problems

dv (t)
dt

exist and the following inequalities hold true:

v=Laa (j=012) of

+ b (t) Aju (t) =0, t >ty >0, v(to) = € D(4;),

U2, 0370 () Ay < e,

|U(t,to;b () Ag)|| < Me*t=%) M w = const > 0;

(¢) The function b(t) > by > 0 satisfies the condition of Helder;
(@) U (s1,82;b(-) Ao) ¢ € D (Ag) for every fived s1, 55 > 0.
Then the following estimation holds:

lu(ty) — up(te)]| < ce®rt T sup

51,52€ [Oztk]

1U (s1,82;b(-) Ao) @1l 4 »

where c,wy are positive constants.

Let us prove the auxiliary Lemma on which the proof of the Theorem is
based.
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Lemma 10.2 If the conditions (a),(b) and (c) of the Theorem are satisfied,
then the following estimation holds:

(U (ti tio1:6 () Ao) =V (i, tia)) ol < e 78 [lip]l 55

where
1
Vi(ti,tich) = 3 U (tistic1;ab (1) A U (8, 6210 (1) Ao) U (ti, timr; @b (<) Ay)

+U (t“ ti—l; ab () Ag) U (t” tz‘—l; b () Al) U (tz, ti_l;ab () AQ)] .

Here c,wq are positive constants.
Proof. The following formula is true:

ti
Ultitio; A) =1~ / A(s1)U (t;, 81; A) dsy,
ti—1
Hence we obtain the following expansion:

ti t; S1

Ultitii; A)=1— /A(sl)dsl + / A(sy) / A (sy) dsadsy + ...
ti—1 ti—1 li—1
ti S1 Sk—2
-+ (—1)k_1 / A (81) / A (52) / A (8]671) dSkfl...dSstl + Rk (ti, tz;l, A) ,
ti—1 ti—1 ti—1

(10.2)
where

ti S1 Sk—1
Ry (ti,ti1,A):<—1)’“/A<51)/A<52)... / U (1, 5: A) A (s1) dsi..dssds:.
ti—1 ti—1 ti—1

(10.3)

Let us consider the first addend of the operator V' (¢;,¢;_1) and decompose

its all multipliers from the right to left according to the formula (10.2) so that
each residual member is of the fourth order. We shall get:

Utiti—i;ab(5) A U (i, ti1;0 (1) A2) U (t,ti—g;ab (+) Ay) =

ti ti ti
=1 — a/b(sl)dsl —i—&/b(sl)dsl Al—i-/b(sl)dslAg
tiy tiy ti1
t;
// (s1)b(s2 d51d32+aa/b(31)d31/b(51) ds;
ti—1ti—1 ti—1
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‘|‘Oé / / 51 82 d$1d82) A + / / 51 82 d31d82A

ti—1ti—1 ti—1ti—1

ti ti t; t;

+Oé/b(81) dSl/b(Sl)d51A1A2+a/b<81>d81/b(51)d81A2A1

ti—1 ti—1 ti—1 ti—1

(] ] oo

ti—1ti—1ti—a

t:

+a a// (s1) b (s2 d81d82/b(81)d81

ti—1ti—1 ti—1

+aa? / (s1 dsl// (s1)b(s2)dsidsy

ti—1ti—1

+ @3 / / / 81 82 Sg) d81d82d83 A?

ti—1ti—1ti—1

t;

+Oé // 81 82 dSldSQ/b(Sl) dSlA%AQ

ti—1ti—1 ti—1

/ 81 dSl/ / 81 32 dSldSQA A

ti—1ti—1

t; t; t;

—{—a@/b(sl)dsl/b(sl)dsl/b(sl)d31A1A2A1
ti—1 ti_1 ti—1

t .

+C¥// 81 82 d81d82/b(51)d81A§A1

ti—1ti—1 ti—1

/ S1 dSl/ / 81 82 d51d52A2A

ti—1ti—1

/ / / 82 82 83) d81d82d83A + R4 1 ( i—1, ) s

ti—1ti—1ti—a
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where for the residual member the following estimation holds:
[Ra (tir,t:) ol < ceoTr HSD”A4- (10.5)
Analogously for the second addend of the operator V (¢;,t;,_1) we get:

U(tz,tz_l,ab() AQ) U(t“tz_l,b()Al) U(tz,tl_l,@b () Ag) =

t; t; ti
=] — a/b(sl)dsl —I—E/b(sl)dsl Ag—i—/b(sl)dslAl
tiy ti1 tic1
t;
// (s1)b(s2 d51d32+aa/b(sl)dsl/b(sl)dsl
ti—1ti—1 ti—1

—1—62/ /b(sl)b(52)d51d82 A3+ / /b<51>b(52)d31d8214%

ti—1ti—1 ti—1ti1
t; t; t; t;
+ « / b(Sl) d81 / b(Sl)dslAgAl +a / b<81>d81 / b(Sl) dSlAlAQ
ti—1 ti—1 ti—1 ti—1

/ / / 81 82 83) d81d82d83

ti—1ti—1ti—1

+OéO(// Sl 52 dSQng/b(Sl) dSl

ti—1ti—1

+aa? / (s1 dsl// (s1) b (s2) ds1dsy

ti—1ti—1

+a° /// 51) b (s2) b (s3) dsidsydss | A3

ti—1ti—1ti—1

1/

—f—Oé // 81 82 dSldSQ/b(Sl) dSlAgAl

ti—1ti—1 ti—1

/ 81 d81/ / 81 82 d51d82A2A

ti—1ti—1
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t; ti ti

+Oéa/b(81)d81/b(Sl)dsl/b(Sl)dslAQAlAg

ti iy
+a// s1) b (s2 dSlng/b(Sl)dSlA%AQ
z ltz 1
/ (s1 dsl/ / (s1)b(s2) dSldSQA]_A
’L ltz 1

/ / / 82 82 83) dSlngngA + R42 ( i—15 ) N

ti—1ti—1ti—a
where for the residual member the following estimation holds:

[Raz (i1, t) | < ce™r? 1/l 4 -

From (10.4) and (10.6) we obtain:

ti

\% (ti,ti,ﬁ =1—- / b<81> (A1 + Ag) d51

ti—1

1
+§ Oé +Oé +1 // 81 82 dSldSQ

ti—1ti—1
t; ti
+Oéa/b(81) dsl/b(sl)dsl (A%"—A%)
ti—1 ti—1

t t;

+(Oz+a)/b(31)dsl/b(sl)dsl (A1As 4+ AsAy)

ti—

ti—1ti—1ti—a

1
5 Oé +a Oé + 1 / / / 81 82 83) d51d52d53

(10.6)

(10.7)

ti ti  s1
+(a2@—|—0@2) /b S1 d31/ /b (s1)b(s2)dsidss (A‘I’—FA%)
\ ¢

i—1ti—1

t;

a +a // (s1)b(s2 d31d32/b(81)d81 (A%Ag—i—AlA%)

ti—1ti—a ti—1
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t; t; t;

+Oéa/b(81)d51/b<81>d81/b(51)d81 <A1A2A1+A2A1A2)

ti—1 ti—1 ti—1

t; ti  s1
+ (a + 62) / b(s1)ds / / b(s1)b(s2)dsidse (AQA% + AgAl)]
ti—1 ti—1ti—1
t;
+R4 <ti7ti—1) = I — / b (81) (Al + Ag) d81
ti—1
2 200 —2 1 tos
+[((CY -+ 04a2—|—04 + )/ /b(Sl)b(SQ)d81d82+Il) (A%‘i‘A%)
ti—1ti—1

ti  s1
2 20
+ ( a ;— @ / / b (81) b (52) d81d82 + IQ) <A1A2 —+ AQAl)

ti—1ti—1

2

ti—1ti—1ti—1

ti Ss1  S2
3 2% az+ad+1
_ [(a +3aa +3aa” +a” + ///b(Sl)b(82)b(83)dS1d82d83
+1;) (A + A3)

t; S1 EP)
3a% + 3a
+ (%/ / /5(81)6(32)19(33) d51d52d53+[4) (A2A, + A2A,)

ti—1ti—1ti—1

t; S1 82
+ (30[@ / / / b (Sl) b (Sg) b (Sg) d81d82d83 + ]5) (A1A2A1 + AQAlAQ)

ti—1ti—1ti—a

ti s1 s2
3a + 3a?
+ (% / / / b(s1)b(s2)b(s3) dsld32d33+16) (AQA%+A%A2)]

ti—1ti—1ti—a
t;

+R4 (t,, ti,1> = I — / (b (51) Al + b (Sl) AQ) dSl
ti—1
ti  s1
+ !(/ / b(Sl)b(Sg) d81d82+11) (A%—i—Ag)
i—1ti—1
t;  s1
+ (/ / b (Sl) b (82) d81d82 + [2) (A1A2 -+ AgAl)
i—1ti—1
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_ [(j / 7b(51)b(52)b(53) d81d82d$3+13) (A7 + A3)

i—1ti—1ti—1

t; s1  Sso
+ (/ / / b (81) b (82) b (83) d81d82d83 + I4) (A%AQ + A§A1>

i—1ti—1ti—1

t; s1 Ss2
+ (/ / / b (81) b (82) b (83) d81d82d83 —+ 15) (AlAQAl —+ A2A1A2)

i—1ti—1 ti—1

t;i Ss1  S2
+ (/ / / b (Sl) b (Sg) b (Sg) d81d82d83 + ]6) (AQA% + A%Ag)

i—1ti—1ti—1

+Ry (tiytic1), (10.8)

where 1
Ry (ti,ticq) = 3 (Raq (tic1,ti) + Rao (tim1, i),

and where

K3

t
= (/ b 81 d81 81 d81 —2/ / 81 82 d81d82> s

ti—1ti—1

(/ b 81 dSl 81 d81—2/ / 81 82 dsldSQ) s
1

ti—1ti—1

t;
= [aa—i—aa (// s1) b (s d81d82/b(81)d81

i—1ti—1 ti—1

_3/ // (51) b (s2) 33)d31d82d53>],

ti—1ti—1tioa

t;
1
[4:5 [ Oé +a (/ / 51 52 dSldSQ/b(Sl)dsl

DO |

i—1ti—1 ti—1

_3/ 7 ]2b(81)b(82)b(83) dsldszds;;)] :

ti—1ti—1ti—1
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I :% {a@ (/t b(s1) dsy /t b(s1) dsy ] b (s1) dsy

i—1 ti—1 ti—1

—67775(51)6(52)5(53)d51d52d53 )

ti—1ti—1ti—1

t;
[oz —i—oz (// 51) b (s2 dSldSQ/b(Sl)dSl

i—1ti—1 ti—1

i / [ [ 53>d31d32d33)]_

ti—1ti—1ti—a

Is =

N | —

From (10.5) and (10.7) follows the following estimation:
1Ry (t,tiex) ol < e [l o] a3 (10.9)

Clearly for the U (¢;,t;—1; A) we have:

ti

Ut tioi A) =1~ [ blsu) (A1 -+ A s

ti—1
t;  s1
+ / / (b (81) Al -+ b (Sl) Ag) (b (82) A1 -+ b (52) Ag) dSldSQ
ti—1ti—1

_7 / 7(b(31)A1—|—b(81)A2) (b(s2) A1 + b (s2) As)

ti—1ti—1ti—a

X (b (83) Al +b (83) Az) d81d82d83 + R4 (tl, tz;l, A)

ti

=1 - / (b (Sl)Al + b(Sl)A2> dSl

/ / (s1) b (s2) dsidsy (A +A2)

/ / 51 52 d81d82 (A AQ + AQA )
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/ / / 81 82 83) d81d52d53 (A -+ AB)

ti—1ti—1tia

— / / / b (81) b (82) b (83) d81d82d83 (A%AQ + AgAl)

ti—1ti—1ti—1

/ / / 81 82 83) d81d82d83 (A A + AQAZ)

ti—1ti—1 ti—a

— / / / b (81) b (82) b (83) d$1d$2d83 (A1A2A1 + A2A1A2) + R4 (t“ ti—la A) s
ti—1ti—1ti—1

(10.10)

where for the residual member the following estimation holds:
1Ra (1, ti-1, A) ]l < e i (10.11)
From (10.8) and (10.10) we obtain:
Ut tic; A) =V (i, tio1) = I (AT + A3) + L (A1 4z + A Ay)

+13 (AT + A3) + Iy (AT Az + AZA)) + I5 (A1 A2 A1 + Az A Ap)
+16 (A1 43 + AsA7) + Ry (ti, tio1) + Ry (i, ti1, A). (10.12)

Let us consider the following integral and transform it using integration by

part:
S1 b

/ / F(51) ¢ (s2) dsads, = / £ (s2) dss / o (52) dss

a

—/b7¢(sl)f(52)d32d31_/f(sl)dsl/ (51 dsl—// (51) f (s5) dsadsr.

We receive:
b b b s1 b s1
/f(sl) dsl/gp(sl)dsl = //f(sl)go(sg)dsgdsl—l-//ga(sl)f(sg)dsgdsl.
(10.13)
According to the formula (10.13) it follows that:
I =1,=0. (10.14)
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Let us consider the following integral and transform it using integration by
part:

b

///f $1) @ (82) ¥ (s3) dssdsads; = /f So) dsy /gp(SQ)/w(sg) dszdss

—/b]lf(82)d8290(81)]1¢(32)d82d31 = /bf(sl)dé’l/b (@ (51)7¢(52) dSZ) ds,
a a a a a b
t/¢@g(7f@gmh7¢@@d@)d&

Hence according to the equality (10.13) we get:

51 82 b s1
///f s1) @ (82) 1 (s3) dszdsads; = /f 51 dsl/ (gp S /w S9 dSQ) dsy
/// 81 82 (Sg d83d82d81 /// 31 82 (Sg)ngdSQdSl

From this we obtain the following formula:

b b S1 S2
/f(Sl) dSl/ 81 /w 82 d82 d81 ///f 81 52 (83) d53d52d51
81 82 S1 S2
/// 51 82 (83 ngdSQdSl +/// 51 82 (83) d53d52d51
(10.15)
From the formula (10.15) it follows that:
Is =1, = Iy = 0. (10.16)

Finally let us consider the following integral and transform it according to
the formula (10.13):

b b

/f(sl)dsl/b (80 (51)7¢(52)d52) dsy :/bf(Sl)dsl/bw(sl)dsl/@ﬁ(sl)d&

a a

_/bf(Sl)dsl/b¢(51)7¢(32)d32d31.
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Hence according to the formula (10.15) we obtain:

b b

/}@da/ &/wﬁdW& /fa@Jp@wa/wwﬁl

a

_ /b / / f (1) % (52) ¢ (53) dszdsadsy — /b 77¢(51) f(52) ¢ (s3) dssdsads,

b s1 s9

_ / / / W (1) 0 (53) f (55) dssdsads:.

a a a

From this and formula (10.15) we get:

S1 82

ot fotarin fotwsin= [ ] [ris s

+/b]1790(31)f(52)¢(53)d33d32d31+/67790(31)@0(52)f(ss)dssdszdsl
+/b77f(51)?/’(52)90(53)d33d32d31+]77@/)(Sl)f(82)90(53)d33d82d81

b s1 s2

[ [ oo so) dsadsads (10.17)

a a a

from the formula (10.17) it follows that:
I;=0 (10.18)

From the equality (10.12) according to the formulas (10.14), (10.16), (10.18)
and the inequalities (10.9) and (10.11) we obtain the sought estimation. [J
Let us return to the proof of the Theorem 10.1.

Solution of the problem (10.1) in the point ¢ = ¢; can be written as follows:
u(te) = U (tr, to; A) ¢. (10.19)
Solution of the decomposed problem can be written as follows:

uk (ts) = L (tr, o) ¢, (10.20)

where
L (tl, tj) =V (t“ ti—l) Vv (ti—la ti—2> LV (tj+17 t]) s 7> j
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Let us estimate the operator L (¢;,¢;) (i > j):
1L (s t) I < IV (st )V (it IV (s )

< mgr g < gl (10.21)

From the equalities (10.19) and (10.20) according to the inequality (10.21)
and Lemma we obtain:

[wtr) — ur(tr) |l = 1L (£x, 0) = U (t&, 0; A)] o]

k
Z HL tka tlatifl) -U (thtifl; A)] U (tifla 0; A) SOH
=1
k
< ML ()L (i tim1) = U (tis tioa; AJU (1,05 A) @
=1

k
< Zce“’O(k*i)TceW |U (ti—1,0; A) SOHAg

< ety sup || U(s1, 895 A)o|| g4 - O
81,826[0,%} 0
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§11. Rational splitting

1. Construction of decomposition algorithm

Let us consider Cauchy problem in the Banach space X :

dl;—fHA(t)u(t):o, t>0, u(0)=ep, (11.1)

where ¢ is a given element from D (A) and operator A (t) satisfies conditions
of the previous paragraph.

In the previous paragraph we have built the following decomposition for-
mula which is locally of the fourth order of accuracy.

% (tk, tk—l) == [U (tk, tk—l; ab () Al) U (tk, tk—l; b () Ag) U (tk, tk_l;ab () Al)

N —

+ U (tg, tg_1;ab (+) A2) U (g, tr_1;b (+) A1) U (tg, tx_1;ab (+) A)] , (11.2)
where o = % iiﬁg (z = \/—1) .
In this paragraph we have shown, that:

U (tk,tk—b b () Ao) — V(tk,tk_l) = Op (T4) y

where O, (7%) is an operator, the norm of which is of the fourth order with re-
spect to 7 (more precisely, in case of unbounded operator ||O, (%) ¢|| = O (7%)
for any ¢ from the domain of O, (7*)). In the present work the following ap-
proximation formulas of the fourth order accuracy will be built for the solving
operator of the problem (10.1), using rational approximations:

Wi (b, tre1, b (-) Ao) = anl + by (I + M7 Ao) ™+ ¢ (I + MeTAg) 2, (11.3)

W (tr, tre1,0(-) Ag) = (I — XowTAo) (I + M s Ag) ™" (I + M7 Ag) ™, (11.4)

where

_ 1y n 1 /372 — 271673k

A = ,
276 23 Y1,k
=1 Dk Ok 3k Dk 02k Lk
g PV TV D VD VA ) P VI
I 677 1 — 671k Y2k + Y3k
e 6'7%,/@ — 372,k
1 —
)\S,k = 5 <dk + (—1)82 4€k - dz) y S = 1’ 2’
d. — 3V kY2, — Y3,k o — 37§,k — 2V K73,k
k — ) k — y
6’7%,19 — 32,k 2 (67%,C — 3727,6)
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and where

3b () + b (t—1/3)
4 )

Yk = Yog = b (tre1y2) . Y =0 (fee1y2) -

Let us note, that the parameters ag, by, ¢, and A, satisfy the following system
of equations:
ar + bk +cp = 1,

_ Tmk _
b + mcy, = (m— 1) m=2,3,4

and the parameters Ao i, A1 ; and Mgy - the following system of equations:

Aok + Mg+ Aok = Y1k,
Mok (Mg + Aag) + )‘%,k + A%,,c + A Aok = Yor/2,
Aok (AT 4+ A3+ Arpdow) + A3 0 4+ X3 4+ AT dok + AeA3, = V3./6.

These equations can be received by equalizing the coefficients of the oper-
ators I, Ag, A3 and A} obtained after decomposing the (1.4) and (1.5) rational
approximations with the corresponding coefficients in the decomposition of the
solving operator of the problem (11.1).

In the present work we shall also show that for the both formulas we have:

U(tk,tk_l,b(') Ao) - I/Vl (tk,tk_l,b(') AO) = Op (7’4) 5 = 1, 2.

According to the formulas (11.3),(11.4) and (11.5) we can build the follow-
ing decomposition formulas:

1
Vi (te, the1) = 5 (Wi (t, ti—1,0(+) A) Wi (g, ti—1, 0 (+) Ag) Wi (t, tie—1,b(+) Ar)

+Wi (e, the1, 0 (+) A2) Wi (tks o1, 0 () A) Wi (B, te—1,0 (1) Ag)],  1=1,2.
(11.5)
Below we shall show that both formulas are of the fourth order of accuracy,

U (ty, tp—1,b () Ao) = Vi (te, te—1) = Oy (7'4) , =12

According to the formulas (11.6) in the present work the third order accuracy
decomposition schemes will be built for the solution of the problem (1.1).
According to the formula (11.2) we have:

u(ty) = U (tg; te-1,b(-) Ao) u (te-1) - (11.6)
On the basis of the formula (11.7) let us construct the following scheme:
up = Vi (e, tir) ("wpmr) lwo =, 1=1,2, (11.7)
where

1
Vilte, te—1) = 3 (W (t, ti—1, b () A1) Wi (tk, o1, b (-) A2) Wi (tk, ti—1, @b (+) Ay)
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+VI/Z (tka tk*h ab () A2> VI/Z (tka tk*h b () Al) VVI (tka tkfbab () AQ)] .
Let us realize the scheme (11.8) by the following algorithm:

Ypays = Wi (tg, tior, @b (1) Ar) ('we—t)
‘oz = Wity tior, @b (-) As) (ug—1),

iy = Wi(te teo1, b () A2) ('ve—ay3)
‘w1 = Witk teor, b(4) Ar) (fwg_ays)

‘g = Wi (b, teo1, ab (1) Ap) (l?)k—1/3) )
Ywp = Wi (tg, tio1, ab (1) As) (lwkfl/i’)) ;

l

up = [lvk + lwk] , lug = o,

N | —

2. Error estimation of approximation solution

The following theorem takes place:

Theorem 11.1. Let the following conditions be satisfied:

(a) There exists such 19 > 0, that for any 0 < 7 < 7y there exist operators
(I+7)\k7'Aj)7l, j =12~ = 1l,a,a@ and they are bounded, besides the
following inequalities are true:

Wi (7,747 < &7, w = const >0, 1=1,%

(b) There exist the solving operator U(t,to;vb (1) A;), v = 1,a,a (j =0, 1,2)
of the following problem:

dilz(ft)'ﬂWb(t)Ajv(t):O, b2t 20, vito) =y € D(4),

and the following inequality is true:
(2, to; 90 (-) Aj) ]| < e,

U (t,t0;b(-) Ag)|| < Me %) M, w = const > 0;

(c)b(t) > by >0 and b(t) € C3[0;00);
(@) U (s1,82;b(-) Ao) ¢ € D (Ag) for any fived 51,52 > 0.
Then the following estimation holds:

|ulte) = ‘ugl| < ce*™tp®  sup HU(sl,SQ,A)@HAg7 [=1,2,

Sl,SQG[O,tk]

where c,wy are positive constants.
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Let us prove the theorem in case of [ = 1 (in case of | = 2 the theorem can
be proved analogously). Let us prove the auxiliary lemmas on which the prove
of the theorem is based.

Lemma 11.2. If the condition (a) of the theorem is satisfied, then for the
operator Wi (t;, t;_1,b(-) Ag) the following decomposition is true:

k-1 ;
4 .
W1 (ti,tz‘_l,b(')Ao) = Z(—l)]ﬁ’y]ﬂAé (118)
Jj=0 '
+Ryw, i (ti, ticy, @b (+) Ag)
ko= 1,2,3,4,
where
3b(t;) +b(t;—
Yi=1, M= (t:) ( 1/3) Yo = b (ti—1/2) . Y =0 (ti—1/2) )

1 )
and where for the residual member the following estimation holds:
| Rw, ke (ti, tia, @b (+) Ag) ]| < ceotrF HASgp” , w€D (A’g) ) (11.9)
Proof. Clearly we have:
(T+~7A) =T =T+ (T 4+~A) " =T — (T +~7A) " (I+~vA-1) =

=1 —~yA(I+ A"
From this for any natural £ we can get the following expansion:

k—1
(T+7A) =D (—1) y A+ AR (T +yA) (11.10)

=0

Let us decompose the rational approximation Wy (¢;,t;_1,b(+) Ap) according
to the formula (11.11) up to the first order, we get:

W1 (tl, ti—l; b () AQ) = CL,‘] + bz ([ + )\iTA(])_l + C; (I + )\l‘TAo)_Q

= (IZ'I + bl] — (bl + CZ') /\iTAO (I + )\iTAo)_l + CZ‘I - Ci)\iTAO (] -+ /\iTAo)_Q
= (ai‘f‘bi‘f‘ci)l"’Rwhl (ti,ti_l,b(')Ao), (1111)

where
RW1,1 (ti, tz‘_l, b () Ao) = — (bz + Ci) )\iTAO (I + )\Z"TA())il—CZ‘)\Z’TAO (I + )\[7‘140)72
According to the condition (a) of the theorem we have:

| Rw, 1 (i, tiz1,b(-) Ao) || < e || Ao, ¢ = const > 0. (11.12)
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If we insert the values of the parameters a;, b; and ¢; in (11.12), we get:
Wl(T, A) = [+RW171 (ti,tifl,b(')Ao). (1113)

Let us decompose the rational approximation Wy (¢;,t;_1,b(-) Ag) according to
the formula (11.11) up to the second order, we get:

ail +b; (I +N7A0) ™+ i (I +M\TA) > =
= a;] +b; [I — NimAg + NT2AZ (I + Nt Ag) '] +
o (T +NTA)) [T — N7 Ag + NTPAL (T + AT Ap) ] =
= a;] + b — bA\TA + N2 A2 (T4 N1 Ag) " +
tc; (T4 M7A)) ™ — e NTAg (I +ATA) ™ + e\ 272A2 (14 N7 Ag) ™' —
= (a; 4 b)) T — AT Ag 4+ bN2T2AZ (1 + AT A) ' +
oi [T — NTAg+ N2 A% (T + AT Ag) ] -
—CNT [I — NTA (I + )\iTAO)_l] Ao+ N2 (I + )\iTAO)_Q A =
— (a; + b)) T — bi\TAg + b A2T2 A2 (1 4+ NTAo) ™ +
el — e NTAg + e N (4 N Ag) AR
—eNTAg + N2 (T 4+ N7 Ag) A2+ NP2 (1 + NTAy) 2 A2 =
= (a; +b; +¢;) I — (b + 2¢;) NitAo + Rw, 2 (i, tim1, 0 (+) Ao) (11.14)
where

RWhQ (ti, tz‘—l; b () A()) = (bz + 201) )\227'2143 (I + )\Z‘TAo)_l
XTI+ \TAg) AL

According to the condition (a) of the theorem we have:
[Rwy 2 (tisti1, () Ao) @l < er? || AJe]| - (11.15)
If we insert the values of the parameters a;, b; and ¢; in (11.15), we get:
3b(t;) +b(t;—
Wit ticab(-) Ao) = I—7 () ; (ti-1/3) Ay
+RW172 (tiati—lab(') AO) (1116)

Let us decompose the rational approximation Wy (¢;,¢;-1,b(-) Ap) according to
the formula (11.11) up to the third order, we get:

ai[ + bz (I + )\iTAo)il + ¢ (I + )\iTAD)72

= a;] +b; [I — Nim Ao + N2 AL — NP AS (T + AT Ag) ]
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o (T +NTAg) [T — N7 Ag + NIT2AL — NIT3AS (1 + N7 Ao) ]

= ;] + b — b\TAg+ D N2TEAZ — b NPT AS (1 + NTAg) ™!
+CZ' ([ + )\iTA())il - Ci)\iTAO ([ + )\iTA())il
+Ci)\?7214(2) (I + )\iTAo)_l — Cz)\?TSAg ([ + )\iTAO)_2
= (a; + b)) I — b\TAg + X272 A2 — b AP T3AS (1 + N7 Ag) ™
e [T — N Ao+ N272A3 — N3 AS (14 Nt Ag) 7Y
—e N [T = AT Ag +0 MT2AR (T + N7 Ao) 1] Ao
FNTET = N7 Ao (I + N7 Ao) ) A2 — e NP3 AG (I + N7 Ap) ™
= (a; + b)) I — b\TAg + bN2T2AZ — b N33 AS (1 + NTAg) ™
+CiI — Ci)\iTAo + Ci)\?T2A8 — CiA?TgAg ([ -+ )\iTAo)_l
_Ci)\iTAO -+ CZ')\?T2A(2) — CZ)\?T‘SAg ([ —+ )\iTAo)il
+eN2T2AZ — NP AS (T 4+ N7 A) ™ — e N3 AS (T + N7 Ay) ™!

= (al- + b; + Ci) I — (bz + 201) )\iTAO + (bl + 301) )\ZQTQAg
+Rw, 3 (i, tio1,0(+) Ao) (11.17)
where

RW173 (tz, tl',l, b () Ao) = — (bl + 3C1) )\?7'3 ([ + )\iTAO)_l Ag
—e N (T + M\ Ag) 2 AL,

According to the condition (a) of the theorem we have:
||RW1,3 (ti tio1,0(-) Ao) @] < cr’ HA?JSOH . (11.18)
If we insert the values of the parameters a;, b; and ¢; in (11.18), we get:

3b () + b (tim1/3)

Wi (titia,b(-) Ag) =T —7 4

Ao+

1
+§7'2b2 (tifl/g) Ag + RW1,3 (tl, ti—lv b () Ao) . (1119)

And finally let us decompose the rational approximation Wi (¢;,t;_1,b () Ao)
according to the formula (11.11) up to the fourth order, we get:

CLZ‘] + bz (I + )\Z‘TA[))_l + ¢ (I + /\ﬂ'flo)_2 = aiI
b [T — N Ao + N T2AG — NP AS + AT AG (T + AT Ag) ] +

+e; (I + )\iTAO)fl [I — NTAp + /\372A3 — /\fTSAg + )\?T4Aé (I + )\iTAO)*l} -
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= a;] + b — bi\TAg 4+ bN2T2AZ — b NP AS + b N AL (T + N7 A)) T +
e (T+ MNTAg) ! — e himAg (I 4+ M7 Ag) ™ 4+ e N2 A2 (1 + NTAy) ' —
— N33 AS (T + N7 Ag) ™ 4 e N AL (T + N7 Ag) 2 =
= (a; + b)) T — N7 Ag + bA2T2 A2 — BN TP A + BN AL (1 + N7 A) !t +
e [1— NT Ao + N272A2 — N3T3AS + NP AL (T + N Ag) ] —

—e A [T = NT Ao + N2 AL = N33 AS (T + N Ap) '] Aot
AN [T — N7 Ao + NP2 AL (T + NiTAp) ] A2—

=N T = N7 Ao (T + NTAo) ] AS + N (T + NimAg) 2 A

= (a; + b)) I — bNTAg + D272 A2 — b NPT AS + b NI AL (1 + NTAg) ' +

o] — M Ag + GNITEAZ — N3P AS 4 e N AL (T + N7 Ag) T —

—ciMTAg + AT AL — e N3P A + e\ A (T + )\iTAO)_l Ap+
+eNT2AZ — e NP AS 4 e NP AR (T + N7 Ag) A2 — N3P AS+

Fe AT A (T + NTAg) A + e N (14 M\ Ag) 2 AL = (a; + by + ;) [—

— (b + 2¢5) AT Ag + (b; + 3¢;) N272 A2 — (bs + 4c) N3P AD
FBiwia b fio1, () o), (11.20)

where

RW1’4 (tz, ti—l; b () A()) = (bz —+ 401) )\;17'4 (] -+ /\iTAo)_l Ag
Fe M (T + NTAg) 2 AL
According to the condition (a) of the theorem we have:
[Rw,a (ti, tim1,b(-) Ao) oIl < e || Alg]]. (11.21)

If we insert the values of the parameters a;, b; and ¢; in (11.21), we get:

3b () + b (ti—1/3)

Wi (ti,tica,b(+) Ag) =1 — 1

Ao+

1 1
—|—§7'2()2 (ti—1/2) A(QJ - 67—3b3 (ti_l/g) Ag + RW1’4 (tz, ti—h b () Ao) . (1122)

Uniting the formulas (11.14),(11.17),(11.20) and (11.23) we get the formula
(11.9), and uniting the inequalities (11.13), (11.16), (11.19) and (11.22) we
obtain the estimation (11.10). O

Lemma 11.3. If the condition (a) of the theorem 11.1 is satisfied, then
the following estimation holds:

U (ti, ti-135.(-) Ao) = Vi (tis tic)[| < e 77 || ya (11.23)
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where
1
Vi(ti,tio1) = 5 (Wi (i tioa; b (1) Ar) Wi (B, 8150 (1) Ag) Wh (8, tioa; @b (¢) Ar) +

+ Wi (tiyticr;ab (¢) Ag) Wy (i, tim1;0(+) Ay) W (i, timg; @b (+) Ad)]

here ¢ and wq are positive constants.
Proof. The following formula is true:

ti
Ultitio; A) =1~ / A (1)U (tg, s1; A) dsy,

ti—1

hence we get the following decomposition:

ti t; S1
U (ti;ti—l; A) =1-— / A(Sl) d81 + / A (81) / A (Sg) d82d81 + ...+
ti_1 ti—1 ti—1
t; s1 Sk—1
+ (—1)k / A (81) / A (Sg) / A (Sk) dSk...ngdSl + Rk (ti, tz’—l, A) s
ti—1 ti—1 ti—1
(11.24)
where
t; S1 Sk—1
Rk (tg, tl, A) = (—1)k / A (Sl) / A (82) / U (tg, Sk A) A (Sk) dSk...dSstl.
ti—1 ti—1 ti—1
From the equality (10.18) according to the formulas (10.13) and (10.14)
ti t; 2
1
Uty ti—; A) =1 — / b(s)dsAy + 3 / b(s)ds | Aj—
ti—1 i—1
t; 3
1
- / b(s)ds | A3+ Ryt ti 1, A). (11.25)

i—1
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If b (t) € C?[0; 00), then the following inequality is true:

t

[ osras - AR (tiys)

i—1 C

IA
W

CcT

CT

S
—~
VA
~—
QL
»
|
2
no
S
—~
S*
L
=
[N}
~—
IA
\'VP

\ti—l C

According to this inequality from the formula (11.25) we get the following
equality:

3b(t:) + b (ti—1s3)
4

1
U (tm ti—l; A) =1—-7 AO + 57‘2b2 (tifl/g) Ag—

1 -
—6731;3 (ti1j2) Ad+ Ry (i tir, A) (11.26)
where for the residual member }N%4 (i, t;_1, A) the following inequality is true
| Rt tior, 4y || < ceomr gl (11.27)

Let us decompose all rational approximations in the operator V; (¢;,t;_1)
according to the formula (11.9) from the right to left, so that each residual
member is of the fourth order. We shall get:

3b(t;) + b (tic1ys) 1

Vi(titic))=1—71 1 Ag + 57'21)2 (ti—1/2) AZ—

1
—67'3[)3 (tz‘_l/Q) Ag -+ RV174 (tl, tifl) R (1128)

where for the residual member Ry, 4 (£;,t;,—1) the following inequality is true:
[Rvia (tistioa) ol < ce 1 ||| 4a - (11.29)

From the equalities (11.27) and (11.29) according to the inequalities (11.28)
and (11.30) we can get the sought estimation. [J

Let us return to the proof of the Theorem 11.1.

Let us introduce the solution of the decomposed problem as follows:

Yup = Ly (te, to) @, (11.30)
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where
Ly (ti,t;) = Vi (ti, tica) Vi (ticas time) VA (t41,t5) 0> 4
Let us estimate the operator Ly (¢;,t;) (i > j):

12 (ot < VA it [V (st VA (. 25)] <
< mgr g < gl (11.31)

From the equalities (10.2) and (11.31) according to the inequalities (11.24)
and (11.32) we get:

Jute) = tur]] = [[L1 (1, 0) = U (tx, 0;0(-) Ao)] ol =
k

= 1Ly (t ta) Vi (tis tima) = U (i timas b () Ao)] U (tim1, 056 (+) Ag) o] <
=1
k
< Ly (b )V (iytia) = U (63, tim1; 0 () A)] U (tim1, 03B () Ao) | <
=1

k

<3 eI U (1,1, 05b () Ao) ] <
i=1

< ety sup || U(s1, 895 A)o|| g4 - O
81,826[0,%} 0
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Appendix

In the appendix there are given results of numerical calculations for heat
transfer equation. These calculations are carried out using existing first and
second order and constructed in this work third order accuracy decomposition
schemes. Comparative analysis of numerical calculations for different order
decomposition schemes is carried out.

ou (t,z,y)
ot

Pu(t,z,y O%u (t,x,y
= G(I,y)#)‘i‘b(l’,y)%—'—f&,l’,y),

t > 0, (x,y)el0,1]x]0,1],

u(0,z,y) = ¢(z,y),
u(t,0,y) = w(t,1l,y)=u(t,z,0) =u(t,x,1) =0.

There are calculated the following test problems:
Test 1.

ftzy) = 0,

(x,y) = sin(mz)sin(7my),
a(z,y) = b(x,y)=1.

The solution of this problem is
u(t,z,y) = e " 'sin (7z) sin (7y) .

The interesting point of this test is that with increase of ¢ the solution decreases
very rapidly (tends to machine zero) and for this reason it is very difficult to
catch the solution behavior. The suggested third order scheme makes possible
to achieve good precision, what is confirmed by calculations (see tables: 1-4).

In the tables 4-5 there are shown results of calculations of test 1 according
to semi-discrete analog of first order accuracy averaged differential scheme (see
[28]):

U — Vg
%4-2141?}1@ = 0, vp1=1up1,
Wy — Wh—
%4“21427% = 0, wp—1=1u1,
1
ukzﬁ(vk—l—wk), k=1,2,..., wug=. (1)

ug is given as an approximate solution at the point t = ¢, = k7.
As it can be seen from the above-mentioned tables, this scheme cannot
catch the behavior of the problem in test 1.
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In the tables 6-7 there are shown results of calculations of test 1 according
to semi-discrete analog of second order accuracy averaged differential scheme
(see [28]), which is constructed on the basis of Crank-Nickolson scheme:

w * ;Al (v +vien) = 00 vy =,
i _TU]% + ;A2 (vi +vicy) = 0. iy =,
u _Twlil + %A2 (wp +wig) = 00wy =,
& _Twil + %A2 (wi +wis) = 0, wiy =wy,
=g +ud), B=12e wee @

ug is given as an approximate solution at the point ¢t = ;.

As it can be seen from the mentioned tables, this scheme catches behavior
of problem in test 1 with satisfying precision, but the results are much worse
than those of calculations by scheme (2.6)(see table 1-3).

In the tables 8-9 there are shown results of calculations of test 1 according to
semi-discrete analog of second order accuracy symmetrized differential scheme
(see [3], [4]), which is constructed on the basis of Crank-Nickolson scheme:

1 1

. + ZAl (op+vay) = 0, wvp_y =1,
% + %A2 (i) = 0, v, =0l
kv ‘7”2-1 Fih R aed) = 0 =0}
uy =vy, k=1,2,..., ug=¢. (3)

As an approximate solution at point ¢ = £, is taken wuy,.

As it can be seen from the mentioned tables, this scheme, as well as the
previous one, catches behavior of problem in test 1 with satisfying precision.
The results are a bit better than results in tables 6-7, but much worse than
than those of calculations by scheme (2.6) (see tables 1-3).

To fully represent a comparison of the above-mentioned schemes it is impor-
tant to construct the solution which is exact with regard to spatial coordinates.

For the considered tests the solutions of semi-discrete split problems (1),
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(2) and (3) are given by the following formulas:

1 k
up = (m) sin (7z) sin (7y) ,

1—05m2r\%* (r2) sin (my)
u = _— SIN (7T ) S1N (7T
k 1+0.572r 2

((1 — 0.5727) (1 — 0.25727)°
Uk

k
sin (7rx) sin (7y) .
(14 0.5727) (1 +()_257T27)2) (mx) sin (7y)

Solution of the problem (2.6) is given by the following formula:

(1—§7TT)(1——7TT+ 42) *
(14 2727 4 tmi72) (1 + 2727 + Hatr? + 57073 4 gmdrd)

X sin (mz) sin (7y) .

U =

By comparing these solutions to exact solution we can see that coefficients of

sin (7z) sin (7y) approximate e~2™"t respectively by first, second, second and

third order precision with regard to time step and this is shown on tables 10-17.
Test 2.

ftzy) = (7 (2+mia(z,y) +m3b(z,y))sin (mywt) + mym cos (mymt))

xe2™t sin (momz) sin (mamy)

¥ (33‘, y) = 0,
a(x,y) = 2+ sin(wz)sin(1y),
b(z,y) = 2+ 0.5sin(7z)sin (1y) .

Solution of the problem is u (¢, z, y) = €*™ ' sin (m7t) sin (mymx) sin (mamy) .

The interesting point of this test is that increase of parameters m1, m2 and
m3 yields to rapid sign-changing oscillation of solution. In addition, on expense
of parameters changing we can regulate oscillation frequency according to time
and spatial coordinates. As the algorithm provides high order accuracy with
regards to time coordinate, therefore it is natural that oscillation with regards
to t is much higher. It is obvious that multiplier 2™t with increase of ¢ yields
to rapid increase of oscillation amplitude. This factor along with oscillation
makes essentially difficult to catch solution behavior and for this reason it is
necessary to use high order accuracy schemes. This can be confirmed by tables
18-21.

Test 3.
fltzy) = e (m+m(a(z,y)+b(z,y))) sin(rz)sin (7y),
p(r,y) = 0,
a(z,y) = 2+sin(7mx)sin(7y),
b(z,y) = 2+ 0.5sin(wz)sin(7y).
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Solution of the problem is u (¢, z,y) = ™™ sin (7z) sin (7y) .

On Fig.1, there is given a dependance of the relative error of the approx-
imated solution on the logarithm of time step (on the horizontal axis it is
logarithm of time step, and on the vertical axis it is relative error of the approx-
imated solution). On Fig.2, there is given a dependance of the absolute error
of the approximated solution on the logarithm of time step (On the horizontal
axis it is logarithm of time step, and on the vertical axis it is absolute error of
the approximated solution). On the both figures the calculations are carried
out for the following values of the time step: 7, = 1/Ny, N = [10 * 1.2’“},
k = 0,1,...,30, and the spatial step is constant h, = h, = 0.001. On the
both figures there are given three cases: m = 1, m = 3 and m = 5. Our aim
was to find the convergence rate of the method by means of the numerical
experiment. If the method is of third order, then, starting from some value of
7, the graph of the function (logarithm of solution error) have to approach to
the straight line, the tangent of which equals three. On the both figures it is
clearly seen that, starting from 7 = 0.01 (Log(7) = —2), the graph approaches
to the straight line, the tangent of which equals to three with the sufficient
accuracy, and this verifies the theoretical result proved in the article.

Let us also note that, for the approximation of the second derivatives ac-
cording to the spatial variables, there is used classical difference formulas. It

is obvious that uq, us, ..., ux are complex functions, but their complex parts are
of O (73) order.

-327 3033 -2¥9s -2s558 -24 2241 2004 ATES 1519 1342 -1.078

Fig 1. Dependence of the relative error on the time step
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-3033  -2785

-3.27
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1 — - m=3----m=5_ ||

m=

Fig 2. Dependence of the absolute error on the time step
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(%,y)=(0.5,0.5)

Third order of accuracy decomposition scheme - (2.6)
tau=1/64, h=1/100

In the tables below u is an exact solution, and # is an approximate solution.

Table 1

u

u

i

8479.62 E-05

8480.53 E-05

9.1 E-06

719.03 E-05

719.19 E-05

1.6 E-06

609.71 E-06

609.91 E-06

2.0 E-07

517.01 E-07

517.23 E-07

2.2 E-08

438.40 E-08

438.64 E-08

2.4 E-09

371.75 E-09

371.99 E-09

2.4 E-10

315.23 E-10

315.46 E-10

2.3 E-11

267.30 E-11

(%,y)=(0.5,0.5)

267.53 E-11

23 E-12

Third order of accuracy decomposition scheme - (2.6)
tau=1/100, h=1/128

u

u

u i

13891.54 E-05

13891.11 E-05

4.3 E-06

1929.75 E-05

1929.63 E-05

1.2 E-06

2680.72 E-06

2680.50 E-06

2.2 E-07

3723.93 E-07

3723.47 E-07

4.6 E-08

5173.11 E-08

5172.32 E-08

7.9 E-09

718.62 E-08

718.49 E-08

1.3 E-09

998.28 E-09

998.07 E-09

2.1 E-10

1386.77 E-10

1386.43 E-10

3.4 E-11

1926.43 E-11

1925.90 E-11

5.3 E-12

2676.11E-12

(x%,y)=(0.5,0.5)

2675.29 E-12

8.2 E-13

Third order of accuracy decomposition scheme - (2.6)
tau=1/100, h=1/142

u

u

i

13891.28 E-05

13891.11 E-05

1.7 E-06

19296.77 E-06

19296.30 E-06

4.7 E-07

26805.69 E-07

26804.71 E-07

9.8 E-08

3723.65 E-07

3723.47 E-07

1.8 E-08

5172.63 E-08

5172.32 E-08

3.1 E-09

7185.45 E-09

7184.90 E-09

5.5E-10

9981.51 E-10

9980.66 E-10

8.5 E-11

1386.56 E-10

1386.43 E-10

1.3 E-11

1926.11 E-11

1925.90 E-11

2.1 E-12

2675.61 E-12

2675.29 E-12
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First order of accuracy averaged decomposition scheme — (1)
(x,y)=(0.5,0.5) tau=1/64, h=1/100

1,7 u ‘M—ﬁ‘

1.16 E-01 0.85 E-01 3.1 E-02

0.14 E-01 0.72 E-02 6.8 E-03

0.16 E-02 0.61 E-03 9.9 E-04

0.18 E-03 0.52 E-04 1.3 E-04

0.21 E-04 0.44 E-05 1.7 E-05

0.25 E-05 0.37 E-06 2.1 E-06

0.29 E-06 0.32 E-07 2.6 E-07

0.34 E-07 0.27 E-08 3.1 E-08

First order of accuracy averaged decomposition scheme — (1)

(x,y)=(0.5,0.5) tau=1/100, h=1/128

i ‘u—ﬁ‘

1.65 E-01 1.39 E-01 2.6 E-02

2.72 E-02 1.93 E-02 7.9 E-03

0.45 E-02 0.27 E-02 1.8 E-03

0.74 E-03 0.37 E-03 3.7 E-04

0.12 E-03 0.52 E-04 6.8 E-05

0.20 E-04 0.72 E-05 1.3 E-05

0.33 E-05 0.10 E-05 2.3 E-06

0.55 E-06 0.14 E-06 4.1 E-07

0.91 E-07 0.19 E-07 7.2 E-08

0.15 E-07 0.27 E-08 1.2 E-08

Second order of accuracy averaged decomposition scheme - (2)

(x,y)=(0.5,0.5) tau=1/64, h=1/100

u u ‘M—ﬁ‘

84.41 E-03 84.80 E-03 3.9 E-04

71.24 E-04 71.92 E-04 6.8 E-05

60.14 E-05 60.99 E-05 8.5 E-06

50.76 E-06 51.72 E-06 9.6 E-07

4.28 E-06 4.39 E-06 1.1 E-07

3.62 E-07 3.72 E-07 1.0 E-08

3.05 E-08 3.15 E-08 1.0 E-09

2.58 E-09 2.68 E-09 1.0 E-10
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Second order of accuracy averaged decomposition scheme - (2) Table 7
(x,y)=(0.5,0.5) tau=1/100, h=1/128

u

u

u i

138.70 E-03

138.91 E-03

2.1 E-04

192.38 E-04

192.96 E-04

5.8 E-05

26.68 E-04

26.81 E-04

1.3 E-05

37.01 E-05

37.23 E-05

2.2 E-06

51.34 E-06

51.72 E-06

3.8 E-07

71.20 E-07

71.85 E-07

6.5 E-08

9.88 E-07

9.98 E-07

1.0 E-08

13.69 E-08

13.86 E-08

1.7 E-09

18.99 E-09

19.26 E-09

2.7 E-10

26.34 E-10

(x,y)=(0.5,0.5)

26.75 E-10

4.1 E-11

Second order of accuracy symetrised decomposition scheme - (3)

tau=1/64, h=1/100

Table 8

u

u

ju it

84.56 E-03

84.80 E-03

2.4 E-04

71.51 E-04

71.92 E-04

4.1 E-05

60.47 E-05

60.99 E-05

5.2 E-06

51.13 E-06

51.72 E-06

5.9 E-07

43.24 E-07

43.86 E-07

6.2 E-08

36.57 E-08

37.20 E-08

6.3 E-09

30.93 E-09

31.55 E-09

6.2 E-10

26.16 E-10

26.75 E-10

5.9 E-11

Second order of accuracy symetrised decomposition scheme - (3)

(%,5)=(0.5,0.5)

tau=1/100, h=1/128

Table 9

u

u

ju it

138.79 E-03

138.91 E-03

1.2 E-04

192.61 E-04

192.96 E-04

3.5 E-05

267.32 E-05

268.05 E-05

7.3 E-06

37.10 E-05

37.23 E-05

1.3 E-06

51.49 E-06

51.72 E-06

2.3 E-07

71.46 E-07

71.85 E-07

3.9 E-08

99.18E-07

99.80 E-07

6.2 E-09

13.76E-08

13.86 E-08

1.0 E-09

19.10E-09

19.26 E-09

1.6 E-10

26.51E-10

26.75 E-10
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First order of accuracy averaged decomposition scheme - (1)

(%,5)=(0.5,0.5)

tau=1/10

u

u

u i

0.34 E 00

0.14 E 00

2.0 E-01

0.11 E 00

0.19 E-01

9.1 E-02

0.38 E-01

0.27 E-02

3.5 E-02

0.13 E-01

0.37 E-03

1.3 E-02

0.43 E-02

0.52 E-04

4.2 E-03

0.15 E-02

0.72 E-05

1.5 E-03

0.49 E-03

0.10 E-05

4.9 E-04

0.16 E-03

0.14 E-06

1.6 E-04

0.55 E-04

0.19 E-07

5.5 E-05

0.18 E-05

Second order of accurac

0. 27 E-08

averaged decomposition scheme - (2)
tau=1/10

(%,y)=(0.5,0.5)

1.8 E-05

u

u

ju -]

1.24 E-01

1.39 E-01

1.5 E-02

1.53 E-02

1.93 E-02

4.0 E-03

1.90 E-03

2.68 E-03

7.8 E-04

0.23 E-03

0.37 E-03

1.4 E-04

0.29 E-04

0.52 E-04

2.3 E-05

0.36 E-05

0.72 E-05

3.6 E-06

0.45 E-06

0.10 E-05

5.5 E-07

0.55 E-07

0.14 E-06

8.5 E-08

0.68 E-08

0.19 E-07

1.2 E-08

0.80 E-09

0.27 E-08

(%,y)=(0.5,0.5)

1.9 E-09

Second order of accuracy symetrized decomposition scheme - (3)
tau=1/10

Table 12

u

u

ju it

1.15 E-01

1.39 E-01

2.4 E-02

1.32 E-02

1.93 E-02

6.1 E-03

0.15 E-02

0.27 E-02

1.2 E-03

0.18 E-03

0.37 E-03

1.9 E-04

0.20 E-04

0.52 E-04

3.2 E-05

0.23 E-05

0.72 E-05

4.9 E-06

0.27 E-06

0.10 E-05

7.3 E-07

0.31 E-07

0.14 E-06

1.1 E-07

0.3.5 E-09

0.19 E-07

1.6 E-08

0.44 E-09

0.27 E-08
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Third order of accuracy decomposition scheme - (2.6)

x,y)=(0.5,0.5) tau=1/10

Table 13

u

u

u i

13.76 E-02

13.89 E-02

1.3 E-03

18.92 E-03

19.30 E-03

3.8 E-04

26.02 E-04

26.80 E-04

7.8E-05

3.58 E-04

3.72 E-04

1.4 E-05

4.92 E-05

5.17 E-05

2.5 E-06

6.77 E-06

7.18 E-06

4.1 E-07

9.32 E-07

1.00 E-07

6.8 E-08

1.28 E-07

1.39 E-07

1.1 E-08

1.76E-08

1.93E-08

1.7 E-09

2.41E-09

2.67E-09

2.6 E-10

First order of accuracy averaged decomposition scheme - (1)

(x,y)=(0.5,0.5) tau=1/100

Table 14

u

u

ju -]

1.65 E-01

1.39 E-01

2.6 E-02

2.72 E-02

1.93 E-02

7.9 E-03

0.45 E-02

0.27 E-02

1.8 E-03

0.74 E-03

0.37 E-03

3.7 E-04

0.12 E-03

0.52 E-04

6.8 E-05

0.20 E-04

0.72 E-05

1.3 E-05

0.33 E-05

0.10 E-05

2.3 E-06

0.55 E-06

0.14 E-06

4.1 E-07

0.91 E-07

0.19 E-07

7.2 E-08

0.15 E-07

0.27 E-08

1.2 E-08

Second order of accuracy symetrised decomposition scheme - (3)

(x,y)=(0.5,0.5) tau=1/100

Table 15

u

u

u i

138.69 E-03

138.91 E-03

2.2 E-04

192.34 E-04

192.96 E-04

6.2 E-05

26.68 E-04

26.81 E-04

1.3 E-05

37.00 E-05

37.23 E-05

2.3 E-06

51.31 E-06

51.72 E-06

4.1 E-07

71.16 E-07

71.85 E-07

6.9 E-08

9.87 E-08

99.81 E-08

1.1 E-08

13.68E-08

13.86 E-08

1.8 E-09

18.99E-09

19.26 E-09

2.7 E-10

26.33E-10

26.75 E-10
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Second order of accuracy averaged decomposition scheme - (2) Table 16

(x,y)=(0.5,0.5) tau=1/100

u

u

ju -]

138.77 E-03

138.91 E-03

1.4 E-04

192.58 E-04

192.96 E-04

3.8 E-05

267.24 E-05

268.05 E-05

8.1 E-06

37.09 E-05

37.23 E-05

1.4 E-06

51.46 E-06

51.72 E-06

2.6 E-07

71.42 E-07

71.85 E-07

4.3 E-08

99.11 E-08

99.81 E-08

7.0 E-09

13.75 E-08

13.86 E-08

1.1 E-09

19.09 E-09

19.26 E-09

1.7 E-10

26.49 E-10

26.75 E-10

2.6 E-11

Third order of accuracy decomposition scheme - (2.6)

(x,y)=(0.5,0.5) tau=1/100

Table 17

u

u

u i

13890.95 E-05

13891.11 E-05

1.6 E-06

19295.86 E-06

19296.29 E-06

4.3 E-07

26803.80 E-07

26804.71 E-07

9.1 E-08

3723.30 E-07

3723.47 E-07

1.7 E-08

5172.02 E-08

5172.32 E-08

3.0 E-09

7184.41 E-09

7184.90 E-09

4.9 E-10

9979.87 E-10

9980.66 E-10

7.9 E-11

1386.30 E-10

1386.43 E-10

1.3 E-11

1925.70 E-11

1925.90 E-11

2.0 E-12

2672.99 E-12

2673.29 E-12
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3.0 E-13




Third order of accuracy decomposition scheme - (2.6) Table 18

(ml1, m2,m3)=(17,1,1) (x,y)=(0.5,0.5) tau=1/500, h=1/64

u

u

u i

-183.78 E-02

-183.68 E-02

1.0 E-03

-86.83 E-02

-86.73 E-02

1.0 E-03

19.26 E-02

19.36 E-02

1.0 E-03

1338.09 E-03

1339.00 E-03

9.1 E-04

-170.69 E-01

-170.58 E-01

1.1 E-02

-70.12 E-01

-70.02 E-01

1.0 E-02

396.56 E-02

397.53 E-02

9.7 E-03

1579.16 E-02

1580.09 E-02

9.3 E-03

-1566.80 E-01

-1565.86 E-01

9.4 E-02

-52.42 E 00

-52.32 E 00

1.0 E-01

611.23 E-01

612.21 E-01

9.8 E-02

183.16 E 00

183.26 E 00

1.0 E-01

-141.75 E 01

141.65 E 01

1.0 E00

-33.69 E 01

-33.59 E 01

1.0 E00

836.98 E 00

837.97 E 00

9.9 E-01

2096.06 E 00

2097.00 E 00

9.4 E-01

-125.84 E 02

-125.73 E 02

1.1 E 01

-13.90 E 02

-13.80 E 02

1.0 E 01

107.42 E 02

107.52 E 02

1.0 E 01

2372.59 E 01

2373.54 E 01

9.5E00

-214.68 E 03

-214.57 E 03

1.1 E02

-108.93 E 03

-108.82 E 03

1.1 E02

6.98 E 03

7.09 E 03

1.1 E02

132.32 E 03

132.42 E 03

1.0 E 02

1901.19 E 03

1900.89 E 03
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Third order of accuracy decomposition scheme - (2.6) Table 19

(m1,m2,m3)=17,1,1) (x,y)=(0.5,0.5) tau=1/1000, h=1/100

u

u

u ]

-867.65 E-03

-867.31 E-03

3.4 E-04

-348.23 E-03

-347.90 E-03

3.3 E-04

193.26 E-03

193.57 E-03

3.1 E-04

755.91 E-03

756.21 E-03

3.0 E-04

-700.54 E-02

-700.20 E-02

3.4 E-03

-162.76 E 00

-162.43 E-02

3.3 E-03

397.21 E 00

397.53 E-02

3.2 E-03

978.42 E 00

978.72 E-02

3.0 E-03

-1056.88 E-01

-1056.52 E-01

3.6 E-02

-523.53 E-01

-523.18 E-01

3.5 E-02

33.03 E-01

33.36 E-01

3.3 E-02

611.89 E-02

612.21 E-02

3.2 E-02

-888.65 E 00

-888.29 E 00

3.6 E-01

-336.25 E 00

-335.90 E 00

3.5 E-01

239.51 E 00

239.84 E 00

3.3 E-01

837.65 E 00

837.97 E 00

3.2 E-01

-710.25 E 01

-709.88 E 01

3.7E 00

-138.36 E 01

-138.01 E 01

3.5 E 00

457.02 E 01

457.35 E 01

3.3E00

1074.85 E 01

1075.18 E 01

3.3E00

-1088.55 E 02

-1088.18 E 02

3.7EO01

-521.30 E 02

-520.94 E 02

3.6 E 01

70.52 E 02

70.87 E 02

3.5 E 01

685.93 E 02

686.27 E 02

3.4EO01

1901.01 E 03

1900.89 E 03
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Third order of accuracy decomposition scheme - (2.6)

(m1,m2,m3)=(101,1,1)

(x,)=(0.5,0.5)

tau=1/1000, h=1/100

u

u

u i

8436.00 E 01

8436.47 E 01

4.7 E00

442.96 E 02

443.07 E 02

1.1 E 01

-19.10 E 02

-18.93 E 02

1.7 E 01

-497.81 E 02

-497.60 E 02

21EO01

-19008.69 E 02

-19008.90 E 02

Third order of accuracy decomposition scheme - (2.6)

(m1,m2,m3)=(101,3,3)

(x,)=(0.5,0.5)

21EO01

tau=1/1000, h=1/128

u

u

u i

-174.49 E 03

-17418 E 03

3.1E02

-58.65 E 03

-58.29 E 03

3.6 E 02

67.85 E 03

68.23 E 03

3.8 E 02

192.50 E 03

192.86 E 03

3.6 E02

-190.25 E 04

-190.09 E 04
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Table 20

Table 21
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3371obbdmdm,  Mmd (— Yi j), y=lLa,a, j=LlL.m, 3905306500
§o603mgdbosb dE096sQ© 109396 Bobg356X 3 R90L Qo
"U(t, QAJM <e”, w=const>0.
B90mom 9my3z56000 BN GOoLm30L BodsGmEosbos 9 gyo
9933590 900:

(WG, 4)-I, @} =0(*). peDla®). j=12.

(WG, 4)-I, @)} =0c*). pe Dla®). j=3a4.

boog 1, =k7, 7>0 ©@OHMOMO d0X0s.

900y350MM3560 93MmEM30mM0 sdmEsbol dgdmbggzsdo (sboos ob
Lo, HmAwol dobgz0moiz 503905 Bgdmom dmygzsboo BmGIMwgdol
Bgbodsdolo  ©g3MmI3mbogool  Ldgdgdo.  Bsgomoms V() m=2
399b3930L5mM30L Tgglsdsdgds 999 g0 ©93Ma3mboiools bggds:
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1
uk(t):E[v,f(t)+w,f(t)], telt .t ], k=12,.,

bsog 1y(0) 360l 93mE30mmO 53mEsbol  ult) BMLEHO dMBbLEOL
bsgobo  860936gamds.  u(t)-l  dosbawrmgdom  960336gmds =1,
$9OG0wdo 3o3bogdm u, (t,)-b. Bgdmm Bmyzsbowo Lggdol LobLdg
6ol 0(z?).

9b 8923559900 BGRYdS doewsdo, vy Uz, A)-b 99333000 Fgbsdsdolo

d9bs8g s Fgmmbg Mool LOBMLEHOL BogoMbIEMMHO 53MMJLods30gd00:

Wi, A)= (1 —%IAJ(I + A 1+ 2A)", A= % ci

32
W(r,A) = (1 —%IAJ(I + %tAJ_I(I —%IAJ(I + %tAJ_I.

653969005 53900 ©93MI3MBoEool BJgdgdol dYMmIEMdS S
305bEMmgdomo  58mboblbol  3omIowgdolsmzol  Jogdmwos  3boswo
336M0MmOMwo d9x835190900. FoMdmygboen bsdMMIdo slngg Fobbowrmeos
39900b3935, HMEILYE F0MOMSPO M3GMOIGMOO EIMI0PIIMWos  1-by,
3963dm© §o63moy9bL 1 -Bg ©sdM300JOI0 BZsE MmO wYbdE00ls s
908030 M3gM5GHMMOL bodMSZWL.
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