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Abstract: In this paper, we address the following initial-boundary value
problem

ut = Δu in Ω × (0, T ),
∂u
∂ν

= −b(x)u−p on ∂Ω × (0, T ),
u(x, 0) = u0(x) > 0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ
is the Laplacian, ν is the exterior normal unit vector on ∂Ω, u0 ∈ C2(Ω),
u0(x) > 0 in Ω, b ∈ C0(∂Ω), b(x) � 0 on ∂Ω. Under some assumptions, we
show that the solution of the above problem quenches in a finite time and
estimate its quenching time. We also prove the continuity of the quenching
time as a function of the initial data u0. Finally, we give some numerical results
to illustrate our analysis.
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1 Introduction
Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial-boundary value problem

ut = Δu in Ω × (0, T ), (1)

∂u

∂ν
= −b(x)u−p on ∂Ω × (0, T ), (2)

u(x, 0) = u0(x) > 0 in Ω, (3)
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where Δ is the Laplacian, p > 0, u0 ∈ C2(Ω), u0(x) > 0 in Ω, b ∈ C0(∂Ω),
b(x) � 0 on ∂Ω.

Here (0, T ) is the maximal time interval on which the solution u of (1)-(3)
exists. The time T may be finite or infinite. When T is infinite, then we
say that the solution u exists globally. When T is finite, then the solution u
develops a singularity in a finite time, namely,

lim
t→T

umin(t) = 0,

where umin(t) = minx∈Ω u(x, t). In this last case, we say that the solution u
quenches in a finite time, and the time T is called the quenching time of the
solution u. Thus, in this paper, by virtue of the definition of the time T, we
have

u(x, t) > 0 in Ω × [0, T ).

Solutions of heat equations with nonlinear boundary conditions which quench
in a finite time have been the subject of investigations of many authors (see,
[7], [11], [14], [28], and the references cited therein). By standard methods, it
is not hard to prove the local in time existence and uniqueness of a classical
solution (see, [7], [26]). Let us notice that, in most of the cases, the problem
(1)–(3) has been treated in one dimensional space. For instance, when N = 1,
Ω = (0, 1), b(0) = 0 and b(1) = 1, Fila and Levine have shown that the solution
u of (1)–(3) quenches in a finite time, and the quenching occurs at the point
x = 1. However, in [7], Boni has worked in several dimensional spaces, and he
has proved that the solution u of (1)-(3) quenches in a finite, and its quenching
set is located on the boundary of the domain Ω in the case where b(x) = 1
(see, [7]). It is worth noting that in these papers, one may see some estimation
of the quenching time when quenching occurs. For quenching results of other
problems, one may consult the following references [2]-[4], [10], [13], [24], [25],
[27], [29], [32]. In the present paper, we are interested in the dependence of the
quenching time with respect to the initial data. In other words, we want to
know if the quenching time as a function of the initial data is continuous. More
precisely, let us consider the solution v of the initial-boundary value problem
below

vt = Δv in Ω × (0, Th), (4)

∂v

∂ν
= −b(x)v−p on ∂Ω × (0, Th), (5)

v(x, 0) = uh
0(x) > 0 in Ω, (6)

where uh
0 ∈ C2(Ω), uh

0(x) ≥ u0(x) in Ω, and limh→0 uh
0 = u0. Here (0, Th) is the

maximal time interval of existence of the solution v. Let us notice that, from
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the maximum principle, we have v ≥ u as long as all of them are defined. We
deduce that Th ≥ T. In the present paper, under some assumptions, we show
that the solution v of (4)-(6) quenches in a finite time Th, and the following
relation holds

lim
h→0

Th = T.

Similar results have been obtained in [5], [8], [12], [16]-[19], [21], [22], where the
authors have considered the phenomenon of blow-up (we say that a solution
blows up in a finite time if it reaches the value infinity in a finite time). Our
paper is organized as follows. In the next section, under some assumptions, we
show that the solution v of (4)-(6) quenches in a finite time and estimate its
quenching time. In the third section, we prove the continuity of the quenching
time, and finally in the last section, we give some computational results.

2 Quenching time
In this section, under some hypotheses, we show that the solution v of (4)-(6)
quenches in a finite time and estimate its quenching time.
Using an idea of Friedman and Lacey in [15], we may prove the following result.

Theorem 2.1. Let v be the solution of (4)–(6), and assume that there exists
a constant A ∈ (0, 1] such that the initial data at (6) satisfies

Δuh
0(x) ≤ −A(uh

0(x))−p in Ω. (7)

Then, the solution v quenches in a finite time Th which obeys the following
estimate

Th ≤ (uh
0min)p+1

A(p + 1)
,

where uh
0min = minx∈Ω uh

0(x).

Proof. Since (0, Th) is the maximal time interval of existence of the solu-
tion v, our purpose is to show that Th is finite and obeys the above inequality.
Introduce the function J(x, t) defined as follows

J(x, t) = vt(x, t) + Av−p(x, t) in Ω × [0, Th).

A straightforward computation reveals that

Jt − ΔJ = (Vt − Δv)t − Apv−p−1vt − AΔv−p in Ω × (0, Th). (8)

Again, by a direct calculation, it is not hard to see that

Δv−p = p(p + 1)v−p−2|∇v|2 − pv−p−1Δv in Ω × (0, Th),
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which implies that Δv−p ≥ −pv−p−1Δv in Ω× (0, Th). Using this estimate and
(8), we arrive at

Jt − ΔJ ≤ (Vt − Δv)t − Apv−p−1(vt − Δv) in Ω × (0, Th). (9)

It follows from (4) that

Jt − ΔJ ≤ 0 in Ω × (0, Th).

We also have

∂J

∂ν
=

(
∂v

∂ν

)
t

− Apv−p−1 ∂v

∂ν
on ∂Ω × (0, Th).

We deduce from (5) that

∂J

∂ν
= pb(x)v−p−1vt + Apb(x)v−2p−1 on ∂Ω × (0, Th).

Due to the expression of J, we find that

∂J

∂ν
= pb(x)v−p−1J on ∂Ω × (0, Th).

Finally, we get

J(x, 0) = vt(x, 0) + Av−p(x, 0) ≤ Δv0(x) + A(uh
0(x))−p in Ω.

Thanks to (7), we discover that

J(x, 0) ≤ 0 in Ω.

It follows from the maximum principle that

J(x, t) ≤ 0 in Ω × (0, Th).

This estimate may be rewritten in the following manner

vpdv ≤ −Adt in Ω × (0, Th). (10)

Integrate the above inequality over (0, Th) to obtain

Th ≤ (v(x, 0))p+1

A(p + 1)
in x ∈ Ω, (11)

which implies that

Th ≤ (uh
0min)p+1

A(p + 1)
. (12)

Use the fact that the quantity on the right hand side of (12) is finite to complete
the rest of the proof. �
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Remark 2.2. Let t0 ∈ (0, Th). Integrating the inequality (10) over (t0, Th), we
get

Th − t0 ≤ (v(x, t0))
p+1

A(p + 1)
for x ∈ Ω,

which implies that

Th − t0 ≤ (vmin(t0))
p+1

A(p + 1)
. (13)

3 Continuity of the quenching time
In this section, under some assumptions, we show that the solution v of (4)–(6)
quenches in a finite time, and its quenching time goes to that of the solution
u of (1)–(3) when h goes to zero.
We denote by

‖u(·, t)‖∞ = max
x∈Ω

|u(x, t)| and ‖u0‖∞ = max
x∈Ω

|u0(x)|.

In order to demonstrate our result, we firstly show that the solution v
approaches the solution u in Ω × [0, T − τ ] with τ ∈ (0, T ) when h tends to
zero. This result is stated in the following theorem.

Theorem 3.1. Let u be the solution of (1)–(3). Suppose that u ∈ C2,1(Ω ×
[0, T − τ ]) and mint∈[0,T−τ ] umin(t) = α > 0 with τ ∈ (0, T ). Then, the problem
(4)-(6) admits a unique solution v ∈ C2,1(Ω×[0, Th)), and the following relation
holds

sup
t∈[0,T−τ ]

‖v(·, t) − u(·, t)‖∞ = 0(‖uh
0 − u0‖∞) as h → 0.

Proof. For each h, the problem (4)–(6) has a unique solution v ∈ C2,1(Ω×
[0, Th)). In the introduction of the paper, we have seen that Th ≥ T. We observe
that

‖v(·, 0) − u(·, 0)‖∞ = ‖uh
0 − u0‖∞. (14)

Let t(h) ≤ T − τ be the greatest value of t > 0 such that

‖v(·, t) − u(·, t)‖∞ <
α

2
for t ∈ (0, t(h)). (15)

Making use of the relation (14), we note that t(h) > 0 for h sufficiently small.
An application of the triangle inequality, gives

vmin(t) ≥ umin(t) − ‖v(·, t) − u(·, t)‖∞ for t ∈ (0, t(h)),
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which implies that

vmin(t) ≥ α − α

2
=

α

2
for t ∈ (0, t(h)).

Introduce the function e defined as follows

e(x, t) = v(x, t) − u(x, t) in Ω × (0, t(h)).

A routine computation reveals that

et − Δe = 0 in Ω × (0, t(h)),

∂e

∂ν
= pb(x)θ−p−1e on ∂Ω × (0, t(h)),

e(x, 0) = uh
0(x) − u0(x) in Ω,

where θ is an intermediate value between u and v. Since the domain Ω has
a smooth boundary ∂Ω, there exists a function ρ ∈ C2(Ω) satisfying ρ(x) ≥
0 in Ω and ∂ρ

∂ν
= 1 on ∂Ω. Let K be a positive constant such that K ≥

LΔϕ + L2|∇ϕ|2 for x ∈ Ω, where L = p‖b‖∞(α
2
)−p−1. It is not hard to see

that p(α
2
)−p−1 ≥ pθ−p−1 in ∂Ω × (0, t(h)). Introduce the function z defined as

follows

z(x, t) = eLt+Lϕ(x)‖uh
0 − u0‖∞ in Ω × [0, T ].

A straightforward calculation reveals that

zt − Δz = (K − LΔϕ − L2|∇ϕ|2)z in Ω × (0, t(h)),

∂z

∂ν
= Lz on ∂Ω × (0, t(h)),

z(x, 0) ≥ e(x, 0) in Ω.

Since L ≥ pb(x)θ−p−1 on ∂Ω×(0, t(h)), and K ≥ LΔϕ+L2|Δϕ|2 for x ∈ Ω,
we deduce that

zt − Δz ≥ 0 in Ω × (0, t(h)),

∂z

∂ν
≥ pb(x)θ−p−1z on ∂Ω × (0, t(h)),

z(x, 0) ≥ e(x, 0) in Ω.
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It follows from the maximum principle that

z(x, t) ≥ e(x, t) in Ω × (0, t(h)).

In the same way, we also prove that

z(x, t) ≥ −e(x, t) in Ω × (0, t(h)),

which implies that

‖e(·, t)‖∞ ≤ eKt+L‖ϕ‖∞‖uh
0 − u0‖∞ for t ∈ (0, t(h)).

Let us show that t(h) = T − τ. Suppose that t(h) < T − τ. From (15), we
obtain

α

2
= ‖v(·, t(h)) − u(·, t(h))‖∞ ≤ eKT+L‖ϕ‖∞‖uh

0 − u0‖∞.

Since the term on the right hand side of the above inequality goes to zero
as h goes to zero, we deduce that α

2
≤ 0, which is impossible. Consequently

t(h) = T − τ, and the proof is complete. �

Now, we are in a position to prove the main result of the paper.

Theorem 3.2. Suppose that the problem (1)–(3) has a solution u which quenches
in a finite time T such that u ∈ C2,1(Ω× [0, T )). Under the assumption of The-
orem 2.1, the problem (4)-(6) admits a unique solution v which quenches in a
finite time Th, and the following relation holds

lim
h→0

Th = T.

Proof. Let 0 < ε ≤ T/2. There exists ρ > 0 such that

ρp+1

A(p + 1)
≤ ε

2
. (16)

Since u quenches in a finite time T, there exists T0 ∈ (T − ε
2
, T ) such that

0 < umin(t) <
ρ

2
for t ∈ [T0, T ).

Obviously, we have

umin(t) > 0 for t ∈ [0, T0].

Invoking Theorem 3.1, we see that the problem (4)–(6) admits a unique solu-
tion v, and the following relation holds

‖v(·, t) − u(·, t)‖∞ <
ρ

2
for t ∈ [0, T0],
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which implies that ‖v(·, T0) − u(·, T0)‖∞ ≤ ρ
2
. An application of the triangle

inequality leads us to

vmin(T0) ≤ ‖v(·, T0) − u(·, T0)‖∞ + umin(T0) ≤ ρ

2
+

ρ

2
= ρ.

Exploiting Theorem 2.1, we note that the solution v quenches at the time Th.
In the introduction of the paper, we have shown that Th ≥ T. We infer from
Remark 2.1 and (16) that

0 ≤ Th − T = Th − T0 + T0 − T ≤ (vmin(T0))
p+1

A(p + 1)
+

ε

2
≤ ε,

and the proof is complete. �

4 Numerical results
In this section, we give some computational experiments to confirm the theory
given in the previous section. We consider the radial symmetric solution of
the following initial-boundary value problem

ut = Δu in B × (0, T ),

∂u

∂ν
= −b(x)u−p on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ RN ; ‖x‖ < 1}, S = {x ∈ RN ; ‖x‖ = 1}, b(x) = β(|x|), and
u0(x) = ϕ(|x|). The above problem may be rewritten in the following form

ut = urr +
N − 1

r
ur, r ∈ (0, 1), t ∈ (0, T ), (17)

ur(0, t) = 0, ur(1, t) = −β(1)(u(1, t))−p, t ∈ (0, T ), (18)

u(r, 0) = ϕ(r), r ∈ [0, 1]. (19)

Here, we take β(1) = 1, p = 1, and ϕ(r) = 3−r2

2
+ ε(1+cos(πr)

2
) with ε ∈ [0, 1).

We start by the construction of some adaptive schemes as follows. Let I be
a positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I, and
approximate the solution u of (17)-(19) by the solution U

(n)
h = (U

(n)
0 , ..., U

(n)
I )T

of the following explicit scheme

U
(n+1)
0 − U

(n)
0

Δtn
= N

2U
(n)
1 − 2U

(n)
0

h2
,
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U
(n+1)
i − U

(n)
i

Δtn
=

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h
,

1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
=

2U
(n)
I−1 − 2U

(n)
I

h2
+ (N − 1)

U
(n)
I − U

(n)
I−1

h
− 2

h
(U

(n)
I )−p,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0. In order to permit the discrete solution to reproduce the property
of the continuous one when the time t approaches the quenching time T, we
need to adapt the size of the time step so that we take

Δtn = min{(1 − h2)h2

2N
, h2(U

(n)
hmin)p+1},

with U
(n)
hmin = min0≤i≤I U

(n)
i . Let us notice that the restriction on the time

step ensures the positivity of the discrete solution. We also approximate the
solution u of (17)-(19) by the solution U

(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

Δtn
= N

2U
(n+1)
1 − 2U

(n+1)
0

h2
,

U
(n+1)
i − U

(n)
i

Δtn
=

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)

ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h
,

1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
=

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
+ (N − 1)

U
(n+1)
I − U

(n+1)
I−1

h

−2

h
(U

(n)
I )−p−1U

(n+1)
I

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0 Here, as in the case of the explicit scheme, we pick

Δtn = h2(U
(n)
hmin)p+1.

Let us again remark that for the above implicit scheme, the existence and
positivity of the discrete solution are also guaranteed using standard methods
(see, for instance [6]). It is not hard to see that urr(0, t) = limr→0

ur(r, t)
r

. Hence,
if r = 0, then, we note that

ut(0, t) = Nurr(0, t), t ∈ (0, T ).

This observation has been taken into account in the construction of our schemes
at the first node. We need the following definition.



Volume 12, 2008 10

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞ U
(n)
hmin = 0, and the

series
∑∞

n=0 Δtn converges. The quantity
∑∞

n=0 Δtn is called the numerical
quenching time of the discrete solution U

(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times, and the orders of the approxima-
tions corresponding to meshes of 16, 32, 64, 128. We take for the numerical
quenching time tn =

∑n−1
j=0 Δtj, which is computed at the first time when

Δtn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for p = 1, N = 2
First case: ε = 0

Table 1: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I tn n CPU time s
16 0.160184 294 0.5 -
32 0.158065 957 2.6 -
64 0.157405 3387 11.3 1.68
128 0.157205 12697 129 1.72

Table 2: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I tn n CPU time s
16 0.161968 214 1.5 -
32 0.158539 639 2.8 -
64 0.157527 2115 15.8 1.76
128 0.157236 7610 210 1.79

Second case: ε = 1

Table 3: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method
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I tn n CPU time s
16 0.312115 451 0.6 -
32 0.309584 1579 2.11 -
64 0.308820 5871 17.2 1.73
128 0.308594 22628 224 1.76

Table 4: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I tn n CPU time s
16 0.312640 251 0.5 -
32 0.309741 786 1.7 -
64 0.308863 2703 18 1.72
128 0.308606 9959 320 1.77

Third case: ε = 1/100

Table 5: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I tn n CPU time s
16 0.161288 295 0.7 -
32 0.159164 961 2.2 -
64 0.158503 3405 11 1.68
128 0.158303 12770 185 1.72

Table 6: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I tn n CPU time s
16 0.163064 214 0.5 -
32 0.159636 640 2.4 -
64 0.158625 2121 14.4 1.76
128 0.158334 7635 217 1.80

Third case: ε = 1/10000

Table 7: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method
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I tn n CPU time s
16 0.160195 294 0.5 -
32 0.158076 957 1.4 -
64 0.157416 3387 11 1.68
128 0.157216 12698 152 1.72

Table 8 : Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I tn n CPU time s
16 0.161979 214 0.5 -
32 0.158506 639 1.4 -
64 0.157538 2115 13.7 1.76
128 0.157247 7610 214 1.80

Remark 4.1. If we consider the problem (17)-(19) in the case where the initial
data ϕ(r) = 3−r2

2
+ ε(1+cos(πr)

2
), then we observe from Tables 1 to 6 that, if

ε ∈ (0, 1) is small enough, then the numerical quenching time is close to that
of the solution of (17)-(19) in the case where ε = 0. This computational result
confirms the theory established in the previous section.

In the following, we also give some plots to illustrate our analysis. In the
figures below, we can appreciate that the discrete solution quenches and the
quenching occurs at the last node.
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