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Preface

The present work is devoted to construction and investigation of high de-
gree precision decomposition schemes for evolution problem, on the basis of
approximation of its solving operator (semigroup).

In the first chapter there are constructed the third order accuracy decom-
position schemes. In the first and second sections there are constructed third
order precision exponential and rational splittings for two-dimensional evolu-
tion problem. In the third section there is constructed decomposition scheme
for multi-dimensional evolution problem. Fourth and fifth sections are devoted
to construction of third order precision sequential type decomposition schemes
for two and multi-dimensional cases.

In the second chapter there is constructed the fourth order accuracy de-
composition schemes for evolution problem. In the sixth and seventh sections
there are constructed fourth order precision exponential and rational splittings
for two-dimensional evolution problem, and in the eighth section is constructed
fourth order precision decomposition scheme for multi-dimensional case. Ninth
section is devoted to construction of fourth order precision sequential type de-
composition scheme.

In the third chapter there are constructed the third order accuracy decom-
position schemes for an evolution problem with variable operator. Namely,
there is considered the case when main operator is a product of scalar function
depending on t and constant operator.

In the tenth and eleventh sections there are constructed third order preci-
sion differential and rational splittings for an evolution problem with variable
operator.

In the appendix there are given results of numerical calculations for heat
transfer equation. These calculations are carried out using existing first and
second order and constructed in this work third order accuracy decomposition
schemes. Comparative analysis of numerical calculations for different order
decomposition schemes is carried out.

Authors
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Introduction

It is known that mathematical simulation of processes taking place in
the nature frequently leads to consideration of boundary-value problems for
partial-differential evolution (nonstationary) equation. These kind of prob-
lems can be considered as a Cauchy abstract problem in a Banach space for
an evolution equation with an unbounded operator.

Study of approximated schemes for solution of evolution problems leads to
the conclusion that a certain operator (solution operator of the discrete prob-
lem) corresponds to each approximated scheme. This operator approximates
the solution operator (semigroup) of the initial continuous problem. For exam-
ple, if we use the Rotte scheme for the solution of an evolution problem, then
the solution operator of the difference problem thus obtained will be a discrete
semigroup and we will have the approximation of a continuous semigroup by
discrete semigroups (see [40], Ch. IX). On the other hand, on the basis of the
approximation of a continuous semigroup, we can construct an approximated
scheme for solution of an evolution problem.

Decomposition formulas approximate a continuous semigroup by means of
the combination of the semigroups generated by the addends of the operator
generating this semigroup.

The first decomposition formula for an exponential matrix function was
constructed by Lie in 1875. Trotter generalized this formula for an exponential
operator function-semigroup in 1959 (see [60]). The resolvent analogue of this
formula for the first time was constructed by Chernoff in 1968 (see [8],[9]).
At the same time, in the sixties of the XX century, in order to elaborate
numerical methods for solution of multi-dimensional problems of mathematical
physics, the subject of construction of decomposition schemes has naturally
raised. Decomposition schemes allow to reduce a solution of multi-dimensional
problems to the solution of one-dimensional problems.

First works dedicated to construction and investigation of decomposition
schemes were published in the fifties and sixties of the XX century (see V. B.
Andreev [2], G. A. Baker [3], G. A. Baker, T. A. Oliphant [4], G. Birkhoff, R. S.
Varga [6], G. Birkhoff, R. S. Varga, D. Young [7], J. Douglas [13], J. Douglas,
H. Rachford [14], E. G. Diakonov [10],[11], M. Dryja [15], G. Fairweather, A.
R. Gourlay, A. R. Mitchell [17], I. V. Fryazinov [18]), D. G. Gordeziani [28],
A. R. Gourlay, A. R. Mitchell [32], N. N. Ianenko [33], [34], N. N. Ianenko, G.
V. Demidov [35], A. N. Konovalov [41], G. I. Marchuk, N. N. Ianenko [45], G.
I. Marchuk, U. M. Sultangazin [46], D. Peaceman, H. Rachford [47], V. P. Ilin
[38], A. A. Samarskii [54]-[56], R. Temam [59]). These works became a basis
of the further investigation of decomposition schemes.

We can show that the split problem, obtained by means of a decomposition
method, generates the Trotter formula (see Trotter H. [60]), or the Chernoff
formula (see Chernoff P. R. [8], [9]), or a formula which is a combination of
these formulas. Thus, an estimate of decomposition method is equivalent to
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the study of approximation of continuous semigroup by Lie-Trotter and Lie-
Chernoff type formulas. The works of T. Ichinose and S. Takanobu [36], T.
Ichinose and H. Tamura [37], J. Rogava [49], (see also [50], T. II) are devoted
to estimate of error of Lie-Trotter and Lie-Chernoff type formulas.

We call Lie-Trotter type formulas the formulas which approximate a semi-
group by a combination of semigroups generated by the addends of the operator
generating this semigroup.

We call Lie-Chernoff type formulas the formulas which are obtained from
Lie-Trotter type formulas if we replace semigroups by the corresponding ratio-
nal operator functions (resolvents).

Decomposition schemes conditionally can be divided into two groups - dif-
ferential and difference. Lie-Trotter type formulas correspond to differential
decomposition schemes and Lie-Chernoff type formulas - to difference schemes.

Decomposition schemes, associated with the Lie and Trotter formulas, allow
to split a Cauchy problem for an evolution equation with the operator A =
A1 + A2 into two problems, respectively with the operators A1 and A2, which
are solved sequentially on the time interval with the length t/n.

Decomposition schemes associated with the Chernoff formula are known as
the fractional-step method (see N. N. Ianenko [34]).

Decomposition schemes in view of numerical calculation can be divided
into two groups: schemes of sequential account (see for example G. I. Marchuk
[44] ) and schemes of parallel account ( D. G. Gordeziani, H. V. Meladze [30],
[31], D. G. Gordeziani, A. A. Samarskii [29], A. M. Kuzyk, V. L. Makarov
[43]). In [50] (see chapter II), there are obtained explicit a priori estimations
for decomposition schemes of parallel account considered in [30]. There exist
a lot of works devoted to decomposition schemes. For example, see [34], [44],
[57] and the references therein.

In the above-stated works the considered schemes are of the first or second
precision order. As it is known to us, the high accuracy order decomposition
schemes in case of two addends (A = A1 + A2) for the first time were obtained
by B. O. Dia and M. Schatzman (see [12]). Note that the formulas constructed
in these works are not automatically stable decomposition formulas. Decom-
position formula is called automatically stable if a sum of the absolute values
of split coefficients is equal to one. Q. Sheng has proved (see [58]) that, on the
real number field, there does not exist such automatically stable splitting of
exp (−tA), the accuracy order of which is higher than two.

The present work is devoted to construction and investigation of the high
order accuracy decomposition schemes for an evolution problem.

In this work, by introducing a complex parameter, the third and fourth
order accuracy decomposition schemes are constructed for a two and multi-
dimensional evolution problems. The main operator of the evolution problem
conditionally is called the m-dimensional split operator if it represents a sum
of m (> 1) addends (A = A1 + ... + Am). The formulas, corresponding to the
constructed schemes, are automatically stable decomposition formulas. For
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the considered schemes, there are obtained explicit a priori estimations. Under
the explicit estimation we mean such a priori estimation for the solution error,
where constants in the right-hand side do not depend on the solution of the
initial continuous problem, i.e. are absolute constants.

In the works [19]-[27], [51]-[53],[61],[62] we have constructed the third and
fourth order accuracy decomposition schemes for two and multi-dimensional
homogeneous and inhomogeneous evolution problems. In the present work
these schemes are discussed on the basis of conception that any decompo-
sition formula generates the certain decomposition scheme and, vice versa,
every decomposition scheme generates certain decomposition formula, which
approximates the solving operator (semigroup) of evolution problem.

In Banach space there are constructed the third and fourth order accuracy
decomposition schemes for evolution problem with operator A = A1 + A2 +
... + Am (m ≥ 2), which generates strongly continuous semigroup U (t, A) =
exp (−tA). These schemes are based on the following decomposition formulas
of semigroup approximation:

V1 (t) =
1

2

[
T (t, α) T (t, α) + T (t, α) T (t, α)

]
,

V2 (t) = T
(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)
,

V3 (t) =
1

2

[
T

(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)

+ T
(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)
T

(
t,

α

2

)]
,

V4 (t) = T

(
t,

α

4

)
T

(
t,

α

4

)
T

(
t,

α

4

)
T

(
t,

α

4

)

×T
(
t,

α

4

)
T

(
t,

α

4

)
T

(
t,

α

4

)
T

(
t,

α

4

)
,

where α = 1
2
± i 1

2
√

3

(
i =

√−1
)
,

T (t, α) = U (t, αA1) ...U (t, αAm−1) U (t, αAm) ,

T (t, α) = U (t, αAm) ...U (t, αA2) U (t, αA1) .

Here upper index defines dimension (Number of addends of the operator A)
of evolution problem. It is meant that the operators (−γAj) , γ = 1, α, α
(j = 1, ...,m) generate strongly continuous semigroups and ‖U(t, γAj)‖ ≤
eωt, ω = const > 0.

For the above stated formulas the following estimations are true:
∥∥∥
(
U (tk, A)− [Vj (τ)]k

)
ϕ
∥∥∥ = O

(
τ 3

)
, ϕ ∈ D

(
A4

)
, j = 1, 2,

∥∥∥
(
U (tk, A)− [Vj (τ)]k

)
ϕ
∥∥∥ = O

(
τ 4

)
, ϕ ∈ D

(
A5

)
, j = 3, 4,
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where tk = kτ, τ > 0 is a time step.
In case of homogeneous evolution problem works the obvious rule, accord-

ing to which can be constructed decomposition schemes corresponding to the
above-mentioned formulas. For instance, to V1 (t) (in case of m = 2) corre-
sponds the following decomposition scheme:

dv1
k (t)

dt
+ αA1v

1
k (t) = 0, v1

k (tk−1) = uk−1 (tk−1) ,

dv2
k (t)

dt
+ A2v

2
k (t) = 0, v2

k (tk−1) = v1
k (tk) ,

dv3
k (t)

dt
+ αA1v

3
k (t) = 0, v3

k (tk−1) = v2
k (tk) ;

dw1
k (t)

dt
+ αA2w

1
k (t) = 0, w1

k (tk−1) = uk−1 (tk−1) ,

dw2
k (t)

dt
+ A1w

2
k (t) = 0, w2

k (tk−1) = w1
k (tk) ,

dw3
k (t)

dt
+ αA2w

3
k (t) = 0, w3

k (tk−1) = w2
k (tk) ,

uk (t) =
1

2

[
v3

k (t) + w3
k (t)

]
, t ∈ [tk−1, tk], k = 1, 2, ... ,

where u0 (0) is initial value of the u (t) exact solution of evolution problem. As
an approximate value of u (t) at point t = tk we declare uk (tk). Precision of
the above-mentioned scheme is O (τ 3) .

This estimations remain true if U (t, A) will be changed corresponding by
the third and the fourth order accuracy rational operator functions:

W (t, A) =

(
I − 1

3
tA

)
(I + λtA)−1 (

I + λtA
)−1

, λ =
1

3
± i

1

3
√

2
,

W (t, A) =
(
I − α

2
tA

) (
I +

α

2
tA

)−1 (
I − α

2
tA

) (
I +

α

2
tA

)−1

.

There is shown the stability of the constructed decomposition scheme and
explicit a prior error estimations for approximate solutions are obtained. In the
present work there is also considered case when the main operator is depending
on t, namely it is a product of scalar function dependant on t and the constant
operator.
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Chapter I

The Third Order Accuracy Decomposition
Schemes

§1. The third order accuracy decomposition

scheme for non-homogeneous evolution

problem

1. Decomposition scheme and theorem on error estimation

Let us consider Cauchy abstract problem in Banach space X

du (t)

dt
+ Au (t) = f (t) , t > 0, u (0) = ϕ. (1.1)

Here A is a closed linear operator with the domain D (A), which is every-
where dense in X, ϕ is a given element from D (A), f (t) ∈ C1 (X; [0;∞)).

Suppose that (−A) operator generates a strongly continuous semigroup,
then solution of the problem (1.1) is given by the formula (see [39],[42]):

u(t) = U(t, A)ϕ +

t∫

0

U(t− s, A)f(s)ds, (1.2)

where U (t, A) = exp(−tA) is a strongly continuous semigroup.
Let A = A1 + A2, where Aj (j = 1, 2) are compactly defined, closed linear

operators in X.
Let us introduce a difference net domain:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}.
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Along with problem (1.1) we consider two sequences of the following prob-
lems on each [tk−1, tk] interval.

dv1
k (t)

dt
+ αA1v

1
k (t) =

α

2
f (tk)− 2σ0 (tk − t) f ′ (tk) ,

v1
k (tk−1) = uk−1 (tk−1) ,

dv2
k (t)

dt
+ A2v

2
k (t) =

1

2
f (tk)− 2σ1 (tk − t) f ′ (tk) , (1.3)

v2
k (tk−1) = v1

k (tk) ,

dv3
k (t)

dt
+ αA1v

3
k (t) =

α

2
f (tk)− 2σ2 (tk − t) f ′ (tk) +

(tk − t)2

2
f ′′ (tk) ,

v3
k (tk−1) = v2

k (tk) ;

dw1
k (t)

dt
+ αA2w

1
k (t) =

α

2
f (tk)− 2σ0 (tk − t) f ′ (tk) ,

w1
k (tk−1) = uk−1 (tk−1) ,

dw2
k (t)

dt
+ A1w

2
k (t) =

1

2
f (tk)− 2σ1 (tk − t) f ′ (tk) , (1.4)

w2
k (tk−1) = w1

k (tk) ,

dw3
k (t)

dt
+ αA2w

3
k (t) =

α

2
f (tk)− 2σ2 (tk − t) f ′ (tk) +

(tk − t)2

2
f ′′ (tk) ,

w3
k (tk−1) = w2

k (tk) .

Here σ0, σ1, σ2 and α are numerical complex parameters with Re (α) > 0,
u0 (0) = ϕ. Suppose that (−γAj) , γ = 1, α, α (j = 1, 2) operators generate
strongly continuous semigroups.

On each [tk−1, tk] (k = 1, 2, ...) interval uk (t) are defined as follows:

uk (t) =
1

2

[
v3

k (t) + w3
k (t)

]
. (1.5)

We declare uk (t) function as approached solution of the problem (1.1) on
[tk−1, tk] interval.

We shall need natural degrees of the operator A = A1 + A2. Usually they
are defined as follows:

A2 =
(
A2

1 + A2
2

)
+ (A1A2 + A2A1) ,

A3 =
(
A3

1 + A3
2

)
+

(
A2

1A2 + ... + A2
2A1

)
+ (A1A2A1 + A2A1A2) ,

Analogously are defined As, s > 3. Obviously, the domain D (As) of the
operator As is the intersection of the domains of its addends.

Let us introduce the following definitions:

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D (A) ;

‖ϕ‖A2 =
∥∥A2

1ϕ
∥∥ +

∥∥A2
2ϕ

∥∥ + ‖A1A2ϕ‖+ ‖A2A1ϕ‖ , ϕ ∈ D
(
A2

)
,
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where ‖·‖ is a norm in X. Analogously are defined ‖ϕ‖As , s > 2.
Theorem 1.1 Let the following conditions be satisfied:
(a) α = 1

2
± i 1

2
√

3

(
i =

√−1
)
;

(b) (−γAj) , γ = 1, α, α (j = 1, 2) and (−A) operators generate strongly
continuous semigroups;

(c) There exist such real number ω, that

‖U(t, A)‖ ≤ Meωt, M = const > 0,

‖U(t, γAj)‖ ≤ eωt (j = 1, 2; γ = 1, α, α) ;

(d) U (s, A) ϕ ∈ D (A4) for every fixed s ≥ 0;
(e) f (t) ∈ C3 ([0,∞) ; X) ; f (t) ∈ D (A3) , f (k) (t) ∈ D

(
A3−k

)
, k = 1, 2

and U (s, A) f (t) ∈ D (A4) for every fixed t and s (t, s ≥ 0) ;
(f) σ0 = 2−α

4+α
− 2+α

4+α
σ1, σ2 = 1+α

2(4+α)
− 3−2α

4+α
σ1 (σ1 is any complex number).

Then the following estimation holds:

‖uk(tk)− u(tk)‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U (s, A) ϕ‖A4

+tk sup
s,t∈[0,tk]

‖U (s, A) f (t)‖A4 + sup
t∈[0,tk]

‖f (t)‖A3

+ sup
t∈[0,tk]

‖f ′ (t)‖A2 + sup
t∈[0,tk]

‖f ′′ (t)‖A + sup
t∈[0,tk]

‖f ′′′ (t)‖
)

,

where c, ω0 are absolute positive constants.

2. Third order accuracy exponential splitting of semigroup

The solving operator of the homogeneous evolution problem corresponding
to the decomposed problem (1.3)-(1.4) is V k (τ), where

V (τ) =
1

2
[U(τ, αA1)U(τ, A2)U(τ, αA1) + U(τ, αA2)U(τ, A1)U(τ, αA2)] .

It is clear that operator V k (τ) must approximate solving operator of the ho-
mogeneous evolution problem - semigroup.

The following theorem takes place.
Theorem 1.2 If the conditions (a), (b), (c) and (d) of the Theorem 1.1

are satisfied, then for every natural k the following estimation holds:

∥∥[
U (tk, A)− V k (τ)

]
ϕ
∥∥ ≤ ceω0tktkτ

3 sup
s∈[0,tk]

‖U (s, A) ϕ‖A4 , (1.6)

where c, ω0 are positive constants.
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Proof. According to the formula (see Kato. T. [40], p. 603):

A

t∫

r

U (s, A) ds = U (r, A)− U (t, A) , 0 ≤ r ≤ t,

we can get the following expansion:

U (t, A) =
k−1∑
i=0

(−1)i ti

i!
Ai + Rk (t, A) , (1.7)

where

Rk (t, A) = (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

U (s, A) dsdsk−1...ds1. (1.8)

Let us consider V (τ) and decompose both its items from the right to left
according to the formula (1.7) so that each residual member is of the fourth
order. Then, using elementary algebraic transformations, we shall get:

V (τ) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + R̃4 (τ) , (1.9)

where

R̃4 (τ) =
1

2
[R1,2 (τ) + R2,1 (τ)] , (1.10)

and where

Ri,j (τ) = R4 (τ, αAi)− τR3 (τ, αAi) Aj +
1

2
τ 2R2 (τ, αAi) A2

j

−1

6
τ 3R1 (τ, αAi) A3

j + U (τ, αAi) R4 (τ, Aj)

−ατR3 (τ, αAi) Ai + ατ 2R2 (τ, αAi) AjAi

−1

2
ατ 3R1 (τ, αAi) A2

jA− ατU (τ, αAi) R3 (τ, Aj) Ai

+
1

2
α2τ 2R2 (τ, αAi) A2

i −
1

2
α2τ 3R1 (τ, αAi) AjA

+
1

2
α2τ 2U (τ, αAi) R2 (τ, Aj) A2

i −
1

6
α3τ 3R1 (t, αAi) A3

i

−1

6
α3τ 3U (τ, αAi) R1 (τ, Aj) A3

i

+U (τ, αAi) U (τ, Aj) R4 (τ, αAi) ,

i, j = 1, 2.

According to the formula (1.7) we have:

U (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + R4 (τ, A) . (1.11)
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From equalities (1.9) and (1.11) we have:

U (τ, A)− V (τ) = R4 (τ, A)− R̃4 (τ) .

Hence, according to the formula (1.11) and condition (c) of the theorem
we get the following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4 , ϕ ∈ D
(
A4

)
. (1.12)

The following decomposition is obvious:

[
U (tk, A)− V k (τ)

]
ϕ =

[
Uk (τ, A)− V k (τ)

]
ϕ

=
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U i−1 (τ, A) .

Hence, according to the formula (1.11) and condition (c) of the theorem
we get the sought estimation. ¤

Remark 1.3. It is obvious that according to the condition of the Theorem
(‖U(t, γAj)‖ ≤ eωt) the norm of the operator V k (τ) is less or equal to eω0tk .
From here follows stability of the above-stated decomposition schema on each
finite time interval.

3. Error estimation for approximate solution

Let us prove the auxiliary Lemmas on which the proof of the Theorem
1.1 is based.

Lemma 1.4. If the conditions (a), (b) and (c) of the Theorem 1.1 are
satisfied, then the following estimation holds:

∥∥∥∥∥∥

τ∫

0

[
U((t, A))−

(
α

2
V0 (τ, t) +

1

2
V1 (τ, t) +

α

2
V2 (t)

)]
ϕdt

∥∥∥∥∥∥
≤

≤ ceω0ττ 4 ‖ϕ‖A3 , ϕ ∈ D
(
A3

)
, (1.13)

where

V0 (τ, t) =
1

2
[U (τ, αA1) U (τ, A2) U (t, αA1) + U (τ, αA2) U (τ, A1) U (t, αA2)] ,

V1 (τ, t) =
1

2
[U (τ, αA1) U (t, A2) + U (τ, αA2) U (t, A1)] ,

V2 (t) =
1

2
[U (t, αA1) + U (t, αA2)] .

Here c and ω0 are positive constants.
Proof. Let us consider V0 (τ, t) and decompose both its items from the

right to left according to the formula (1.7) so that each residual member is of

14



the third order. Then, using elementary algebraic transformations, we shall
get:

V0 (τ, t) =
1

2

[
2I − τ

((
α + α

t

τ
+ 1

)
A1 +

(
α + α

t

τ
+ 1

)
A2

)

+
1

2
τ 2

(
α2 + 2αα

t

τ
+ α2 t2

τ 2
+ 1

)
A2

1

+

(
α2 + 2αα

t

τ
+ α2 t2

τ 2
+ 1

)
A2

2

+

(
2α

t

τ
+ 2α

)
A1A2 +

(
2α

t

τ
+ 2α

)
A2A1

)]

+R1,0 (τ, t) , (1.14)

where

R1,0 (τ, t) =
1

2

[
R3 (τ, αA1)− τR2 (τ, αA1) A2 +

1

2
τ 2R1 (τ, αA1) A2

2

+U (τ, αA1) R3 (τ, A2)− αtR2 (τ, αA1) A1 − αtR2 (τ, αA1) A1

+ατtR1 (τ, αA1) A2A1 − αtU (τ, αA1) R2 (τ, A2) A1

+
1

2
α2t2R1 (τ, αA1) A2

1 +
1

2
α2t2U (τ, αA1) R1 (τ, A2) A2

1

+U (τ, αA1) U (τ, A2) R3 (t, αA1) + R3 (τ, αA2)

−τR2 (τ, αA2) A1 + τ 2R1 (τ, αA2) A2
1 + U (τ, αA2) R3 (τ, A1)

−αtR2 (τ, αA2) A2 + ατtR1 (τ, αA2) A1A2

−αtU (τ, αA2) R2 (τ, A1) A2 +
1

2
α2t2R1 (τ, αA2) A2

2

+
1

2
α2t2U (τ, αA2) R1 (τ, A1) A2

2

+ U (τ, αA2) U (τ, A1) R3 (t, αA2)] .

Let us similarly decompose V1 (τ, t) :

V1 (τ, t) =
1

2

[
2I − τ

((
α +

t

τ

)
A1 +

(
α +

t

τ

)
A2

)

+
1

2
τ 2

((
α2 +

t2

τ 2

)
A2

1 +

(
α2 +

t2

τ 2

)
A2

2 (1.15)

+2α
t

τ
A1A2 + 2α

t

τ
A2A1

)]
+ R1,1 (τ, t) , (1.16)

where

R1,1 (τ, t) =
1

2

[
R3 (τ, αA1)− tR2 (τ, αA1) A2 +

1

2
t2R1 (τ, αA1) A2

2

+U (τ, αA1) R3 (t, A2) + R3 (τ, αA2)− tR2 (τ, αA2) A1

+
1

2
t2R1 (τ, αA2) A2

1 + U (τ, αA2) R3 (t, A1)] .
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Finally for V2 (t) , we have:

V2 (t) =
1

2

[
2I − τ

(
α

t

τ
A1 + α

t

τ
A2

)

+
1

2
τ 2

(
α2 t2

τ 2
A2

1 + α2 t2

τ 2
A2

2

)]
+ R1,2 (t) , (1.17)

where

R1,2 (t) =
1

2
[R3 (t, αA1) + R3 (t, αA2)] .

Finally using decompositions (1.14),(1.16) and (1.17) we have:

α

2
V0(τ, t) +

1

2
V1(τ, t) +

α

2
V2(t)

= I − τ

[(
1

3
+

1

3τ
t

)
A1 +

(
1

3
+

1

3τ
t

)]
A2

+
1

2
τ 2

[(
1

12
α +

1

4
α2 +

1

4
α +

1

6τ
αt +

1

4τ 2
t2

)
A2

1+

+

(
1

12
α +

1

4
α2 +

1

4
α +

1

6τ
αt +

1

4τ 2
t2

)
A2

2

+

(
1

6
+

1

3τ
t

)
A1A2 +

(
1

6
+

1

3τ
t

)
A2A1

]
+ R(1)(τ, t), (1.18)

where

R(1) (τ, t) =
α

2
R1,0 (τ, t) +

1

2
R1,1 (τ, t) +

α

2
R1,2 (t) .

Let us integrate equality (1.18) from 0 to τ and group together similar
members:

τ∫

0

[
α

2
V0 (τ, t) +

1

2
V1 (τ, t) +

α

2
V2 (t)

]
ϕdt =

(
τI − 1

2
τ 2A +

1

6
τ 3A2

)
ϕ

+

τ∫

0

R(1) (τ, t) ϕdt. (1.19)

According to the formula (1.7) we have:
τ∫

0

U (t, A) ϕdt =

(
τI − 1

2
τ 2A +

1

6
τ 3A2

)
ϕ +

τ∫

0

R3 (t, A) ϕdt. (1.20)

From equalities (1.19) and (1.20) we have:
τ∫

0

[
U (t, A)−

(
α

2
V0 (τ, t) +

1

2
V1 (τ, t) +

α

2
V2 (t)

)]
ϕdt

=

τ∫

0

R3 (t, A) ϕdt−
τ∫

0

R(1) (τ, t) ϕdt. (1.21)
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Let us consider the second addend of a right member of the formula (1.21)
and use the formula (1.8). We shall get the following estimation:

∥∥∥∥∥∥

τ∫

0

R(1) (τ, t) ϕdt

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A3 , ϕ ∈ D

(
A3

)
. (1.22)

Similarly for the first addend we have:
∥∥∥∥∥∥

τ∫

0

R3 (t, A) ϕdt

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A3 , ϕ ∈ D

(
A3

)
. (1.23)

From equality (1.21), using inequalities (1.22) and (1.23) we get estimation
(1.13). ¤

Lemma 1.5. If the conditions (a), (b) and (c) of the Theorem are satisfied,
then the following estimation holds:

∥∥∥∥∥∥

τ∫

0

[U (s, A)− 2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s))] sϕds

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A2 , ϕ ∈ D

(
A2

)
, (1.24)

where V0 (τ, t) , V1 (τ, t) , V2 (t) are defined in Lemma 1.4; c, ω0 are posi-
tive constants.

Proof. Let us consider V0 (τ, t) and decompose it similarly as in Lemma
1.4 with the difference that each residual member is of the second order. Then
we get:

V0 (τ, t) = I − ατ + τ + αt

2
A + R2,0 (τ, t) , (1.25)

where

R2,0 (τ, t) =
1

2
[R2 (τ, αA1)− τR1 (τ, αA1) A2 + U (τ, αA1) R2 (τ, A2)

−αtR1 (τ, αA1) A1 − αtU (τ, αA1) R1 (τ, A2) A1

+U (τ, αA1) U (τ, A2) R2 (t, αA1) + R2 (τ, αA2)−
τR1 (τ, αA2) A1 + U (τ, αA2) R2 (τ, A1)− αtR1 (τ, αA2) A2

−αtU (τ, αA2) R1 (τ, A1) A2 + U (τ, αA2) U (τ, A1) R2 (t, αA2)] .

Similarly for V1 (τ, t) we have:

V1 (τ, t) = I − ατ + t

2
A + R2,1 (τ, t) , (1.26)

where

R2,1(τ, t) =
1

2
[R2 (τ, αA1)− tR1 (τ, αA1) A2 + U (τ, αA1) R2 (t, A2)

+R2 (τ, αA2)− tR1 (τ, αA2) A1 + U (τ, αA2) R2 (t, A1)] .

17



Similarly for V2 (t) we have:

V2 (t) = I − 1

2
αtA + R2,2 (t) , (1.27)

where

R2,2 (t) =
R2 (t, αA1) + R2 (t, αA2)

2
.

Taking into account equalities (1.25),(1.26) and (1.27) we get:

2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s))

= 2

[
σ0

(
I − ατ + τ + αt

2
A + R2,0 (τ, t)

)

+σ1

(
I − τα + t

2
A + R2,1 (τ, t)

)
+ σ2

(
I − 1

2
αtA + R2,2 (τ, t)

)

= 2 (σ0 + σ1 + σ2) I − [σ0 (ατ + τ + αt) + σ1 (ατ + t) + σ2αt] A

+R(2) (τ, t) , (1.28)

where
R(2) (τ, t) = 2 (σ0R2,0 (τ, t) + σ1R2,1 (τ, t) + σ2R2,2 (t)) .

Let us multiply (1.28) on s, integrate it from 0 to τ and group together
similar members, then we get:

τ∫

0

2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s)) sϕds

=
[
τ 2 (σ0 + σ1 + σ2) I − τ 3

((
1

2
α +

1

2
+

1

3
α

)
σ0+

+

(
1

2
α +

1

3

)
σ1 +

1

3
ασ2

)
A

]
ϕ +

τ∫

0

sR(2) (τ, s) ϕds.

According to relations between parameters σ0, σ1, σ2 we have:

σ0 + σ1 + σ2 =
1

2
,

(
1

2
α +

1

2
+

1

3
α

)
σ0 +

(
1

2
α +

1

3

)
σ1 +

1

3
ασ2 =

1

3
.

18



Taking into account these equalities we get

τ∫

0

2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s)) sϕds

=

(
1

2
τ 2I − 1

3
τ 3A

)
ϕ

+

τ∫

0

sR(2)(τ, s)ϕds. (1.29)

According to formula (1.7) we have:

τ∫

0

U (s, A) sϕds =

(
1

2
τ 2I − 1

3
τ 3A

)
ϕ +

τ∫

0

R2 (s, A) sϕds. (1.30)

From (1.29) and (1.30) we get:

τ∫

0

[U (s, A)− 2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s))] sϕds

=

τ∫

0

(
R2(s, A) + R(2)(τ, s)

)
sϕds. (1.31)

Let us take into account the formula (1.8) and estimate second addend of
a right side of equality (1.31), we obtain:

∥∥∥∥∥∥

τ∫

0

sR(2) (τ, s) ϕds

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A2 , ϕ ∈ D

(
A2

)
. (1.32)

Also the following estimation holds:
∥∥∥∥∥∥

τ∫

0

sR2 (s, A) ϕds

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A2 , ϕ ∈ D

(
A2

)
. (1.33)

From the equality (1.31), using inequalities (1.32) and (1.33) we obtain
estimation (1.24). ¤

Lemma 1.7. If the conditions a)), b)) and c)) of the Theorem are satisfied,
then the following estimation holds:

∥∥∥∥∥∥

τ∫

0

[U (s, A)− V2 (s)]
s2

2
ϕds

∥∥∥∥∥∥
≤ ceω0ττ 4 ‖ϕ‖A , ϕ ∈ D (A) ,
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where V2 (s) is defined in the Lemma1.4; c0, ω0 are positive constants.
Proof. According to the formulas (1.7), (1.8) we obtain the following

estimation:

∥∥∥∥∥∥

τ∫

0

[U(s, A)− V2(s)]
s2

2
ϕds

∥∥∥∥∥∥

=

∥∥∥∥∥∥

τ∫

0

[
U(s, A)− 1

2
(U(s, αA1) + U(s, αA2))

]
s2

2
ϕds

∥∥∥∥∥∥

=

∥∥∥∥∥∥

τ∫

0

[
I + R1(s, A)− 1

2
(I + R1(s, αA1) + I + R1(s, αA2))

]
s2

2
ϕds

∥∥∥∥∥∥

=

∥∥∥∥∥∥




τ∫

0

[
R1(s, A)− R1(s, αA1) + R1(s, αA2)

2

]
s2

2
ϕds




∥∥∥∥∥∥

≤ 1

2

τ∫

0

s∫

0

s2 ‖U(s1, A)‖ ds1ds ‖Aϕ‖

+
1

4

τ∫

0

s∫

0

s2 ‖U(s1, αA1)‖ ds1ds |α| ‖A1ϕ‖

+
1

4

τ∫

0

s∫

0

s2 ‖U(s1, αA2)‖ ds1ds |α| ‖A2ϕ‖

≤ 1

2
M

τ∫

0

s∫

0

s2eωs1ds1ds ‖Aϕ‖+
1

4
|α|

τ∫

0

s∫

0

s2eωs1ds1ds ‖A1ϕ‖

+
1

4
|α|

τ∫

0

s∫

0

s2eωs1ds1ds ‖A2ϕ‖

≤ ceω0ττ 4 ‖ϕ‖A , ϕ ∈ D (A) . ¤

Let us return to the proof of the Theorem 1.1.
Proof of Theorem 1.1. According to the property of a semigroup, the

solution of the problem (1.1) in t = tk point can be written as follows:
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u (tk) = U (tk, A) ϕ +

tk∫

0

U (tk − s, A) f (s) ds

= Uk (τ, A) ϕ +
k∑

i=1

Uk−i (τ, A) F
(1)
i ,

where

F
(1)
i =

ti∫

ti−1

U (ti − s, A) f (s) ds =

=

ti∫

ti−1

U (ti − s, A)

×
[
f (ti)− (ti − s) f ′ (ti) +

(ti − s)2

2
f ′′ (ti) + R̃3 (f, ti, s)

]
ds

=

ti∫

ti−1

U (ti − s, A) f (ti) ds−
ti∫

ti−1

U (ti − s, A) (ti − s) f ′ (ti) ds

+

ti∫

ti−1

U (ti − s, A)
(ti − s)2

2
f ′′ (ti) ds

+

ti∫

ti−1

U (ti − s, A) R̃3 (f, ti, s) ds, (1.34)

where

R̃3 (f, ti, s) = −
ti∫

s

ti∫

ξ1

ti∫

ξ2

f ′′′ (ξ) dξdξ2dξ1.
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Similarly uk (tk) can be written as follows:

uk (tk) = V (τ) uk−1 (tk−1)

+

tk∫

tk−1

V0 (τ, tk − s)
[α

2
f(tk)− 2σ0(tk − s)f ′(tk)

]
ds

+

tk∫

tk−1

V1 (τ, tk − s)

[
1

2
f (tk)− 2σ1 (tk − s) f ′ (tk)

]
ds

+

tk∫

tk−1

V2 (tk − s)

×
[

α

2
f (tk)− 2σ2 (tk − s) f ′ (tk) +

(tk − s)2

2
f ′′ (tk)

]
ds

= V (τ) uk−1 (tk−1)

+

tk∫

tk−1

[
α

2
V0 (τ, tk − s) +

1

2
V1 (τ, tk − s) +

α

2
V2 (tk − s)

]
f (tk) ds

−
tk∫

tk−1

[σ0V0 (τ, tk − s) + σ1V1 (τ, tk − s) + σ2V2 (tk − s)]

×2 (tk − s) f ′ (tk) ds

+

tk∫

tk−1

V2 (tk − s)
(s− tk)

2

2
f ′′ (tk) ds

= V k (τ) ϕ +
k∑

i=1

V k−i (τ) F
(2)
i , (1.35)

where

F
(2)
i =

ti∫

ti−1

[
α

2
V0 (τ, ti − s) +

1

2
V1 (τ, ti − s) +

α

2
V2 (ti − s)

]
f (ti)

−
ti∫

ti−1

[σ0V0 (τ, ti − s) + σ1V1 (τ, ti − s) + σ2V2 (ti − s)] 2 (ti − s) f ′ (ti) ds

+

ti∫

ti−1

V2 (ti − s)
(ti − s)2

2
f ′′ (ti) ds.

22



From (1.34) and (1.35) we obtain:

uk (tk)− u (tk) =
[
Uk (τ, A)− V k (τ)

]
ϕ

+
k∑

i=0

[
Uk−i (τ, A) F

(1)
i − V k−i (τ) F

(2)
i

]

=
[
Uk (τ, A)− V k (τ)

]
ϕ

+
k∑

i=1

((
Uk−i (τ, A)− V k−i (τ)

)
F

(1)
i

+V k−i (τ)
(
F

(1)
i − F

(2)
i

))
. (1.36)

Let us consider the following difference:

F
(1)
i − F

(2)
i

=

ti∫

ti−1

[U (ti − s, A)

−
(

α

2
V0 (τ, ti − s) +

1

2
V1 (τ, ti − s) +

α

2
V2 (ti − s)

)]
f (ti) ds

−
ti∫

ti−1

[U (ti − s, A)

−2 (σ0V0 (τ, ti − s) + σ1V1 (τ, ti − s) + σ2V2 (ti − s)) (ti − s)] f ′ (ti) ds

+

ti∫

ti−1

[U (ti − s, A)− V2 (ti − s)]
(ti − s)2

2
f ′′ (ti) ds

+

ti∫

ti−1

U (ti − s, A) R̃3 (f, ti, s) ds

=

τ∫

0

[
U (s, A)−

(
α

2
V0 (τ, s) +

1

2
V1 (τ, s) +

α

2
V2 (s)

)]
f (ti) ds

−
τ∫

0

[U (s, A)− 2 (σ0V0 (τ, s) + σ1V1 (τ, s) + σ2V2 (s))] sf ′ (ti) ds

+

τ∫

0

[U (s, A)− V2 (s)]
s2

2
f ′′ (tk) ds

+

τ∫

0

U (s, A) R̃3 (f, ti, ti − s) ds. (1.37)
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Hence, according to the Lemma 1.5, Lemma 1.6 and Lemma 1.7 we
obtain the following estimation:

∥∥∥F
(1)
k − F

(2)
k

∥∥∥ ≤ ceω0ττ 4 (1.38)

×
(
‖f (tk)‖A3 + ‖f ′ (tk)‖A2 + ‖f ′′ (tk)‖A + sup

t∈[0,tk]

‖f ′′′ (t)‖
)

According to the Theorem 1.2 the following inequality holds:

∥∥∥∥∥
k∑

i=1

(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

∥∥∥∥∥

=

∥∥∥∥∥∥

k∑
i=1

(
Uk−i(τ, A)− V k−i(τ)

) ti∫

ti−1

U(ti − s, A)f(s)ds

∥∥∥∥∥∥

=

∥∥∥∥∥∥

k∑
i=1

ti∫

ti−1

(
Uk−i(τ, A)− V k−i(τ)

)
U(ti − s, A)f(s)ds

∥∥∥∥∥∥

≤ ceω0τ

k∑
i=1

ti∫

ti−1

tk−iτ
3 ‖U(ti − s, A)f(s)ds‖A4

≤ ceω0tkt2kτ
3 sup

s,t∈[0,tk]

‖U(s, A)f (t)‖A4 . (1.39)

From the equality (1.36) according to the estimations (1.38), (1.39), con-
dition (c) of the Theorem 1.1 and Theorem 1.2 we get:

‖uk (tk)− u (tk)‖
≤

∥∥[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥

+
k∑

i=1

[∥∥∥
[
Uk−i (τ, A)− V k−i (τ)

]
F

(1)
i

∥∥∥ +
∥∥V k−i (τ)

∥∥
∥∥∥
(
F

(1)
i − F

(2)
i

)∥∥∥
]

≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 + tk sup
s,t∈[0,tk]

‖U (s, A) f (t)‖A4

)
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+
k∑

i=1

eω(k−i)τceω0ττ 4

(
sup

t∈[0,ti]

‖f (t)‖A3

+ sup
t∈[0,ti]

‖f ′ (t)‖A2 + sup
t∈[0,ti]

‖f ′′ (t)‖A + sup
t∈[0,ti]

‖f ′′′ (t)‖
)

≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 + tk sup
s,t∈[0,tk]

‖U (s, A) f (t)‖A4 +

+ sup
t∈[0,tk]

‖f (t)‖A3 + sup
t∈[0,tk]

‖f ′ (t)‖A2 + sup
t∈[0,tk]

‖f ′′ (t)‖A + sup
t∈[0,tk]

‖f ′′′ (t)‖
)

. ¤

Remark 1.8. In case operators A1 and A2 are matrixes, it is obvious,
that conditions of the theorem are automatically met. Also conditions of the
Theorem are met, if A1, A2 and A are self-adjoint, positive definite operators.

Remark 1.9. Third degree precision is reached by introducing complex
parameter. Because of this, the each equation of the given decomposed system
is changed by a pair of real equations, unlike lower order precision schemes. To
solve the specific problem, for example the matrix factorization may be used,
where the coefficients are the matrixes of the second order, unlike lower order
precision schemes, where may be used common factorization.

Remark 1.10. The sum of absolute values of coefficients of V (τ) tran-
sition operator equals to one. Because of this, the considered scheme is stable
for any A1 and A2 bounded operators.
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§2. Third order accuracy rational splitting

1. Construction of rational splitting algorithm and theorem on
error estimation

Let us consider (1.1) evolution problem. Let A = A1 + A2, where Aj

(j = 1, 2) are compactly defined, closed, linear operators in X.
In the previous paragraph there is constructed the following decomposition

formula with the local precision of fourth order:

V (τ) =
1

2
[U (τ, αA1) U (τ, A2) U (τ, αA1) + U (τ, αA2) U (τ, A1) U (τ, αA2)] ,

(2.1)
where α = 1

2
± i 1

2
√

3
.

In means that that:

U (τ, A)− V (τ) = Op

(
τ 4

)
,

where Op (τ 4) is the operator, norm of which is of the fourth order with respect
to τ (more precisely, in the case of the unbounded operator ‖Op (τ 4) ϕ‖ =
O (τ 4) for any ϕ from the definition domain of Op (τ 4)). At the same time, we
will constructed the semigroup approximations with the local precision of the
fourth order using the following rational approximations:

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2 , (2.2)

W (τ, A) =

(
I − 1

3
τA

)
(I + λτA)−1 (

I + λτA
)−1

,

where in the first formula λ = 1
2
+ 1

2
√

3
, a = 1− 2

λ
+ 1

2λ2 , b = 3
λ
− 1

λ2 , c = 1
2λ2− 1

λ
,

and in the second λ = 1
3
± i 1

3
√

2

(
i =

√−1
)
.

The approximations defined by formulas (2.2) in the scalar case represent
the Pade approximations for exponential functions (see [5]).

Using simple transformation, we can show that the operator W (τ, A) de-
fined by formula (2.2) coincides with the transition operator of the Calahan
scheme (see [63]). The stability of the Calahan scheme for an abstract parabolic
equation is investigated in [1].

On the basis of formulas (2.1) and (2.2) we can construct the following
decomposition formula (Analogously we can construct a decomposition formula
for another rational approximations):

V (τ) =
1

2
[W (τ, αA1) W (τ, A2) W (τ, αA1)

+W (τ, αA2) W (τ, A1) W (τ, αA2)] . (2.3)

Below we shall show that this formula has the precision of the fourth order:

U (τ, A)− V (τ) = Op

(
τ 4

)
.
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In the present paragraph, on the basis of formula (2.3), a decomposition
scheme with the third order precision will be constructed for the solution of
problem (1.1).

From formula (1.2) we have:

u(tk) = U(τ, A)u (tk−1) +

tk∫

tk−1

U(tk − s, A)f(s)ds.

Let us rewrite this formula in the following form:

u (tk) = U(τ, A)u (tk−1)

+
τ

4

(
3U

(
τ,

1

3
A

)
f

(
tk−1/3

)
+ U (τ, A) f (tk−1)

)
+ Rk,4 (τ) ,

u (t0) = ϕ (k = 1, 2, ...) , (2.4)

where Rk,4 (τ) is the residual member of the quadrature formula

Rk,4 (τ) =

tk∫

tk−1

U(tk − s, A)f(s)ds

−τ

4

(
3U

(
τ,

1

3
A

)
f

(
tk−1/3

)
+ U (τ, A) f (tk−1)

)
· (2.5)

For the sufficiently smooth function f the following estimation is true (see.
Lemma 2.3):

‖Rk,4 (τ)‖ = O
(
τ 4

)
.

On the basis of formula (2.4) let us construct the following scheme:

uk = V (τ)uk−1

+
τ

4

(
3S

(
1

3
τ

)
f

(
tk−1/3

)
+ S (τ) f (tk−1)

)
, (2.6)

u0 = ϕ (k = 1, 2, ...) ,

where

V (τ) =
1

2
[W (τ, αA1) W (τ, A2) W (τ, αA1)

+W (τ, αA2) W (τ, A1) W (τ, αA2)] ,

S(τ) = K

(
τ,

1

2
A1

)
K (τ, A2) K

(
τ,

1

2
A1

)
,

K(τ, A) =

(
I − 1

2
τA

)(
I +

1

2
τA

)−1

.
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and α = 1
2
± i 1

2
√

3
, λ = 1

2
+ 1

2
√

3
, a = 1− 2

λ
+ 1

2λ2 , b = 3
λ
− 1

λ2 , c = 1
2λ2 − 1

λ
.

Let us note that the operator K(τ, A) is the transition operator of the Krank-
Nickolson scheme.

Let us perform the computation of the scheme (2.6) by the following algo-
rithm:

uk = u
(0)
k +

τ

4

(
3u

(1)
k + u

(2)
k

)
,

where uk,0 is calculated by the scheme:

vk−2/3 = W (τ, αA1) uk−1, wk−2/3 = W (τ, αA2) uk−1,

vk−1/3 = W (τ, A2) vk−2/3, wk−1/3 = W (τ, A1) wk−2/3,

vk = W (τ, αA1) vk−1/3, wk = W (τ, αA2) wk−1/3,

u
(0)
k =

1

2
[vk + wk], u0 = ϕ, (2.7)

and us
k (s = 1, 2) - by the scheme:

u
(s)
k−2/3 = K

(
τ,

1

2
γsA1

)
f (tk − γsτ) ,

u
(s)
k−1/3 = K (τ, γsA2) u

(s)
k−2/3,

u
(s)
k = K

(
τ,

1

2
γsA1

)
u

(s)
k−1/3,

with γ1 = 1
3

and γ2 = 1.
The following theorem takes place.
Theorem 2.1 Let the following conditions be satisfied:
(a) There exists such τ0 > 0 that for any 0 < τ ≤ τ0 there exist operators

(I + γλτAj)
−1 , j = 1, 2, γ = 1, α, α and they are bounded. Besides, the

following inequalities are true:

‖W (τ, γAj)‖ ≤ eωτ , ω = const > 0;

(b) The operator (−A) generates the strongly continuous semigroup U (t, A) =
exp (−tA), for which the following inequality is true:

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;

(c) U (s, A) ϕ ∈ D [A4] for any s ≥ 0;
(d) f(t) ∈ C3([0,∞); X); f (t) ∈ D [A3] , f ′(t) ∈ D [A2] , f ′′(t) ∈ D [A]

and U (s, A) f (t) ∈ D [A4] for any fixed t and s (t, s ≥ 0) .
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Then the following estimation holds:

‖u(tk)− uk‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U(s, A)ϕ‖A4

+tk sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A4

+ sup
t∈[0,tk]

‖f(t)‖A3 + sup
t∈[0,tk]

‖f ′(t)‖A2

+ sup
t∈[0,tk]

‖f ′′(t)‖A + sup
t∈[0,tk]

‖f ′′′(t)‖
)

, (2.8)

where c and ω0 are positive constants.

2. Third order accuracy rational splitting of semigroup

The following theorem takes place.
Theorem 2.2 If the conditions (a), (b) and (c) of the Theorem 2.1 are

satisfied, then the following estimation holds:

∥∥[
U (tk, A)− V k (τ)

]
ϕ
∥∥ ≤ ceω0tktkτ

3 sup
s∈[0,tk]

‖U(s, A)ϕ‖A4 , (2.9)

where c and ω0 are positive constants.
For the proof of this theorem we need the following lemma.
Lemma 2.3 If the condition (a) of the Theorem 2.1 is satisfied, then for

the operator W (t, A) the following decomposition is true:

W (t, A) =
k−1∑
i=0

(−1)i t
i

i!
Ai + RW,k(t, A), k = 1, 2, 3, 4, (2.10)

where, for the residual member, the following estimation holds:

‖RW,k(t, A)ϕ‖ ≤ c0e
ω0ttk

∥∥Akϕ
∥∥ , ϕ ∈ D

[
Ak

]
, c0, ω0 = const > 0. (2.11)

Proof. We obviously have:

(I + γA)−1 = I − I + (I + γA)−1 = I − (I + γA)−1 (I + γA− I)

= I − γA (I + A)−1 .

From this for any natural k we can get the following expansion:

(I + γA)−1 =
k−1∑
i=0

(−1)i γiAi + γkAk (I + γA)−1 . (2.12)
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Let us decompose the rational approximation W (τ, A) according to the
formula (2.12) up to the first order, we obtain:

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2

= (a + b + c) I + RW,1(τ, A), (2.13)

where

RW,1(τ, A) = − (b + c) λτA (I + λτA)−1 − cλτA (I + λτA)−2 .

Since (I + λτA)−1 is bounded according to the condition (a) of the Theo-
rem 2.1, therefore:

‖RW,1(τ, A)ϕ‖ ≤ c0e
ω0ττ ‖Aϕ‖ , ϕ ∈ D [A] . (2.14)

Substituting the values of the parameters a, b and c in (2.13), we obtain:

W (τ, A) = I + RW1,1(τ, A). (2.15)

Let us decompose the rational approximation W (τ, A) according to the
formula (2.12) up to the second order:

W (τ, A) = (a + b + c) I − (b + 2c) λτA + RW,2(τ, A), (2.16)

where

RW,2(τ, A) = (b + 2c) λ2τ 2A2 (I + λτA)−1 + λ2τ 2 (I + λτA)−2 A2.

According to the condition (a) of the Theorem 2.1 we have:

‖RW,2(τ, A)ϕ‖ ≤ c0e
ω0ττ 2

∥∥A2ϕ
∥∥ , ϕ ∈ D

[
A2

]
. (2.17)

If we substitute the values of the parameters a, b and c in (2.16), we obtain:

W (τ, A) = I − τA + RW,2(τ, A). (2.18)

Let us decompose the rational approximation W (τ, A) according to the for-
mula (2.12) up to the third order:

W (τ, A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ 2A2

+RW,3(τ, A), (2.19)

where

RW,3(τ, A) = − (b + 3c) λ3τ 3 (I + λτA)−1 A3 − cλ3τ 3 (I + λτA)−2 A3,

According to the condition (a) of the Theorem 2.1 we have:

‖RW,3(τ, A)ϕ‖ ≤ c0e
ω0ττ 3

∥∥A3ϕ
∥∥ , ϕ ∈ D

[
A3

]
. (2.20)
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If we substitute the values of the parameters a, b and c in (2.19), we obtain:

W (τ, A) = I − τA +
1

2
τ 2A2 + RW,3(τ, A). (2.21)

Finally let us decompose the rational approximation W (τ, A) according to
the formula (2.12) up to the fourth order:

W (τ, A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ 2A2

−(b + 4c)λ3τ 3A3 + RW,4(τ, A), (2.22)

where

RW,4(τ, A) = (b + 4c) λ4τ 4 (I + λτA)−1 A4 + cλ4τ 4 (I + λτA)−2 A4.

According to the condition (a) of the Theorem 2.1 we have:

‖RW,4(τ, A)ϕ‖ ≤ c0e
ω0ττ 4

∥∥A4ϕ
∥∥ , ϕ ∈ D

[
A4

]
. (2.23)

If we substitute the values of the parameters a, b and c in (2.22), we obtain:

W (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + RW,4(τ, A). (2.24)

Uniting formulas (2.15),(2.18),(2.21) and (2.24) we obtain formula (2.10),
and uniting inequalities (2.14), (2.17), (2.20) and (2.23) we obtain estimation
(2.21). ¤

Proof of Theorem 2.2. Let us decompose all the rational approximations
in the operator V (τ) according to the formula (2.10) from right to left, so that
each residual member be of the fourth order. We shall have:

V (τ) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + RV,4 (τ) , (2.25)

where

RV,4 (τ) =
1

2
[R1,2 (τ) + R2,1 (τ)] ,

and

Ri,j (τ) = RW,4(τ, αAi)− τRW,3(τ, αAi)Aj +
1

2
τ 2RW,2(τ, αAi)A

2
j

−1

6
τ 3RW,1(τ, αAi)A

3
j + W (τ, αAi)RW,4(τ, Aj)

−ατRW,3(τ, αAi)Ai

+ατ 2RW,2(τ, αAi)AjAi − 1

2
ατ 3RW,1(τ, αAi)A

2
jAi
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−ατW (τ, αAi)RW,3(τ, Aj)Ai

+
1

2
α2τ 2RW,2(τ, αAi)A

2
i −

1

2
α2τ 3RW,1(τ, αAi)AjA

2
i

+
1

2
α2τ 2W (τ, αAi)RW,2(τ, Aj)A

2
i −

1

6
α3τ 3RW,1(t, αAi)A

3
i

−1

6
α3τ 3W (τ, αAi)RW,1(τ, Aj)A

3
i

+W (τ, αAi)W (τ, Aj)RW,4(τ, αAi),

i, j = 1, 2.

Hence according to the condition (a) of the Theorem 2.1 we have the fol-
lowing estimation:

‖RV,4 (τ) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4 , ϕ ∈ D
[
A4

]
. (2.26)

From the (1.7) (k = 4) and (2.25) it follows:

U (τ, A)− V (τ) = R4 (τ, A)−RV,4 (τ) .

From here according to inequalities (1.8) and (2.26) we obtain the following
estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4 , ϕ ∈ D
[
A4

]
. (2.27)

The following representation is obvious:

[
U (tk, A)− V k (τ)

]
ϕ =

[
Uk (τ, A)− V k (τ)

]
ϕ

=
k∑

i=1

V k−i (τ) [U(τ, A)− V (τ)] U i−1 (τ, A) ϕ.

Hence, according to the conditions (a), (b), (c) of the Theorem 2.1 and
inequality (2.27), we have the sought estimation. ¤
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3. Error estimation for approximate solution

Let us prove the auxiliary Lemmas on which the proof of the Theorem
2.1 is based.

Lemma 2.4 Let the following conditions be satisfied:
(a) The operator A satisfies the conditions of the Theorem 2.1;
(b) f(t) ∈ C3 ([0,∞) ; X), and f (t) ∈ D [A3] for every fixed t, f (k) (t) ∈

D
[
A3−k

]
, k = 1, 2.

Then the following estimation holds

∥∥∥∥∥∥

τ∫

0

U (τ − s, A) f (s) ds− τ

4

[
U (τ, A) f (0) + 3U

(
1

3
τ, A

)
f

(
2

3
τ

)]∥∥∥∥∥∥

≤ ceω0ττ 4

[∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ + sup
ξ∈[o,τ ]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[o,τ ]

‖Af ′′ (ξ)‖+ sup
ξ∈[o,τ ]

‖f ′′′ (ξ)‖
]

, (2.28)

where c and ω0 are positive constants.
Proof. Using the simple transformation, we will obtain the following rep-

resentation:

τ∫

0

U(τ − s, A)f (s) ds− τ

4

[
U (τ, A) f (0) + 3U

(
1

3
τ, A

)
f

(
2

3
τ

)]

= r (τ)− U (τ, A) z (τ)−R (τ, A) f

(
2

3
τ

)
. (2.29)

where

z (τ) =
1

4

τ∫

0

f (0) ds +
3

4

τ∫

0

f

(
2

3
τ

)
ds−

τ∫

0

f (s) ds,

R (τ, A) =
3

4

τ∫

0

U

(
1

3
τ, A

)
ds +

1

4

τ∫

0

U (τ, A) ds−
τ∫

0

U(τ − s, A)ds

and

r (τ) =

τ∫

0

[U(τ − s, A)− U (τ, A)]

[
f (s)− f

(
2

3
τ

)]
ds.
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According to formula (1.7) for r (τ) we can obtain the following represen-
tation:

r (τ) = A

τ∫

0




s∫

0

A

ξ∫

0

U(τ − η, A)dηdξ

s∫

2
3
τ

f ′ (ξ) dξ


 ds

−A

τ∫

0




s∫

0

U (τ, A) dξ

s∫

2
3
τ

ξ∫

0

f ′′ (η) dηdξ


 ds.

Hence we obtain the following estimation:

‖r (τ)‖ ≤ ceωττ 4

[
sup

ξ∈[o,τ ]

∥∥A2f ′ (ξ)
∥∥ + sup

ξ∈[o,τ ]

‖Af ′′ (ξ)‖
]

. (2.30)

For the function (−z (τ)) the following representation is valid:

−z (τ) =
1

4

τ∫

0

s∫

0

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds +
3

4

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds.

Hence we obtain the following estimation:

‖U (τ, A) z (τ)‖ ≤ ceωττ 4 sup
s∈[o,τ ]

‖f ′′′(s)‖ . (2.31)

And finally let us transform the integral R (τ, A) according to formula (1.7):

R (τ, A) =
3

4
A3

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

U(τ − ζ, A)dζdηdξds

1

4
A3

τ∫

0

s∫

0

ξ∫

0

η∫

0

U(τ − ζ, A)dζdηdξds.

Hence we obtain the following estimation:

∥∥∥∥R (τ, A) f

(
2

3
τ

)∥∥∥∥ ≤ ceωττ 4

∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ . (2.32)

From equality (2.29) according to inequalities (2.30), (2.31) and (2.32) we
obtain the sought estimation.
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According to the Lemma 2.3 for Rk,4 (τ) (see formula (1.7)), the following
estimation holds:

‖Rk,4 (τ)‖ ≤ ceω0ττ 4

[∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ + sup
ξ∈[tk−1,tk]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[tk−1,tk]

‖Af ′′ (ξ)‖+ sup
ξ∈[tk−1,tk]

‖f ′′′ (ξ)‖
]

. (2.33)

Let us return to the proof of the Theorem 2.1.
Proof of Theorem 2.1. Let us write formula (2.4) in the following form:

u(tk) = Uk(τ, A)ϕ +
k∑

i=1

Uk−i(τ, A)
(
F

(1)
i + Rk,4 (τ)

)
, (2.34)

where

F
(1)
i =

τ

4

(
3U

(
1

3
τ, A

)
f

(
ti−1/3

)
+ U (τ, A) f (ti−1)

)
. (2.35)

Analogously let us present uk as follows:

uk = V k(τ)ϕ +
k∑

i=1

V k−i(τ)F
(2)
i , (2.36)

where

F
(2)
i =

τ

4

(
3S

(
1

3
τ

)
f

(
ti−1/3

)
+ S (τ) f (ti−1)

)
. (2.37)

From equalities (2.34) and (2.36) it follows:

u(tk)− uk =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=0

[
Uk−i(τ, A)F

(1)
i − V k−i(τ)F

(2)
i

]

+
k∑

i=0

Uk−i(τ, A)Rk,4 (τ) =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=1

[(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

+V k−i(τ)
(
F

(1)
i − F

(2)
i

)]

+
k∑

i=0

Uk−i(τ, A)Rk,4 (τ) . (2.38)
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From formulas (2.35) and (2.37) we have:

F
(1)
i − F

(2)
i =

τ

4

(
3

(
U

(
1

3
τ, A

)
− S

(
1

3
τ

))
f

(
ti−1/3

)
+

+

(
U (τ, A)− S

(
1

3
τ

))
f (ti−1)

)
. (2.39)

The following inequality can be easily obtained:

‖[U (τ, A)−K (τ)] ϕ‖ ≤ ceω0ττ 3 ‖ϕ‖A3 , ϕ ∈ D
[
A3

]
.

Hence analogously to estimation (2.27) we obtain:

‖[U (τ, A)− S (τ)] ϕ‖ ≤ ceω0ττ 3 ‖ϕ‖A3 , ϕ ∈ D
[
A3

]
.

According to this inequality, from equality (2.39) we obtain the following esti-
mation: ∥∥∥F

(1)
k − F

(2)
k

∥∥∥ ≤ ceω0ττ 4 sup
t∈[tk−1,tk]

‖f(t)‖A3 . (2.40)

According to the Lemma 2.1 we have:
∥∥∥∥∥

k∑
i=1

(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

∥∥∥∥∥ ≤ ceω0tkt2kτ
3 sup

s,t∈[0,tk]

‖U(s, A)f (t)‖A4 .

(2.41)
From equality (2.38) according to inequalities (2.40), (2.41), (2.9), (2.41)

and the condition (b) of the Theorem 2.1 we obtain:

‖u(tk)− uk‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U(s, A)ϕ‖A4

+tk sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A4 + sup
t∈[0,tk]

‖f(t)‖A3

)

+ sup
t∈[0,tk]

‖f ′(t)‖A2 + sup
t∈[0,tk]

‖f ′′(t)‖A + sup
t∈[0,tk]

‖f ′′′(t)‖ . ¤

Remark 2.5. The operator V k (τ) is the solution operator of the above-
considered decomposed problem. It is obvious that, according to the condition
of the Theorem 2.1 (‖W (t, γAj)‖ ≤ eωt) , the norm of the operator V k (τ) is
less than or equal to eω0tk . From this follows the stability of the above-stated
decomposition scheme on each finite time interval.

Remark 2.6. In the case of the Hilbert space, when A1, A2 and A1 + A2

are self-adjoint non negative operators, in estimation (2.8) ω0 will be replaced
by 0. Alongside with this, for the transition operator of the splitted problem,
the estimation

∥∥V k (τ)
∥∥ ≤ 1 will be true.

Remark 2.7. In the case of the Hilbert space, when A1, A2 and A1+A2 are
self-adjoint, positive definite operators, in estimation (2.8) ω0 will be replaced
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by −α0, α0 > 0. Alongside with this, for the transition operator of the splitted
problem, the estimation

∥∥V k (τ)
∥∥ ≤ e−α1tk , α1 > 0 will be true.

Remark 2.8. According to the classical theorem of Hille-Philips-Iosida
([48]), if the operator (−A) generates a strongly continuous semigroup, then
the inequality in the condition (b) of the Theorem 2.1 is automatically satis-
fied. The proof of this inequality is based on the uniform boundedness principle,
according to which the constants M and ω exist, but generally can not be ex-
plicitly constructed (according to the method of the proof). That is why we
demand satisfying of the inequality in the condition (b) of the Theorem 2.1.

4. Stability of the splitted problem

In this paragraph we state the sufficient conditions, from which follows the
inequality:

∥∥V k (τ)
∥∥ ≤ c, c = const > 0 (k = 1, 2, ...) .

Fulfilment of this inequality means the stability of splitted problem.
Let us examine first the stability of non split problem. Below we will

prove the theorems, concerning the stability of non split problems with the
transition operators given by formulas (2.2). These theorems obviously have
an independent value, and the proof of the stability of split problem is based
on them.

Theorem 2.9 Assume that A is a linear, closed, densely defined operator
in the Banach space X. Assume the sector S = {z : |arg z| < ϕ0, z 6= 0,
0 < ϕ0 < π

2

}
completely includes the spectrum of the operator A and for any

z /∈ S (z 6= 0) the following inequality holds:

∥∥(zI − A)−1) ‖ ≤ c

|z| , c = const > 0. (2.42)

Then, for any τ > 0 and natural k, the following estimation is valid:
∥∥W k (τ, A)

∥∥ ≤ c, c = const > 0,

where

W (τ, A) =

(
I − 1

3
τA

)
(I + λτA)−1 (

I + λτA
)−1

, λ =
1

3
± i

1

3
√

2
.

The proof of the Theorem 2.9 is based on the following lemma.
Lemma 2.10 Assume that the operator A satisfies conditions of the The-

orem 1.1.
Then for any τ > 0 and natural k the following inequality is valid:

∥∥∥(I + τA)−k
∥∥∥ ≤ c, c = const > 0.
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Proof. Let us compare the operator (I + τA)−k to the operator (I + (tk/2) A)−2

(tk = kτ). With this purpose we present their difference by means of the
Danford-Taylor integral (see [16] Ch. VII):

(I + τA)−k −
(

I +
tk
2

A

)−2

=
1

2πi

∫

Γ

(
(1 + τz)−k −

(
1 +

tk
2

z

)−2
)

× (zI − A)−1 dz, (2.43)

where Γ is a bound of the sector
{|arg z| ≤ ϕ, ϕ0 ≤ ϕ < π

2

}
. Let us estima-

tion the absolute value of the integrand scalar function. With this purpose we
use the following representation:

(1 + τz)−k −
(

1 +
tk
2

z

)−2

=

tk∫

0

d

ds

[(
1 +

tk − s

2
z

)−2 (
1 +

s

k
z
)−k

]
ds

= z2

tk∫

0

(
s

k
− tk − s

2

)
×

(
1 +

tk − s

2
z

)−3

×
(
1 +

s

k
z
)−k−1

ds. (2.44)

Obviously we have:

∣∣∣1 +
s

k
z
∣∣∣
k+1

=
∣∣∣1 +

s

k
ρ (cos ϕ + i sin ϕ)

∣∣∣
k+1

=

(
1 + 2

s

k
µρ +

s2

k2
ρ2

) k+1
2

,

µ = cos ϕ, ϕ = arg (z) , |z| = ρ.

From here follows the inequality:

∣∣∣1 +
s

k
z
∣∣∣
k+1

≥
(
1 +

s

k
µρ

)k+1

≥ 1 +
k + 1

k
sµρ

+
k + 1

2k
s2µ2ρ2 +

k2 − 1

6k2
s3µ3ρ3

≥ 1 + sµρ +
1

2
s2µ2ρ2 +

1

8
s3µ3ρ3 (k ≥ 2) .
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With account of this inequality we have:

∣∣∣∣1 +
tk − s

2
z

∣∣∣∣
3 ∣∣∣1 +

s

k
z
∣∣∣
k+1

≥
(

1 + (tk − s) µρ +
1

2
(tk − s)2 µ2ρ2 +

1

8
(tk − s)3 µ3ρ3

)

×
(

1 + sµρ +
1

2
s2µ2ρ2 +

1

8
s3µ3ρ3

)

≥ 1 + tkµρ +
1

2

(
s2 + (tk − s)2) µ2ρ2

+
1

8

(
s3 + (tk − s)3) µ3ρ3

≥ 1 + tkµρ +
1

4
t2kµ

2ρ2 +
1

32
t3kµ

3ρ3 (2.45)

≥ (1 + µ0tkρ)3 , µ0 =
1

3
√

2
µ.

From (2.44), with account of (2.45), it follows:

∣∣∣∣∣(I + τz)−k −
(

I +
tk
2

z

)−2
∣∣∣∣∣ ≤ ρ2

(1 + µ0tkρ)3

tk∫

0

(
s

k
+

tk − s

2

)
ds

≤ (tkρ)2

(1 + µ0tkρ)3 (2.46)

From (2.43), with account of (2.46) and (2.42), it follows:

∥∥∥∥∥(I + τA)−k −
(

I +
tk
2

A

)−2
∥∥∥∥∥ ≤ ct2k

∞∫

0

ρ

(1 + µ0tkρ)3dρ = c. (2.47)

Due to inequality (2.42) we have:
∥∥∥∥∥
(

I +
tk
2

A

)−2
∥∥∥∥∥ ≤ c. (2.48)

From (2.47) and (2.48), according to the triangle inequality, the sought
estimation follows. ¤

Proof of the Theorem 2.9.
Let us compare the operator W k (τ, A) to the corresponding powers of the

operator W0 (τ, A) = (I + τA)−1. Obviously the representation is valid:

W k
0 (τ, A)−W k (τ, A) = (W0 (τ, A)−W (τ, A))

k−1∑
i=0

W i
0 (τ, A) W k−i−1 (τ, A) ,

(2.49)
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In order to estimate the norm of the operator in the right hand-side of this
equality let us estimate the absolute values of the scalar functions W (τ, z) ,W0 (τ, z) ,
and W0 (τ, z)−W (τ, z) (z ∈ Γ). We obtain:

W (τ, z) =
P1 (τz)

P2 (τz)
,

where

P1 (z) = 1− 1

3
z,

P2 (z) = 1 +
2

3
z +

1

6
z2.

Let us calculate the squares of the modules of the polynomials P1 (τz) and
P2 (τz):

|P1 (τz)|2 =

∣∣∣∣1−
1

3
τρ (cos ϕ + i sin ϕ)

∣∣∣∣
2

= 1− 2

3
τµρ +

1

9
τ 2ρ2, (2.50)

|P2 (τz)|2 =

∣∣∣∣1 +
2

3
τρ (cos ϕ + i sin ϕ)

+
1

6
τ 2ρ2 (cos (2ϕ) + i sin (2ϕ))

∣∣∣∣
2

= 1 +
4

3
τµρ +

(
1

9
+

2

3
µ2

)
τ 2ρ2

+
2

9
τ 3µρ3 +

1

36
τ 4ρ4, (2.51)

where µ = cos ϕ, ϕ = arg (z) , |z| = ρ.
From (2.50) and (2.51) it follows:

(1 + τµ1ρ)2 |P1 (τz)|2 ≤ |P2 (τz)|2 , µ1 =
1

3
µ.

From here we obtain:

|W (τ, z)| = |P1 (τz)|
|P2 (τz)| ≤

1

1 + µ1τρ
. (2.52)

Let us estimate the absolute value of the function W0 (τ, z)−W (τ, z). We
obviously have:

|W0 (τ, z)−W (τ, z)| =
1
4
τ 2ρ2

(1 + 2τµρ + τ 2ρ2)
1
2 |P2 (τz)|

.

From here, taking into account the inequality |P2 (τz)| ≥ (1 + τµ1ρ)2 , it fol-
lows:

|W0 (τ, z)−W (τ, z)| ≤ τ 2ρ2

(1 + µ1τρ)3 . (2.53)
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For the absolute value of W0 (τ, z) , the following estimation holds:

|W0 (τ, z)| =
1

|1 + τρ (cos ϕ + i sin ϕ)|
=

1

(1 + 2τµρ + τ 2ρ2)
1
2

≤ 1

1 + µτρ
. (2.54)

Let us present the operator-function W k
0 (τ, A)−W k (τ, A) by means of the

Danford-Taylor integral:

W k
0 (τ, A)−W k (τ, A) =

1

2πi

∫

Γ

(
W k

0 (τ, z)−W k (τ, z)
)
(zI − A)−1 dz,

where Γ is the bound of the sector
{|arg z| ≤ ϕ, ϕ0 ≤ ϕ < π

2

}
. From here,

according to (2.49), we obtain:

W k
0 (τ, A)−W k (τ, A) =

1

2πi

∫

Γ

((W0 (τ, z)−W (τ, z))

×
k−1∑
i=0

W i
0 (τ, z) W k−i−1 (τ, z)

)
(zI − A)−1 dz,

From here, with account of inequalities (2.42),(2.52),(2.53) and (2.54), we ob-
tain the following estimation:

∥∥W k
0 (τ, A)−W k (τ, A)

∥∥ ≤ c

∞∫

0

(
τ 2ρ2

(1 + τµ1ρ)3

×
k−1∑
i=0

1

(1 + τµρ)i

1

(1 + τµ1ρ)k−i−1

)
1

ρ
dρ

≤ ckτ

∞∫

0

τρdρ

(1 + τµ1ρ)k+1

= ck

∞∫

0

xdx

(1 + x)k+1
= c.

From this inequality and the estimation of Lemma 2.10, according to the tri-
angle inequality, follows the sought estimation. ¤

Theorem 2.11 Assume that the operator A satisfies conditions of the The-
orem 2.1.

Then, for any τ > 0 and natural k, the following estimation holds:

∥∥W k (τ, A)
∥∥ ≤ c, c = const > 0, (2.55)
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where

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2 ,

λ =
1

2
+

1

2
√

3
,

a = 1− 2

λ
+

1

2λ2
,

b =
3

λ
− 1

λ2
,

c =
1

2λ2
− 1

λ
.

Proof. Estimation (2.55) was proven by Alibekov and Sobolevskii (see [1]),
for the case when the operator A, instead of condition (2.42), satisfies the
following condition:

‖zI − A‖ ≤ c

1 + |z| , c = const > 0. (2.56)

The above-mentioned authors present the operator W k (τ, A) as the sum of
the following three addends:

W k (τ, A) =
(
(a + b + c) + (2a + b) λτA + aλ2τ 2A2

)

× (I + λτA)−2 W k−1 (τ, A)

=
(
1 + (2a + b) λτA + aλ2τ 2A2

)
(I + λτA)−2 W k−1 (τ, A)

= J1,k (τ, A) + J2,k (τ, A) + J3,k (τ, A) , (2.57)

where

J1,k (τ, A) = (I + λτA)−2 W k−1 (τ, A) ,

J2,k (τ, A) = 2a0λτA (I + λτA)−2 W k−1 (τ, A) , a0 = 2a + b,

J3,k (τ, A) = aλ2τ 2A2 (I + λτA)−2 W k−1 (τ, A) .

It should be noted that the estimations (for any τ > 0 and natural k):

‖Jl,k (τ, A)‖ ≤ c, l = 2, 3, c = const > 0 (2.58)

are valid in the case when the operator A satisfies condition (2.42). The
above-mentioned authors need rather heavier condition (2.56) to obtain for
the operator J1,k (τ, A) an estimation, analogous to estimation (2.58), since
in this case they use fraction powers of the operator A. Below we give the
estimation of the operator J1,k (τ, A) in the case of condition (2.42).

Let us estimate the norm of the operator J1,k (τ, A). At first we estimate
the module of the scalar function W (τ, z). Obviously we have:

W (τ, z) =
P3 (τz)

P4 (τz)
,
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where

P3 (z) = 1 + a0λz + aλ2z2,

P4 (z) = (1 + λz)2 .

Let us calculate the modules of the polynomials P3 (τz) and P4 (τz):

|P3 (τz)|2 = |1 + a0λτρ (cos ϕ + i sin ϕ)

+ aλ2τ 2ρ2 (cos (2ϕ) + i sin (2ϕ))
∣∣2

= 1 + 2a0µλτρ + 2
(
1 + 2aµ2

)
λ2τ 2ρ2 (2.59)

+2aa0µλ3τ 3ρ3 + a2λ4τ 4ρ4,

|P4 (τz)| = |1 + λτρ (cos ϕ + i sin ϕ)|2
= 1 + 2µλτρ + λ2τ 2ρ2. (2.60)

From (2.59) and (2.60) it follows:

|P3 (τz)|2 ≤ |P4 (τz)|2 .

From here follows the estimation:

|W (τ, z)| ≤ 1. (2.61)

In order to estimate the norm of the operator J1,k (τ, A) , we compare it to
the following operator:

W1 (τ, A) =
(
(I + a0λτA) (I + τA)−2)k−1

(I + λτA)−2 ,

Let us present the difference between the operators J1,k (τ, A) and W1 (τ, A) in
the form:

J1,k (τ, A)−W1 (τ, A) = (I + λτA)−2

×
(
W k−1 (τ, A)− (

(I + a0λτA) (I + λτA)−2)k−1
)

= (I + λτA)−2 (
W (τ, A)− (I + a0λτA) (I + λτA)−2)

×
k−2∑
i=0

(
(I + a0λτA) (I + λτA)−2)i

W k−i−2 (τ, A)

=
1

2πi

∫

Γ

1

(1 + λτz)2

×
(

1 + a0λτz + aλ2τ 2z2

(1 + λτz)2 − 1 + a0λτz

(1 + λτz)2

)

×
k−2∑
i=0

(
1 + a0λτz

(1 + λτz)2

)i

W k−i−2 (τ, z) (zI − A)−1 dz

=
1

2πi

k−2∑
i=0

∫

Γ

aλ2τ 2z

(1 + λτz)4

(
1 + a0λτz

(1 + λτz)2

)i

×W k−i−2 (τ, z) z (zI − A)−1 dz. (2.62)

43



By simple calculations we obtain:
∣∣∣∣
1 + a0λτz

(1 + λτz)2

∣∣∣∣ =
|1 + a0λτρ (cos ϕ + i sin ϕ)|
|1 + λτρ (cos ϕ + i sin ϕ)|2

≤ 1

(1 + 2λτµρ + λ2τ 2ρ2)
1
2

≤ 1

1 + λτµρ
. (2.63)

From (2.62), with account of inequalities (2.42), (2.61) and (2.63), we ob-
tain:

‖J1,k (τ, A)−W1 (τ, A)‖ ≤ c

k−2∑
i=0

∞∫

0

τ 2ρ

(1 + λτµρ)i+4dρ

= c

k−2∑
i=0

∞∫

0

x

(1 + x)i+4dx

= c

k−2∑
i=0

∞∫

0

(
1

(1 + x)i+3 −
1

(1 + x)i+4

)
dx

= c

k−2∑
i=0

(
1

i + 2
− 1

i + 3

)

=

(
1

2
− 1

k + 1

)
c ≤ c· (2.64)

In order to obtain the final estimation, we need to estimate the norm of
the operator W1 (τ, A). According to the Lemma 2.10 and the inequality a0 =
2a + b < 1, we have:

‖W1 (τ, A)‖ ≤
∥∥∥
(
(I + a0λτA) (I + λτA)−2)k

(I + λτA)−2
∥∥∥

≤
∥∥∥
(
(I + a0λτA) (I + λτA)−1)k

∥∥∥
∥∥∥(I + λτA)−(k+2)

∥∥∥
≤ c

∥∥∥
(
a0I + (1− a0) (I + λτA)−1)k

∥∥∥

≤ c

k∑
i=0

(
i
k

)
ai

0 (1− a0)
k−i

∥∥∥(I + λτA)−(k−i)
∥∥∥

≤ c

k∑
i=0

(
i
k

)
ai

0 (1− a0)
k−i = c.

From here and (2.64), due to the triangle inequality, it follows:

‖J1,k (τ, A)‖ ≤ c, c = const > 0. (2.65)

From (2.57), with account of inequalities (2.58) and (2.65), we obtain the
sought estimation. ¤
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Theorem 2.12 Assume that the linear, closed, densely defined operators
A1 and A2 in the Banach space X satisfy the following conditions:

(a) The sector S =
{
z : |arg z| < ϕ0, z 6= 0, 0 < ϕ0 < π

3

}
completely in-

cludes spectrums of the operators A1 and A2 and for any z /∈ S (z 6= 0) the
inequality holds:

∥∥(zI − Aj)
−1

∥∥ ≤ c

|z| , c = const > 0, j = 1, 2;

(b) There exists such point z0 /∈ S that the resolvents of the operators A1

and A2 are commutative at the point z0.
Then, for any τ > 0, for the transition operators corresponding to the

decomposition schemes defined by formulas (1.4), the following estimation is
valid: ∥∥V k (τ)

∥∥ ≤ c, c = const > 0 (k = 1, 2, ...) ,

where

V (τ) =
1

2
(V1 (τ) + V2 (τ)) ,

V1 (τ) = W (τ, αA1) W (τ, A2) W (τ, αA1) ,

V2 (τ) = W (τ, αA2) W (τ, A1) W (τ, αA2) .

Proof. It follows from the condition (b) of the theorem that the resolvents
of the operators A1 and A2 are commutative at any points z1, z2 /∈ S, respec-
tively. From here it follows that the operators W (τ, A1) and W (τ, A2) are
commutative. Therefore the equalities are valid:

V k
1 (τ) = W k (τ, αA1) W k (τ, A2) W k (τ, αA1) , (2.66)

V k
2 (τ) = W k (τ, αA2) W k (τ, A1) W k (τ, αA2) . (2.67)

It is obvious that if the operators A1 and A2 satisfy conditions of the Theo-
rem 2.12, then the operators γA1 and γA2 (γ = 1, α, α) will satisfy conditions
of the Theorem 2.9. Therefore, from formulas (2.66) and (2.67), due to the
Theorem 2.9 (Theorem 2.11), follow the estimations:

∥∥V k
l (τ)

∥∥ ≤ c, l = 1, 2, c = const > 0. (2.68)

From the commutativity of the operators W (τ, A1) and W (τ, A2) follows
the commutativity of the operators V1 (τ) and V2 (τ), hence the representation
is valid:

V k (τ) =

(
1

2
(V1 (τ) + V2 (τ))

)k

=
1

2k

k∑
j=0

(
k
j

)
V k−j

1 (τ) V j
2 (τ) .
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From here, according to inequalities (2.68), follows the estimation:

∥∥V k (τ)
∥∥ ≤ 1

2k

k∑
j=0

(
k
j

) ∥∥∥V k−j
1 (τ)

∥∥∥
∥∥V j

2 (τ)
∥∥ ≤ 1

2k
c

k∑
j=0

(
k
j

)
= c. ¤

Theorem 2.13 Assume that A1 and A2 are linear, normal, densely de-
fined operators in the Hilbert space H. Assume further that the sector S ={
z : |arg z| < ϕ0, z 6= 0, 0 < ϕ0 ≤ π

3

}
completely includes the spectrums of the

operators A1 and A2.
Then, for any τ > 0, for the transition operators corresponding to the

decomposition schemes defined by formulas (2.2), the following estimation is
valid:

‖V (τ)‖ ≤ 1.

Proof. Since the operators A1 and A2 are normal, their corresponding
resolvents also will be normal operators (see T. [40], Ch. 5, §3). From here it
follows that W (τ, γA1) and W (τ, γA2) are also normal operators. Therefore,
due to inequalities (2.52) and (2.61), the estimation is valid:

‖W (τ, γAj)‖ ≤ sup
z∈S

|W (τ, γz)| ≤ 1.

From here follows the sought estimation. ¤
Remark 2.14. Estimation (2.8) holds when the operators A1 and A2 sat-

isfy the conditions of the Theorem 2.12, the operator A satisfies the conditions
of the Theorem 2.9, and besides the conditions (c) and (d) of the Theorem 2.1
are valid.

Remark 2.15. It is obvious that if the resolvents of the operators A1 and
A2 are commutative, then for exponential splitting we have an exact coinci-
dence. As regards resolvent splitting, it has an essential value even for the
commutative case, as the exact coincidence does not take place and therefore,
it is important to construct a stable splitting with the high order precision.

In the case when the operators A1, A2 are matrices, it is obvious that the
conditions of the Theorem 2.1 are automatically satisfied. The conditions of
Theorem 2.1 are also satisfied if A1, A2 and A are self-adjoint, positive definite
operators. Moreover, the conditions of the Theorem 2.1 are automatically
satisfied if the operators A1, A2 and A are normal operators. However, in this
case, certain restrictions are imposed on the spectrums of this operators: the
spectrum of the operator A have to be included in the right half-plane and the
spectrums of the operators A1 and A2 have to be included in the sector with
angle of 1200, in order the spectrums of the operators A1 and A2 to remain in
the right half-plane after turning by ±300 (this is caused by multiplication of
the operators A1 and A2 on the parameters α and α).

The third order precision is reached by introducing a complex parameter.
For this reason, each equation of the given decomposed system is replaced by
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a pair of real equations, unlike the lower order precision schemes. To solve the
specific problem, (for example) the matrix factorization may be used, where
the coefficients are the matrices of the second order, unlike the lower order
precision schemes, where the common factorization may be used.

It must be noted that, unlike the high order precision decomposition schemes
considered in [12], the sum of absolute values of coefficients of the addends of
the transition operator V (τ) equals to one. Hence the considered scheme is
stable for any bounded operators A1, A2.
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§3. Third order accuracy decomposition

scheme for multidimensional evolution

problem

1. Decomposition scheme for homogeneous equation and theorem
on error estimation

Let us consider the Cauchy abstract problem in the Banach space X :

du(t)

dt
+ Au(t) = 0, t > 0, u(0) = ϕ. (3.1)

Here A is a closed linear operator with the domain D(A), which is every-
where dense in X, ϕ is a given element from D (A).

Suppose that (−A) operator generates a strongly continuous semigroup
{exp(−tA)}t≥0, then the solution of the problem (3.1) is given by the following
formula (see [39],[42]):

u(t) = U(t, A)ϕ, ϕ ∈ D (A) , (3.2)

where U(t, A) ≡ exp(−tA) is a strongly continuous semigroup.
Let A = A1 + A2 + ... + Am, where Aj (j = 1, 2, ..., m) are compactly

defined, closed linear operators in X.
Let us introduce a difference net domain:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}.

Along with the problem (3.1) we consider two sequences of the following
problems on each interval [tk−1, tk] :

dv1
k(t)

dt
+ αA1v

1
k(t) = 0,

dw1
k(t)

dt
+ αAmw1

k(t) = 0,

v1
k(tk−1) = uk−1(tk−1), w1

k(tk−1) = uk−1(tk−1),

dv2
k(t)

dt
+ αA2v

2
k(t) = 0,

dw2
k(t)

dt
+ αAm−1w

2
k(t) = 0,

v2
k(tk−1) = v1

k(tk), w2
k(tk−1) = w1

k(tk),

. . . . . . . . . . .

dvm−1
k (t)

dt
+ αAm−1v

m−1
k (t) = 0,

dwm−1
k (t)

dt
+ αA2w

m−1
k (t) = 0,

vm−1
k (tk−1) = vm−2

k (tk), wm−1
k (tk−1) = wm−2

k (tk),

48



dvm
k (t)

dt
+ Amvm

k (t) = 0,
dwm

k (t)

dt
+ A1w

m
k (t) = 0, (3.3)

vm
k (tk−1) = vm−1

k (tk), wm
k (tk−1) = wm−1

k (tk),

dvm+1
k (t)

dt
+ αAm−1v

m−1
k (t) = 0,

dwm+1
k (t)

dt
+ αA2w

m+1
k (t) = 0,

vm+1
k (tk−1) = vm

k (tk), wm+1
k (tk−1) = wm

k (tk),

. . . . . . . . . . . . .

dv2m−2
k (t)

dt
+ αA2v

2m−2
k (t) = 0,

dw2m−2
k (t)

dt
+ αAm−1w

2m−2
k (t) = 0,

v2m−2
k (tk−1) = v2m−3

k (tk), w2m−2
k (tk−1) = w2m−3

k (tk),

dv2m−1
k (t)

dt
+ αA1v

2m−1
k (t) = 0,

dw2m−1
k (t)

dt
+ αAmw2m−1

k (t) = 0,

v2m−1
k (tk−1) = v2m−2

k (tk), w2m−1
k (tk−1) = w2m−2

k (tk).

Here α is a numerical complex parameter with Re (α) > 0, u0(0) = ϕ.
Suppose that (−Aj), (−αAj) and (−αAj) (j = 1, 2, ..., m) operators generate
strongly continuous semigroups.

On each [tk−1, tk] (k = 1, 2, ...) interval uk(t) are defined as follows:

uk(t) =
1

2
[v2m−1

k (t) + w2m−1
k (t)]. (3.4)

We consider the function uk(t) as an approximate solution of the problem
(3.1) on the interval [tk−1, tk].

We will need natural degrees of the operator A = A1 + A2 + ... + Am

(As, s = 2, 3, 4) . In case of two addends (m = 2) they are defined in para-
graph 1. Analogously are defined As (s = 2, 3, 4) when m > 2.

Let us introduce the following definitions:

‖ϕ‖A = ‖A1ϕ‖+ ... + ‖Amϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
m∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
(
A2

)
,

where ‖·‖ is a norm in X, similarly are defined ‖ϕ‖As (s = 3, 4) .
Theorem 3.1. Let the following conditions be satisfied:
(a) α = 1

2
± i 1

2
√

3

(
i =

√−1
)

;

(b) (−γAj), γ = 1, α, α (j = 1, 2, ..., m) and (−A) operators generate
strongly continuous semigroups, for which the following estimations hold cor-
respondingly:

‖U(t, γAj)‖ ≤ eωt,

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;
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(c) U (s, A) ϕ ∈ D (A4) for every fixed s ≥ 0.
Then the following estimation holds:

‖uk(tk)− u(tk)‖ ≤ ceω0tktkτ
3 sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 ,

where c and ω0 are positive constants.

2. Construction of solving operator of splitted problem

It is obvious, that according to the formula (3.2) for the system (3.3) we
have:

vj
k (tk) = U (τ, αAj) vj−1

k (tk) , j = 1, ..., m− 1,

vm
k (tk) = U (τ, Am) vm−1

k (tk) ,

vm+j
k (tk) = U (τ, αAm−j) vm+j−1

k (tk) , j = 1, ...,m− 1,

where k = 1, 2, ...,

v0
k (tk) = uk−1 (tk−1) , u0 (0) = ϕ.

Hence we have:
v2m−1

k (tk) = V1 (τ) uk−1 (tk−1) ,

where

V1(τ) = U (τ, αA1) ...U (τ, αAm−1) U (τ, Am) U (τ, αAm−1) ...U (τ, αA1) .

Analogously we obtain that:

w2m−1
k (tk) = V2 (τ) uk−1 (tk−1) ,

where

V2(τ) = U (τ, αAm) ...U (τ, αA2) U (τ, A1) U (τ, αA2) ...U (τ, αAm) .

So according to the formula (3.4) we obtain:

uk (tk) = V (τ) uk−1 (tk−1) = V k (τ) ϕ, (3.5)

where

V (τ) =
1

2
(V1 (τ) + V2 (τ)) .

Remark 3.2: The operator V k (τ) is a solving operator of the above
considered decomposed problem. It is obvious that according to the condition
of the Theorem 3.1 (U(t, γAi) ≤ eωt)

∥∥V k (τ)
∥∥ ≤ eω1tk , (3.6)
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where ω1 = (2m − 1)ω. From here it follows the stability of the above-stated
decomposition schema on each finite time interval.

Let us suppose that W (τ) is a combination (sum, product) of semigroups,
generated by operators (−γAi) (i = 1, 2, ..., m). Let us decompose all semi-
groups including in the operator W (τ) according to the formula (1.7), multiply
these decompositions, group together the similar members and define the coef-
ficients of the members (−τAi) , (τ 2AiAj) and (τ 3AiAjAk) (i, j, k = 1, 2, ..., m)
to be correspondingly [W (τ)]i , [W (τ)]i,j and [W (τ)]i,j,k in the obtained de-
composition.

3. Error estimation for approximate solution

Proof of the Theorem 3.1.
If we decompose all semigroups in the V (τ) from right to left according to

the formula (1.7) so that each residual member is of the fourth degree, we get
the following formula:

V (τ) = I − τ

m∑
i=1

[V (τ)]i Ai + τ 2

m∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

m∑

i,j,k=1

[V (τ)]i,j,k AiAjAk + R
(m)
4 (τ) . (3.7)

Similarly to R
(2)
4 , according to the first inequality of the condition (b) of

the Theorem 3.1 the following estimation is true for R
(m)
4 (τ) (m > 2):

∥∥∥R
(m)
4 (τ) ϕ

∥∥∥ ≤ ceω2ττ 4 ‖ϕ‖A4 , ϕ ∈ D
(
A4

)
, (3.8)

where c and ω2 are positive constants.
It is obvious that:

[V (τ)]i =
1

2
([V1(τ)]i + [V2(τ)]i) , i = 1, 2, ..., m,

[V (τ)]i,j =
1

2

(
[V1(τ)]i,j + [V2(τ)]i,j

)
, i, j = 1, 2, ..., m,

[V (τ)]i,j,k =
1

2

(
[V1(τ)]i,j,k + [V2(τ)]i,j,k

)
, i, j, k = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multipliers
(semigroups) of the operator V1 (τ) which are generated by operators (−γAi).
From decomposition of other semigroups only first addends (identical opera-
tors) will be used. So we have:

[V1(τ)]i = [U (τ, Ai)]i = 1.
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Analogously
[V2(τ)]i = [U (τ, Ai)]i = 1.

So we have
[V (τ)]i = 1, i = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i,j. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V1 (τ) which are generated by operators
(−γAi)and (−γAj) . From decomposition of other semigroups only first ad-
dends (identical operators) will be used. So we have:

[V1(τ)]i,j = [U (τ, αAi1) U (τ, Ai2) U (τ, αAi1)]i,j .

Analogously

[V2(τ)]i,j = [U (τ, αAi2) U (τ, Ai1) U (τ, αAi2)]i,j ,

where (i1, i2) is a pair of i and j indices, arranged in an increasing order.
According to the (1.9) we have:

1

2

(
[U (τ, αAi1) U (τ, Ai2) U (τ, αAi1)]i,j + [U (τ, αAi2) U (τ, Ai1) U (τ, αAi2)]i,j

)
=

1

2
.

So we have

[V (τ)]i,j =
1

2
, i, j = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i,j,k. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V1 (τ), which are generated by operators
(−γAi) , (−γAj) and (−γAk). From decomposition of other semigroups only
first addends (identical operators) will be used. So we have:

[V1(τ)]i,j,k = [U (τ, αAi1) U (τ, αAi2) U (τ, Ai3) U (τ, αAi2) U (τ, αAi1)]i,j,k .

Analogously

[V2(τ)]i,j,k = [U (τ, αAi3) U (τ, αAi2) U (τ, Ai1) U (τ, αAi2) U (τ, αAi3)]i,j,k ,

where (i1, i2, i3) is a triple of i, j and k indices, arranged in an increasing order.
Firstly let us consider the case when i = j = k,we have:

[V1(τ)]i,j,k = [U (τ, Ai)]i,i,i =
1

6

and

[V2(τ)]i,j,k = [U (τ, Ai)]i,i,i =
1

6
.
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Now let us consider the case when only two of i, j, k indices are different.
In this case we have:

[V1(τ)]i,j,k = [U (τ, αAi1) U (τ, Ai2) U (τ, αAi1)]i,j,k

and
[V2(τ)]i,j,k = [U (τ, αAi2) U (τ, Ai1) U (τ, αAi2)]i,j,k .

where (i1, i2) is pair of different indices of i, j and k triple, arranged in an
increasing order. According to the (1.9) we have:

[V (τ)]i,j,k =
1

6
.

Now let us consider the case when i, j, k indices are different. We have six
variants. Let us consider each one separately:

Case 1. If i < j < k, then

[V1(τ)]i,j,k = [U (τ, αAi) U (τ, αAj) U (τ, Ak) U (τ, αAj) U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAk) U (τ, αAj) U (τ, Ai) U (τ, αAj) U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2.

So we have

[V (τ)]i,j,k =
1

2

(
α2 + α2

)
=

1

6
.

Case 2. If i < k < j, then

[V1(τ)]i,j,k = [U (τ, αAi) U (τ, αAk) U (τ, Aj) U (τ, αAk) U (τ, αAi)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα

and

[V2(τ)]i,j,k = [U (τ, αAj) U (τ, αAk) U (τ, Ai) U (τ, αAk) U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 3. If j < i < k, then

[V1(τ)]i,j,k = [U (τ, αAj) U (τ, αAi) U (τ, Ak) U (τ, αAi) U (τ, αAj)]i,j,k = 0

and

[V2(τ)]i,j,k = [U (τ, αAk) U (τ, αAi) U (τ, Aj) U (τ, αAi) U (τ, αAk)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.
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So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 4. If j < k < i, then

[V1(τ)]i,j,k = [U (τ, αAj) U (τ, αAk) U (τ, Ai) U (τ, αAk) U (τ, αAj)]i,j,k = 0

and

[V2(τ)]i,j,k = [U (τ, αAi) U (τ, αAk) U (τ, Aj) U (τ, αAk) U (τ, αAi)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 5. If k < i < j, then

[V1(τ)]i,j,k = [U (τ, αAk) U (τ, αAi) U (τ, Aj) U (τ, αAi) U (τ, αAk)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα

and

[V2(τ)]i,j,k = [U (τ, αAj) U (τ, αAi) U (τ, Ak) U (τ, αAi) U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 6. If k < j < i, then

[V1(τ)]i,j,k = [U (τ, αAk) U (τ, αAj) U (τ, Ai) U (τ, αAj) U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAi) U (τ, αAj) U (τ, Ak) U (τ, αAj) U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2.

So we have

[V (τ)]i,j,k =
1

2

(
α2 + α2

)
=

1

6
.

Finally, for any triple (i, j, k) we have:

[V (τ)]i,j,k =
1

6
.

Inserting in (3.7) the obtained coefficients, we will get:
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V (τ) = I − τ

m∑
i=1

Ai +
1

2
τ 2

m∑
i,j=1

AiAj − 1

6
τ 3

m∑

i,j,k=1

AiAjAk + R
(m)
4 (τ)

= I − τ

m∑
i=1

Ai +
1

2
τ 2

(
m∑

i=1

Ai

)2

− 1

6
τ 3

(
m∑

i=1

Ai

)3

+ R
(m)
4 (τ)

= I − τA +
1

2
τ 2A− 1

6
τ 3A3 + R

(m)
4 (τ) . (3.9)

According to the formula (1.7) we have:

U (τ, A) = I − τA +
1

2
τ 2A− 1

6
τ 3A3 + R4 (τ, A) . (3.10)

According to the second inequality of the condition (b) of the Theorem
3.1 the following estimation is true for R4 (τ, A):

‖R4 (τ, A) ϕ‖ ≤ ceωττ 4
∥∥A4ϕ

∥∥ ≤ ceωττ 4 ‖ϕ‖A4 . (3.11)

According to the formulas (3.9) and (3.10) we have:

U (τ, A)− V (τ) = R4 (τ, A)−R
(m)
4 (τ) .

Hence using inequalities (3.8) and (3.11) we can get the following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 4 ‖ϕ‖A4 . (3.12)

According to the formulas (3.2) and (3.5) we have:

u(tk)− uk(tk) =
[
U(tk, A)− V k (τ)

]
ϕ =

[
Uk (τ, A)− V k (τ)

]
ϕ

=
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ.

Hence according to the inequalities (3.6) and (3.12) we can obtain the following
estimation:

‖u(tk)− uk(tk)‖ ≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ 4 ‖U ((i− 1) τ, A) ϕ‖A4

≤ ceω0tkτ 4

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A4

≤ ceω0tktkτ
3 sup

s∈[o,tk]

‖U (s, A) ϕ‖A4 . ¤

55



§4. Sequential type third order accuracy

decomposition scheme

Let us consider the problem (3.1). Let A = A1 +A2, where Ai (i = 1, 2)
are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tk−1, tk], we consider a se-
quence of the following problems:

dv
(1)
k (t)

dt
+

α

2
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(2)
k (t)

dt
+ αA2v

(2)
k (t) = 0, v

(2)
k (tk−1) = v

(1)
k (tk) ,

dv
(3)
k (t)

dt
+

1

2
A1v

(3)
k (t) = 0, v

(3)
k (tk−1) = v

(2)
k (tk) ,

dv
(4)
k (t)

dt
+ αA2v

(4)
k (t) = 0, v

(4)
k (tk−1) = v

(3)
k (tk) ,

dv
(5)
k (t)

dt
+

α

2
A1v

(5)
k (t) = 0, v

(5)
k (tk−1) = v

(4)
k (tk) ,

where α is a complex number with the positive real part, Re (α) > 0; u0(0) =
ϕ. Suppose that the operators (−Aj) , (−αAj) , (−αAj) , j = 1, 2 generate
strongly continuous semigroups.

uk(t), k = 1, 2, .., is defined on each interval [tk−1, tk] as follows:

uk(t) = v
(5)
k (t) . (4.1)

We declare function uk(t) as an approximated solution of problem (3.1) on
each interval [tk−1, tk].

Theorem 4.1. Let the conditions (a), (b) and (c) of Theorem 1.1 be
fulfilled. Then the following estimation holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
3 sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 ,

where c and ω0 are positive constants.
Proof. From formula (4.1) we obtain:

uk(tk) = V k (τ) ϕ, (4.2)

where

V (τ) = U
(
τ,

α

2
A1

)
U (τ, αA2) U

(
τ,

1

2
A1

)
U (τ, αA2) U

(
τ,

α

2
A1

)
.

Remark 4.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 1.1.
In this case, for the solving operator, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ eω1tk , (4.3)
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where ω1 is a positive constant.
We introduce the following notations for combinations (sum, product) of

semigroups. Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, 2). Let us decompose
every semigroup included in operator T (τ) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (−τAi),
(τ 2AiAj) and (−τ 3AiAjAk) (i, j, k = 1, 2) respectively by [T (τ)]i, [T (τ)]i,j and
[T (τ)]i,j,k.

If we decompose all the semigroups included in the operator V (τ) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

V (τ) = I − τ

2∑
i=1

[V (τ)]i Ai + τ 2

2∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

2∑

i,j,k=1

[V (τ)]i,j,k AiAjAk + R̃4 (τ) . (4.4)

According to the first inequality of the condition (b) of the Theorem, for

R̃4 (τ), the following estimation holds:
∥∥∥R̃4 (τ) ϕ

∥∥∥ ≤ ceω0ττ 4 ‖ϕ‖A4 , ϕ ∈ D
(
A4

)
, (4.5)

where c and ω0 are positive constants.
Let us calculate the coefficients [V (τ)]i corresponding to the first order

members in formula (4.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V (τ) , which are generated by the operators
(−γAi), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: i = 1 and i = 2. Let us consider the
case i = 1. We obviously have:

[V (τ)]1 = [U (τ, A1)]1 = 1. (4.6)

Analogously for i = 2 we have:

[V (τ)]2 = [U (τ, A2)]2 = 1. (4.7)

By combining formulas (4.6) and (4.7), we will obtain:

[V (τ)]i = 1, i = 1, 2. (4.8)

Let us calculate the coefficients [V (τ)]i,j (i, j = 1, 2) corresponding to the
second order members included in formula (4.4). On the whole we have two
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cases: (i, j) = (1, 1), (1, 2), (2, 1), (2, 2) . Let us consider the case (i, j) = (1, 1).
We obviously have:

[V (τ)]1,1 = [U (τ, A1)]1,1 =
1

2
. (4.9)

Analogously for (i, j) = (2, 2) we have:

[V (τ)]2,2 = [U (τ, A2)]2,2 =
1

2
. (4.10)

Let us consider the case (i, j) = (1, 2), we obviously have:

[V (τ)]1,2 =
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

=
α

2
α +

α

2
α + α

1

2
=

α (α + α) + α

2
=

1

2
. (4.11)

For (i, j) = (2, 1) we have:

[V (τ)]2,1 = [U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

+ [U (τ, αA2)]2

[
U

(
τ,

α

2
A1

)]

1

+ [U (τ, αA2)]2

[
U

(
τ,

α

2
A1

)]

1

= α
1

2
+ α

α

2
+ α

α

2
=

α + α (α + α)

2
=

1

2
. (4.12)

Here we used the identity α + α = 1.
By combining formulas (4.9) - (4.12), we will obtain:

[V (τ)]i,j =
1

2
, i, j = 1, 2. (4.13)

Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, 2) corresponding to
the third order members in formula ( 4.4). On the whole we have eight cases:
(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2).
Let us consider the case (i, j, k) = (1, 1, 1). We obviously have:

[V (τ)]1,1,1 = [U (τ, A1)]1,1,1 =
1

6
. (4.14)

Analogously for (i, j) = (2, 2, 2) we have:

[V (τ)]2,2,2 = [U (τ, A2)]2,2,2 =
1

6
. (4.15)
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Thus Let us calculate the case (i, j, k) = (1, 1, 2). We have:

[V (τ)]1,1,2 =
[
U

(
τ,

α

2
A1

)]
1,1

[U (τ, αA2)]2

+
[
U

(
τ,

α

2
A1

)]
1,1

[U (τ, αA2)]2

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1,1

[U (τ, αA2)]2

=
α2

8
α +

α2

8
α +

α

2

1

2
α +

1

8
α

=
α2 (α + α) + 2αα + α

8
=

α2 + αα + αα + α

8

=
α (α + α) + αα + α

8
=

(α + α) + αα

8
=

1

6
. (4.16)

For (i, j, k) = (2, 2, 1) we have:

[V (τ)]2,2,1 = [U (τ, αA2)]2,2

[
U

(
τ,

1

2
A1

)]

1

+ [U (τ, αA2)]2,2

[
U

(
τ,

α

2
A1

)]

1

+ [U (τ, αA2)]2 [U (τ, αA2)]2

[
U

(
τ,

α

2
A1

)]

1

+ [U (τ, αA1)]2,2

[
U

(
τ,

α

2
A2

)]

1

=
α2

2

1

2
+

α2

2

α

2
+ αα

α

2
+

α2

2

α

2

=
α2 + α (α2 + α2) + 2αα2

4

=
α (1− α) + 1

3
α + 2

3
α

4
=

α− 1
3

+ α

4
=

1

6
. (4.17)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.
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Thus Let us calculate the case (i, j, k) = (1, 2, 2). We have:

[V (τ)]1,2,2 =
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2,2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2,2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2 [U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2,2

=
α

2

α2

2
+

α

2

α2

2
+

α

2
αα +

1

2

α2

2

=
α (α2 + α2) + 2α2α + α2

4

=
1
3
α + 2

3
α + α (1− α)

4
=

(α + α)− αα

4
=

1

6
. (4.18)

For (i, j, k) = (2, 1, 1) we have:

[V (τ)]2,1,1 = [U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1,1

+ [U (τ, αA2)]2

[
U

(
τ,

α

2
A1

)]

1,1

+ [U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A1

)]

1

+ [U (τ, αA1)]2

[
U

(
τ,

α

2
A2

)]

1,1

= α
1

8
+ α

α2

8
+ α

1

2

α

2
+ α

α2

8

=
α + α2 (α + α) + 2αα

8

=
α + α (α + α) + αα

4
=

α + α− 1
3

4
=

1

6
. (4.19)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.
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Thus Let us calculate the case (i, j, k) = (1, 2, 1). We have:

[V (τ)]1,2,1 =
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2

[
U

(
τ,

α

2
A2

)]

1

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA2)]2

[
U

(
τ,

α

2
A2

)]

1

+

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

[
U

(
τ,

α

2
A2

)]

1

=
α

2
α

1

2
+

α

2
α

α

2
+

α

2
α

α

2
+

1

2
α

α

2

=
(α2 + α2) + αα (α + α)

4
=

1

6
. (4.20)

For (i, j, k) = (2, 1, 2) we have:

[V (τ)]2,1,2 = [U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

= α
1

2
α =

1

6
. (4.21)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.

By combining formulas (4.14) - (4.21), we will obtain:

[V (τ)]i,j,k =
1

6
, i, j, k = 1, 2. (4.22)

From equality (4.4), taking into account formulas (4.8), (4.13) and (4.22),
we will obtain:

V (τ) = I − τ

2∑
i=1

Ai +
1

2
τ 2

2∑
i,j=1

AiAj − 1

6
τ 3

2∑

i,j,k=1

AiAjAk + R̃4 (τ)

= I − τ

2∑
i=1

Ai +
1

2
τ 2

(
2∑

i=1

Ai

)2

− 1

6
τ 3

(
2∑

i=1

Ai

)3

+ R̃4 (τ)

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + R4 (τ) . (4.23)

According to formula (1.7) we have:

U (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + R4 (τ, A) , (4.24)

where R4 (τ, A) is defined form (1.8).
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According to condition (b) of the second inequality of the Theorem, for
R4 (τ, A), the following estimation holds:

‖R4 (τ, A) ϕ‖ ≤ ceωττ 4
∥∥A4ϕ

∥∥ ≤ ceωττ 4 ‖ϕ‖A4 . (4.25)

According to equalities (4.23) and (4.24):

U (τ, A)− V (τ) = R4 (τ, A)− R̃4 (τ) .

From here, taking into account (4.5) and (4.25), we will obtain the following
estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 4 ‖ϕ‖A4 . (4.26)

From equalities (3.2) and (4.2), taking into account inequalities (4.3) and
(4.26), we will obtain:

‖u(tk)− uk(tk)‖ =
∥∥[

U(tk, A)− V k (τ)
]
ϕ
∥∥ =

∥∥[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥

=

∥∥∥∥∥

[
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U ((i− 1) τ, A)

]
ϕ

∥∥∥∥∥

≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ 4 ‖U ((i− 1) τ, A) ϕ‖A4

≤ ceω0tkτ 4

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A4

≤ kceω0tkτ 4 sup
s∈[o,tk]

‖U (s, A) ϕ‖A4

≤ ceω0tktkτ
3 sup

s∈[o,tk]

‖U (s, A) ϕ‖A4 . ¤
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§5. Sequential type third order accuracy

decomposition scheme for

multidimensional evolution problem

Let us consider the problem (3.1). Let A = A1 + ... + Am, where Ai (i =
1, .., m) are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tk−1, tk], we consider a se-
quence of the following problems:

dv
(1)
k (t)

dt
+

α

2
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(i)
k (t)

dt
+

α

2
Aiv

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 2, ..., m− 1,

dv
(m)
k (t)

dt
+ αAmv

(m)
k (t) = 0, v

(m)
k (tk−1) = v

(m−1)
k (tk) ,

dv
(2m−i)
k (t)

dt
+

α

2
A2v

(2m−i)
k (t) = 0, v

(2m−i)
k (tk−1) = v

(2m−i−1)
k (tk) ,

i = m− 1, ..., 2,

dv
(2m−1)
k (t)

dt
+

1

2
A1v

(2m−1)
k (t) = 0, v

(2m−1)
k (tk−1) = v

(2m−2)
k (tk) ,

dv
(2m−2+i)
k (t)

dt
+

α

2
Aiv

(2m−2+i)
k (t) = 0, v

(2m−2+i)
k (tk−1) = v

(2m−3+i)
k (tk) ,

i = 2, ..., m− 1,

dv
(3m−2)
k (t)

dt
+ αAmv

(3m−2)
k (t) = 0, v

(3m−2)
k (tk−1) = v

(3m−3)
k (tk) ,

dv
(4m−2−i)
k (t)

dt
+

α

2
Aiv

(4m−2−i)
k (t) = 0, v

(4m−2−i)
k (tk−1) = v

(4m−3−i)
k (tk) ,

i = m− 1, ..., 1.

where α is a complex number with the positive real part, Re (α) > 0; u0(0) = ϕ.
Suppose that the operators (−Aj) , (−αAj) , (−αAj) , j = 1, ...,m generate
strongly continuous semigroups.

uk(t), k = 1, 2, .., is defined on each interval [tk−1, tk] as follows:

uk(t) = v
(4m−3)
k (t) . (5.1)

We declare function uk(t) as an approximated solution of problem (3.1) on
each interval [tk−1, tk].

Theorem 5.1. Let the conditions of Theorem 3.1 be fulfilled. Then the
following estimation holds:
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‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
3 sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 ,

where c and ω0 are positive constants.
Proof. From formula (5.1) we obtain:

uk(tk) = V k (τ) ϕ, (5.2)

where

V (τ) = U
(
τ,

α

2
A1

)
...U

(
τ,

α

2
Am−1

)
U (τ, αAm)

×U
(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)

×U

(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U (τ, αAm)

×U

(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A1

)
.

Remark 5.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 3.1.
In this case, for the solving operator, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ eω1tk , (5.3)

where ω1 is a positive constant.
We introduce the following notations for combinations (sum, product) of

semigroups. Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, ...,m). Let us decompose
every semigroup included in operator T (τ) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (−τAi),
(τ 2AiAj) and (−τ 3AiAjAk) (i, j, k = 1, ..., m) respectively by [T (τ)]i, [T (τ)]i,j
and [T (τ)]i,j,k.

If we decompose all the semigroups included in the operator V (τ) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

V (τ) = I − τ

m∑
i=1

[V (τ)]i Ai + τ 2

m∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

m∑

i,j,k=1

[V (τ)]i,j,k AiAjAk + R̃4 (τ) . (5.4)

According to the first inequality of the condition (b) of the Theorem, for

R̃4 (τ), the following estimation holds:
∥∥∥R̃4 (τ) ϕ

∥∥∥ ≤ ceω0ττ 4 ‖ϕ‖A4 , ϕ ∈ D
(
A4

)
, (5.5)
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where c and ω0 are positive constants.
Let us compute coefficients [V (τ)]i. Obviously, we get the corresponding

members of these coefficients from decomposition of only those multipliers
(semigroups) of the operator V (τ) which are generated by operators (−γAi).
From decomposition of other semigroups only first addends (identical opera-
tors) will be used. So we have:

[V (τ)]i = 1, i = 1, ..., m.

Let us compute coefficients [V (τ)]i,j. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V1 (τ) which are generated by operators
(−γAi)and (−γAj) . From decomposition of other semigroups only first ad-
dends (identical operators) will be used. So we have:

[V (τ)]i,j =

[
U

(
τ,

α

2
Ai1

)
U (τ, αAi2) U

(
τ,

1

2
Ai1

)
U (τ, αAi2) U

(
τ,

α

2
Ai1

)]

i,j

,

where (i1, i2) is a pair of i and j indices, arranged in an increasing order.
According to the Theorem 4.1 we have:

[
U

(
τ,

α

2
Ai1

)
U (τ, αAi2) U

(
τ,

1

2
Ai1

)
U (τ, αAi2) U

(
τ,

α

2
Ai1

)]

i,j

=
1

2
.

So we have

[V (τ)]i,j =
1

2
, i, j = 1, 2, ..., m.

Let us compute coefficients [V (τ)]i,j,k. Obviously, we get the correspond-
ing members of these coefficients from decomposition of only those multi-
pliers (semigroups) of the operator V (τ), which are generated by operators
(−γAi) , (−γAj) and (−γAk). From decomposition of other semigroups only
first addends (identical operators) will be used. So we have:

[V (τ)]i,j,k = U
(
τ,

α

2
Ai1

)
U

(
τ,

α

2
Ai2

)
U (τ, αAi3) U

(
τ,

α

2
Ai2

)
U

(
τ,

1

2
Ai1

)

U

(
τ,

α

2
Ai2

)
U (τ, αAi3) U

(
τ,

α

2
Ai2

)
U

(
τ,

α

2
Ai1

)
,

where (i1, i2, i3) is a triple of i, j and k indices, arranged in an increasing order.
Firstly let us consider the case when i = j = k,we have:

[V (τ)]i,j,k = [U (τ, Ai)]i,i,i =
1

6
.

Now let us consider the case when only two of i, j, k indices are different.
In this case we have:
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[V (τ)]i,j,k =

[
U

(
τ,

α

2
Ai1

)
U (τ, αAi2) U

(
τ,

1

2
Ai1

)
U (τ, αAi2) U

(
τ,

α

2
Ai1

)]

i,j,k

,

where (i1, i2) is pair of different indices of i, j and k triple, arranged in an
increasing order. According to the Theorem 4.1 we have:

[
U

(
τ,

α

2
Ai1

)
U (τ, αAi2) U

(
τ,

1

2
Ai1

)
U (τ, αAi2) U

(
τ,

α

2
Ai1

)]

i,j,k

=
1

6
.

So we have

[V (τ)]i,j,k =
1

2
, i, j, k = 1, 2, ..., m.

Now let us consider the case when i, j, k indices are different. We have six
variants. Let us consider each one separately:

Case 1. If i < j < k, then

[V1(τ)]i,j,k = [U (τ, αAi) U (τ, αAj) U (τ, Ak) U (τ, αAj) U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAk) U (τ, αAj) U (τ, Ai) U (τ, αAj) U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2.

So we have

[V (τ)]i,j,k =
1

2

(
α2 + α2

)
=

1

6
.

Case 2. If i < k < j, then

[V1(τ)]i,j,k = [U (τ, αAi) U (τ, αAk) U (τ, Aj) U (τ, αAk) U (τ, αAi)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα

and

[V2(τ)]i,j,k = [U (τ, αAj) U (τ, αAk) U (τ, Ai) U (τ, αAk) U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 3. If j < i < k, then

[V1(τ)]i,j,k = [U (τ, αAj) U (τ, αAi) U (τ, Ak) U (τ, αAi) U (τ, αAj)]i,j,k = 0
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and

[V2(τ)]i,j,k = [U (τ, αAk) U (τ, αAi) U (τ, Aj) U (τ, αAi) U (τ, αAk)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 4. If j < k < i, then

[V1(τ)]i,j,k = [U (τ, αAj) U (τ, αAk) U (τ, Ai) U (τ, αAk) U (τ, αAj)]i,j,k = 0

and

[V2(τ)]i,j,k = [U (τ, αAi) U (τ, αAk) U (τ, Aj) U (τ, αAk) U (τ, αAi)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 5. If k < i < j, then

[V1(τ)]i,j,k = [U (τ, αAk) U (τ, αAi) U (τ, Aj) U (τ, αAi) U (τ, αAk)]i,j,k
= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα

and

[V2(τ)]i,j,k = [U (τ, αAj) U (τ, αAi) U (τ, Ak) U (τ, αAi) U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1

2
αα =

1

6
.

Case 6. If k < j < i, then

[V1(τ)]i,j,k = [U (τ, αAk) U (τ, αAj) U (τ, Ai) U (τ, αAj) U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAi) U (τ, αAj) U (τ, Ak) U (τ, αAj) U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2.

So we have

[V (τ)]i,j,k =
1

2

(
α2 + α2

)
=

1

6
.

Finally, for any triple (i, j, k) we have:

[V (τ)]i,j,k =
1

6
.
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Inserting in (5.4) the obtained coefficients, we will get:

V (τ) = I − τ

m∑
i=1

Ai +
1

2
τ 2

m∑
i,j=1

AiAj − 1

6
τ 3

m∑

i,j,k=1

AiAjAk + R
(m)
4 (τ)

= I − τ

m∑
i=1

Ai +
1

2
τ 2

(
m∑

i=1

Ai

)2

− 1

6
τ 3

(
m∑

i=1

Ai

)3

+ R
(m)
4 (τ)

= I − τA +
1

2
τ 2A− 1

6
τ 3A3 + R

(m)
4 (τ) . (5.6)

According to the second inequality of the condition (b) of the Theorem
3.1 the following estimation is true for R4 (τ, A):

‖R4 (τ, A) ϕ‖ ≤ ceωττ 4
∥∥A4ϕ

∥∥ ≤ ceωττ 4 ‖ϕ‖A4 . (5.7)

According to the formulas (1.7) and (5.6) we have:

U (τ, A)− V (τ) = R4 (τ, A)−R
(m)
4 (τ) .

Hence using inequalities (5.7) and (5.5) we can get the following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 4 ‖ϕ‖A4 . (5.8)

Analogously of two-dimensional case, from equalities (3.2) and (5.1), taking
into account inequalities (4.3) and (5.8), we will obtain sought estimation. ¤
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Chapter II

The Fourth Order Accuracy Decomposition
Schemes

§6. The fourth order accuracy decomposition

scheme for evolution problem

1. Differential splitting and error estimation of approximate
solution

Let us consider the problem (3.1). Let A = A1 +A2, where Ai (i = 1, 2)
are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tk−1, tk], we consider a se-
quence of the following problems:

dv
(1)
k (t)

dt
+

α

2
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(2)
k (t)

dt
+

1

2
A2v

(2)
k (t) = 0, v

(2)
k (tk−1) = v

(1)
k (tk) ,

dv
(3)
k (t)

dt
+ αA1v

(3)
k (t) = 0, v

(3)
k (tk−1) = v

(2)
k (tk) ,

dv
(4)
k (t)

dt
+

1

2
A2v

(4)
k (t) = 0, v

(4)
k (tk−1) = v

(3)
k (tk) ,

dv
(5)
k (t)

dt
+

α

2
A1v

(5)
k (t) = 0, v

(5)
k (tk−1) = v

(4)
k (tk) ,

dw
(1)
k (t)

dt
+

α

2
A2w

(1)
k (t) = 0, w

(1)
k (tk−1) = uk−1 (tk−1) ,

dw
(2)
k (t)

dt
+

1

2
A1w

(2)
k (t) = 0, w

(2)
k (tk−1) = w

(1)
k (tk) ,

dw
(3)
k (t)

dt
+ αA2w

(3)
k (t) = 0, w

(3)
k (tk−1) = w

(2)
k (tk) ,

dw
(4)
k (t)

dt
+

1

2
A1w

(4)
k (t) = 0, w

(4)
k (tk−1) = w

(3)
k (tk) ,

dw
(5)
k (t)

dt
+

α

2
A2w

(5)
k (t) = 0, w

(5)
k (tk−1) = w

(4)
k (tk) ,
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where α is a complex number with the positive real part, Re (α) > 0; u0(0) =
ϕ. Suppose that the operators (−Aj) , (−αAj) , (−αAj) , j = 1, 2 generate
strongly continuous semigroups.

uk(t), k = 1, 2, .., is defined on each interval [tk−1, tk] as follows:

uk(t) =
1

2
[v

(5)
k (t) + w

(5)
k (t)]. (6.1)

We declare function uk(t) as an approximated solution of problem (3.1) on
each interval [tk−1, tk].

Theorem 6.1. Let the conditions (a) and (b) of Theorem 1.1 be fulfilled
and U (s, A) ϕ ∈ D (A5) for each fixed s ≥ 0.Then the following estimation
holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
4 sup

s∈[0,tk]

‖U (s, A) ϕ‖A5 ,

where c and ω0 are positive constants.
Proof. From formula (6.1) we obtain:

uk(tk) = V k (τ) ϕ, (6.2)

where

V (τ) =
1

2
[V1 (τ) + V2 (τ)] ,

and where

V1 (τ) = U
(
τ,

α

2
A1

)
U

(
τ,

1

2
A2

)
U (τ, αA1) U

(
τ,

1

2
A2

)
U

(
τ,

α

2
A1

)
,

V2 (τ) = U
(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)
U (τ, αA2) U

(
τ,

1

2
A1

)
U

(
τ,

α

2
A2

)
.

Remark 6.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem1.1.
In this case, for the solving operator, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ eω1tk , (6.3)

where ω1 is a positive constant.
We introduce the following notations for combinations (sum, product) of

semigroups. Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, 2). Let us decompose
every semigroup included in operator T (τ) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (−τAi),
(τ 2AiAj), (−τ 3AiAjAk) and (τ 4AiAjAkAl) (i, j, k, l = 1, 2) respectively by [T (τ)]i,
[T (τ)]i,j, [T (τ)]i,j,k and [T (τ)]i,j,k,l.
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If we decompose all the semigroups included in the operator V (τ) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

V (τ) = I − τ

2∑
i=1

[V (τ)]i Ai + τ 2

2∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

2∑

i,j,k=1

[V (τ)]i,j,k AiAjAk

+τ 4

2∑

i,j,k,l=1

[V (τ)]i,j,k,l AiAjAkAl + R̃5 (τ) . (6.4)

According to the first inequality of the condition (b) of the Theorem, for

R̃5 (τ), the following estimation holds:
∥∥∥R̃5 (τ) ϕ

∥∥∥ ≤ ceω0ττ 5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
, (6.5)

where c and ω0 are positive constants.
It is obvious that, for the coefficients in formula (6.4), we have:

[V (τ)]i =
1

2
([V1(τ)]i + [V2(τ)]i) , i = 1, 2,

[V (τ)]i,j =
1

2

(
[V1(τ)]i,j + [V2(τ)]i,j

)
, i, j = 1, 2,

[V (τ)]i,j,k =
1

2

(
[V1(τ)]i,j,k + [V2(τ)]i,j,k

)
, i, j, k = 1, 2,

[V (τ)]i,j,k,l =
1

2

(
[V1(τ)]i,j,k,l + [V2(τ)]i,j,k,l

)
, i, j, k, l = 1, 2.

Let us make two remarks which will simplify a calculation of coefficients in
decomposition (6.4):

Remark 6.3. Operator V (τ) will not change if we replace with each other
the operators A1 and A2 in its expression, as in this case V1 (τ) will coincide
with V2 (τ), and V2 (τ) - with V1 (τ). Therefore we have:

[V (τ)]i = [V (τ)]3−i , i = 1, 2;

[V (τ)]i,j = [V (τ)]3−i,3−j , i, j = 1, 2;

[V (τ)]i,j,k = [V (τ)]3−i,3−j,3−k , i, j, k = 1, 2;

[V (τ)]i,j,k,l = [V (τ)]3−i,3−j,3−k,3−l , i, j, k, l = 1, 2.

Remark 6.4. Operators V1 (τ) and V2 (τ) are symmetrical in the sense
that in their expressions the factors (semigroups) equally remote from the ends
coincide with each other. Therefore we have:

[V (τ)]i,j = [V (τ)]j,i , i, j = 1, 2;

[V (τ)]i,j,k = [V (τ)]k,j,i , i, j, k = 1, 2;

[V (τ)]i,j,k,l = [V (τ)]l,k,j,i , i, j, k, l = 1, 2.
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Let us calculate the coefficients [V (τ)]i corresponding to the first order
members in formula (6.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V (τ) , which are generated by the operators
(−γAi), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: i = 1 and i = 2. Let us consider the
case i = 1. We obviously have:

[V1(τ)]1 = [U (τ, A1)]1 = 1

and
[V2(τ)]1 = [U (τ, A1)]1 = 1.

Thus

[V (τ)]1 =
1

2
([V1(τ)]1 + [V2(τ)]1) = 1.

According to Remark 6.3:

[V (τ)]2 = [V (τ)]1 = 1. (6.6)

Let us calculate the coefficients [V (τ)]i,j (i, j = 1, 2) corresponding to the
second order members included in formula (6.4). On the whole we have two
cases: (i, j) = (1, 1), (1, 2), (2, 1), (2, 2) . Let us consider the case (i, j) = (1, 1).
We obviously have:

[V1(τ)]1,1 = [U (τ, A1)]1,1 =
1

2

and

[V2(τ)]1,1 = [U (τ, A1)]1,1 =
1

2
.

Therefore

[V (τ)]1,1 =
1

2

(
[V1(τ)]1,1 + [V2(τ)]1,1

)
=

1

2
.

According to Remark 6.3:

[V (τ)]2,2 = [V (τ)]1,1 =
1

2
. (6.7)

Let us consider the case (i, j) = (1, 2), we obviously have:

[V1(τ)]1,2 =
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2
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+ [U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

=
α

2

1

2
+

α

2

1

2
+ α

1

2
=

1

2

and

[V2(τ)]1,2 =

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

= α
1

2
+

α

2

1

2
+

α

2

1

2
=

1

2
.

Thus

[V (τ)]1,2 =
1

2

(
[V1(τ)]1,2 + [V2(τ)]1,2

)
=

1

2
.

According to Remark 6.3:

[V (τ)]2,1 = [V (τ)]1,2 =
1

2
. (6.8)

Here we used the identity α + α = 1.
By combining formulas (6.7) and (6.8), we will obtain:

[V (τ)]i,j =
1

2
, i, j = 1, 2. (6.9)

Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, 2) corresponding to
the third order members in formula (6.4). On the whole we have eight cases:
(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2).
Let us consider the case (i, j, k) = (1, 1, 1). We obviously have:

[V1(τ)]1,1,1 = [U (τ, A1)]1,1,1 =
1

6

and

[V2(τ)]1,1,1 = [U (τ, A1)]1,1,1 =
1

6
.

Thus:

[V (τ)]1,1,1 =
1

2

(
[V1(τ)]1,1,1 + [V2(τ)]1,1,1

)
=

1

6
.

According to Remark 6.3:

[V (τ)]2,2,2 = [V (τ)]1,1,1 =
1

6
. (6.10)
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Let us calculate the case (i, j, k) = (1, 1, 2). We obviously have:

[V1(τ)]1,1,2 =
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

+ [U (τ, αA1)]1,1

[
U

(
τ,

1

2
A2

)]

2

=
1

2

α2

8
+

1

2

α2

8
+

α

2
α

1

2
+

α2

2

1

2
=

1 + α2

8

and

[V2(τ)]1,1,2 =

[
U

(
τ,

1

2
A1

)]

1,1

[U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]
2

=
1

8
α +

1

8

α

2
+

1

2

1

2

α

2
+

1

8

α

2
=

1 + α

8
.

Thus

[V (τ)]1,1,2 =
1

2

(
[V1(τ)]1,1,2 + [V2(τ)]1,1,2

)
=

2 + α2 + α

16
=

1

6
,

Here we used the identities α + α = 1, αα = 1
3

and α + α2 = 2
3
.

According to Remark 6.3 and Remark 6.4:

[V (τ)]1,1,2 = [V (τ)]2,1,1 = [V (τ)]2,2,1 = [V (τ)]1,2,2 =
1

6
. (6.11)
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Let us consider the case (i, j, k) = (1, 2, 1). We obviously have:

[V1(τ)]1,2,1 =
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

[U (τ, αA1)]1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+ [U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

=
α

2

1

2
α +

α

2

1

2

α

2
+

α

2

1

2

α

2
+ α

1

2

α

2
=

1

6
+

α2

4

and

[V2(τ)]1,2,1 =

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

=
α

4
.

Thus

[V (τ)]1,2,1 =
1

2

(
[V1(τ)]1,1,2 + [V2(τ)]1,1,2

)
=

1

12
+

α2 + α

8
=

1

6
.

Here we used the identity α2 + α = 2
3
.

According to Remark 6.3:

[V (τ)]2,1,2 = [V (τ)]1,2,1 =
1

6
. (6.12)

By combining formulas (6.10), (6.11) and (6.12), we will obtain:

[V (τ)]i,j,k =
1

6
, i, j, k = 1, 2. (6.13)

Let us calculate the coefficients [V (τ)]i,,j,k,l (i, j, k, l = 1, 2) corresponding to
the fourth order members in formula (6.4). On the whole we have sixteen cases:
(i, j, k, l) = (1, 1, 1, 1), (1, 1, 1, 2), ..., (2, 2, 2, 1), (2, 2, 2, 2). Let us consider the
case (i, j, k, l) = (1, 1, 1, 1). We obviously have:

[V1(τ)]1,1,1,1 = [U (τ, A1)]1,1,1,1 =
1

24

and

[V2(τ)]1,1,1,1 = [U (τ, A1)]1,1,1,1 =
1

24
.

Thus:

[V (τ)]1,1,1,1 =
1

2

(
[V1(τ)]1,1,1,1 + [V2(τ)]1,1,1,1

)
=

1

24
.
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According to Remark 6.3:

[V (τ)]2,2,2,2 = [V (τ)]1,1,1,1 =
1

24
. (6.14)

Let us consider the case (i, j, k, l) = (1, 1, 1, 2), we obviously have:

[V1(τ)]1,1,1,2 =
[
U

(
τ,

α

2
A1

)]
1,1,1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1,1,1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1,1

[U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA1)]1,1

[
U

(
τ,

1

2
A2

)]

2

+ [U (τ, αA1)]1,1,1

[
U

(
τ,

1

2
A2

)]

2

=
α3

48

1

2
+

α3

48

1

2
+

α2

8
α

1

2
+

α

2

α2

2

1

2
+

α3

6

1

2

=
α3 + α + 4α3 + 2α

48
=

1 + 3α3 + α

48

and

[V2(τ)]1,1,1,2 =

[
U

(
τ,

1

2
A1

)]

1,1,1

[U (τ, αA2)]2

+

[
U

(
τ,

1

2
A1

)]

1,1,1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1,1,1

[
U

(
τ,

α

2
A2

)]
2

=
1

48
α +

1

48

α

2
+

1

8

1

2

α

2
+

1

2

1

8

α

2
+

1

48

α

2
=

1 + 3α

48
.

Thus

[V (τ)]1,1,1,2 =
1

2

(
[V1(τ)]1,1,1,2 + [V2(τ)]1,1,1,2

)

=
2 + 3 (α3 + α) + α

96
=

1

24
.

Here we used the identities 3 (α3 + α) = 2− α, α3 + α3 = 0.

76



According to Remark 6.3 and Remark 6.4:

[V (τ)]1,1,1,2 = [V (τ)]2,1,1,1 = [V (τ)]1,2,2,2 = [V (τ)]2,2,2,1 =
1

24
. (6.15)

Let us consider the case (i, j, k, l) = (1, 1, 2, 1). We obviously have:

[V1(τ)]1,1,2,1 =
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

[U (τ, αA1)]1

+
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+ [U (τ, αA1)]1,1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

=
α2

8

1

2
α +

α2

8

1

2

α

2
+

α2

8

1

2

α

2
+

α

2
α

1

2

α

2
+

α2

2

1

2

α

2

=
3α3 + 3α + 2α

48
=

3α3 + α + 2

48

and

[V2(τ)]1,1,2,1 =

[
U

(
τ,

1

2
A1

)]

1,1

[U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

=
1

8
α

1

2
=

1

16
α.

Thus

[V (τ)]1,1,2,1 =
1

2

(
[V1(τ)]1,1,2,1 + [V2(τ)]1,1,2,1

)

=
3α3 + α + 2 + 3α

96
=

3 (α3 + α) + α + 2

96
=

1

24
.

Here we used the identity α3 + α3 = 0.
According to Remark 6.3 and Remark 6.4:

[V (τ)]1,1,2,1 = [V (τ)]2,2,1,2 = [V (τ)]1,2,1,1 = [V (τ)]2,1,2,2 =
1

24
. (6.16)
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Let us consider the case (i, j, k, l) = (1, 1, 2, 2). We obviously have:

[V1(τ)]1,1,2,2 =
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2,2

+
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

1

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1,1

[
U

(
τ,

1

2
A2

)]

2,2

+
[
U

(
τ,

α

2
A1

)]
1
[U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2,2

+ [U (τ, αA1)]1,1

[
U

(
τ,

1

2
A2

)]

2,2

=
α2

8

1

8
+

α2

8

1

2

1

2
+

α2

8

1

8
+

α

2
α

1

8
+

α2

2

1

8

=
α2 + αα + α2

16
=

1

24

and

[V2(τ)]1,1,2,2 =

[
U

(
τ,

1

2
A1

)]

1,1

[U (τ, αA2)]2,2

[
U

(
τ,

1

2
A1

)]

1,1

× [U (τ, αA2)]2

[
U

(
τ,

α

2
A2

)]
2

+

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]
2,2

+

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2,2

+

[
U

(
τ,

1

2
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]
2,2

=
1

8

α2

2
+

1

8
α

α

2
+

1

8

α2

8
+

1

2

1

2

α2

8
+

1

8

α2

8

=
α2 + αα + α2

16
=

1

24
.

Thus

[V (τ)]1,1,2,2 =
1

2

(
[V1(τ)]1,1,2,2 + [V2(τ)]1,1,2,2

)
=

1

24
.

According to Remark 6.3:

[V (τ)]1,1,2,2 = [V (τ)]2,2,1,1 =
1

24
. (6.17)
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Let us consider the case (i, j, k, l) = (1, 2, 2, 1). We obviously have:

[V1(τ)]1,2,2,1 =
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2,2

[U (τ, αA1)]1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2,2

[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

×
[
U

(
τ,

1

2
A2

)]

2

[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2,2

[
U

(
τ,

α

2
A1

)]
1

+ [U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2,2

[
U

(
τ,

α

2
A1

)]
1

=
α

2

1

8
α +

α

2

1

8

α

2
+

α

2

1

2

1

2

α

2
+

α

2

1

8

α

2
+ α

1

8

α

2

=
α2 + αα

8

and

[V2(τ)]1,2,2,1 =

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2,2

[
U

(
τ,

1

2
A1

)]

1

=
1

2

α2

2

1

2
=

α2

8
.

Thus

[V (τ)]1,2,2,1 =
1

2

(
[V1(τ)]1,2,2,1 + [V2(τ)]1,2,2,1

)

=
α2 + αα + α2

16
=

1

24
.

According to Remark 6.3:

[V (τ)]1,2,2,1 = [V (τ)]2,1,1,2 =
1

24
. (6.18)

Let us consider the case (i, j, k, l) = (1, 2, 1, 2). We obviously have:

[V1(τ)]1,2,1,2 =
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

2
A2

)]

2

[U (τ, αA1)]1

[
U

(
τ,

1

2
A2

)]

2

=
α

2

1

2
α

1

2
=

1

24
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and

[V2(τ)]1,2,1,2 =

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

[
U

(
τ,

α

2
A1

)]
2

=
1

2
α

1

2

α

2
=

1

24
.

Thus

[V (τ)]1,2,1,2 =
1

2

(
[V1(τ)]1,2,1,2 + [V2(τ)]1,2,1,2

)
=

1

24
,

According to Remark 6.3:

[V (τ)]1,2,1,2 = [V (τ)]2,1,2,1 =
1

24
. (6.19)

By combining formulas (6.14)-(6.19), we will obtain:

[V (τ)]i,j,k,l =
1

24
, i, j, k, l = 1, 2. (6.20)

From equality (6.4), taking into account formulas (6.6), (6.9), (6.13) and
(6.20), we will obtain:

V (τ) = I − τ

2∑
i=1

Ai +
1

2
τ 2

2∑
i,j=1

AiAj − 1

6
τ 3

2∑

i,j,k=1

AiAjAk

+
1

24
τ 4

2∑

i,j,k,l=1

AiAjAkAl + R̃5 (τ)

= I − τ

2∑
i=1

Ai +
1

2
τ 2

(
2∑

i=1

Ai

)2

− 1

6
τ 3

(
2∑

i=1

Ai

)3

+
1

24
τ 4

(
2∑

i=1

Ai

)4

+ R̃5 (τ)

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R̃5 (τ) . (6.21)

According to formula (1.7):

U (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R5 (τ, A) . (6.22)

According to condition (b) of the second inequality of the Theorem, for
R5 (τ, A), the following estimation holds:

‖R5 (τ, A) ϕ‖ ≤ ceωττ 5
∥∥A5ϕ

∥∥ ≤ ceωττ 5 ‖ϕ‖A5 . (6.23)

According to equalities (6.21) and (6.22):

U (τ, A)− V (τ) = R5 (τ, A)− R̃5 (τ) .
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From here, taking into account inequalities (6.5) and (6.23), we will obtain the
following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 5 ‖ϕ‖A5 . (6.24)

From equalities (3.2) and (6.2), taking into account inequalities (6.3) and
(6.24), we will obtain:

‖u(tk)− uk(tk)‖ =
∥∥[

U(tk, A)− V k (τ)
]
ϕ
∥∥ =

∥∥[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥

=

∥∥∥∥∥

[
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U ((i− 1) τ, A)

]
ϕ

∥∥∥∥∥

≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ 5 ‖U ((i− 1) τ, A) ϕ‖A5

≤ ceω0tkτ 5

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A5

≤ kceω0tkτ 5 sup
s∈[o,tk]

‖U (s, A) ϕ‖A5

≤ ceω0tktkτ
4 sup

s∈[o,tk]

‖U (s, A) ϕ‖A5 .

Remark 6.5. In case of a Hilbert space, if A1, A2 and A1 + A2 are self
adjoint nonnegative operators, then ω0 will be replaced by 0 in the estimation
of the Theorem. In addition, for the solution operator of the split problem, the
following estimation holds:

∥∥V k (τ)
∥∥ ≤ 1.

Remark 6.6. In case of a Hilbert space, if A1, A2 and A1 + A2 are self
adjoint positive defined operators, then ω0 will be replaced by (−α0), α0 > 0
in the estimation of the Theorem. In addition, for the solution operator of the
split problem, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ e−α1tk , α1 > 0.

2. Connection between decomposition formulas with different
accuracies

It is interesting if there exists a certain regularity, on the basis of which it is
available to construct automatically stable decomposition formulas with accu-
racy of any order. Concerning the above-mentioned let us consider the concrete
first and second order accuracy decomposition formulas and see whether there
exists a connection between them.

V (1) (τ) = U (τ, A1) U (τ, A2) , (6.25)

V (2) (τ) = U

(
τ,

1

2
A1

)
U (τ, A2) U

(
τ,

1

2
A1

)
. (6.26)
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In this formula and the formulas given below, the upper indices of the opera-
tor V denote the order of the corresponding decomposition formula. Formula
(6.25) represents the first order accuracy decomposition formula (see [60]),
while formula (6.26) represents the second order accuracy decomposition for-
mula (see [4]). In order to show more clearly the connection between them, let
us rewrite formula (6.26) in the following form:

V (2) (τ) =

[
U

(
τ,

1

2
A1

)
U

(
τ,

1

2
A2

)][
U

(
τ,

1

2
A2

)(
τ,

1

2
A1

)]

= V (1)

(
1

2
τ

)
V (1)

(
1

2
τ

)
.

In this formula and the formulas given below, we denote by V the multiplica-
tion of factors of the operator V in the reverse order.

The regularity of the same type exists between the third and fourth order
accuracy decomposition formulas, constructed by us (see [19]-[62]). In order
to show this, let us introduce the following notations:

V (3) (τ) =
1

2

[
V

(3)
1 (τ) + V

(3)
2 (τ)

]
, (6.27)

V
(3)
1 (τ) = U (τ, αA1) U (τ, A2) U (τ, αA1) ,

V
(3)
2 (τ) = U (τ, αA2) U (τ, A1) U (τ, αA2) ,

and

V (4) (τ) =
1

2

[
V

(4)
1 (τ) + V

(4)
2 (τ)

]
, (6.28)

V
(4)
1 (τ) = U

(
τ,

α

2
A1

)
U

(
τ,

1

2
A2

)
U (τ, αA1) U

(
τ,

1

2
A2

)
U

(
τ,

α

2
A1

)
,

V
(4)
2 (τ) = U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)
U (τ, αA2) U

(
τ,

1

2
A1

)
U

(
τ,

α

2
A2

)
.

In order to reveal the connection between formulas (6.27) and (6.28), let rewrite
the addends of formula (6.28) in the following form:

V
(4)
1 (τ) =

[
U

(
τ,

α

2
A1

)
U

(
τ,

1

2
A2

)
U

(
τ,

α

2
A1

)]

×
[
U

(
τ,

α

2
A1

)
U

(
τ,

1

2
A2

)
U

(
τ,

α

2
A1

)]

= V
(3)
1

(
1

2
τ

)
V

(3)
1

(
1

2
τ

)
,

V
(4)
2 (τ) =

[
U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)
U

(
τ,

α

2
A2

)]

×
[
U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)
U

(
τ,

α

2
A2

)]

= V
(3)
2

(
1

2
τ

)
V

(3)
2

(
1

2
τ

)
,
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Finally we obtain:

V (4) (τ) =
1

2

[
V

(3)
1

(
1

2
τ

)
V

(3)
1

(
1

2
τ

)
+ V

(3)
2

(
1

2
τ

)
V

(3)
2

(
1

2
τ

)]
.

Unfortunately, the following formula constructed by the same rule:

V (5) (τ) =
1

2

[
V

(4)
1

(
1

2
τ

)
V

(4)
1

(
1

2
τ

)
+ V

(4)
2

(
1

2
τ

)
V

(4)
2

(
1

2
τ

)]

=
1

2

[
U

(
τ,

α

4
A1

)
U

(
τ,

1

4
A2

)
U

(
τ,

α

2
A1

)
U

(
τ,

1

4
A2

)
U

(
τ,

α

2
A1

)

×U

(
τ,

1

4
A2

)
U

(
τ,

α

2
A1

)
U

(
τ,

1

4
A2

)
U

(
τ,

α

4
A1

)

+U
(
τ,

α

4
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

2
A2

)

×U

(
τ,

1

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

4
A2

)]
.

does not represent the fifth order accuracy decomposition formula. To check
this out, it is sufficient to calculate, for example, the coefficients

[
V (5) (τ)

]
1,2,1,2,1

.

We see that [
V (5) (τ)

]
1,2,1,2,1

6= 1

5!
.

In our opinion, it is interesting and important to find the general regularity,
by means of which it will be available to construct recurrently an automatically
stable decomposition formula with accuracy of any order, or to prove that,
on the complex number field, there does not exist an automatically stable
decomposition formula with accuracy of order more than four (as well as on the
real number field there does not exist an automatically stable decomposition
formula with accuracy of order more than two). In addition, it is not excluded
that, to obtain the higher order accuracy, it will be necessary to use as split
parameters, for example, quaternions instead of complex numbers,

In our opinion, these questions are very interesting and difficult, and we
work in this direction, but we have not yet obtain actual results.

83



§7. The fourth order accuracy rational

splitting

1. Construction of rational splitting algorithm

Let us consider (1.1) evolution problem. Let A = A1 + A2, where Aj

(j = 1, 2) are compactly defined, closed, linear operators in X.
In the previous paragraph there is constructed the following decomposition

formula with the local precision of fifth order:

T (τ) =
1

2
[T1 (τ) + T2 (τ)] , (7.1)

T1 (τ) = U
(
τ,

α

2
A1

)
U

(
τ,

1

2
A2

)
U (τ, αA1) U

(
τ,

1

2
A2

)
U

(
τ,

α

2
A1

)
,

T2 (τ) = U
(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)
U (τ, αA2) U

(
τ,

1

2
A1

)
U

(
τ,

α

2
A2

)
.

where α = 1
2
± i 1

2
√

3

(
i =

√−1
)
.

In the above-mentioned work it is shown that:

U (τ, A)− T (τ) = Op

(
τ 5

)
,

where Op (τ 5) is the operator, norm of which is of the fifth order with respect to
τ (more precisely, in the case of the unbounded operator ‖Op (τ 5) ϕ‖ = O (τ 5)
for any ϕ from the definition domain of Op (τ 5)). In the present work (see
Section 2) we construct the semigroup approximations with the local precision
of the fifth order using the following rational approximation:

W (τ, A) =
(
I − α

2
τA

) (
I +

α

2
τA

)−1 (
I − α

2
τA

) (
I +

α

2
τA

)−1

. (7.2)

The approximation defined by formula (7.2) in the scalar case represent the
Pade approximations for exponential functions (see [5]).

On the basis of formulas (7.1) and (7.2) we can construct the following
decomposition formula:

V (τ) =
1

2
[V1 (τ) + V2 (τ)] , (7.3)

V1 (τ) = W
(
τ,

α

2
A1

)
W

(
τ,

1

2
A2

)
W (τ, αA1) W

(
τ,

1

2
A2

)
W

(
τ,

α

2
A1

)
,

V2 (τ) = W
(
τ,

α

2
A2

)
W

(
τ,

1

2
A1

)
W (τ, αA2) W

(
τ,

1

2
A1

)
W

(
τ,

α

2
A2

)

Below we shall show that this formula has the precision of the fifth order:

U(τ, A)− V (τ) = Op

(
τ 5

)
.
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In the present paragraph, on the basis of formula (7.3), a decomposition
scheme with the fourth order precision will be constructed for the solution of
problem (1.1).

According to formula (7.2), we have:

u(tk) = U(τ, A)u (tk−1) +

tk∫

tk−1

U(tk − s, A)f(s)ds.

Let us use Simpson’s formula and rewrite this formula in the following form:

u (tk) = U (τ, A) u (tk−1) +
τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)

+U (τ, A) f (tk−1)) + R5,k (τ) , (7.4)

u (t0) = ϕ, k = 1, 2, ... .

For the sufficiently smooth function f the following estimation is true (see.
Lemma 2.3):

‖Rk,5 (τ)‖ = O
(
τ 5

)
. (7.5)

On the basis of formula (7.4) let us construct the following scheme:

uk = V (τ) uk−1

+
τ

6

(
f (tk) + 4V

(τ

2

)
f

(
tk−1/2

)
+ V (τ) f (tk−1)

)
, (7.6)

u0 = ϕ, k = 1, 2, .... .

Let us perform the computation of the scheme (7.5) by the following algorithm:

uk = u
(0)
k +

2τ

3
u

(1)
k +

τ

6
f (tk) ,

where uk,0 is calculated by the scheme:

v
(0)
k−4/5 = W

(
τ,

α

2
A1

)(
uk−1 +

τ

6
f (tk−1)

)
w

(0)
k−4/5 = W

(
τ,

α

2
A2

)
uk−1,

v
(0)
k−3/5 = W

(
τ,

1

2
A2

)
v

(0)
k−4/5, w

(0)
k−3/5 = W

(
τ,

1

2
A1

)
w

(0)
k−4/5,

v
(0)
k−2/5 = W (τ, αA1) v

(0)
k−3/5, w

(0)
k−2/5 = W (τ, αA2) w

(0)
k−3/5,

v
(0)
k−1/5 = W

(
τ,

1

2
A2

)
v

(0)
k−2/5, wk−1/5 = W

(
τ,

1

2
A1

)
w

(0)
k−2/5,

v
(0)
k = W

(
τ,

α

2
A1

)
v

(0)
k−1/5, w

(0)
k = W

(
τ,

α

2
A2

)
w

(0)
k−1/5,

u
(0)
k =

1

2
[v

(0)
k + w

(0)
k ], u0 = ϕ +

τ

6
f (0) , (7.7)
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and u
(1)
k - by the scheme:

v
(1)
k−4/5 = W

(τ

2
,
α

2
A1

)
f

(
tk−1/2

)
, w

(1)
k−4/5 = W

(τ

2
,
α

2
A2

)
f

(
tk−1/2

)
,

v
(1)
k−3/5 = W

(
τ

2
,
1

2
A2

)
v

(1)
k−2/3, w

(1)
k−3/5 = W

(
τ

2
,
1

2
A1

)
w

(1)
k−4/5,

v
(1)
k−2/5 = W

(τ

2
, αA1

)
v

(1)
k−1/3, w

(1)
k−2/5 = W

(τ

2
, αA2

)
w

(1)
k−3/5,

v
(1)
k−1/5 = W

(
τ

2
,
1

2
A2

)
v

(1)
k−1/3, w

(1)
k−1/5 = W

(
τ

2
,
1

2
A1

)
w

(1)
k−2/5,

v
(1)
k = W

(τ

2
,
α

2
A1

)
v

(1)
k−1/3, w

(1)
k = W

(τ

2
,
α

2
A2

)
w

(1)
k−1/5,

u
(1)
k =

1

2
[v

(1)
k + w

(1)
k ]. (7.8)

2. Theorem on error estimation

The following theorem takes place.
Theorem 7.1. Let the following conditions be satisfied:
(a) There exists such τ0 > 0 that for any 0 < τ ≤ τ0 there exist operators

(I + τλγAj)
−1 , j = 1, 2, γ = 1, α, α, λ = α, α and they are bounded. Besides,

the following inequalities are true:

‖W (τ, γAj)‖ ≤ eωτ , ω = const > 0;

(b) The operator (−A) generates the strongly continuous semigroup U (t, A) =
exp (−tA), for which the following inequality is true:

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;

(c) U (s, A) ϕ ∈ D (A5) for any s ≥ 0;
(d) f(t) ∈ C4([0,∞); X); f (t) ∈ D (A4) , f ′(t) ∈ D (A3) , f ′′(t) ∈

D (A2) , f ′′′(t) ∈ D (A) and U (s, A) f (t) ∈ D (A4) for any fixed t and s (t, s ≥ 0) .
Then the following estimation holds:

‖u(tk)− uk‖ ≤ ceω0tktkτ
4

(
sup

s∈[0,tk]

‖U(s, A)ϕ‖A5

+tk sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A5 + sup
t∈[0,tk]

‖f(t)‖A4

+ sup
t∈[0,tk]

‖f ′(t)‖A3 + sup
t∈[0,tk]

‖f ′′(t)‖A2

+ sup
t∈[0,tk]

‖f ′′′(t)‖A + sup
t∈[0,tk]

∥∥f (IV )(t)
∥∥
)

, (7.9)

where c and ω0 are positive constants.
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Let us prove the auxiliary lemmas on which the proof of the Theorem 7.1
is based.

Lemma 7.2. If the condition (a) of the Theorem 7.1 is satisfied, then for
the operator W (t, A) the following decomposition is true:

W (t, A) =
k−1∑
i=0

(−1)i ti

i!
Ai + RW,k (t, A) , k = 1, ..., 5, (7.10)

where, for the residual member, the following estimation holds:

‖RW,k (t, A) ϕ‖ ≤ c0e
ω0ttk

∥∥Akϕ
∥∥ , ϕ ∈ D

(
Ak

)
, (7.11)

c0, ω0 = const > 0.

proof. We obviously have:

(I + γA)−1 = I − I + (I + γA)−1 = I − (I + γA)−1 (I + γA− I)

= I − γA (I + A)−1 .

From this for any natural k we can get the following expansion:

(I + γA)−1 =
k−1∑
i=0

(−1)i γiAi + γkAk (I + γA)−1 . (7.12)

Let us rewrite W (τ, A) in the following form:

W (τ, A) = S (τ, A)− 1

2
τAS (τ, A) +

1

12
τ 2A2S (τ, A)

where

S (τ, A) =

(
I +

α

2
τA

)−1 (
I +

α

2
τA

)−1

.

Let us decompose S (τ, A) by means of the formula (7.12), we obtain the
following recurrent relation:

S (τ, A) = I − α

2
τA

(
I +

α

2
τA

)−1

− α

2
τAS (τ, A) . (7.13)

Let us decompose the rational approximation W (τ, A) according to the
formula (7.13) up to the first order, we obtain:

W (τ, A) = I −RW,1 (τ, A) , (7.14)

where

RW,1 (τ, A) = τA

(
α

2

(
I +

α

2
τA

)−1

− α + 1

2
S (τ, A)

)

+
1

12
τ 2A2S (τ, A) .
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Since (I + λτA)−1 is bounded according to the condition (a) of the Theo-
rem 7.1, therefore:

‖RW,1(τ, A)ϕ‖ ≤ c0e
ω0ττ ‖Aϕ‖ , ϕ ∈ D (A) . (7.15)

Let us decompose the rational approximation W (τ, A) according to the
formula (7.13) up to the second order:

W (τ, A) = I − τA

(
α

2
I − α2

4
τA

(
I +

α

2
τA

)−1

+
1 + α

2
I

− α + αα

4
τA

(
I +

α

2
τA

)−1

− α + α2

4
τAS (τ, A)

)

+
1

12
τ 2A2S (τ, A)

= I − τA + RW,2(τ, A)

where

RW,2 (τ, A) =
α2 + α + αα

4
τA

(
I +

α

2
τA

)−1

+
3α + 3α2 + 1

12
S (τ, A)

=
α− 1

3
+ α + 1

3

4
τA

(
I +

α

2
τA

)−1

+
3α + 3α− 1 + 1

12
S (τ, A)

= τ 2A2

(
α

2

(
I +

α

2
τA

)−1

+
α

2
S (τ, A)

)
.

According to the condition (a) of the Theorem 7.1 we have:

‖RW,2(τ, A)ϕ‖ ≤ c0e
ω0ττ 2

∥∥A2ϕ
∥∥ , ϕ ∈ D

(
A2

)
. (7.16)

Let us decompose the rational approximation W (τ, A) according to the
formula (7.13) up to the third order:

W (τ, A) = I − τA + τ 2A2

(
α

2
I − α2

4
τA

(
I +

α

2
τA

)−1

+
α

2

(
I − α

2
τA

(
I +

α

2
τA

)−1

− α

2
τAS (τ, A)

))

= I − τA +
1

2
τ 2A2 + RW,3 (τ, A) , (7.17)

where

RW,3(τ, A) = −τ 3A3

(
1 + 3α2

12

(
I +

α

2
τA

)−1

+
α2

4
R (τ, A)

)

= −τ 3A3

(
α

4

(
I +

α

2
τA

)−1

+
α2

4
R (τ, A)

)
.
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According to the condition (a) of the Theorem 7.1 we have:

‖RW,3(τ, A)ϕ‖ ≤ c0e
ω0ττ 3

∥∥A3ϕ
∥∥ , ϕ ∈ D

(
A3

)
. (7.18)

Let us decompose the rational approximation W (τ, A) according to the
formula (7.13) up to the fourth order:

W (τ, A) = I − τA +
1

2
τ 2A2 − τ 3A3

(
α

4
I − α2

8
τA

(
I +

α

2
τA

)−1

+
α2

4

(
I − α

2
τA

(
I +

α

2
τA

)−1

− α

2
τAS (τ, A)

))

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + RW,4(τ, A), (7.19)

where

RW,4(τ, A) = τ 4A4

(
α2 + αα2

8

(
I +

α

2
τA

)−1

+
α3

8
S (τ, A)

)

= τ 4A4

(
α

12

(
I +

α

2
τA

)−1

+
α3

8
S (τ, A)

)

According to the condition (a) of the Theorem 7.1 we have:

‖RW,4(τ, A)ϕ‖ ≤ c0e
ω0ττ 4

∥∥A4ϕ
∥∥ , ϕ ∈ D

(
A4

)
. (7.20)

Let us decompose the rational approximation W (τ, A) according to the for-
mula (7.13) up to the fifth order:

W (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3

−τ 4A4

(
α

12
− α2

24
τA

(
I +

α

2
τA

)−1

+
α3

8

(
I − α

2
τA

(
I +

α

2
τA

)−1

− α

2
τAS (τ, A)

))

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3

− 1

24
τ 4A4 + RW,5(τ, A), (7.21)

where

RW,5(τ, A) = τ 5A5

(
2α2 + 3α3α

48

(
I +

α

2
τA

)−1

+
α4

16
S (τ, A)

)

= τ 5A5

(
α

24

(
I +

α

2
τA

)−1

+
α4

16
S (τ, A)

)
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According to the condition (a) of the Theorem 7.1 we have:

‖RW,5(τ, A)ϕ‖ ≤ c0e
ω0ττ 5

∥∥A5ϕ
∥∥ , ϕ ∈ D

(
A5

)
. ¤ (7.22)

Lemma 7.3. If the conditions (a), (b) and (c) of the Theorem 7.1 are
satisfied, then the following estimation holds:

∥∥[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥ ≤ ceω0tktkτ

4 sup
s∈[0,tk]

‖U(s, A)ϕ‖A5 , (7.23)

where c and ω0 are positive constants.
Proof.
Let us decompose W (τ, A) operators in the expression of V (τ) according

to the formula (7.10) from right to left, so that each residual member be of
the fifth order. We shall have:

V (τ) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + RV,5 (τ) , (7.24)

where for the residual member according to the condition (a) of the Theorem
7.1 we have the following estimation:

‖RV,5 (τ) ϕ‖ ≤ ceω0ττ 5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
. (7.25)

From the (1.7) and (7.24) it follows:

U (τ, A)− V (τ) = R5 (τ, A)−RV,5 (τ) .

From here according to (1.8) and (7.25) we obtain the following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω0ττ 5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
. (7.26)

The following representation is obvious:

[
Uk (τ, A)− V k (τ)

]
ϕ =

k∑
i=1

V k−i (τ) [U (τ, A)− V (τ)] U i−1 (τ, A) ϕ.

Hence, according to the conditions (a), (b), (c) of the Theorem 7.1 and
inequality (7.26), we have the sought estimation. ¤

Lemma 7.4. Let the following conditions be satisfied:
(a) The operator A satisfies the conditions of the Theorem 7.1;
(b) f(t) ∈ C4([0,∞); X), f(t) ∈ D (A4) and f (k)(t) ∈ D

(
A4−k

)
(k = 1, 2, 3)

for every fixed t ≥ 0.
Then the following estimation holds

‖R5,k (τ)‖ ≤ ceω0ττ 5

4∑
i=0

max
s∈[tk−1,tk]

∥∥f (i) (s)
∥∥

A4−i , (7.27)
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where

R5,k (τ) =

tk∫

tk−1

U (tk − s, A) f (s) ds

−τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)

+ U (τ, A) f (tk−1)) (7.28)

and where c and ω0 are positive constants, and f (0) (s) = f (s).
Proof. By means of changing variables, the integral in the equality (7.28)

takes the following form:

tk∫

tk−1

U (tk − s, A) f (s) ds =

τ∫

0

U (τ − s, A) f (tk−1 + s) ds.

If we decompose the function f (tk−1 + s) into the Taylor series, and expand
the semigroup U (τ − s, A) according to formula (1.7), we obtain:

U (τ − s, A) f (tk−1 + s) = P3,k (s) + R̃4,k (τ, s) , (7.29)

where

P3,k (s) =

(
I − (τ − s) A +

(τ − s)2

2
A2 − (τ − s)3

6
A3

)
f (tk−1)

+s

(
I − (τ − s) A +

(τ − s)2

2
A2

)
f ′ (tk−1)

+
s2

2
(I − (τ − s) A) f ′′ (tk−1) +

s3

6
f ′′′ (tk−1) ,

R̃4,k (τ, s) =
1

6
U (τ − s, A)

s∫

0

(s− ξ)3 f (IV ) (tk−1 + ξ) dξ

+R4 (τ − s, A) f (tk−1)

+ (τ − s) AR3 (τ − s, A) f ′ (tk−1)

+
(τ − s)2

2
A2R2 (τ − s, A) f ′′ (tk−1)

+
(τ − s)3

6
A3R1 (τ − s, A) f ′′′ (tk−1) .

Hence according condition (b) and (d) of the Theorem 7.1 we obtain the fol-
lowing estimation:

R̃4,k (τ, s) ≤ ceω0ττ 4

4∑
i=0

max
s∈[tk−1,tk]

∥∥f (i) (s)
∥∥

A4−i . (7.30)

91



From equality (7.28) with account of formula (7.29), we have:

R5,k (τ) =

τ∫

0

U (τ − s, A) f (tk−1 + s) ds

−τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)
+ U (τ, A) f (tk−1)

)

=

τ∫

0

P3,k (s) ds +

τ∫

0

R̃4,k (τ, s) ds

−τ

6

(
P3,k (τ) + 4P3,k

(τ

2

)
+ P3,k (0)

)

−τ

6
R̃4,k (τ, 0) + 4R̃4,k

(
τ,

τ

2

)
+ R̃4,k (τ, τ) , (7.31)

Because of Simpson’s formula is exact for polynomial of the third order, for
R5,k (τ) we have:

R5,k (τ) =

τ∫

0

R̃4,k (τ, s) ds− τ

6

(
R̃4,k (τ, 0) + 4R̃4,k

(
τ,

τ

2

)
+ R̃4,k (τ, τ)

)
.

hence according to inequality (7.29), we have:

‖R5,k (τ)‖ ≤ ceω0ττ 5

4∑
i=0

max
s∈[tk−1,tk]

∥∥f (i) (s)
∥∥

A4−i . ¤ (7.32)

Let us return to the proof of the Theorem 7.1.
Let us write formula (7.4) in the following form:

u(tk) = Uk(τ, A)ϕ +
k∑

i=1

Uk−i(τ, A)
(
F

(1)
i + R5,k (τ)

)
, (7.33)

where

F
(1)
k =

τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)
+ U (τ, A) f (tk−1)

)
. (7.34)

Analogously let us present uk as follows:

uk = V k(τ)ϕ +
k∑

i=1

V k−i(τ)F
(2)
i , (7.35)

where

F
(2)
i =

τ

6

(
f (tk) + 4V

(τ

2
, A

)
f

(
tk−1/2

)
+ V (τ, A) f (tk−1)

)
. (7.36)
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From equalities (7.33) and (7.35) it follows:

u(tk)− uk =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=0

[
Uk−i(τ, A)F

(1)
i − V k−i(τ)F

(2)
i

]

+
k∑

i=0

Uk−i(τ, A)R5,k (τ)

=
[
Uk(τ, A)− V k(τ)

]
ϕ +

k∑
i=1

[(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

+V k−i(τ)
(
F

(1)
i − F

(2)
i

)]
+

k∑
i=0

Uk−i(τ, A)R5,k (τ) . (7.37)

From formulas (7.34) and (7.36) we have:

F
(1)
k − F

(2)
k =

τ

6

(
4
(
U

(τ

2
, A

)
− V

)
f

(
tk−1/2

)

+ (U (τ, A)− V (τ, A)) f (tk−1)) (7.38)

From here, according to inequality (7.24) and Lemma 7.2 we obtain the
following estimation:∥∥∥F

(1)
k − F

(2)
k

∥∥∥ ≤ ceω0ττ 5 sup
t∈[tk−1,tk]

‖f(t)‖A4 . (7.39)

According to the Lemma 7.2 we have:∥∥∥∥∥
k∑

i=1

(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

∥∥∥∥∥
≤ ceω0tkt2kτ

4 sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A5 . (7.40)

From equality (7.37) according to inequalities (7.39), (7.40), (7.27) and the
condition (b) of the Theorem 7.1 we obtain sought estimation. ¤

Remark 7.5. The operator V k (τ) is the solution operator of the above-
considered decomposed problem. It is obvious that, according to the condition
of the Theorem 7.1 (‖W (t, γAj)‖ ≤ eωt) , the norm of the operator V k (τ) is
less than or equal to eω0tk . From this follows the stability of the above-stated
decomposition scheme on each finite time interval.

Remark 7.6. In the case of the Hilbert space, when A1, A2 and A1 + A2

are self-adjoint non negative operators, in estimation (7.7) ω0 will be replaced
by 0. Alongside with this, for the transition operator of the split problem, the
estimation

∥∥V k (τ)
∥∥ ≤ 1 will be true.

Remark 7.7. In the case of the Hilbert space, when A1, A2 and A1+A2 are
self-adjoint, positive definite operators, in estimation (7.7) ω0 will be replaced
by −α0, α0 > 0. Alongside with this, for the transition operator of the split
problem, the estimation

∥∥V k (τ)
∥∥ ≤ e−α1tk , α1 > 0 will be true.
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§8. The fourth order accuracy decomposition

scheme for a multi-dimensional evolution

problem

1. Differential splitting and error estimation of approximate
solution

Let us consider the problem (3.1). Let A = A1 + A2 + ... + Am, m ≥ 2,
where Ai (i = 1, ..., m) are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tk−1, tk], we consider a se-
quence of the following problems:

dv
(1)
k (t)

dt
+

α

2
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(i)
k (t)

dt
+

α

2
Aiv

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 2, ..., m− 1,

dv
(m)
k (t)

dt
+

1

2
Amv

(m)
k (t) = 0, v

(m)
k (tk−1) = v

(m−1)
k (tk) ,

dv
(i)
k (t)

dt
+

α

2
A2m−iv

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = m + 1, ..., 2m− 2,

dv
(2m−1)
k (t)

dt
+ αA1v

(2m−1)
k (t) = 0, v

(2m−1)
k (tk−1) = v

(2m−2)
k (tk) ,

dv
(i)
k (t)

dt
+

α

2
Ai−2m+2v

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 2m, ..., 3m− 3,

dv
(3m−2)
k (t)

dt
+

1

2
Amv

(3m−2)
k (t) = 0, v

(3m−2)
k (tk−1) = v

(3m−3)
k (tk) ,

dv
(i)
k (t)

dt
+

α

2
A4m−i−2v

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 3m− 1, ..., 4m− 4,

dv
(4m−4)
k (t)

dt
+

α

2
A1v

(4m−4)
k (t) = 0, v

(4m−4)
k (tk−1) = v

(4m−3)
k (tk) ,
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dw
(1)
k (t)

dt
+

α

2
Amw

(1)
k (t) = 0, w

(1)
k (tk−1) = uk−1 (tk−1) ,

dw
(i)
k (t)

dt
+

α

2
Am−i+1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 2, ..., m− 1,

dw
(m)
k (t)

dt
+

1

2
A1w

(m)
k (t) = 0, w

(m)
k (tk−1) = w

(m−1)
k (tk) ,

dw
(i)
k (t)

dt
+

α

2
Ai−m+1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = m + 1, ..., 2m− 2,

dw
(2m−1)
k (t)

dt
+ αAmw

(2m−1)
k (t) = 0, w

(2m−1)
k (tk−1) = w

(2m−2)
k (tk) ,

dw
(i)
k (t)

dt
+

α

2
A3m−i−1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 2m, ..., 3m− 3,

dw
(3m−2)
k (t)

dt
+

1

2
A1w

(3m−2)
k (t) = 0, w

(3m−2)
k (tk−1) = w

(3m−3)
k (tk) ,

dw
(i)
k (t)

dt
+

α

2
Ai−3m+3w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 3m− 1, ..., 4m− 4,

dw
(4m−4)
k (t)

dt
+

α

2
Amw

(4m−4)
k (t) = 0, w

(4m−4)
k (tk−1) = w

(4m−3)
k (tk) ,

where α is a complex number with the positive real part, Re (α) > 0; u0 (0) =
ϕ. Let the operators (−Aj) , (−αAj) , (−αAj) , j = 1, ..., m generate strongly
continuous semigroups.

uk (t) , k = 1, 2, .., is defined on each interval [tk−1, tk], as follows:

uk (t) =
1

2

[
v

(4m−4)
k (t) + w

(4m−4)
k (t)

]
. (8.1)

We declare function uk (t) as an approximated solution of problem (3.1) on
each interval [tk−1, tk].

The following theorem takes place.
Theorem 8.1 Let the following conditions be fulfilled:
(a) α = 1

2
± i 1

2
√

3

(
i =

√−1
)
;

(b) Let the operators (−γAj) , γ = 1, α, α (j = 1, ..., m, m ≥ 2) and
(−A) generate strongly continuous semigroups, for which the following estima-
tions are true:

‖U(t, γAj)‖ ≤ eωt,

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;
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(c) U (s, A) ϕ ∈ D (A5) for each fixed s ≥ 0 .
Then the following estimation holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
4 sup

s∈[0,tk]

‖U (s, A) ϕ‖A5 ,

where c and ω0 are positive constants.
Proof. From formula (8.1) we obtain:

uk(tk) = V k (τ) ϕ, (8.2)

where

V (τ) =
1

2
[V1 (τ) + V2 (τ)] , (8.3)

and

V1 (τ) = U
(
τ,

α

2
A1

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

1

2
Am

)

×U

(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U (τ, αA1)

×U

(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

1

2
Am

)

U
(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U

(
τ,

α

2
A1

)
, (8.4)

V2 (τ) = U
(
τ,

α

2
Am

)
...U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)

×U

(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U (τ, αAm)

×U

(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U

(
τ,

1

2
A1

)

×U
(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

α

2
Am

)
. (8.5)

Remark 8.2 Stability of the considered scheme on each finite time interval
follows from the first inequality of the condition (b) of the Theorem 8.1. In
this case, for the solving operator, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ eω1tk , (8.6)

where ω1 is positive constant.
Let us introduce the following notations for combinations (sum, product)

of semigroups: Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, ...,m). Let us decompose
every semigroup included in operator T (τ) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (−τAi),
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(τ 2AiAj), (−τ 3AiAjAk) and (τ 4AiAjAkAl) (i, j, k, l = 1, ..., m) respectively by
[T (τ)]i, [T (τ)]i,j, [T (τ)]i,j,k and [T (τ)]i,j,k,l.

If we decompose all the semigroups included in the operator V (τ) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

V (τ) = I − τ

m∑
i=1

[V (τ)]i Ai + τ 2

m∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

m∑

i,j,k=1

[V (τ)]i,j,k AiAjAk

+τ 4

m∑

i,j,k,l=1

[V (τ)]i,j,k,l AiAjAkAl + R̃5 (τ) . (8.7)

According to the first inequality of the condition (b) of the Theorem 8.1,

for R̃5 (τ), the following estimation holds:
∥∥∥R̃5 (τ) ϕ

∥∥∥ ≤ ceω0ττ 5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
, (8.8)

where c and ω0 are positive constants. It is obvious that, for the coefficients
in formula (8.7), according to formula (8.3), we have:

[V (τ)]i =
1

2
([V1(τ)]i + [V2(τ)]i) , (8.9)

i = 1, ..., m,

[V (τ)]i,j =
1

2

(
[V1(τ)]i,j + [V2(τ)]i,j

)
, (8.10)

i, j = 1, ..., m,

[V (τ)]i,j,k =
1

2

(
[V1(τ)]i,j,k + [V2(τ)]i,j,k

)
, (8.11)

i, j, k = 1, ..., m,

[V (τ)]i,j,k,l =
1

2

(
[V1(τ)]i,j,k,l + [V2(τ)]i,j,k,l

)
, (8.12)

i, j, k, l = 1, ..., m.

Let us state the auxiliary lemma, which will be basis of the proof of the
Theorem 8.1.

If conditions (a) and (b) of the Theorem 8.1 are fulfilled and m = 2, then
the following expansion is true (see 7.24 ):

V (τ) = I − τA +
τ 2

2
A2 − τ 3

6
A3 +

τ 4

24
A4 + R̃5 (τ) , (8.13)

where for the remainder term R̃5 (τ), the following estimation takes place:
∥∥∥R̃5 (τ) ϕ

∥∥∥ ≤ ceω0ττ 5 sup
s∈[0,τ ]

‖ϕ‖A5 , ϕ ∈ D
(
A5

)
.
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Let us make a remark which will simplify a calculation of coefficients in
decomposition (8.7).

Remark 8.3 The operators V1 (τ) and V2 (τ) are symmetric in the sense
that in their expressions the factors equally remote from the ends coincide with
each other. Therefore we have:

[V (τ)]i,j = [V (τ)]j,i , i, j = 1, ..., m;

[V (τ)]i,j,k = [V (τ)]k,j,i , i, j, k = 1, ..., m;

[V (τ)]i,j,k,l = [V (τ)]l,k,j,i , i, j, k, l = 1, ..., m.

Let us calculate the coefficients [V (τ)]i (i = 1, ..., m) corresponding to the
first order members in formula (8.7). It is obvious that the members, corre-
sponding to these coefficients, can be obtained from the decomposition of only
those factors (semigroups) of the operators V1 (τ) and V2 (τ), which are gener-
ated by the operators (−γAi), and from the decomposition of other semigroups
only first addends (the members with identity operators) will participate.

According to formulas (8.4) and (8.5), for any i have:

[V1(τ)]i = [U (τ, Ai)]i = 1, [V2(τ)]i = [U (τ, Ai)]i = 1.

From here, according to formula (8.9), we obtain:

[V (τ)]i = 1. (8.14)

Let us calculate the coefficients [V (τ)]i,j (i, j = 1, ..., m) corresponding to
the second order members in formula (8.7). It is obvious that the members,
corresponding to these coefficients, can be obtained from the decomposition of
only those factors (semigroups) of the operators V1 (τ) and V2 (τ), which are
generated by the operators (−γAi) and (−γAj), and from the decomposition
of other semigroups only first addends (the members with identity operators)
will participate. Let i1 = min (i, j) and i2 = max (i, j) , then from formula
(8.10), with account of (8.4) and (8.5), we obtain:

[V (τ)]i,j =
1

2

([
U

(
τ,

α

2
Ai1

)
U

(
τ,

1

2
Ai2

)
U (τ, αAi1)

× U

(
τ,

1

2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j

+ U
(
τ,

α

2
Ai2

)
U

(
τ,

1

2
Ai1

)
U (τ, αAi2)

]

× U

(
τ,

1

2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j

)
.

From here, according to (8.13), we obtain:

[V (τ)]i,j =
1

2
. (8.15)
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Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, ...,m) corresponding
to the third order members in formula (8.7). For i = j = k, according to
formulas (8.4) and (8.5), we have:

[V1(τ)]i,i,i = [U (τ, Ai)]i,i,i =
1

6
,

[V2(τ)]i,i,i = [U (τ, Ai)]i,i,i =
1

6
.

From here, according to formula (8.11), we obtain:

[V (τ)]i,i,i =
1

6
. (8.16)

Let us consider the case when only two of the indices i, j and k differ from
each other. Let i1 = min (i, j, k) and i2 = max (i, j, k) , then from formula
(8.11), with account of (8.4) and (8.5), we obtain:

[V (τ)]i,j,k =
1

2

(
U

(
τ,

α

2
Ai1

)
U

(
τ,

1

2
Ai2

)
U (τ, αAi1)

U

(
τ,

1

2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j,k

+

[
U

(
τ,

α

2
Ai2

)
U

(
τ,

1

2
Ai1

)
U (τ, αAi2)

+ U

(
τ,

1

2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j,k

)
.

From here, according to (8.13), we obtain:

[V (τ)]i,j,k =
1

6
, (8.17)

for any indices i, j and k, where only two of them differ from each other.
Let us consider the case when the indices i, j and k differ from each other.
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If i < j < k then, according to formula (8.4), the representation is valid:

[V1(τ)]i,j,k =

[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

1

2
Ak

)

×U

(
τ,

α

2
Aj

)
U (τ, αAi) U

(
τ,

α

2
Aj

)

×U

(
τ,

1

2
Ak

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]

i,j,k

=
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]
j

[
U

(
τ,

1

2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]
j

[
U

(
τ,

1

2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1

2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1

2
Ak

)]

k

+ [U (τ, αAi)]i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1

2
Ak

)]

k

=
α

2

α

2

1

2
+

α

2

α

2

1

2
+

α

2

α

2

1

2
+

α

2

α

2

1

2
+ α

α

2

1

2

=
α2 + αα + α2

4
=

1

6
. (8.18)

Here we used the identities: α2 + α2 = 1
3
, αα = 1

3
. Analogously from (8.20) we

obtain:

[V2(τ)]i,j,k =
1

6
, i < j < k. (8.19)

From formula (8.11), with account of formulas (8.18) and (8.19), we obtain:

[V (τ)]i,j,k =
1

6
, i < j < k. (8.20)

From here, due to Remark 8.3, we obtain:

[V (τ)]i,j,k =
1

6
, k < j < i. (8.21)

Now consider the case j < i < k. Due to formula (8.4), the representation
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is valid:

[V1(τ)]i,j,k =

[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)
U

(
τ,

1

2
Ak

)

×U

(
τ,

α

2
Ai

)
U (τ, αAj) U

(
τ,

α

2
Ai

)

×U

(
τ,

1

2
Ak

)
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)]

i,j,k

=
[
U

(
τ,

α

2
Ai

)]
i
[U (τ, αAj)]j

[
U

(
τ,

1

2
Ak

)]

k

+

[
U

(
τ,

α

2
Ai

)]

i

[U (τ, αAj)]j

[
U

(
τ,

1

2
Ak

)]

k

=
α

2
α

1

2
+

α

2
α

1

2
=

αα + α2

4
=

α

4
. (8.22)

Analogously, from (8.20) we obtain:

[V2(τ)]i,j,k =
αα + α

4
, j < i < k. (8.23)

From formula (8.11), with account of formulas (8.22) and (8.23), we obtain:

[V (τ)]i,j,k =
α + αα + α

8
=

1

6
, j < i < k. (8.24)

From here, due to Remark 8.2, we obtain:

[V (τ)]i,j,k =
1

6
, k < i < j. (8.25)

Now consider the case j < k < i. According to formula (8.4), the representa-
tion is valid:

[V1(τ)]i,j,k =

[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)
U

(
τ,

1

2
Ai

)

×U

(
τ,

α

2
Ak

)
U (τ, αAj) U

(
τ,

α

2
Ak

)

×U

(
τ,

1

2
Ai

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)]

i,j,k

=

[
U

(
τ,

1

2
Ai

)]

i

[U (τ, αAj)]j

[
U

(
τ,

α

2
Ak

)]

k

+

[
U

(
τ,

1

2
Ai

)]

i

[U (τ, αAj)]j

[
U

(
τ,

α

2
Ak

)]
k

=
1

2
α

α

2
+

1

2
α

α

2
=

α2 + αα

4
=

α

4
. (8.26)

101



Analogously, from (8.20) we obtain:

[V2(τ)]i,j,k =
αα + α

4
, j < k < i. (8.27)

From formula (8.11), with account of formulas (8.26) and (8.27), we obtain:

[V (τ)]i,j,k =
α + αα + α

8
=

1

6
, j < k < i. (8.28)

From here, due to Remark 8.3, we obtain:

[V (τ)]i,j,k =
1

6
, i < k < j. (8.29)

Uniting formulas (8.16),(8.17),(8.20),(8.21),(8.24),(8.25),(8.28) and (8.29),
we obtain:

[V (τ)]i,j,k =
1

6
, i, j, k = 1, ..., m. (8.30)

Let us calculate the coefficients [V (τ)]i,j,k,l (i, j, k, l = 1, ...,m) correspond-
ing to the fourth order members in formula (8.7). In the case when i = j =
k = l, due to formulas (8.4) and (8.5), we obtain:

[V1(τ)]i,i,i,i = [U (τ, Ai)]i,i,i,i =
1

24
,

[V2(τ)]i,i,i,i = [U (τ, Ai)]i,i,i,i =
1

24
.

From here, according to formula (8.12), we obtain:

[V (τ)]i,i,i,i =
1

24
. (8.31)

Let us consider the case when only two of the indices i, j, k and l differ from
each other. Let i1 = min (i, j, k, l) and i2 = max (i, j, k, l) , then from formula
(8.12), with account of (8.4) and (8.5), the representation is valid:

[V (τ)]i,j,k,l =
1

2

([
U

(
τ,

α

2
Ai1

)
U

(
τ,

1

2
Ai2

)
U (τ, αAi1)

U

(
τ,

1

2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j,k,l

+

[
U

(
τ,

α

2
Ai2

)
U

(
τ,

1

2
Ai1

)
U (τ, αAi2)

+ U

(
τ,

1

2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j,k,l

)
.

From here, due to (8.13), we obtain:

[V (τ)]i,j,k,l =
1

24
, (8.32)
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for any indices i, j, k and l, where only two of them differ from each other.
Let us consider the case when only two of the indices i, j, k and l coincide

with each other. On the whole, we have six cases, namely:
Case 1. (i, j, k, l) = (i, j, k, i),
Case 2. (i, j, k, l) = (i, j, i, k),
Case 3. (i, j, k, l) = (i, i, j, k),
Case 4. (i, j, k, l) = (i, j, k, j),
Case 5. (i, j, k, l) = (i, j, j, k),
Case 6. (i, j, k, l) = (i, j, k, k).
Comparing i, j and k indices we get six different subcases for each case.

Let us consider Case 1 and calculate its corresponding coefficients. The coef-
ficients, corresponding to five other cases, can be calculated analogously.

Let us consider the subcases of Case 1:
Subcase 1.1. i < j < k. Due to formula (8.4) we have:

[V1(τ)]i,j,k,i =

[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

1

2
Ak

)

×U

(
τ,

α

2
Aj

)
U (τ, αAi) U

(
τ,

α

2
Aj

)

×U

(
τ,

1

2
Ak

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]

i,j,k,i

=
α

2

α

2

1

2
α +

α

2

α

2

1

2

α

2
+

α

2

α

2

1

2

α

2

+
α

2

α

2

1

2

α

2
+

α

2

α

2

1

2

α

2
+ α

α

2

1

2

α

2

=
α3 + 2α2α + α2α

8
=

α2 (α + α) + αα (α + α)

8

=
α2 + αα

8
. (8.33)

Analogously we obtain

[V2(τ)]i,j,k,i =
α2

8
. (8.34)

From formula (8.12), with account of (8.33) and (8.34), we obtain:

[V (τ)]i,j,k,i =
α2 + αα + α2

16
=

1

24
, i < j < k. (8.35)

Subcase 1.2. k < j < i. From formula (8.35), due to Remark 8.2, we
obtain:

[V (τ)]i,j,k,i =
1

24
, k < j < i. (8.36)
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Subcase 1.3. j < k < i. According to formula (8.4), we have:

[V1(τ)]i,j,k,i =

[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)
U

(
τ,

1

2
Ai

)

×U

(
τ,

α

2
Ak

)
U (τ, αAj) U

(
τ,

α

2
Ak

)

×U

(
τ,

1

2
Ai

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)]

i,j,k,i

=
1

2
α

α

2

1

2
=

α2

8
. (8.37)

Analogously we obtain:

[V2(τ)]i,j,k,i =
αα + α2

8
. (8.38)

From formula (8.12), with account of (8.37) and (8.38), we obtain:

[V (τ)]i,j,k,i =
α2 + αα + α2

16
=

1

24
, j < k < i. (8.39)

Subcase 1.4. i < k < j. From formula (8.39), due to Remark 8.2, we
obtain:

[V (τ)]i,j,k,i =
1

24
, i < k < j. (8.40)

Subcase 1.5. j < i < k. According to formula (8.4), we have:

[V1(τ)]i,j,k,i =

[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)
U

(
τ,

1

2
Ak

)

×U

(
τ,

α

2
Ai

)
U (τ, αAj) U

(
τ,

α

2
Ai

)

×U

(
τ,

1

2
Ak

)
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)]

i,j,k,i

=
α

2
α

1

2

α

2
+

α

2
α

1

2

α

2
=

α2α + α2α

8

=
αα (α + α)

8
=

1

24
. (8.41)

Analogously, from (8.20), we obtain:

[V2(τ)]i,j,k,i =
1

24
. (8.42)

From formula (8.12), with account of (8.41) and (8.42), we obtain:

[V (τ)]i,j,k,i =
1

24
, j < i < k. (8.43)
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Subcase 1.6. k < i < j. From formula (8.43), due to Remark 8.2, we
obtain:

[V (τ)]i,j,k,i =
1

24
, k < i < j. (8.44)

Uniting formulas (8.35),(8.36),(8.39),(8.40),(8.43) and (8.44), we obtain:

[V (τ)]i,j,k,i =
1

24
, (8.45)

for any indices i, j and k different from each other. Analogously, for other five
cases, we obtain:

[V (τ)]i,j,i,k = [V (τ)]i,i,j,k = [V (τ)]i,j,k,j

= [V (τ)]i,j,j,k = [V (τ)]i,j,k,k =
1

24
, (8.46)

for any indices i, j and k different from each other.
Uniting formulas (8.45) and (8.46), we obtain:

[V (τ)]i,j,k,l =
1

24
, (8.47)

for any indices i, j, k and l, where only two of them coincide with each other.
Now let us consider the case when the indices i, j, k and l are different. It is

obvious that comparing i, j, k and l indices we get twenty four different cases.
Let us consider one of them and calculate its corresponding coefficients (the
coefficients corresponding to other cases can be calculated analogously).

Let i < j < k < l, then according to formula (8.4), we obtain:

[V1(τ)]i,j,k,l =
[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)

×U

(
τ,

1

2
Al

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)

×U (τ, αAi) U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)

×U

(
τ,

1

2
Al

)
U

(
τ,

α

2
Ak

)

×U
(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]
i,j,k,l

=
α

2

α

2

α

2

1

2
+

α

2

α

2

α

2

1

2
+

α

2

α

2

α

2

1

2

+
α

2

α

2

α

2
+

α

2

α

2

α

2

1

2
+

α

2

α

2

α

2
+ α

α

2

1

2

=
α2α + αα2 + α3 + α3

8

α

2

=
α2 + α2

8
=

1

24
. (8.48)
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Analogously, from (8.20), we obtain:

[V2(τ)]i,j,k,l =
1

24
, i < j < k < l. (8.49)

From formula (8.12), with account of formulas (8.48) and (8.49), we obtain:

[V (τ)]i,j,k,l =
1

24
, i < j < k < l.

Analogously we can show that this equality is valid for other twenty three
cases. Therefore we have:

[V (τ)]i,j,k,l =
1

24
, (8.50)

for any indices i, j, k and l, which differ from each other.
Uniting formulas (8.31), (8.32), (8.47) and (8.50), we obtain:

[V (τ)]i,j,k,l =
1

24
, i, j, k, l = 1, ..., m. (8.51)

From equality (8.7), with account of formulas (8.14), (8.15), (8.30) and
(8.51), we obtain:

V (τ) = I − τ

m∑
i=1

Ai +
1

2
τ 2

m∑
i,j=1

AiAj − 1

6
τ 3

m∑

i,j,k=1

AiAjAk

+
1

24
τ 4

m∑

i,j,k,l=1

AiAjAkAl + R̃5 (τ)

= I − τ

m∑
i=1

Ai +
1

2
τ 2

(
m∑

i=1

Ai

)2

−1

6
τ 3

(
m∑

i=1

Ai

)3

+
1

24
τ 4

(
m∑

i=1

Ai

)4

+ R̃5 (τ)

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R̃5 (τ) . (8.52)

According to formula (1.7), we have:

U (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R5 (τ, A) . (8.53)

According to the second inequality of condition (b) of the Theorem 3.1 for
R5 (τ, A), the following estimation is valid:

‖R5 (τ, A) ϕ‖ ≤ ceωττ 5
∥∥A5ϕ

∥∥
≤ ceωττ 5 ‖ϕ‖A5 , ϕ ∈ D

(
A5

)
. (8.54)
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According to equalities (8.52) and (8.53), we have:

U (τ, A)− V (τ) = R5 (τ, A)− R̃5 (τ) .

From here, with account of inequalities (8.8) and (8.54), the following estima-
tion can be obtained:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
. (8.55)

From equalities (3.2) and (8.2), with account of inequalities (8.6) and (8.55),
we obtain:

‖u(tk)− uk(tk)‖ =
∥∥[

U(tk, A)− V k (τ)
]
ϕ
∥∥

=
∥∥[

Uk (τ, A)− V k (τ)
]
ϕ
∥∥

=

∥∥∥∥∥
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

‖V (τ)‖k−i

×‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ 5 ‖U ((i− 1) τ, A) ϕ‖A5

≤ ceω0tkτ 5

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A5

≤ kceω0tkτ 5 sup
s∈[o,tk]

‖U (s, A) ϕ‖A5

≤ ceω0tktkτ
4 sup

s∈[o,tk]

‖U (s, A) ϕ‖A5 . ¤

2. Relation between two-dimensional and multi-dimensional
decomposition formulas

In this section we propose a method by means of which in our opinion it is
available on the basis of two-dimensional decomposition formula to construct
a multi-dimensional decomposition formula with the same precision order. Let
the two-dimensional decomposition formula has the following form:

V (2) (τ ; A1, A2) =

q∑
i=1

σi

mi∏
j=1

U
(
τ, α

(i)
j A1

)
U

(
τ, β

(i)
j A2

)
, (8.56)

where parameters σi, α
(i)
j and β

(i)
j satisfy the following conditions (weights σi
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are real numbers, and α
(i)
j and β

(i)
j are generally complex numbers):

q∑
i=1

σi = 1, (8.57)

q∑
i=1

σi

mi∑
j=1

α
(i)
j =

q∑
i=1

σi

mi∑
j=1

β
(i)
j = 1. (8.58)

In the formula (8.56) we mean, that U (τ, γAl) = I (l = 1, 2), when γ = 0.

For the given method it is necessary that the parameters α
(i)
j and β

(i)
j

additionally satisfy the following conditions:

mi∑
j=1

α
(i)
j =

mi∑
j=1

β
(i)
j , i = 1, ..., q. (8.59)

At the first step of the method the formula (8.56) is written in such a form
that one can clearly see its generalization for the multi-dimensional case. For
this reason the formula (8.56) is written in the following form:

V (2) (τ ; A1, A2) =

q∑
i=1

σi

mi∏
j=1

U
(
τ, µ

(i)
1,jA1

)
U

(
τ, µ

(i)
1,jA2

)

×U
(
τ, µ

(i)
2,jA2

)
U

(
τ, µ

(i)
2,jA1

)

=

q∑
i=1

σi

mi∏
j=1

(
2∏

l=1

U
(
τ, µ

(i)
1,jAl

))

×
(

2∏

l=1

U
(
τ, µ

(i)
2,jA3−l

))
. (8.60)

where

µ
(i)
1,j = β

(i)
j +

j∑

k=1

(
α

(i)
k − β

(i)
k

)
,

µ
(i)
2,j =

j∑

k=1

(
β

(i)
k − α

(i)
k

)
.

For the formula (8.60) to be the equivalent to the formula (8.56), it is
necessary to fulfill the following equalities:

µ
(i)
1,j + µ

(i)
2,j = β

(i)
j ,

µ
(i)
2,j + µ

(i)
1,j+1 = α

(i)
j+1,

µ
(i)
1,mi

= β(i)
mi

,

µ
(i)
2,mi

= 0.
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It is easy to check that these equalities are fulfilled if the equalities (8.59) are
fulfilled.

Let us construct the following decomposition formula on the basis of the
formula (8.60):

V (m) (τ ; A1, ..., Am) =

q∑
i=1

σi

mi∏
j=1

(
m∏

l=1

U
(
τ, µ

(i)
1,jAl

))

×
(

m∏

l=1

U
(
τ, µ

(i)
2,jAm−l+1

))
. (8.61)

Naturally the operators A3, ..., Am (m > 2) have to satisfy the same condi-
tions as operators A1 and A2. In our opinion, the formula (8.61) constructed
for m summands (A = A1 + A2 + ... + Am) will be of the same order as the
decomposition formula (8.60) constructed for two summands (A = A1 + A2).

In the present work, using this method there are constructed third and
fourth order precision multi-dimensional decomposition formulas.

To illustrate the method, let us consider the following case of Streng formula
in detail

(
V (τ ; A1,A2) = U

(
τ, 1

2
A1

)
U (τ, A2) U

(
τ, 1

2
A1

))
. We write it in the

form as (8.60):

V (2) (τ ; A1, A2) = U

(
τ,

1

2
A1

)
U

(
τ,

1

2
A2

)
U

(
τ,

1

2
A2

)
U

(
τ,

1

2
A1

)
.

Hence, for a multi-dimensional case we obtain the following formula:

V (m) (τ ; A1, ..., Am) = U

(
τ,

1

2
A1

)
...U

(
τ,

1

2
Am−1

)
U

(
τ,

1

2
Am

)

×U

(
τ,

1

2
Am

)
U

(
τ,

1

2
Am−1

)
...U

(
τ,

1

2
A1

)

= U

(
τ,

1

2
A1

)
...U

(
τ,

1

2
Am−1

)
U (τ, Am)

×U

(
τ,

1

2
Am−1

)
...U

(
τ,

1

2
A1

)
.

The given method has not been proven yet, though below we prove the
theorem which partially justifies this method.

Theorem 8.4 Let the decomposition formula (8.61) has the precision order
p (≥ 2) at m = p. Then the decomposition formula (8.61) will have the same
precision order for any m (≥ 2).

Proof. As following to the condition of the Theorem 8.1, the decomposition
formula (8.61) has the precision order p at p = m, therefore the equalities are
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valid:

[
V (p) (τ ; A1, ..., Ap)

]
i

= 1, i = 1, ..., p, (8.62)
[
V (p) (τ, A1, ..., Ap)

]
i1,...,is

=
1

s!
, (8.63)

i1, ..., is = 1, ..., p, s = 2, ..., p

Therefore it follows that, for any m ≤ p, the following equalities are valid:

[
V (m) (τ ; A1, ..., Am)

]
i

= 1, i = 1, ..., m, (8.64)
[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
1

s!
, (8.65)

i1, ..., is = 1, ..., m, s = 2, ..., p.

It means that the decomposition formula (8.61) has the order p for any m ≤ p.
Now let us show that equalities (8.64) and (8.65) are valid for any m > p.
Validity of equalities (8.64) can be easily checked, as, according to formula
(8.58), we have:

[
V (m) (τ ; A1, ...Am)

]
i

=

q∑
i=1

σi

mi∑
j=1

(
µ

(i)
1,j + µ

(i)
2,j

)

=

q∑
i=1

σi

mi∑
j=1

β
(i)
j = 1. (8.66)

Let us prove the validity of equalities (8.65) for any m > p. Coeffi-
cients

[
V (m) (τ, A1, ...Am)

]
i1,...,is

can be obtained from the decomposition of

only those semigroups which are generated by the operators (−Aj1) , ..., (−Ajr),
where (j1, .., jr) is a system of different indices from (i1, ..., is) sorted ascend-
ing (for example, if s = 5 and (i1, i2, i3, i4, i5) = (3, 3, 1, 2, 1), then r = 3 and
(j1, j2, j3) = (1, 2, 3)). From the decompositions of other semigroups, there will
participate only first summands (terms with identity operators). Therefore we
have:

[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
[
V (r) (τ, Aj1 , ..., Ajr)

]
i1,...,is

. (8.67)

As r ≤ s ≤ p in the right-hand side of equality (8.67), therefore, according to
(8.65) we have:

[
V (r) (τ, Aj1 , ..., Ajr)

]
i1,...,is

=
1

s!
, s = 2, ..., p. (8.68)

From (8.67) and (8.68) we obtain:

[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
1

s!
, (8.69)

i1, ..., is = 1, ..., m, s = 2, ..., p, m > p.
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From (8.65), (8.66) and (8.69) it follows that decomposition formula (8.61)
has a precision order p for any m ≥ 2. ¤

From this theorem it follows that if formula (8.56) has second order preci-
sion, then decomposition formula (8.61) will automatically have second order
precision (obviously, according to conditions (8.57) and (8.58), decomposition
formula (8.61) will always have first order precision).

Below, on basis of the above-described method, we will construct a general-
ization of third and fourth order precision Schatzman decomposition formulas
for any number m (≥ 2) of summands. In case of two summands, these for-
mulas have the following form (see [12]):

V
(2)
1 (τ ; A1, A2) =

2

3

[
U

(
τ,

1

2
A1

)
U (τ, A2) U

(
τ,

1

2
A1

)

+ U

(
τ,

1

2
A2

)
U (τ, A1) U

(
τ,

1

2
A2

)]

−1

6
[U (τ, A1) U (τ, A2)

+ U (τ, A2) U (τ, A1)] . (8.70)

V
(2)
2 (τ ; A1, A2) =

4

3
U

(
τ,

1

4
A1

)
U

(
τ,

1

2
A2

)

×U

(
τ,

1

2
A1

)
U

(
τ,

1

2
A2

)
U

(
τ,

1

4
A1

)

−1

3
U

(
τ,

1

2
A1

)
U (τ, A2) U

(
τ,

1

2
A1

)
. (8.71)

Decomposition formula (8.70) has third order precision, and decomposition
formula (8.71) has fourth order precision. Generalization of these formulas for
any number m (≥ 2) of summands will be written as follows:

V
(m)
1 (τ ; A1, ..., Am) =

2

3

[
U

(
τ,

1

2
A1

)
...U

(
τ,

1

2
Am−1

)
U (τ, Am)

×U

(
τ,

1

2
Am−1

)
...U

(
τ,

1

2
A1

)

+U

(
τ,

1

2
Am−1

)
...U

(
τ,

1

2
A2

)
U (τ, A1)

× U

(
τ,

1

2
A2

)
...U

(
τ,

1

2
Am

)]

−1

6
[U (τ, A1) ...U (τ, Am)

+ U (τ, Am) ...U (τ, A1)] . (8.72)
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V
(m)
2 (τ ; A1, ..., Am) =

4

3
U

(
τ,

1

4
A1

)
...U

(
τ,

1

4
Am−1

)

×U

(
τ,

1

2
Am

)
U

(
τ,

1

4
Am−1

)
...U

(
τ,

1

4
A2

)

U

(
τ,

1

2
A1

)
U

(
τ,

1

4
A2

)
....U

(
τ,

1

4
Am−1

)

×U

(
τ,

1

2
Am

)
U

(
τ,

1

4
Am−1

)
...U

(
τ,

1

4
A1

)

−1

3
U

(
τ,

1

2
A1

)
...U

(
τ,

1

2
Am−1

)
U (τ, Am)

×U

(
τ,

1

2
Am−1

)
...U

(
τ,

1

2
A1

)
(8.73)

As a result of some calculations, we have obtained that decomposition for-
mula (8.72) has third order precision for m = 3 summands, and decomposition
formula (8.73) has fourth order precision for m = 4 summands. From here,
due to Theorem 8.1 it follows that decomposition formulas (8.72) and (8.73)
have respectively third and fourth order precision for any number m (≥ 2) of
summands.
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§9. The fourth order accuracy sequential

type decomposition scheme for evolution

problem

Let us consider the problem (3.1). Let A = A1 +A2, where Ai (i = 1, 2)
are closed operators, densely defined in X.

Together with problem (3.1), on each interval [tk−1, tk], we consider a se-
quence of the following problems:

dv
(1)
k (t)

dt
+

α

4
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(2)
k (t)

dt
+

α

2
A2v

(2)
k (t) = 0, v

(2)
k (tk−1) = v

(1)
k (tk) ,

dv
(3)
k (t)

dt
+

1

4
A1v

(3)
k (t) = 0, v

(3)
k (tk−1) = v

(2)
k (tk) ,

dv
(4)
k (t)

dt
+

α

2
A2v

(4)
k (t) = 0, v

(4)
k (tk−1) = v

(3)
k (tk) ,

dv
(5)
k (t)

dt
+

α

2
A1v

(5)
k (t) = 0, v

(5)
k (tk−1) = v

(4)
k (tk) ,

dv
(6)
k (t)

dt
+

α

2
A2v

(6)
k (t) = 0, v

(6)
k (tk−1) = v

(5)
k (tk) ,

dv
(7)
k (t)

dt
+

1

4
A1v

(7)
k (t) = 0, v

(7)
k (tk−1) = v

(6)
k (tk) ,

dv
(8)
k (t)

dt
+

α

2
A2v

(8)
k (t) = 0, v

(8)
k (tk−1) = v

(7)
k (tk) ,

dv
(9)
k (t)

dt
+

α

4
A1v

(9)
k (t) = 0, v

(9)
k (tk−1) = v

(8)
k (tk) ,

where α is a complex number with the positive real part, Re (α) > 0; u0(0) =
ϕ. Suppose that the operators (−Aj) , (−αAj) , (−αAj) , j = 1, 2 generate
strongly continuous semigroups.

uk(t), k = 1, 2, .., is defined on each interval [tk−1, tk] as follows:

uk(t) = v
(9)
k (t) . (9.1)

We declare function uk(t) as an approximated solution of problem (3.1) on
each interval [tk−1, tk].

The following theorem takes place.
Theorem 9.1. Let the conditions (a) and (b) of Theorem 1.1 be fulfilled

and U (s, A) ϕ ∈ D (A5) for each fixed s ≥ 0.Then the following estimation
holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
4 sup

s∈[0,tk]

‖U (s, A) ϕ‖A5 ,
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where c and ω0 are positive constants.
Proof. From formula (9.1) we obtain:

uk(tk) = V k (τ) ϕ, (9.2)

where

V (τ) = U

(
τ,

α

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

α

2
A1

)

×U
(
τ,

α

2
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

α

4
A1

)
.

Remark 9.2. Stability of the considered scheme on each finite time in-
terval follows from the first inequality of the condition (b) of the Theorem 1.1.
In this case, for the solving operator, the following estimation holds:

∥∥V k (τ)
∥∥ ≤ eω1tk , (9.3)

where ω1 is a positive constant.
We introduce the following notations for combinations (sum, product) of

semigroups. Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, 2). Let us decompose
every semigroup included in operator T (τ) according to formula (1.7), mul-
tiply these decompositions on each other, add the similar members and, in
the decomposition thus obtained, denote coefficients of the members (−τAi),
(τ 2AiAj), (−τ 3AiAjAk) and (−τ 4AiAjAkAl) (i, j, k, l = 1, 2) respectively by
[T (τ)]i, [T (τ)]i,j, [T (τ)]i,j,k and [T (τ)]i,j,k,l.

If we decompose all the semigroups included in the operator V (τ) according
to formula (1.7) from left to right in such a way that each residual term appears
of the fifth order, we will obtain the following formula:

V (τ) = I − τ

2∑
i=1

[V (τ)]i Ai + τ 2

2∑
i,j=1

[V (τ)]i,j AiAj

−τ 3

2∑

i,j,k=1

[V (τ)]i,j,k AiAjAk

+τ 4

2∑

i,j,k,l=1

[V (τ)]i,j,k,l AiAjAkAl + R̃5 (τ) . (9.4)

According to the first inequality of the condition (b) of the Theorem, for

R̃5 (τ), the following estimation holds:
∥∥∥R̃5 (τ) ϕ

∥∥∥ ≤ ceω0ττ 5 ‖ϕ‖A4 , ϕ ∈ D
(
A5

)
, (9.5)

where c and ω0 are positive constants.
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Let us calculate the coefficients [V (τ)]i corresponding to the first order
members in formula (9.4). It is obvious that the members, corresponding
to these coefficients, are obtained from the decomposition of only those fac-
tors (semigroups) of the operator V (τ) , which are generated by the operators
(−γAi), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: i = 1 and i = 2. Let us consider the
case i = 1. We obviously have:

[V (τ)]1 = [U (τ, A1)]1 = 1. (9.6)

Analogously for i = 2 we have:

[V (τ)]2 = [U (τ, A2)]2 = 1. (9.7)

By combining formulas (9.6) and (9.7), we will obtain:

[V (τ)]i = 1, i = 1, 2. (9.8)

Let us calculate the coefficients [V (τ)]i,j (i, j = 1, 2) corresponding to the
second order members included in formula (9.8). On the whole we have two
cases: (i, j) = (1, 1), (1, 2), (2, 1), (2, 2) . Let us consider the case (i, j) = (1, 1).
We obviously have:

[V (τ)]1,1 = [U (τ, A1)]1,1 =
1

2
. (9.9)

Analogously for (i, j) = (2, 2) we have:

[V (τ)]2,2 = [U (τ, A2)]2,2 =
1

2
. (9.10)

Let us consider the case (i, j) = (1, 2), we obviously have:

[V (τ)]1,2 =

[
U

(
τ,

α

4
A1

)]

1

(
2

[
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

1

4
A1

)]

1

([
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

2
A1

)]
1

([
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

=
α (α + α)

4
+

α + 2α

8
+

α (α + α)

4
+

α

8

=
2α + 1 + α + 2α + α

8
=

1

2
. (9.11)

115



For (i, j) = (2, 1) we have:

[V (τ)]2,1 =
1

2
. (9.12)

Here we used the identity α + α = 1.
By combining formulas (9.9) - (9.12), we will obtain:

[V (τ)]i,j =
1

2
, i, j = 1, 2. (9.13)

Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, 2) corresponding to
the third order members in formula (9.4). On the whole we have eight cases:
(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2).
Let us consider the case (i, j, k) = (1, 1, 1). We obviously have:

[V (τ)]1,1,1 = [U (τ, A1)]1,1,1 =
1

6
. (9.14)

Analogously for (i, j) = (2, 2, 2) we have:

[V (τ)]2,2,2 = [U (τ, A2)]2,2,2 =
1

6
. (9.15)

Thus Let us calculate the case (i, j, k) = (1, 1, 2). We have:

[V (τ)]1,1,2 =

[
U

(
τ,

α

4
A1

)]

1,1

(
2

[
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

1

4
A1

)]

1,1

([
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

2
A1

)]
1,1

([
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

1

4
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]

2

+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

1

4
A1

)]

1

×
([

U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A1

)]
1

×
([

U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)
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+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A1

)]
1

×
([

U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

=
α2 (α + α)

32
+

α + 2α

64
+

α2 (α + α)

16
+

α

64
+

α (α + 2α)

32

+
αα (α + α)

16
+

α2

32
+

α (α + α)

16
+

α

32
+

αα

16
=

1

6
. (9.16)

For (i, j, k) = (2, 1, 1) we have:

[V (τ)]2,1,1 =
1

6
(9.17)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.

Thus Let us calculate the case (i, j, k) = (1, 2, 2). We have:

[V (τ)]1,2,2 =
1

6
. (9.18)

For (i, j, k) = (2, 1, 1) we have:

[V (τ)]2,1,1 =
1

6
(9.19)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.

Thus Let us calculate the case (i, j, k) = (1, 2, 1). We have:

[V (τ)]1,2,1 =

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

×
([

U

(
τ,

1

4
A1

)]

1

+
[
U

(
τ,

α

2
A1

)]
1

+

[
U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U
(
τ,

α

2
A1

)]
1
+

[
U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

)
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+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

)

+

[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U
(
τ,

α

2
A1

)]
1
+

[
U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

)

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

)

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

α

2
A2

)]
2

×
([

U

(
τ,

1

4
A1

)]

1

+

[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+

[
U

(
τ,

1

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

=
α2 (2 + 2α + α)

32
+

αα (1 + 2α + α)

32
+

αα (1 + α)

32
+

α3

32

+
α (1 + 2α + α)

32
+

α (1 + α)

32
+

α2

32
+

α2 (1 + α)

16
+

αα2

16
+

α2

32

=
4 + 2α− 2

3
+ 2α

32
=

6− 2
3

32
=

1

6
. (9.20)

For (i, j, k) = (2, 1, 2) we have:

[V (τ)]2,1,2 = [U (τ, αA2)]2

[
U

(
τ,

1

2
A1

)]

1

[U (τ, αA2)]2

= α
1

2
α =

1

6
. (9.21)

Here we used the identities α + α = 1, αα = 1
3

and α2 + α2 = 1
3
.

By combining formulas (9.14) - (9.21), we will obtain:

[V (τ)]i,j,k =
1

6
, i, j, k = 1, 2. (9.22)
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Analogously we can show that

[V (τ)]i,j,k,l =
1

24
, i, j, k, l = 1, 2. (9.23)

From equality (9.4), taking into account formulas (9.8), (9.13), (9.22) and
(9.23), we will obtain:

V (τ) = I − τ

2∑
i=1

Ai +
1

2
τ 2

2∑
i,j=1

AiAj − 1

6
τ 3

2∑

i,j,k=1

AiAjAk

+
1

24
τ 4

2∑

i,j,k,l=1

AiAjAkAl + R̃5 (τ)

= I − τ

2∑
i=1

Ai +
1

2
τ 2

(
2∑

i=1

Ai

)2

− 1

6
τ 3

(
2∑

i=1

Ai

)3

+
1

24
τ 4

(
2∑

i=1

Ai

)4

+ R̃5 (τ)

= I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R̃5 (τ) . (9.24)

According to formula (1.7) we have:

U (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 +

1

24
τ 4A4 + R5 (τ, A) . (9.25)

According to condition (b) of the second inequality of the Theorem, for
R5 (τ, A), the following estimation holds:

‖R5 (τ, A) ϕ‖ ≤ ceωττ 5
∥∥A5ϕ

∥∥ ≤ ceωττ 5 ‖ϕ‖A5 . (9.26)

According to equalities (9.24) and (9.25) we have:

U (τ, A)− V (τ) = R5 (τ, A)− R̃5 (τ) .

From here, taking into account inequalities (9.5) and (9.26), we will obtain the
following estimation:

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω2ττ 5 ‖ϕ‖A5 . (9.27)

From equalities (3.2) and (9.2), taking into account inequalities (9.3) and
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(9.27), we will obtain:

‖u(tk)− uk(tk)‖ =
∥∥[

U(tk, A)− V k (τ)
]
ϕ
∥∥ =

∥∥[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥

=

∥∥∥∥∥

[
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)] U ((i− 1) τ, A)

]
ϕ

∥∥∥∥∥

≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ 5 ‖U ((i− 1) τ, A) ϕ‖A5

≤ ceω0tkτ 5

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A5

≤ kceω0tkτ 4 sup
s∈[o,tk]

‖U (s, A) ϕ‖A5

≤ ceω0tktkτ
4 sup

s∈[o,tk]

‖U (s, A) ϕ‖A5 . ¤

Remark 9.3. The fourth order of accurate decomposition formula in case
of Multidimensional problem has the following form:

V (m) (τ) = U

(
τ,

α

4
A1

)
...U

(
τ,

α

4
Am−1

)
U

(
τ,

α

2
Am

)
U

(
τ,

α

4
Am−1

)
...

×U

(
τ,

α

4
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

4
A2

)
...

×U
(
τ,

α

4
Am−1

)
U

(
τ,

α

2
Am

)
U

(
τ,

α

4
Am−1

)
...

×U
(
τ,

α

4
A2

)
U

(
τ,

α

2
A1

)
U

(
τ,

α

4
A2

)
...

×U
(
τ,

α

4
Am−1

)
U

(
τ,

α

2
Am

)
U

(
τ,

α

4
Am−1

)
...

×U
(
τ,

α

4
A2

)
U

(
τ,

1

4
A1

)
U

(
τ,

α

4
A2

)
...

×U

(
τ,

α

4
Am−1

)
U

(
τ,

α

2
Am

)
U

(
τ,

α

4
Am−1

)
...U

(
τ,

α

4
A1

)
.
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Chapter III

The Third Order Accuracy Decomposition
Schemes for an Evolution Problem with

Variable Operator

§10. Differential splitting

Let us consider Cauchy problem in the Banach space X :

du (t)

dt
+ A (t) u (t) = 0, t > 0, u(0) = ϕ, (10.1)

where ϕ is a given element from D (A) and operator A (t) satisfies the following
conditions:

(a) The domain of the operator A (t) do not depend on t and is everywhere
dense in X;

(b) For every fixed t1, t2, s ∈ [0; T ] , the following inequality is valid:

∥∥(A (t1)− A (t2)) A−1 (s)
∥∥ ≤ c1 |t1 − t2|q , q ∈ (0; 1], c1 = const > 0;

(c) For any complex number z, Re (z) ≥ 0, there exists operator (zI + A (t))−1

and the following inequality is valid:

∥∥(zI + A (t))−1
∥∥ ≤ c2

1 + |z| , c2 = const > 0.

Then the solution of the problem (10.1) is given by the following formula
(see [39],[42])::

u(t) = U(t, 0; A)ϕ,

Where U(t, 0; A) is a solving operator of the problem (10.1).
Let A (t) = b (t) A0 = b (t) (A1 + A2), where Ai (i = 1, 2) are compactly

defined, closed linear operators in X, the function b (t) ≥ b0 > 0 satisfies the
condition of Helder.

Let us introduce difference net domain:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}.
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Along with problem (10.1) we consider two sequences of the following prob-
lems on each interval [tk−1, tk]:

dv1
k(t)

dt
+ αb (t) A1v

1
k(t) = 0,

dw1
k(t)

dt
+ αb (t) A2w

1
k(t) = 0,

v1
k(tk−1) = uk−1(tk−1), w1

k(tk−1) = uk−1(tk−1),

dv2
k(t)

dt
+ b (t) A2v

2
k(t) = 0,

dw2
k(t)

dt
+ b (t) A1w

2
k(t) = 0,

v2
k(tk−1) = v1

k(tk), w2
k(tk−1) = w1

k(tk),

dv3
k(t)

dt
+ αb (t) A1v

3
k(t) = 0,

dw3
k(t)

dt
+ αb (t) A2w

3
k(t) = 0,

v3
k(tk−1) = v2

k(tk), w3
k(tk−1) = w2

k(tk),

Here α is a numerical complex parameter with Re (α) > 0, u0(0) = ϕ.
Suppose that U (t1, t2; γAj) , γ = 1, α, α (j = 1, 2) operators exist. On each
[tk−1, tk] (k = 1, 2, ...) interval uk(t) are defined as follows:

uk(t) =
1

2
[v3

k(t) + w3
k(t)].

We consider the function uk(t) as an approximate solution of the problem
(10.1) on the interval [tk−1, tk].

Theorem 10.1. Let the following conditions be satisfied:
(a) α = 1

2
± i 1

2
√

3

(
i =

√−1
)

;

(b) The solving operators U(t, t0; γb (·) Aj), γ = 1, α, α (j = 0, 1, 2) of
the problems

dv (t)

dt
+ γb (t) Ajv (t) = 0, t ≥ t0 ≥ 0, v (t0) = ϕ ∈ D (Aj) ,

exist and the following inequalities hold true:

‖U(t, t0; γb (·) Aj)‖ ≤ eω(t−t0),

‖U(t, t0; b (·) A0)‖ ≤ Meω(t−t0), M, ω = const > 0;

(c) The function b (t) ≥ b0 > 0 satisfies the condition of Helder;
(d) U (s1, s2; b (·) A0) ϕ ∈ D (A4

0) for every fixed s1, s2 ≥ 0.
Then the following estimation holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
3 sup

s1,s2∈[0,tk]

‖U (s1, s2; b (·) A0) ϕ‖A4
0
,

where c, ω0 are positive constants.

Let us prove the auxiliary Lemma on which the proof of the Theorem is
based.
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Lemma 10.2 If the conditions (a),(b) and (c) of the Theorem are satisfied,
then the following estimation holds:

‖(U (ti, ti−1; b (·) A0)− V (ti, ti−1)) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
,

where

V (ti, ti−1) =
1

2
[U (ti, ti−1; αb (·) A1) U (ti, ti−1; b (·) A2) U (ti, ti−1; αb (·) A1)

+ U (ti, ti−1; αb (·) A2) U (ti, ti−1; b (·) A1) U (ti, ti−1; αb (·) A2)] .

Here c, ω0 are positive constants.
Proof. The following formula is true:

U (ti, ti−1; A) = I −
ti∫

ti−1

A (s1) U (ti, s1; A) ds1,

Hence we obtain the following expansion:

U (ti, ti−1; A) = I −
ti∫

ti−1

A (s1) ds1 +

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ds2ds1 + ...

+ (−1)k−1

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ...

sk−2∫

ti−1

A (sk−1) dsk−1...ds2ds1 + Rk (ti, ti−1, A) ,

(10.2)
where

Rk (ti, ti−1, A) = (−1)k

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ...

sk−1∫

ti−1

U (ti, sk; A) A (sk) dsk...ds2ds1.

(10.3)
Let us consider the first addend of the operator V (ti, ti−1) and decompose

its all multipliers from the right to left according to the formula (10.2) so that
each residual member is of the fourth order. We shall get:

U (ti, ti−1; αb (·) A1) U (ti, ti−1; b (·) A2) U (ti, ti−1; αb (·) A1) =

= I −




α

ti∫

ti−1

b (s1) ds1 + α

ti∫

ti−1

b (s1) ds1


 A1 +

ti∫

ti−1

b (s1) ds1A2




+





α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1
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+α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2


 A2

1 +

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A
2
2

+ α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A1A2 + α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A2A1




−




α3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

+α2α

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1

+αα2

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

+ α3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3


 A3

1

+α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1A
2
1A2

+α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A1A
2
2

+αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A1A2A1

+α

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1A
2
2A1

+α2

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A2A
2
1

+

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s2) b (s2) b (s3) ds1ds2ds3A
3
2 + R4,1 (ti−1, ti) , (10.4)
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where for the residual member the following estimation holds:

‖R4,1 (ti−1, ti) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
. (10.5)

Analogously for the second addend of the operator V (ti, ti−1) we get:

U (ti, ti−1; αb (·) A2) U (ti, ti−1; b (·) A1) U (ti, ti−1; αb (·) A2) =

= I −




α

ti∫

ti−1

b (s1) ds1 + α

ti∫

ti−1

b (s1) ds1


 A2 +

ti∫

ti−1

b (s1) ds1A1




+





α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

+α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2


 A2

2 +

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A
2
1

+ α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A2A1 + α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A1A2




−




α3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

+α2α

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds2ds2

ti∫

ti−1

b (s1) ds1

+αα2

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

+ α3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3


 A3

2

+α2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1A
2
2A1

+α

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A2A
2
1
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+αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1A2A1A2

+α

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1A
2
1A2

+α2

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2A1A
2
2

+

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s2) b (s2) b (s3) ds1ds2ds3A
3
1 + R4,2 (ti−1, ti) , (10.6)

where for the residual member the following estimation holds:

‖R4,2 (ti−1, ti) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
. (10.7)

From (10.4) and (10.6) we obtain:

V (ti, ti−1) = I −
ti∫

ti−1

b (s1) (A1 + A2) ds1

+
1

2





(

α2 + α2 + 1
) ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

+αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1


 (

A2
1 + A2

2

)

+ (α + α)

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1 (A1A2 + A2A1)




−1

2





(

α3 + α3 + 1
) ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

+
(
α2α + αα2

) ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2


 (

A3
1 + A3

2

)

+
(
α2 + α

) ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1

(
A2

1A2 + A1A
2
2

)
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+αα

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1 (A1A2A1 + A2A1A2)

+
(
α + α2

) ti∫

ti−1

b (s1) ds1

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

(
A2A

2
1 + A2

2A1

)



+R4 (ti, ti−1) = I −
ti∫

ti−1

b (s1) (A1 + A2) ds1

+





(α2 + 2αα + α2 + 1)

2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + I1


 (

A2
1 + A2

2

)

+


2α + 2α

2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + I2


 (A1A2 + A2A1)




−




α3 + 3α2α + 3αα2 + α3 + 1

2

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

+I3)
(
A3

1 + A3
2

)

+


3α2 + 3α

2

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I4


 (

A2
1A2 + A2

2A1

)

+


3αα

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I5


 (A1A2A1 + A2A1A2)

+


3α + 3α2

2

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I6


 (

A2A
2
1 + A2

1A2

)



+R4 (ti, ti−1) = I −
ti∫

ti−1

(b (s1) A1 + b (s1) A2) ds1

+







ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + I1


 (

A2
1 + A2

2

)

+




ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 + I2


 (A1A2 + A2A1)



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−






ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I3


 (

A3
1 + A3

2

)

+




ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I4


 (

A2
1A2 + A2

2A1

)

+




ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I5


 (A1A2A1 + A2A1A2)

+




ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 + I6


 (

A2A
2
1 + A2

1A2

)



+R4 (ti, ti−1) , (10.8)

where

R4 (ti, ti−1) =
1

2
(R4,1 (ti−1, ti) + R4,2 (ti−1, ti)) ,

and where

I1 =
αα

2




ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1 − 2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2


 ,

I2 =
1

2




ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1 − 2

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2


 ,

I3 =
1

2


(

α2α + αα2
)



ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1

−3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3





 ,

I4 =
1

2


(

α2 + α
)



ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1

−3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3





 ,
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I5 =
1

2


αα




ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

ti∫

ti−1

b (s1) ds1

−6

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3





 ,

I6 =
1

2


(

α2 + α2
)



ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

ti∫

ti−1

b (s1) ds1

−3

ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3





 .

From (10.5) and (10.7) follows the following estimation:

‖R4 (ti, ti−1) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
. (10.9)

Clearly for the U (ti, ti−1; A) we have:

U (ti, ti−1; A) = I −
ti∫

ti−1

b (s1) (A1 + A2) ds1

+

ti∫

ti−1

s1∫

ti−1

(b (s1) A1 + b (s1) A2) (b (s2) A1 + b (s2) A2) ds1ds2

−
ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

(b (s1) A1 + b (s1) A2) (b (s2) A1 + b (s2) A2)

× (b (s3) A1 + b (s3) A2) ds1ds2ds3 + R4 (ti, ti−1, A)

= I −
ti∫

ti−1

(b (s1) A1 + b (s1) A2) ds1

+

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2

(
A2

1 + A2
2

)

+

ti∫

ti−1

s1∫

ti−1

b (s1) b (s2) ds1ds2 (A1A2 + A2A1)
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−
ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

(
A3

1 + A3
2

)

−
ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

(
A2

1A2 + A2
2A1

)

−
ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3

(
A1A

2
2 + A2A

2
1

)

−
ti∫

ti−1

s1∫

ti−1

s2∫

ti−1

b (s1) b (s2) b (s3) ds1ds2ds3 (A1A2A1 + A2A1A2) + R4 (ti, ti−1, A) ,

(10.10)
where for the residual member the following estimation holds:

‖R4 (ti, ti−1, A) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
. (10.11)

From (10.8) and (10.10) we obtain:

U (ti, ti−1; A)− V (ti, ti−1) = I1

(
A2

1 + A2
2

)
+ I2 (A1A2 + A2A1)

+I3

(
A3

1 + A3
2

)
+ I4

(
A2

1A2 + A2
2A1

)
+ I5 (A1A2A1 + A2A1A2)

+I6

(
A1A

2
2 + A2A

2
1

)
+ R4 (ti, ti−1) + R4 (ti, ti−1, A) . (10.12)

Let us consider the following integral and transform it using integration by
part:

b∫

a

s1∫

a

f (s1) ϕ (s2) ds2ds1 =

s1∫

a

f (s2) ds2

∣∣∣∣∣∣

b

a

s1∫

a

ϕ (s2) ds2

∣∣∣∣∣∣

b

a

−
b∫

a

s1∫

a

ϕ (s1) f (s2) ds2ds1 =

b∫

a

f (s1) ds1

b∫

a

ϕ (s1) ds1−
b∫

a

s1∫

a

ϕ (s1) f (s2) ds2ds1.

We receive:

b∫

a

f (s1) ds1

b∫

a

ϕ (s1) ds1 =

b∫

a

s1∫

a

f (s1) ϕ (s2) ds2ds1+

b∫

a

s1∫

a

ϕ (s1) f (s2) ds2ds1.

(10.13)
According to the formula (10.13) it follows that:

I1 = I2 = 0. (10.14)
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Let us consider the following integral and transform it using integration by
part:

b∫

a

s1∫

a

s2∫

a

f (s1) ϕ (s2) ψ (s3) ds3ds2ds1 =

s1∫

a

f (s2) ds2

∣∣∣∣∣∣

b

a

s1∫

a

ϕ (s2)

s2∫

a

ψ (s3) ds3ds2

∣∣∣∣∣∣

b

a

−
b∫

a

s1∫

a

f (s2) ds2ϕ (s1)

s1∫

a

ψ (s2) ds2ds1 =

b∫

a

f (s1) ds1

b∫

a


ϕ (s1)

s1∫

b

ψ (s2) ds2


 ds1

−
b∫

a

ϕ (s1)




s1∫

a

f (s2) ds2

s1∫

a

ψ (s2) ds2


 ds1.

Hence according to the equality (10.13) we get:

b∫

a

s1∫

a

s2∫

a

f (s1) ϕ (s2) ψ (s3) ds3ds2ds1 =

b∫

a

f (s1) ds1

b∫

a


ϕ (s1)

s1∫

a

ψ (s2) ds2


 ds1

−
b∫

a

s1∫

a

s2∫

a

ϕ (s1) f (s2) ψ (s3) ds3ds2ds1 −
b∫

a

s1∫

a

s2∫

a

ϕ (s1) ψ (s2) f (s3) ds3ds2ds1.

From this we obtain the following formula:

b∫

a

f (s1) ds1

b∫

a


ϕ (s1)

s1∫

a

ψ (s2) ds2


 ds1 =

b∫

a

s1∫

a

s2∫

a

f (s1) ϕ (s2) ψ (s3) ds3ds2ds1

+

b∫

a

s1∫

a

s2∫

a

ϕ (s1) f (s2) ψ (s3) ds3ds2ds1 +

b∫

a

s1∫

a

s2∫

a

ϕ (s1) ψ (s2) f (s3) ds3ds2ds1.

(10.15)
From the formula (10.15) it follows that:

I3 = I4 = I6 = 0. (10.16)

Finally let us consider the following integral and transform it according to
the formula (10.13):

b∫

a

f (s1) ds1

b∫

a


ϕ (s1)

s1∫

a

ψ (s2) ds2


 ds1 =

b∫

a

f (s1) ds1

b∫

a

ϕ (s1) ds1

b∫

a

ψ (s1) ds1

−
b∫

a

f (s1) ds1

b∫

a

ψ (s1)

s1∫

a

ϕ (s2) ds2ds1.
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Hence according to the formula (10.15) we obtain:

b∫

a

f (s1) ds1

b∫

a

ϕ (s1)

s1∫

a

ψ (s2) ds2ds1 =

b∫

a

f (s1) ds1

b∫

a

ϕ (s1) ds1

b∫

a

ψ (s1) ds1

−
b∫

a

s1∫

a

s2∫

a

f (s1) ψ (s2) ϕ (s3) ds3ds2ds1 −
b∫

a

s1∫

a

s2∫

a

ψ (s1) f (s2) ϕ (s3) ds3ds2ds1

−
b∫

a

s1∫

a

s2∫

a

ψ (s1) ϕ (s2) f (s3) ds3ds2ds1.

From this and formula (10.15) we get:

b∫

a

f (s1) ds1

b∫

a

ϕ (s1) ds1

b∫

a

ψ (s1) ds1 =

b∫

a

s1∫

a

s2∫

a

f (s1) ϕ (s2) ψ (s3) ds3ds2ds1

+

b∫

a

s1∫

a

s2∫

a

ϕ (s1) f (s2) ψ (s3) ds3ds2ds1 +

b∫

a

s1∫

a

s2∫

a

ϕ (s1) ψ (s2) f (s3) ds3ds2ds1

+

b∫

a

s1∫

a

s2∫

a

f (s1) ψ (s2) ϕ (s3) ds3ds2ds1 +

b∫

a

s1∫

a

s2∫

a

ψ (s1) f (s2) ϕ (s3) ds3ds2ds1

+

b∫

a

s1∫

a

s2∫

a

ψ (s1) ϕ (s2) f (s3) ds3ds2ds1. (10.17)

from the formula (10.17) it follows that:

I5 = 0 (10.18)

From the equality (10.12) according to the formulas (10.14), (10.16), (10.18)
and the inequalities (10.9) and (10.11) we obtain the sought estimation. ¤

Let us return to the proof of the Theorem 10.1.
Solution of the problem (10.1) in the point t = tk can be written as follows:

u (tk) = U (tk, t0; A) ϕ. (10.19)

Solution of the decomposed problem can be written as follows:

uk (tk) = L (tk, t0) ϕ, (10.20)

where
L (ti, tj) = V (ti, ti−1) V (ti−1, ti−2) ...V (tj+1, tj) , i > j.
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Let us estimate the operator L (ti, tj) (i > j):

‖L (ti, tj)‖ ≤ ‖V (ti, ti−1)‖ ‖V (ti−1, ti−2)‖ ... ‖V (tj+1, tj)‖

≤ eω0τeω0τ ...eω0τ ≤ eω0(i−j)τ . (10.21)

From the equalities (10.19) and (10.20) according to the inequality (10.21)
and Lemma we obtain:

‖u(tk)− uk(tk)‖ = ‖[L (tk, 0)− U (tk, 0; A)] ϕ‖

=
k∑

i=1

‖L (tk, ti) [L (ti, ti−1)− U (ti, ti−1; A)] U (ti−1, 0; A) ϕ‖

≤
k∑

i=1

‖L (tk, ti)‖ ‖[L (ti, ti−1)− U (ti, ti−1; A)] U (ti−1, 0; A) ϕ‖

≤
k∑

i=1

ceω0(k−i)τceω0τ ‖U (ti−1, 0; A) ϕ‖A4
0

≤ ceω0tktkτ sup
s1,s2∈[0,tk]

‖U(s1, s2; A)ϕ‖A4
0
. ¤
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§11. Rational splitting

1. Construction of decomposition algorithm

Let us consider Cauchy problem in the Banach space X :

du (t)

dt
+ A (t) u (t) = 0, t > 0, u(0) = ϕ, (11.1)

where ϕ is a given element from D (A) and operator A (t) satisfies conditions
of the previous paragraph.

In the previous paragraph we have built the following decomposition for-
mula which is locally of the fourth order of accuracy.

V (tk, tk−1) =
1

2
[U (tk, tk−1; αb (·) A1) U (tk, tk−1; b (·) A2) U (tk, tk−1; αb (·) A1)

+ U (tk, tk−1; αb (·) A2) U (tk, tk−1; b (·) A1) U (tk, tk−1; αb (·) A2)] , (11.2)

where α = 1
2
± i 1

2
√

3

(
i =

√−1
)
.

In this paragraph we have shown, that:

U (tk, tk−1, b (·) A0)− V (tk, tk−1) = Op

(
τ 4

)
,

where Op (τ 4) is an operator, the norm of which is of the fourth order with re-
spect to τ (more precisely, in case of unbounded operator ‖Op (τ 4) ϕ‖ = O (τ 4)
for any ϕ from the domain of Op (τ 4)). In the present work the following ap-
proximation formulas of the fourth order accuracy will be built for the solving
operator of the problem (10.1), using rational approximations:

W1 (tk, tk−1, b (·) A0) = akI + bk (I + λkτA0)
−1 + ck (I + λkτA0)

−2 , (11.3)

W2 (tk, tk−1, b (·) A0) = (I − λ0,kτA0) (I + λ1,kτA0)
−1 (I + λ2,kτA0)

−1 , (11.4)

where

λk =
1

2

γ2,k

γ1,k

+
1

2
√

3

√
3γ2,k − 2γ1,kγ3,k

γ1,k

,

ak = 1− 2γ1,k

λk

+
γ2,k

2λ2
k

, bk =
3γ1,k

λk

− γ2,k

λ2
k

, ck =
γ2,k

2λ2
k

− γ1,k

λk

;

λ0,k =
6γ3

1,k − 6γ1,kγ2,k + γ3,k

6γ2
1,k − 3γ2,k

,

λs,k =
1

2

(
dk + (−1)s i

√
4ek − d2

k

)
, s = 1, 2,

dk =
3γ1,kγ2,k − γ3,k

6γ2
1,k − 3γ2,k

, ek =
3γ2

2,k − 2γ1,kγ3,k

2
(
6γ2

1,k − 3γ2,k

) ,
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and where

γ1,k =
3b (tk) + b

(
tk−1/3

)

4
, γ2,k = b2

(
tk−1/2

)
, γ3,k = b3

(
tk−1/2

)
.

Let us note, that the parameters ak, bk, ck and λk satisfy the following system
of equations:

ak + bk + ck = 1,

bk + mck =
γm,k

(m− 1)!λm
k

, m = 2, 3, 4

and the parameters λ0,k, λ1,k and λ2,k - the following system of equations:




λ0,k + λ1,k + λ2,k = γ1,k,
λ0,k (λ1,k + λ2,k) + λ2

1,k + λ2
2,k + λ1,kλ2,k = γ2,k/2,

λ0,k

(
λ2

1,k + λ2
2,k + λ1,kλ2,k

)
+ λ3

1,k + λ3
2,k + λ2

1,kλ2,k + λ1,kλ
2
2,k = γ3,k/6.

These equations can be received by equalizing the coefficients of the oper-
ators I, A0, A

2
0 and A3

0 obtained after decomposing the (1.4) and (1.5) rational
approximations with the corresponding coefficients in the decomposition of the
solving operator of the problem (11.1).

In the present work we shall also show that for the both formulas we have:

U (tk, tk−1, b (·) A0)−Wl (tk, tk−1, b (·) A0) = Op

(
τ 4

)
, l = 1, 2.

According to the formulas (11.3),(11.4) and (11.5) we can build the follow-
ing decomposition formulas:

Vl (tk, tk−1) =
1

2
[Wl (tk, tk−1, b (·) A1) Wl (tk, tk−1, b (·) A2) Wl (tk, tk−1, b (·) A1)

+Wl (tk, tk−1, b (·) A2) Wl (tk, tk−1, b (·) A1) Wl (tk, tk−1, b (·) A2)] , l = 1, 2.
(11.5)

Below we shall show that both formulas are of the fourth order of accuracy,

U (tk, tk−1, b (·) A0)− Vl (tk, tk−1) = Op

(
τ 4

)
, l = 1, 2.

According to the formulas (11.6) in the present work the third order accuracy
decomposition schemes will be built for the solution of the problem (1.1).

According to the formula (11.2) we have:

u(tk) = U (tk, tk−1, b (·) A0) u (tk−1) . (11.6)

On the basis of the formula (11.7) let us construct the following scheme:

luk = Vl (tk, tk−1)
(

luk−1

)
lu0 = ϕ, l = 1, 2, (11.7)

where

Vl(tk, tk−1) =
1

2
[Wl (tk, tk−1, αb (·) A1) Wl (tk, tk−1, b (·) A2) Wl (tk, tk−1, αb (·) A1)
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+Wl (tk, tk−1, αb (·) A2) Wl (tk, tk−1, b (·) A1) Wl (tk, tk−1, αb (·) A2)] .

Let us realize the scheme (11.8) by the following algorithm:

lvk−2/3 = Wl (tk, tk−1, αb (·) A1)
(

luk−1

)
,

lwk−2/3 = Wl (tk, tk−1, αb (·) A2)
(

luk−1

)
,

lvk−1/3 = Wl (tk, tk−1, b (·) A2)
(

lvk−2/3

)
,

lwk−1/3 = Wl (tk, tk−1, b (·) A1)
(

lwk−2/3

)
,

lvk = Wl (tk, tk−1, αb (·) A2)
(

lvk−1/3

)
,

lwk = Wl (tk, tk−1, αb (·) A2)
(

lwk−1/3

)
,

luk =
1

2

[
lvk + lwk

]
, lu0 = ϕ,

2. Error estimation of approximation solution

The following theorem takes place:
Theorem 11.1. Let the following conditions be satisfied:
(a) There exists such τ0 > 0, that for any 0 ≤ τ ≤ τ0 there exist operators

(I + γλkτAj)
−1 , j = 1, 2, γ = 1, α, α and they are bounded, besides the

following inequalities are true:

‖Wl (τ, γAj)‖ ≤ eωτ , ω = const > 0, l = 1, 2;

(b) There exist the solving operator U(t, t0; γb (·) Aj), γ = 1, α, α (j = 0, 1, 2)
of the following problem:

dv (t)

dt
+ γb (t) Ajv (t) = 0, t ≥ t0 ≥ 0, v (t0) = ϕ ∈ D (Aj) ,

and the following inequality is true:

‖U(t, t0; γb (·) Aj)‖ ≤ eω(t−t0),

‖U(t, t0; b (·) A0)‖ ≤ Meω(t−t0), M, ω = const > 0;

(c) b (t) ≥ b0 > 0 and b (t) ∈ C3[0;∞);
(d) U (s1, s2; b (·) A0) ϕ ∈ D (A4

0) for any fixed s1, s2 ≥ 0.
Then the following estimation holds:

∥∥u(tk)− luk

∥∥ ≤ ceω0tktkτ
3 sup

s1,s2∈[0,tk]

‖U(s1, s2, A)ϕ‖A4
0
, l = 1, 2,

where c, ω0 are positive constants.
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Let us prove the theorem in case of l = 1 (in case of l = 2 the theorem can
be proved analogously). Let us prove the auxiliary lemmas on which the prove
of the theorem is based.

Lemma 11.2. If the condition (a) of the theorem is satisfied, then for the
operator W1 (ti, ti−1, b (·) A0) the following decomposition is true:

W1 (ti, ti−1, b (·) A0) =
k−1∑
j=0

(−1)j tj

j!
γj,iA

j
0 (11.8)

+RW1,k (ti, ti−1, αb (·) A0) ,

k = 1, 2, 3, 4,

where

γ0,i = 1, γ1,i =
3b (ti) + b

(
ti−1/3

)

4
, γ2,i = b2

(
ti−1/2

)
, γ3,i = b3

(
ti−1/2

)
,

and where for the residual member the following estimation holds:

‖RW1,k (ti, ti−1, αb (·) A0) ϕ‖ ≤ ceω0tτ k
∥∥Ak

0ϕ
∥∥ , ϕ ∈ D

(
Ak

0

)
. (11.9)

Proof. Clearly we have:

(I + γA)−1 = I − I + (I + γA)−1 = I − (I + γA)−1 (I + γA− I) =

= I − γA (I + A)−1 .

From this for any natural k we can get the following expansion:

(I + γA)−1 =
k−1∑
i=0

(−1)i γiAi + γkAk (I + γA)−1 . (11.10)

Let us decompose the rational approximation W1 (ti, ti−1, b (·) A0) according
to the formula (11.11) up to the first order, we get:

W1 (ti, ti−1, b (·) A0) = aiI + bi (I + λiτA0)
−1 + ci (I + λiτA0)

−2

= aiI + biI − (bi + ci) λiτA0 (I + λiτA0)
−1 + ciI − ciλiτA0 (I + λiτA0)

−2

= (ai + bi + ci) I + RW1,1 (ti, ti−1, b (·) A0) , (11.11)

where

RW1,1 (ti, ti−1, b (·) A0) = − (bi + ci) λiτA0 (I + λiτA0)
−1−ciλiτA0 (I + λiτA0)

−2 .

According to the condition (a) of the theorem we have:

‖RW1,1 (ti, ti−1, b (·) A0) ϕ‖ ≤ cτ ‖A0ϕ‖ , c = const > 0. (11.12)
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If we insert the values of the parameters ai, bi and ci in (11.12), we get:

W1(τ, A) = I + RW1,1 (ti, ti−1, b (·) A0) . (11.13)

Let us decompose the rational approximation W1 (ti, ti−1, b (·) A0) according to
the formula (11.11) up to the second order, we get:

aiI + bi (I + λiτA0)
−1 + ci (I + λiτA0)

−2 =

= aiI + bi

[
I − λiτA0 + λ2

i τ
2A2

0 (I + λiτA0)
−1] +

+ci (I + λiτA0)
−1 [

I − λiτA0 + λ2
i τ

2A2
0 (I + λiτA0)

−1] =

= aiI + biI − biλiτA + biλ
2
i τ

2A2
0 (I + λiτA0)

−1 +

+ci (I + λiτA0)
−1 − ciλiτA0 (I + λτA)−1 + ciλ

2
i τ

2A2
0 (I + λiτA0)

−1−
= (ai + bi) I − biλiτA0 + biλ

2
i τ

2A2
0 (I + λiτA0)

−1 +

+ci

[
I − λiτA0 + λ2

i τ
2A2 (I + λiτA0)

−1]−
−ciλiτ

[
I − λiτA0 (I + λiτA0)

−1] A0 + λ2
i τ

2 (I + λiτA0)
−2 A2

0 =

= (ai + bi) I − biλiτA0 + biλ
2
i τ

2A2
0 (I + λiτA0)

−1 +

+ciI − ciλiτA0 + ciλ
2
i τ

2 (I + λiτA0)
−1 A2

0−
−ciλiτA0 + ciλ

2
i τ

2 (I + λiτA0)
−1 A2

0 + λ2
i τ

2 (I + λiτA0)
−2 A2

0 =

= (ai + bi + ci) I − (bi + 2ci) λiτA0 + RW1,2 (ti, ti−1, b (·) A0) , (11.14)

where

RW1,2 (ti, ti−1, b (·) A0) = (bi + 2ci) λ2
i τ

2A2
0 (I + λiτA0)

−1

+λ2
i τ

2 (I + λiτA0)
−2 A2

0.

According to the condition (a) of the theorem we have:

‖RW1,2 (ti, ti−1, b (·) A0) ϕ‖ ≤ cτ 2
∥∥A2

0ϕ
∥∥ . (11.15)

If we insert the values of the parameters ai, bi and ci in (11.15), we get:

W1(ti, ti−1,b (·) A0) = I − τ
3b (ti) + b

(
ti−1/3

)

4
A0

+RW1,2 (ti, ti−1, b (·) A0) . (11.16)

Let us decompose the rational approximation W1 (ti, ti−1, b (·) A0) according to
the formula (11.11) up to the third order, we get:

aiI + bi (I + λiτA0)
−1 + ci (I + λiτA0)

−2

= aiI + bi

[
I − λiτA0 + λ2

i τ
2A2

0 − λ3
i τ

3A3
0 (I + λiτA0)

−1]
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+ci (I + λiτA0)
−1 [

I − λiτA0 + λ2
i τ

2A2
0 − λ3

i τ
3A3

0 (I + λiτA0)
−1]

= aiI + biI − biλiτA0 + biλ
2
i τ

2A2
0 − biλ

3
i τ

3A3
0 (I + λiτA0)

−1

+ci (I + λiτA0)
−1 − ciλiτA0 (I + λiτA0)

−1

+ciλ
2
i τ

2A2
0 (I + λiτA0)

−1 − ciλ
3
i τ

3A3
0 (I + λiτA0)

−2

= (ai + bi) I − biλiτA0 + biλ
2
i τ

2A2
0 − biλ

3
i τ

3A3
0 (I + λiτA0)

−1

+ci

[
I − λiτA0 + λ2

i τ
2A2

0 − λ3
i τ

3A3
0 (I + λiτA0)

−1]

−ciλiτ
[
I − λiτA0 +0 λ2

i τ
2A2

0 (I + λiτA0)
−1] A0

+λ2
i τ

2
[
I − λiτA0 (I + λiτA0)

−1] A2
0 − ciλ

3
i τ

3A3
0 (I + λiτA0)

−2

= (ai + bi) I − biλiτA0 + biλ
2
i τ

2A2
i − biλ

3
i τ

3A3
0 (I + λiτA0)

−1

+ciI − ciλiτA0 + ciλ
2
i τ

2A2
0 − ciλ

3
i τ

3A3
0 (I + λiτA0)

−1

−ciλiτA0 + ciλ
2
i τ

2A2
0 − ciλ

3
i τ

3A3
0 (I + λiτA0)

−1

+ciλ
2
i τ

2A2
0 − ciλ

3
i τ

3A3
0 (I + λiτA0)

−1 − ciλ
3
i τ

3A3
0 (I + λiτA0)

−1

= (ai + bi + ci) I − (bi + 2ci) λiτA0 + (bi + 3ci) λ2
i τ

2A2
0

+RW1,3 (ti, ti−1, b (·) A0) , (11.17)

where

RW1,3 (ti, ti−1, b (·) A0) = − (bi + 3ci) λ3
i τ

3 (I + λiτA0)
−1 A3

0

−ciλ
3
i τ

3 (I + λiτA0)
−2 A3

0,

According to the condition (a) of the theorem we have:

‖RW1,3 (ti, ti−1, b (·) A0) ϕ‖ ≤ cτ 3
∥∥A3

0ϕ
∥∥ . (11.18)

If we insert the values of the parameters ai, bi and ci in (11.18), we get:

W1 (ti, ti−1, b (·) A0) = I − τ
3b (ti) + b

(
ti−1/3

)

4
A0+

+
1

2
τ 2b2

(
ti−1/2

)
A2

0 + RW1,3 (ti, ti−1, b (·) A0) . (11.19)

And finally let us decompose the rational approximation W1 (ti, ti−1, b (·) A0)
according to the formula (11.11) up to the fourth order, we get:

aiI + bi (I + λiτA0)
−1 + ci (I + λiτA0)

−2 = aiI

+bi

[
I − λiτA0 + λ2

i τ
2A2

0 − λ3
i τ

3A3
0 + λ4

i τ
4A4

0 (I + λiτA0)
−1] +

+ci (I + λiτA0)
−1 [

I − λiτA0 + λ2
i τ

2A2
0 − λ3

i τ
3A3

0 + λ4
i τ

4A4
0 (I + λiτA0)

−1] =
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= aiI + biI − biλiτA0 + biλ
2
i τ

2A2
0 − biλ

3
i τ

3A3
0 + biλ

4
i τ

4A4
0 (I + λiτA0)

−1 +

+ci (I + λiτA0)
−1 − ciλiτA0 (I + λiτA0)

−1 + ciλ
2
i τ

2A2
0 (I + λiτA0)

−1−
−ciλ

3
i τ

3A3
0 (I + λiτA0)

−1 + ciλ
4
i τ

4A4
0 (I + λiτA0)

−2 =

= (ai + bi) I − biλiτA0 + biλ
2
i τ

2A2
0 − biλ

3
i τ

3A3
0 + biλ

4
i τ

4A4
0 (I + λiτA0)

−1 +

+ci

[
I − λiτA0 + λ2

i τ
2A2

0 − λ3
i τ

3A3
0 + λ4

i τ
4A4

0 (I + λiτA0)
−1]−

−ciλiτ
[
I − λiτA0 + λ2

i τ
2A2

0 − λ3
i τ

3A3
0 (I + λiτA0)

−1] A0+

+λ2
i τ

2
[
I − λiτA0 + λ2

i τ
2A2

0 (I + λiτA0)
−1] A2

0−
−λ3

i τ
3
[
I − λiτA0 (I + λiτA0)

−1] A3
0 + λ4

i τ
4 (I + λiτA0)

−2 A4
0 =

= (ai + bi) I − biλiτA0 + biλ
2
i τ

2A2
0 − biλ

3
i τ

3A3
0 + biλ

4
i τ

4A4
0 (I + λiτA0)

−1 +

+ciI − ciλiτA0 + ciλ
2
i τ

2A2
0 − ciλ

3
i τ

3A3
0 + ciλ

4
i τ

4A4
0 (I + λiτA0)

−1−
−ciλiτA0 + ciλ

2
i τ

2A2
0 − ciλ

3
0τ

3A3
0 + ciλ

4
i τ

4A3
0 (I + λiτA0)

−1 A0+

+ciλ
2
i τ

2A2
0 − ciλ

3
i τ

3A3
0 + ciλ

4
i τ

4A2
0 (I + λiτA0)

−1 A2
0 − ciλ

3
i τ

3A3
0+

+ciλ
4
i τ

4A0 (I + λiτA0)
−1 A3

0 + ciλ
4
i τ

4 (I + λiτA0)
−2 A4

0 = (ai + bi + ci) I−

− (bi + 2ci) λiτA0 + (bi + 3ci) λ2
i τ

2A2
0 − (bi + 4ci)λ

3
i τ

3A3
0

+RW1,4 (ti, ti−1, b (·) A0) , (11.20)

where

RW1,4 (ti, ti−1, b (·) A0) = (bi + 4ci) λ4
i τ

4 (I + λiτA0)
−1 A4

0

+ciλ
4
i τ

4 (I + λiτA0)
−2 A4

0.

According to the condition (a) of the theorem we have:

‖RW1,4 (ti, ti−1, b (·) A0) ϕ‖ ≤ cτ 4
∥∥A4ϕ

∥∥ . (11.21)

If we insert the values of the parameters ai, bi and ci in (11.21), we get:

W1 (ti, ti−1, b (·) A0) = I − 3b (ti) + b
(
ti−1/3

)

4
A0+

+
1

2
τ 2b2

(
ti−1/2

)
A2

0 −
1

6
τ 3b3

(
ti−1/2

)
A3

0 + RW1,4 (ti, ti−1, b (·) A0) . (11.22)

Uniting the formulas (11.14),(11.17),(11.20) and (11.23) we get the formula
(11.9), and uniting the inequalities (11.13), (11.16), (11.19) and (11.22) we
obtain the estimation (11.10). ¤

Lemma 11.3. If the condition (a) of the theorem 11.1 is satisfied, then
the following estimation holds:

‖U (ti, ti−1; b (·) A0)− V1 (ti, ti−1)‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
, (11.23)
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where

V1 (ti, ti−1) =
1

2
[W1 (ti, ti−1; αb (·) A1) W1 (ti, ti−1; b (·) A2) W1 (ti, ti−1; αb (·) A1) +

+ W1 (ti, ti−1; αb (·) A2) W1 (ti, ti−1; b (·) A1) W1 (ti, ti−1; αb (·) A2)] ,

here c and ω0 are positive constants.
Proof. The following formula is true:

U (ti, ti−1; A) = I −
ti∫

ti−1

A (s1) U (t2, s1; A) ds1,

hence we get the following decomposition:

U (ti, ti−1; A) = I −
ti∫

ti−1

A (s1) ds1 +

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ds2ds1 + ...+

+ (−1)k

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ...

sk−1∫

ti−1

A (sk) dsk...ds2ds1 + Rk (ti, ti−1, A) ,

(11.24)
where

Rk (t2, t1, A) = (−1)k

ti∫

ti−1

A (s1)

s1∫

ti−1

A (s2) ...

sk−1∫

ti−1

U (t2, sk; A) A (sk) dsk...ds2ds1.

From the equality (10.18) according to the formulas (10.13) and (10.14)

U (ti, ti−1; A) = I −
ti∫

ti−1

b (s) dsA0 +
1

2




ti∫

ti−1

b (s) ds




2

A2
0−

−1

6




ti∫

ti−1

b (s) ds




3

A3
0 + R4 (ti, ti−1, A) . (11.25)
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If b (t) ∈ C3[0;∞), then the following inequality is true:

∥∥∥∥∥∥

ti∫

ti−1

b (s) ds− τ
3b (ti) + b

(
ti−1/3

)

4

∥∥∥∥∥∥
C

≤ cτ 4,

∥∥∥∥∥∥∥




ti∫

ti−1

b (s) ds




2

− τ 2b2
(
ti−1/2

)
∥∥∥∥∥∥∥

C

≤ cτ 4,

∥∥∥∥∥∥∥




ti∫

ti−1

b (s) ds




3

− τ 3b3
(
ti−1/2

)
∥∥∥∥∥∥∥

C

≤ cτ 4.

According to this inequality from the formula (11.25) we get the following
equality:

U (ti, ti−1; A) = I − τ
3b (ti) + b

(
ti−1/3

)

4
A0 +

1

2
τ 2b2

(
ti−1/2

)
A2

0−

−1

6
τ 3b3

(
ti−1/2

)
A3

0 + R̃4 (ti, ti−1, A) . (11.26)

where for the residual member R̃4 (ti, ti−1, A) the following inequality is true

∥∥∥R̃4 (ti, ti−1, A) ϕ
∥∥∥ ≤ ceω0ττ 4 ‖ϕ‖A4

0
. (11.27)

Let us decompose all rational approximations in the operator V1 (ti, ti−1)
according to the formula (11.9) from the right to left, so that each residual
member is of the fourth order. We shall get:

V1 (ti, ti−1) = I − τ
3b (ti) + b

(
ti−1/3

)

4
A0 +

1

2
τ 2b2

(
ti−1/2

)
A2

0−

−1

6
τ 3b3

(
ti−1/2

)
A3

0 + RV1,4 (ti, ti−1) , (11.28)

where for the residual member RV1,4 (ti, ti−1) the following inequality is true:

‖RV1,4 (ti, ti−1) ϕ‖ ≤ ceω0ττ 4 ‖ϕ‖A4
0
. (11.29)

From the equalities (11.27) and (11.29) according to the inequalities (11.28)
and (11.30) we can get the sought estimation. ¤

Let us return to the proof of the Theorem 11.1.
Let us introduce the solution of the decomposed problem as follows:

1uk = L1 (tk, t0) ϕ, (11.30)
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where

L1 (ti, tj) = V1 (ti, ti−1) V1 (ti−1, ti−2) ...V1 (tj+1, tj) , i > j.

Let us estimate the operator L1 (ti, tj) (i > j):

‖L1 (ti, tj)‖ ≤ ‖V1 (ti, ti−1)‖ ‖V1 (ti−1, ti−2)‖ ... ‖V1 (tj+1, tj)‖ ≤

≤ eω0τeω0τ ...eω0τ ≤ eω0(i−j)τ . (11.31)

From the equalities (10.2) and (11.31) according to the inequalities (11.24)
and (11.32) we get:

∥∥u(tk)− 1uk

∥∥ = ‖[L1 (tk, 0)− U (tk, 0; b (·) A0)] ϕ‖ =

=
k∑

i=1

‖L1 (tk, ti) [V1 (ti, ti−1)− U (ti, ti−1; b (·) A0)] U (ti−1, 0; b (·) A0) ϕ‖ ≤

≤
k∑

i=1

‖L1 (tk, ti)‖ ‖[V1 (ti, ti−1)− U (ti, ti−1; b (·) A0)] U (ti−1, 0; b (·) A0) ϕ‖ ≤

≤
k∑

i=1

ceω0(k−i)τceω0τ ‖U (ti−1, 0; b (·) A0) ϕ‖A4
0
≤

≤ ceω0tktkτ sup
s1,s2∈[0,tk]

‖U(s1, s2; A)ϕ‖A4
0
. ¤
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Appendix

In the appendix there are given results of numerical calculations for heat
transfer equation. These calculations are carried out using existing first and
second order and constructed in this work third order accuracy decomposition
schemes. Comparative analysis of numerical calculations for different order
decomposition schemes is carried out.

∂u (t, x, y)

∂t
= a (x, y)

∂2u (t, x, y)

∂x2
+ b (x, y)

∂2u (t, x, y)

∂y2
+ f (t, x, y) ,

t > 0, (x, y) ∈ [0, 1]× [0, 1] ,

u (0, x, y) = ϕ (x, y) ,

u (t, 0, y) = u (t, 1, y) = u (t, x, 0) = u (t, x, 1) = 0.

There are calculated the following test problems:
Test 1.

f (t, x, y) = 0,

ϕ (x, y) = sin (πx) sin (πy) ,

a (x, y) = b (x, y) = 1.

The solution of this problem is

u (t, x, y) = e−2π2t sin (πx) sin (πy) .

The interesting point of this test is that with increase of t the solution decreases
very rapidly (tends to machine zero) and for this reason it is very difficult to
catch the solution behavior. The suggested third order scheme makes possible
to achieve good precision, what is confirmed by calculations (see tables: 1-4).

In the tables 4-5 there are shown results of calculations of test 1 according
to semi-discrete analog of first order accuracy averaged differential scheme (see
[28]):

vk − vk−1

τ
+ 2A1vk = 0, vk−1 = uk−1,

wk − wk−1

τ
+ 2A2vk = 0, wk−1 = uk−1,

uk =
1

2
(vk + wk) , k = 1, 2, ..., u0 = ϕ. (1)

uk is given as an approximate solution at the point t = tk = kτ .
As it can be seen from the above-mentioned tables, this scheme cannot

catch the behavior of the problem in test 1.
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In the tables 6-7 there are shown results of calculations of test 1 according
to semi-discrete analog of second order accuracy averaged differential scheme
(see [28]), which is constructed on the basis of Crank-Nickolson scheme:

v1
k − v1

k−1

τ
+

1

2
A1

(
v1

k + v1
k−1

)
= 0, v1

k−1 = uk−1,

v2
k − v2

k−1

τ
+

1

2
A2

(
v2

k + v2
k−1

)
= 0, v2

k−1 = v1
k,

w1
k − w1

k−1

τ
+

1

2
A2

(
w1

k + w1
k−1

)
= 0, w1

k−1 = uk−1,

w2
k − w2

k−1

τ
+

1

2
A2

(
w2

k + w2
k−1

)
= 0, w2

k−1 = w1
k,

uk =
1

2

(
v2

k + w2
k

)
, k = 1, 2, ... , u0 = ϕ. (2)

uk is given as an approximate solution at the point t = tk.
As it can be seen from the mentioned tables, this scheme catches behavior

of problem in test 1 with satisfying precision, but the results are much worse
than those of calculations by scheme (2.6)(see table 1-3).

In the tables 8-9 there are shown results of calculations of test 1 according to
semi-discrete analog of second order accuracy symmetrized differential scheme
(see [3], [4]), which is constructed on the basis of Crank-Nickolson scheme:

v1
k − v1

k−1

τ
+

1

4
A1

(
v1

k + v1
k−1

)
= 0, v1

k−1 = uk−1,

v2
k − v2

k−1

τ
+

1

2
A2

(
v2

k + v2
k−1

)
= 0, v2

k−1 = v1
k,

v3
k − v3

k−1

τ
+

1

4
A1

(
v3

k + v3
k−1

)
= 0, v3

k−1 = v2
k

uk = v3
k, k = 1, 2, ... , u0 = ϕ. (3)

As an approximate solution at point t = tk is taken uk.
As it can be seen from the mentioned tables, this scheme, as well as the

previous one, catches behavior of problem in test 1 with satisfying precision.
The results are a bit better than results in tables 6-7, but much worse than
than those of calculations by scheme (2.6) (see tables 1-3).

To fully represent a comparison of the above-mentioned schemes it is impor-
tant to construct the solution which is exact with regard to spatial coordinates.

For the considered tests the solutions of semi-discrete split problems (1),
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(2) and (3) are given by the following formulas:

uk =

(
1

1 + 2π2τ

)k

sin (πx) sin (πy) ,

uk =

(
1− 0.5π2τ

1 + 0.5π2τ

)2k

sin (πx) sin (πy) ,

uk =

(
(1− 0.5π2τ) (1− 0.25π2τ)

2

(1 + 0.5π2τ) (1 + 0.25π2τ)2

)k

sin (πx) sin (πy) .

Solution of the problem (2.6) is given by the following formula:

uk =

( (
1− 1

3
π2τ

) (
1− 1

3
π2τ + 1

27
π4τ 2

)
(
1 + 2

3
π2τ + 1

6
π4τ 2

) (
1 + 2

3
π2τ + 11

54
π4τ 2 + 1

27
π6τ 3 + 1

324
π8τ 4

)
)k

× sin (πx) sin (πy) .

By comparing these solutions to exact solution we can see that coefficients of
sin (πx) sin (πy) approximate e−2π2t respectively by first, second, second and
third order precision with regard to time step and this is shown on tables 10-17.

Test 2.

f (t, x, y) =
(
π2

(
2 + m2

2a (x, y) + m2
3b (x, y)

)
sin (m1πt) + m1π cos (m1πt)

)

×e2π2t sin (m2πx) sin (m3πy) ,

ϕ (x, y) = 0,

a (x, y) = 2 + sin (πx) sin (πy) ,

b (x, y) = 2 + 0.5 sin (πx) sin (πy) .

Solution of the problem is u (t, x, y) = e2π2t sin (m1πt) sin (m2πx) sin (m3πy) .
The interesting point of this test is that increase of parameters m1,m2 and

m3 yields to rapid sign-changing oscillation of solution. In addition, on expense
of parameters changing we can regulate oscillation frequency according to time
and spatial coordinates. As the algorithm provides high order accuracy with
regards to time coordinate, therefore it is natural that oscillation with regards
to t is much higher. It is obvious that multiplier e2π2t with increase of t yields
to rapid increase of oscillation amplitude. This factor along with oscillation
makes essentially difficult to catch solution behavior and for this reason it is
necessary to use high order accuracy schemes. This can be confirmed by tables
18-21.

Test 3.

f (t, x, y) = emπtπ (m + π (a (x, y) + b (x, y))) sin (πx) sin (πy) ,

ϕ (x, y) = 0,

a (x, y) = 2 + sin (πx) sin (πy) ,

b (x, y) = 2 + 0.5 sin (πx) sin (πy) .
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Solution of the problem is u (t, x, y) = emπt sin (πx) sin (πy) .
On Fig.1, there is given a dependance of the relative error of the approx-

imated solution on the logarithm of time step (on the horizontal axis it is
logarithm of time step, and on the vertical axis it is relative error of the approx-
imated solution). On Fig.2, there is given a dependance of the absolute error
of the approximated solution on the logarithm of time step (On the horizontal
axis it is logarithm of time step, and on the vertical axis it is absolute error of
the approximated solution). On the both figures the calculations are carried
out for the following values of the time step: τk = 1/Nk, Nk =

[
10 ∗ 1.2k

]
,

k = 0, 1, ..., 30, and the spatial step is constant hx = hy = 0.001. On the
both figures there are given three cases: m = 1, m = 3 and m = 5. Our aim
was to find the convergence rate of the method by means of the numerical
experiment. If the method is of third order, then, starting from some value of
τ , the graph of the function (logarithm of solution error) have to approach to
the straight line, the tangent of which equals three. On the both figures it is
clearly seen that, starting from τ = 0.01 (Log(τ) = −2), the graph approaches
to the straight line, the tangent of which equals to three with the sufficient
accuracy, and this verifies the theoretical result proved in the article.

Let us also note that, for the approximation of the second derivatives ac-
cording to the spatial variables, there is used classical difference formulas. It
is obvious that u1, u2, ..., uk are complex functions, but their complex parts are
of O (τ 3) order.
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In the tables below u  is an exact solution, and u~  is an approximate solution. 

 

Third order of accuracy decomposition scheme   -  (2.6)                         Table 1 

 (x,y)=(0.5,0.5)     tau=1/64,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.125 8479.62 E-05 8480.53 E-05 9.1 E-06 0.11 E-03

0.250 719.03 E-05 719.19 E-05 1.6 E-06 0.21 E-03

0.375 609.71 E-06 609.91 E-06 2.0 E-07 0.32 E-03

0.500 517.01 E-07 517.23 E-07 2.2 E-08 0.43 E-03

0.625 438.40 E-08 438.64 E-08 2.4 E-09 0.53 E-03

0.750 371.75 E-09 371.99 E-09 2.4 E-10 0.64 E-03

0.875 315.23 E-10 315.46 E-10 2.3 E-11 0.75 E-03

1.000 267.30 E-11 267.53 E-11 2.3 E-12 0.85 E-03

 

Third order of accuracy decomposition scheme   -  (2.6)                         Table 2 

(x,y)=(0.5,0.5)     tau=1/100,  h=1/128 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 13891.54 E-05 13891.11 E-05 4.3 E-06 0.31 E-04

0.2 1929.75 E-05 1929.63 E-05 1.2 E-06 0.62 E-04

0.3 2680.72 E-06 2680.50 E-06 2.2 E-07 0.82 E-04

0.4 3723.93 E-07 3723.47 E-07 4.6 E-08 0.12 E-03

0.5 5173.11 E-08 5172.32 E-08 7.9 E-09 0.15 E-03

0.6 718.62 E-08 718.49 E-08 1.3 E-09 0.18 E-03

0.7 998.28 E-09 998.07 E-09 2.1 E-10 0.21 E-03

0.8 1386.77 E-10 1386.43 E-10 3.4 E-11 0.25 E-03

0.9 1926.43 E-11 1925.90 E-11 5.3 E-12 0.28 E-03

1.0 2676.11E-12 2675.29 E-12 8.2 E-13 0.31 E-03

 

Third order of accuracy decomposition scheme   -  (2.6)                         Table 3 

(x,y)=(0.5,0.5)     tau=1/100,  h=1/142 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 13891.28 E-05 13891.11 E-05 1.7 E-06 0.12 E-04

0.2 19296.77 E-06 19296.30 E-06 4.7 E-07 0.24 E-04

0.3 26805.69 E-07 26804.71 E-07 9.8 E-08 0.37 E-04

0.4 3723.65 E-07 3723.47 E-07 1.8 E-08 0.48 E-04

0.5 5172.63 E-08 5172.32 E-08 3.1 E-09 0.60 E-04

0.6 7185.45 E-09 7184.90 E-09 5.5 E-10 0.77 E-04

0.7 9981.51 E-10 9980.66 E-10 8.5 E-11 0.85 E-04

0.8 1386.56 E-10 1386.43 E-10 1.3 E-11 0.94 E-04

0.9 1926.11 E-11 1925.90 E-11 2.1 E-12 0.11 E-03

1.0 2675.61 E-12 2675.29 E-12 3.2 E-13 0.12 E-03
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First order of accuracy averaged decomposition scheme – (1)               Table 4  

 (x,y)=(0.5,0.5)     tau=1/64,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.125 1.16 E-01 0.85 E-01 3.1 E-02 0.36

0.250 0.14 E-01 0.72 E-02 6.8 E-03 0.94

0.375 0.16 E-02 0.61 E-03 9.9 E-04 1.6

0.500 0.18 E-03 0.52 E-04 1.3 E-04 2.5

0.625 0.21 E-04 0.44 E-05 1.7 E-05 3.8

0.750 0.25 E-05 0.37 E-06 2.1 E-06 5.8

0.875 0.29 E-06 0.32 E-07 2.6 E-07 8.1

1.000 0.34 E-07 0.27 E-08 3.1 E-08 11

 

 

First order of accuracy averaged decomposition scheme – (1)               Table 5 

(x,y)=(0.5,0.5)     tau=1/100,  h=1/128 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 1.65 E-01 1.39 E-01 2.6 E-02 0.19

0.2 2.72 E-02 1.93 E-02 7.9 E-03 0.41

0.3 0.45 E-02 0.27 E-02 1.8 E-03 0.67

0.4 0.74 E-03 0.37 E-03 3.7 E-04 1.0

0.5 0.12 E-03 0.52 E-04 6.8 E-05 1.3

0.6 0.20 E-04 0.72 E-05 1.3 E-05 1.8

0.7 0.33 E-05 0.10 E-05 2.3 E-06 2.3

0.8 0.55 E-06 0.14 E-06 4.1 E-07 2.9

0.9 0.91 E-07 0.19 E-07 7.2 E-08 3.8

1.0 0.15 E-07 0.27 E-08 1.2 E-08 4.6

 

 
 Second order of accuracy averaged decomposition scheme - (2)           Table 6  

 (x,y)=(0.5,0.5)     tau=1/64,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.125 84.41 E-03 84.80 E-03 3.9 E-04 0.46 E-02

0.250 71.24 E-04 71.92 E-04 6.8 E-05 0.95 E-02

0.375 60.14 E-05 60.99 E-05 8.5 E-06 0.14 E-01

0.500 50.76 E-06 51.72 E-06 9.6 E-07 0.19 E-01

0.625 4.28 E-06 4.39 E-06 1.1 E-07 0.25 E-01

0.750 3.62 E-07 3.72 E-07 1.0 E-08 0.27 E-01

0.875 3.05 E-08 3.15 E-08 1.0 E-09 0.32 E-01

1.000 2.58 E-09 2.68 E-09 1.0 E-10 0.37 E-01
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Second order of accuracy averaged decomposition scheme - (2)           Table 7 

(x,y)=(0.5,0.5)     tau=1/100,  h=1/128 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 138.70 E-03 138.91 E-03 2.1 E-04 0.15 E-02

0.2 192.38 E-04 192.96 E-04 5.8 E-05 0.30 E-02

0.3 26.68 E-04 26.81 E-04 1.3 E-05 0.49 E-02

0.4 37.01 E-05 37.23 E-05 2.2 E-06 0.59 E-02

0.5 51.34 E-06 51.72 E-06 3.8 E-07 0.74 E-02

0.6 71.20 E-07 71.85 E-07 6.5 E-08 0.91 E-02

0.7 9.88 E-07 9.98 E-07 1.0 E-08 0.10 E-01

0.8 13.69 E-08 13.86 E-08 1.7 E-09 0.13 E-01

0.9 18.99 E-09 19.26 E-09 2.7 E-10 0.14 E-01

1.0 26.34 E-10 26.75 E-10 4.1 E-11 0.15 E-01

 

 
Second order of accuracy symetrised decomposition scheme  - (3)        Table 8 

 (x,y)=(0.5,0.5)     tau=1/64,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.125 84.56 E-03 84.80 E-03 2.4 E-04 0.28 E-02

0.250 71.51 E-04 71.92 E-04 4.1 E-05 0.57 E-02

0.375 60.47 E-05 60.99 E-05 5.2 E-06 0.85 E-02

0.500 51.13 E-06 51.72 E-06 5.9 E-07 0.11 E-01

0.625 43.24 E-07 43.86 E-07 6.2 E-08 0.14 E-01

0.750 36.57 E-08 37.20 E-08 6.3 E-09 0.17 E-01

0.875 30.93 E-09 31.55 E-09 6.2 E-10 0.20 E-01

1.000 26.16 E-10 26.75 E-10 5.9 E-11 0.23 E-01

 

 

Second order of accuracy symetrised decomposition scheme  - (3)        Table 9 

(x,y)=(0.5,0.5)     tau=1/100,  h=1/128 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 138.79 E-03 138.91 E-03 1.2 E-04 0.86 E-03

0.2 192.61 E-04 192.96 E-04 3.5 E-05 0.18 E-02

0.3 267.32 E-05 268.05 E-05 7.3 E-06 0.27 E-02

0.4 37.10 E-05 37.23 E-05 1.3 E-06 0.35 E-02

0.5 51.49 E-06 51.72 E-06 2.3 E-07 0.45 E-02

0.6 71.46 E-07 71.85 E-07 3.9 E-08 0.54 E-02

0.7 99.18E-07 99.80 E-07 6.2 E-09 0.62 E-02

0.8 13.76E-08 13.86 E-08 1.0 E-09 0.72 E-02

0.9 19.10E-09 19.26 E-09 1.6 E-10 0.83 E-02

1.0 26.51E-10 26.75 E-10 2.4 E-11 0.90 E-02

 



 152 

First order of accuracy averaged decomposition scheme  - (1)             Table 10 

(x,y)=(0.5,0.5)     tau=1/10 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 0.34 E 00 0.14 E 00 2.0 E-01 1.4 E 00

0.2 0.11 E 00 0.19 E-01 9.1 E-02 4.8 E 00

0.3 0.38 E-01 0.27 E-02 3.5 E-02 1.3 E 01

0.4 0.13 E-01 0.37 E-03 1.3 E-02 3.4 E 01

0.5 0.43 E-02 0.52 E-04 4.2 E-03 8.1 E 01

0.6 0.15 E-02 0.72 E-05 1.5 E-03 2.1 E 02

0.7 0.49 E-03 0.10 E-05 4.9 E-04 4.9 E 02

0.8 0.16 E-03 0.14 E-06 1.6 E-04 1.1 E 03

0.9 0.55 E-04 0.19 E-07 5.5 E-05 2.9 E 03

1.0 0.18 E-05 0. 27 E-08 1.8 E-05 6.7 E 03

 

 
Second order of accuracy averaged decomposition scheme - (2)         Table 11 

(x,y)=(0.5,0.5)     tau=1/10 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 1.24 E-01 1.39 E-01 1.5 E-02 0.11

0.2 1.53 E-02 1.93 E-02 4.0 E-03 0.21

0.3 1.90 E-03 2.68 E-03 7.8 E-04 0.29

0.4 0.23 E-03 0.37 E-03 1.4 E-04 0.38

0.5 0.29 E-04 0.52 E-04 2.3 E-05 0.44

0.6 0.36 E-05 0.72 E-05 3.6 E-06 0.50

0.7 0.45 E-06 0.10 E-05 5.5 E-07 0.55

0.8 0.55 E-07 0.14  E-06 8.5 E-08 0.61

0.9 0.68 E-08 0.19 E-07 1.2 E-08 0.64

1.0 0.80 E-09 0.27 E-08 1.9 E-09 0.70

 

 
Second order of accuracy symetrized decomposition scheme - (3)       Table 12 

(x,y)=(0.5,0.5)     tau=1/10 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 1.15 E-01 1.39 E-01 2.4 E-02 0.17

0.2 1.32 E-02 1.93 E-02 6.1 E-03 0.32

0.3 0.15 E-02 0.27 E-02 1.2 E-03 0.44

0.4 0.18 E-03 0.37 E-03 1.9 E-04 0.51

0.5 0.20 E-04 0.52 E-04 3.2 E-05 0.62

0.6 0.23 E-05 0.72 E-05 4.9 E-06 0.68

0.7 0.27 E-06 0.10 E-05 7.3 E-07 0.73

0.8 0.31 E-07 0.14  E-06 1.1 E-07 0.78

0.9 0.3.5 E-09 0.19 E-07 1.6 E-08 0.82

1.0 0.44 E-09 0.27 E-08 2.3 E-09 0.85
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Third order of accuracy decomposition scheme   -  (2.6)                       Table 13 

(x,y)=(0.5,0.5)     tau=1/10 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 13.76 E-02 13.89 E-02 1.3 E-03 0.94 E-02

0.2 18.92 E-03 19.30 E-03 3.8 E-04 0.20 E-01

0.3 26.02 E-04 26.80 E-04 7.8E-05 0.30 E-01

0.4 3.58 E-04 3.72 E-04 1.4 E-05 0.38 E-01

0.5 4.92 E-05 5.17 E-05 2.5 E-06 0.48 E-01

0.6 6.77 E-06 7.18 E-06 4.1 E-07 0.57 E-01

0.7 9.32 E-07 1.00 E-07 6.8 E-08 0.68 E-01

0.8 1.28 E-07 1.39 E-07 1.1 E-08 0.80 E-01

0.9 1.76E-08 1.93E-08 1.7 E-09 0.88 E-01

1.0 2.41E-09 2.67E-09 2.6 E-10 0.97 E-01

 

 

First order of accuracy averaged decomposition scheme - (1)              Table 14 

(x,y)=(0.5,0.5)     tau=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 1.65 E-01 1.39 E-01 2.6 E-02 0.19

0.2 2.72 E-02 1.93 E-02 7.9 E-03 0.41

0.3 0.45 E-02 0.27 E-02 1.8 E-03 0.67

0.4 0.74 E-03 0.37 E-03 3.7 E-04 1.0

0.5 0.12 E-03 0.52 E-04 6.8 E-05 1.3

0.6 0.20 E-04 0.72 E-05 1.3 E-05 1.8

0.7 0.33 E-05 0.10 E-05 2.3 E-06 2.3

0.8 0.55 E-06 0.14  E-06 4.1 E-07 2.9

0.9 0.91 E-07 0.19 E-07 7.2 E-08 3.8

1.0 0.15 E-07 0.27 E-08 1.2 E-08 4.6

 

 

Second order of accuracy symetrised decomposition scheme - (3)       Table 15 

(x,y)=(0.5,0.5)     tau=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 138.69 E-03 138.91 E-03 2.2 E-04 0.16 E-02

0.2 192.34 E-04 192.96 E-04 6.2 E-05 0.32 E-02

0.3 26.68 E-04 26.81 E-04 1.3 E-05 0.48 E-02

0.4 37.00 E-05 37.23 E-05 2.3 E-06 0.62 E-02

0.5 51.31 E-06 51.72 E-06 4.1 E-07 0.79 E-02

0.6 71.16 E-07 71.85 E-07 6.9 E-08 0.10 E-01

0.7 9.87 E-08 99.81 E-08 1.1 E-08 0.11 E-01

0.8 13.68E-08 13.86 E-08 1.8 E-09 0.13 E-01

0.9 18.99E-09 19.26 E-09 2.7 E-10 0.14 E-01

1.0 26.33E-10 26.75 E-10 4.0 E-11 0.15 E-01
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Second order of accuracy averaged decomposition scheme - (2)          Table 16 

(x,y)=(0.5,0.5)     tau=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 138.77 E-03 138.91 E-03 1.4 E-04 0.10 E-02

0.2 192.58 E-04 192.96 E-04 3.8 E-05 0.20 E-02

0.3 267.24 E-05 268.05 E-05 8.1 E-06 0.30 E-02

0.4 37.09 E-05 37.23 E-05 1.4 E-06 0.38 E-02

0.5 51.46 E-06 51.72 E-06 2.6 E-07 0.50 E-02

0.6 71.42 E-07 71.85 E-07 4.3 E-08 0.60 E-02

0.7 99.11 E-08 99.81 E-08 7.0 E-09 0.70 E-02

0.8 13.75 E-08 13.86 E-08 1.1 E-09 0.79 E-02

0.9 19.09 E-09 19.26 E-09 1.7 E-10 0.88 E-02

1.0 26.49 E-10 26.75 E-10 2.6 E-11 0.97 E-02

 

 
Third order of accuracy decomposition scheme   -  (2.6)                       Table 17 

(x,y)=(0.5,0.5)     tau=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.1 13890.95 E-05 13891.11 E-05 1.6 E-06 0.12  E-05

0.2 19295.86 E-06 19296.29 E-06 4.3 E-07 0.22  E-05

0.3 26803.80 E-07 26804.71 E-07 9.1 E-08 0.34  E-05

0.4 3723.30 E-07 3723.47 E-07 1.7 E-08 0.46  E-05

0.5 5172.02 E-08 5172.32 E-08 3.0 E-09 0.58  E-05

0.6 7184.41 E-09 7184.90 E-09 4.9 E-10 0.68  E-05

0.7 9979.87 E-10 9980.66 E-10 7.9 E-11 0.79  E-05

0.8 1386.30 E-10 1386.43 E-10 1.3 E-11 0.94  E-05

0.9 1925.70 E-11 1925.90 E-11 2.0 E-12 0.10 E-04

1.0 2672.99 E-12 2673.29 E-12 3.0 E-13 0.11 E-04
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Third order of accuracy decomposition scheme   -  (2.6)                       Table 18 

 (m1, m2,m3)=(17,1,1)   (x,y)=(0.5,0.5)     tau=1/500,  h=1/64 

t  u~  u  uu ~−  ( ) uuu /~−  

0.114 -183.78 E-02 -183.68 E-02 1.0 E-03 0.54 E-03

0.116 -86.83 E-02 -86.73 E-02 1.0 E-03 0.11 E-02

0.118 19.26 E-02 19.36 E-02 1.0 E-03 0.50 E-02

0.120 1338.09 E-03 1339.00 E-03 9.1 E-04 0.68 E-03

… … … … … 

0.232 -170.69 E-01 -170.58 E-01 1.1 E-02 0.60 E-03

0.234 -70.12 E-01 -70.02 E-01 1.0 E-02 0.14 E-03

0.236 396.56 E-02 397.53 E-02 9.7 E-03 0.25 E-03

0.238 1579.16 E-02 1580.09 E-02 9.3 E-03 0.59 E-03

… … … … … 

0.350 -1566.80 E-01 -1565.86 E-01 9.4 E-02 0.60 E-03

0.352 -52.42 E 00 -52.32 E 00 1.0 E-01 0.20 E-02

0.354 611.23 E-01 612.21 E-01 9.8 E-02 0.16 E-02

0.356 183.16 E 00 183.26 E 00 1.0 E-01 0.56 E-03

… … … … … 

0.468 -141.75 E 01 141.65 E 01 1.0 E 00 0.74 E-03

0.470 -33.69 E 01 -33.59 E 01 1.0 E 00 0.31 E-02

0.472 836.98 E 00 837.97 E 00 9.9 E-01 0.12 E-02

0.474 2096.06 E 00 2097.00 E 00 9.4 E-01 0.45 E-03

… … … … … 

0.586 -125.84 E 02 -125.73 E 02 1.1 E 01 0.85 E-03

0.588 -13.90 E 02 -13.80 E 02 1.0 E 01 0.76 E-02

0.590 107.42 E 02 107.52 E 02 1.0 E 01 0.94 E-03

0.592 2372.59 E 01 2373.54 E 01 9.5 E 00 0.40 E-03

… … … … … 

0.702 -214.68 E 03 -214.57 E 03 1.1 E 02 0.52 E-03

0.704 -108.93 E 03 -108.82 E 03 1.1 E 02 0.10 E-02

0.706 6.98 E 03 7.09 E 03 1.1 E 02 0.15 E-01

0.708 132.32 E 03 132.42 E 03 1.0 E 02 0.77 E-03

… … … … … 

0.750 1901.19 E 03 1900.89 E 03 3.0 E 02 0.16 E-03
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Third order of accuracy decomposition scheme   -  (2.6)                       Table 19 

 (m1,m2,m3)=(17,1,1)    (x,y)=(0.5,0.5)     tau=1/1000,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.116 -867.65 E-03 -867.31 E-03 3.4 E-04 0.39 E-03

0.117 -348.23 E-03 -347.90 E-03 3.3 E-04 0.94 E-03

0.118 193.26 E-03 193.57 E-03 3.1 E-04 0.16 E-02

0.119 755.91 E-03 756.21 E-03 3.0 E-04 0.40 E-03

… … … … … 

0.234 -700.54 E-02 -700.20 E-02 3.4 E-03 0.49 E-03

0.235 -162.76 E 00 -162.43 E-02 3.3 E-03 0.20 E-02

0.236 397.21 E 00 397.53 E-02 3.2 E-03 0.80 E-03

0.237 978.42 E 00 978.72 E-02 3.0 E-03 0.31 E-03

… … … … … 

0.351 -1056.88 E-01 -1056.52 E-01 3.6 E-02 0.34 E-03

0.352 -523.53 E-01 -523.18 E-01 3.5 E-02 0.66 E-03

0.353 33.03 E-01 33.36 E-01 3.3 E-02 0.99 E-03

0.354 611.89 E-02 612.21 E-02 3.2 E-02 0.52 E-03

… … … … … 

0.469 -888.65 E 00 -888.29 E 00 3.6 E-01 0.40 E-03

0.470 -336.25 E 00 -335.90 E 00 3.5 E-01 0.10 E-02

0.471 239.51 E 00 239.84 E 00 3.3 E-01 0.14 E-02

0.472 837.65 E 00 837.97 E 00 3.2 E-01 0.38 E-02

… … … … … 

0.587 -710.25 E 01 -709.88 E 01 3.7 E 00 0.51 E-02

0.588 -138.36 E 01 -138.01 E 01 3.5 E 00 0.25 E-02

0.589 457.02 E 01 457.35 E 01 3.3 E 00 0.74 E-03

0.590 1074.85 E 01 1075.18 E 01 3.3 E 00 0.31 E-03

… … … … … 

0.704 -1088.55 E 02 -1088.18 E 02 3.7 E 01 0.34 E-03

0.705 -521.30 E 02 -520.94 E 02 3.6 E 01 0.70 E-03

0.706 70.52 E 02 70.87 E 02 3.5 E 01 0.50 E-02

0.707 685.93 E 02 686.27 E 02 3.4 E 01 0.49 E-03

… … … … … 

0.750 1901.01 E 03 1900.89 E 03 1.2 E 02 0.63 E-04
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Third order of accuracy decomposition scheme   -  (2.6)                       Table 20 

 (m1,m2,m3)=(101,1,1)       (x,y)=(0.5,0.5)     tau=1/1000,  h=1/100 

t  u~  u  uu ~−  ( ) uuu /~−  

0.602 8436.00 E 01 8436.47 E 01 4.7 E 00 0.56 E-04

0.603 442.96 E 02 443.07 E 02 1.1 E 01 0.26 E-03

0.604 -19.10 E 02 -18.93 E 02 1.7 E 01 0.90 E-03

0.605 -497.81 E 02 -497.60 E 02 2.1 E 01 0.43 E-02

… … … … … 

0.750 -19008.69 E 02 -19008.90 E 02 2.1 E 01 0.11 E-04

 

 

 

 
Third order of accuracy decomposition scheme   -  (2.6)                       Table 21 

 (m1,m2,m3)=(101,3,3)       (x,y)=(0.5,0.5)     tau=1/1000,  h=1/128 

t  u~  u  uu ~−  ( ) uuu /~−  

0.652 -174.49 E 03 -174.18 E 03 3.1 E 02 0.18 E-02

0.653 -58.65 E 03 -58.29 E 03 3.6 E 02 0.62 E-02

0.654 67.85 E 03 68.23 E 03 3.8 E 02 0.56 E-02

0.655 192.50 E 03 192.86 E 03 3.6 E 02 0.19 E-02

… … … … … 

0.750 -190.25 E 04 -190.09 E 04 1.6 E 03 0.84 E-03
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რეზიუმერეზიუმერეზიუმერეზიუმე    

 

ბანახის სივრცეში აგებულია მესამე და მეოთხე რიგის სიზუსტის 

დეკომპოზიციის სქემები ევოლუციური ამოცანისათვის ოპერატორით 
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ვგულისხმობთ, რომ ( ) mjA j ,...1,,,1, ==− ααγγ , ოპერატორები 

წარმოქმნიან ძლიერად უწყვეტ ნახევარჯგუფებს და 

( ) 0,, >=≤ consteAtU t
j ωγ ω . 

ზემოთ მოყვანილი ფორმულებისთვის სამართლიანია შემდეგი 
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სადაც 0, >= ττktk  დროითი ბიჯია. 

ერთგვაროვანი ევოლუციური ამოცანის შემთხვევაში ცხადია ის 

წესი, რომლის მიხედვითაც აიგება ზემოთ მოყვანილი ფორმულების 

შესაბამისი დეკომპოზიციის სქემები. მაგალითად ( )tV1 -ს 2=m  

შემთხვევისათვის შეესაბამება შემდეგი დეკომპოზიციის სქემა: 
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