On Deviation Between Kernel-Type Estimators of a Distribution Density in Some Independent Samples

Petre Babilua*, ${ }^{* 1}$, Elizbar Nadaraya ${ }^{1,2}$ and Mzevinar Patsatsia ${ }^{3}$
${ }^{1}$ Mathematics Department, Faculty of Exact and Natural Sciences
I. Javakhishvili Tbilisi State University, 3 University St., 0143, Tbilisi, Georgia
${ }^{2}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University
2 University St., 0143, Tbilisi, Georgia
${ }^{3}$ Department of Mathematics, Faculty of Mathematics and Computer Sciences Sokhumi State University, 9 A. Politkovskaia St., 0186, Tbilisi Georgia
(Received March 13, 2018; Revised June 11, 2018; Accepted June 18, 2018)

In the paper, the tests are constructed for the hypotheses that $p \geq 2$ independent samples have the same distribution density (homogeneity hypothesis) or have the same well-defined distribution density (goodness-of-fit test). The limiting power of the constructed tests is found for some local "close" alternatives.

Keywords: Homogeneity hypothesis, Goodness-of-fit test, Power of test, Wiener process, Test consistency, Kernel type estimator of density, Histogram.

AMS Subject Classification: 62G10, 62G20.

1. Introduction

Let $X^{(i)}=\left(X_{1}^{(i)}, \ldots, X_{n_{i}}^{(i)}\right), i=1, \ldots, p$, be independent samples of size $n_{1}, n_{2}, \ldots, n_{p}$, from $p \geq 2$ general populations with distribution densities $f_{1}(x), \ldots, f_{p}(x)$. It is based on sample $X^{(i)}, i=1, \ldots, p$, checking two hypotheses: the homogeneity hypothesis

$$
H_{0}: f_{1}(x)=\cdots=f_{p}(x)
$$

and the goodness-of-fit hypothesis

$$
H_{0}^{\prime}: f_{1}(x)=\cdots=f_{p}(x)=f_{0}(x)
$$

where $f_{0}(x)$ is the completely defined density function. In the case of the hypothesis H_{0}, the general density of the distribution $f_{0}(x)$ is unknown.

In the present paper, the tests are constructed for the hypotheses H_{0} and H_{0}^{\prime}

[^0]against the sequence of close alternatives:
\[

$$
\begin{gathered}
H_{1}: f_{i}(x)=f_{0}(x)+\alpha\left(n_{0}\right) \varphi_{i}(x), \\
\alpha\left(n_{0}\right) \longrightarrow 0, \quad n_{0}=\min \left(n_{1}, \ldots, n_{p}\right) \longrightarrow \infty \\
\int \varphi_{i}(x) d x=0, \quad i=1, \ldots, p
\end{gathered}
$$
\]

We consider the test for the hypotheses H_{0} and H_{0}^{\prime} based on the statistic

$$
\begin{equation*}
T\left(n_{1}, n_{2}, \ldots, n_{p}\right)=\sum_{i=1}^{p} N_{i} \int\left[\widehat{f}_{i}(x)-\frac{1}{N} \sum_{j=1}^{p} N_{j} \widehat{f}_{j}(x)\right]^{2} r(x) d x \tag{1}
\end{equation*}
$$

where $\widehat{f}_{i}(x)$ is a kernel-type Rosenblatt-Parzen estimator of the density of the function $f_{i}(x)$:

$$
\widehat{f}_{i}(x)=\frac{a_{i}}{n_{i}} \sum_{j=1}^{n_{i}} K\left(a_{i}\left(x-X_{j}^{(i)}\right)\right), \quad N_{i}=\frac{n_{i}}{a_{i}}, \quad N=N_{1}+\cdots+N_{p}
$$

The particular case $p=2$ is considered in [1] and [7]. Then the statistic T takes the explicit form

$$
T\left(n_{1}, n_{2}\right)=\frac{N_{1} N_{2}}{N_{1}+N_{2}} \int\left(\widehat{f}_{1}(x)-\widehat{f}_{2}(x)\right)^{2} r(x) d x
$$

2. Preliminaries

We consider the question concerning the limiting law of the distribution of statistic (1) for the hypothesis H_{1} when n_{i} tends to infinity so that $n_{i}=n k_{i}$, where $n \rightarrow \infty$, and k_{i} are constants. Let $a_{1}=a_{2}=\cdots=a_{p}=a_{n}$, where $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

To obtain the limiting law of distribution of the functional $T_{n}=T\left(n_{1}, \ldots, n_{p}\right)$, we make assumptions as to the functions $K(x), f_{0}(x), \varphi_{i}(x), i=1, \ldots, p$, and $r(x)$:
(i) $K(x) \geq 0$, vanishes outside the finite interval $(-A, A)$ and, together with its derivatives, is continuous on this interval or absolutely continuous on $(-\infty, \infty), x^{2} K(x)$ is integrable and $K^{(1)}(x) \in L_{1}(-\infty, \infty)$. In both cases $\int K(x) d x=1$.
(ii) The density function $f_{0}(x)$ is bounded and positive on $(-\infty, \infty)$ or it is bounded and positive in some finite interval $[c, d]$. Besides, in the domain of positivity it has a bounded derivative.
(iii) Functions $\varphi_{j}(x), j=1, \ldots, p$, are bounded and have bounded derivatives of first order; also $\varphi_{i}^{(1)}(x) \in L_{1}(-\infty, \infty)$.
(iv) The weight function $r(x)$ is piecewise-continuous, bounded and $r(x) \in$ $L_{1}(-\infty, \infty)$.

3. Statements of the main results

Theorem 3.1: Let the conditions (i)-(iv) be fulfilled. If $\alpha_{n}=n^{-1 / 2} a_{n}^{1 / 4}\left(\alpha_{n}=\right.$ $\left.\alpha\left(n_{0}\right)\right), n^{-1} a_{n}^{9 / 2} \rightarrow 0$ as $n \rightarrow \infty$, then for the hypothesis H_{1} the random variable $a_{n}^{1 / 2}\left(T_{n}-\mu\right)$ has the normal limiting distribution $\left(A(\varphi), \sigma^{2}\right)$, where

$$
\begin{gathered}
A(\varphi)=\sum_{i=1}^{p} k_{i} \int\left[\varphi_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \varphi_{j}(x)\right]^{2} r(x) d x \\
\sigma^{2}=2(p-1) \int f_{0}^{2}(x) r^{2}(x) d x \cdot R\left(K_{0}\right), \quad K_{0}=K * K \\
\mu=(p-1) \int f_{0}(x) r(x) d x \cdot R(K), \quad R(g)=\int g^{2}(x) d x \\
\bar{k}=k_{1}+\cdots+k_{p}, \quad p \geq 2
\end{gathered}
$$

The conditions of Theorem 3.1 as regards a_{n} and α_{n} are fulfilled, for instance, if it is assumed that $a_{n}=n^{\delta}, \alpha_{n}=n^{-1 / 2+\delta / 4}$ for $0<\delta<\frac{2}{9}$.

Corollary 3.2: Let the conditions (i), (ii) and (iv) be fulfilled for $K(x), f_{0}(x)$ and $r(x)$, respectively. If $n^{-1} a_{n}^{2} \rightarrow 0$, then the random variable $a_{n}^{1 / 2}\left(T_{n}-\mu\right)$ for the hypothesis H_{0}^{\prime} has a normal limiting distribution $\left(0, \sigma^{2}\right)$.

Using this corollary we may construct the test for the hypothesis H_{0}^{\prime}; the critical domain for testing this hypothesis is defined by the inequality

$$
\begin{equation*}
T_{n} \geq d_{n}(\alpha) \tag{2}
\end{equation*}
$$

where

$$
d_{n}(\alpha)=\mu+a_{n}^{-1 / 2} \sigma \lambda_{\alpha}
$$

λ_{α} is the quantile of the level $1-\alpha, 0<\alpha<1$, of the standard normal distribution $\Phi(x)$.

Remark 1: The particular case $p=2$ of criteria (2) is considered in [1, p. 43].

Corollary 3.3: In the conditions of Theorem 3.1 the local behavior of the power $P_{H_{1}}\left(T_{n} \geq d_{n}(\alpha)\right)$ is as follows: for $n \rightarrow \infty$

$$
P_{H_{1}}\left(T_{n} \geq d_{n}(\alpha)\right) \longrightarrow 1-\Phi\left(\lambda_{\alpha}-\frac{A(\varphi)}{\sigma}\right)
$$

We introduce the notation

$$
\begin{gathered}
f_{n}^{*}(x)=\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \widehat{f}_{j}(x) \\
\bar{\mu}_{n}=\int f_{n}^{*}(x) r(x) d x \\
\Delta_{n}^{2}=\frac{1}{\bar{k}} \sum_{i=1}^{p} k_{i} \Delta_{i n}^{2}, \quad \Delta_{i n}^{2}=\int \widehat{f}_{i}^{2}(x) r^{2}(x) d x
\end{gathered}
$$

Theorem 3.4: Let all the conditions of Theorem 3.1 be fulfilled. Then $a_{n}^{1 / 2}\left(T_{n}-\mu_{n}\right) \sigma_{n}^{-1}$ for the hypothesis H_{1} has a normal limiting distribution $\left(A(\varphi) \sigma^{-1}, 1\right)$, where

$$
\mu_{n}=(p-1) R(K) \bar{\mu}_{n}, \quad \sigma_{n}^{2}=2(p-1) R\left(K_{0}\right) \Delta_{n}^{2}
$$

Corollary 3.5: Let the conditions (i), (ii), (iv) and $n^{-1} a_{n}^{2} \rightarrow 0$ be fulfilled. Then the random variable

$$
a_{n}^{1 / 2}\left(T_{n}-\mu_{n}\right) \sigma_{n}^{-1}
$$

for the hypothesis H_{0} has a normal limiting distribution $(0,1)$.
This result allows us to construct the asymptotic test of the hypothesis testing for $H_{0}: f_{1}(x)=\cdots=f_{p}(x)$ (hypothesis of homogeneity); the critical domain is established by the inequality

$$
\begin{equation*}
T_{n} \geq \widetilde{d}_{n}(\alpha)=\mu_{n}+a_{n}^{-1 / 2} \sigma_{n} \lambda_{\alpha} \tag{3}
\end{equation*}
$$

where λ_{α} is a quantile of the level $1-\alpha$ of the standard normal distribution $\Phi(x)$.
Corollary 3.6: In the conditions of Theorem 3.4 the local behavior of the power $P_{H_{1}}\left(T_{n} \geq \widetilde{d}_{n}(\alpha)\right)$ is as follows

$$
P_{H_{1}}\left(T_{n} \geq \widetilde{d}_{n}(\alpha)\right) \longrightarrow 1-\Phi\left(\lambda_{\alpha}-A(\varphi) \sigma^{-1}\right)
$$

Suppose $\inf _{0 \leq x \leq 1} f_{0}(x)>0$ and $r(x)=f_{0}^{-1}(x), x \in[0,1](=0, x \notin[0,1])$. In this case for the hypothesis H_{1}, random variable $a_{n}^{1 / 2}\left(T_{n}-\mu_{0}\right)$ has the normal limiting distribution $\left(A(\varphi), \sigma_{0}^{2}\right)$, where

$$
\mu_{0}=(p-1) \int K^{2}(u) d u, \quad \sigma_{0}^{2}=2(p-1) \int K_{0}^{2}(u) d u
$$

Let us introduce

$$
\begin{gathered}
\widehat{T}_{n}=\widehat{T}\left(n_{1}, n_{2}\right)=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int_{0}^{1}\left[\widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \widehat{f}_{j}(x)\right]^{2} r_{n}(x) d x \\
r_{n}(x)=\left[f_{n}^{*}(x)\right]^{-1}
\end{gathered}
$$

Theorem 3.7: Let the condition (i)-(iv) be fulfilled. If $\alpha_{n}=n^{-1 / 2} a_{n}^{1 / 4}$ and $n^{-1} a_{n}^{9 / 2} \ln n \rightarrow 0$ as $n \rightarrow \infty$, then random variable $a_{n}^{1 / 2}\left(\widehat{T}_{n}-\mu_{0}\right)$ for the hypothesis H_{1} has the normal limiting distribution $\left(A(\varphi), \sigma_{0}^{2}\right)$.

Corollary 3.8: Let the conditions (i), (ii) and (iv) be fulfilled. If $n^{-1} a_{n}^{3} \ln n \rightarrow 0$, then the random variable $a_{n}^{1 / 2}\left(\widehat{T}_{n}-\mu_{0}\right)$ for the hypothesis H_{0} has normal distribution $\left(0, \sigma_{0}^{2}\right)$.

This corollary allows us to construct the asymptotic test of the hypothesis testing for $H_{0}: f_{1}(x)=\cdots=f_{p}(x)$; the critical domain is established by the inequality

$$
\begin{equation*}
\widehat{T}_{n} \geq \widetilde{\tilde{d}}_{n}(\alpha)=\mu_{0}+a_{n}^{-1 / 2} \lambda_{\alpha} \sigma_{0} \tag{4}
\end{equation*}
$$

where λ_{α} is a quantile of the level $1-\alpha$ of the standard normal distribution $\Phi(x)$.
Corollary 3.9: In conditions of Theorem 3.7 the local behaviour of the power $P_{H_{1}}\left(\widehat{T}_{n} \geq \widetilde{d}_{n}(\alpha)\right)$ is as follows

$$
\begin{equation*}
P_{H_{1}}\left(\widehat{T}_{n} \geq \widetilde{d}_{n}(\alpha)\right) \longrightarrow 1-\Phi\left(\lambda_{\alpha}-\frac{A(\varphi)}{\sigma_{0}}\right) \tag{5}
\end{equation*}
$$

Remark 2:

(a) The test (2) of testing hypothesis H_{0}^{\prime} against alternative $H_{1}: \quad f_{1}(x)=$ $f_{0}(x), f_{j}(x)=f_{0}(x)+\alpha_{n} \varphi_{j}(x), j=2, \ldots, p$, is asymptotically strictly unbased, since $A(\varphi)>0$ and equals 0 if and only if, when $\varphi_{j}(x)=0$, $j=2, \ldots, p$.
(b) The tests (3) and (4) of testing hypothesis H_{0} against H_{1} is asymptotically strictly unbased, since $A(\varphi)>0$ and equals 0 if and only if, when $\varphi_{i}(x)=$ $\varphi_{j}(x), i \neq j, i, j=1, \ldots, p$.

4. Proofs of Theorems 3.1, 3.4, 3.7

Proof of Theorem 3.1: Let us represent T_{n} as the sum

$$
T_{n}=T_{n}^{(1)}+A_{1 n}+A_{2 n}
$$

where

$$
\begin{aligned}
& T_{n}^{(1)}=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int\left[\widehat{f}_{i}(x)-E \widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j}\left(\widehat{f}_{j}(x)-E \widehat{f}_{j}(x)\right)\right]^{2} r(x) d x, \\
& A_{1 n}=2 \frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int\left[\widehat{f}_{i}(x)-E \widehat{f}_{i}(x)\right]\left[E \widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} E \widehat{f}_{j}(x)\right] r(x) d x, \\
& A_{2 n}=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int\left[E \widehat{f_{i}}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} E \widehat{f}_{j}(x)\right]^{2} r(x) d x .
\end{aligned}
$$

Here and in what follows $E(\cdot)$ is a mathematical expectation with respect to the hypothesis H_{1}.

It is not difficult to see that

$$
E \widehat{f}_{i}(x)=a_{n} \int K\left(a_{n}(x-u)\right) f_{0}(u) d u+\alpha_{n} \varphi_{i}(x)+\frac{\alpha_{n}}{a_{n}} \int t K(t) \int_{0}^{1} \varphi_{i}^{(1)}\left(x-\frac{t z}{a_{n}}\right) d z d t
$$

This relation implies

$$
A_{2 n}=\frac{n \alpha_{n}^{2}}{a_{n}} A_{n}(\varphi)+O\left(\frac{n \alpha_{n}^{2}}{a_{n}^{2}}\right)
$$

Hence, since $\frac{n \alpha_{n}^{2}}{\sqrt{a_{n}}}=1$, we obtain

$$
\begin{equation*}
\sqrt{a_{n}} A_{2 n}=A(\varphi)+O\left(\frac{n \alpha_{n}^{2}}{a_{n}^{3 / 2}}\right)=A(\varphi)+O\left(\frac{1}{a_{n}}\right) \tag{6}
\end{equation*}
$$

where

$$
A(\varphi)=\sum_{i=1}^{p} k_{i} \int\left[\varphi_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \varphi_{j}(x)\right]^{2} r(x) d x
$$

Now let us show that $a_{n}^{1 / 2} A_{1 n} \longrightarrow 0$ in probability. For this it suffices to show that $a_{n}^{1 / 2} E\left|A_{1 n}\right| \longrightarrow 0$ as $n \rightarrow \infty$. We have

$$
\begin{gathered}
E\left|A_{1 n}\right| \leq\left(E A_{1 n}^{2}\right)^{1 / 2}= \\
=2 \frac{n}{a_{n}}\left\{\sum_{i=1}^{p} k_{i}^{2} E\left(\int\left(\widehat{f}_{i}(x)-E \widehat{f_{i}}(x)\right) A_{i}(x) r(x) d x\right)^{2}\right\}^{1 / 2}
\end{gathered}
$$

where

$$
A_{i}(x)=E \widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} E \widehat{f}_{j}(x)
$$

Further, it is easy to calculate that

$$
E\left[\int\left(\widehat{f}_{i}(x)-E \widehat{f}_{i}(x)\right) A_{i}(x) r(x) d x\right]^{2} \leq \frac{a_{n}^{2}}{k_{i} n} E\left[\int K\left(a_{n}\left(x-X_{1}^{(i)}\right)\right) A_{i}(x) r(x) d x\right]^{2}
$$

Therefore

$$
\begin{equation*}
E\left|A_{1 n}\right| \leq c_{1} \sqrt{n}\left\{\sum_{i=1}^{p} k_{i} \int f_{i}(u) d u\left[\int K\left(a_{n}(x-u)\right) A_{i}(x) r(x) d x\right]^{2}\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

Since $\sup _{x}\left|A_{i}(x)\right| \leq c_{2} \alpha_{n}$ for all $i=1, \ldots, p$ and $r(x)$ is bounded, from (7) we obtain

$$
a_{n}^{1 / 2} E\left|A_{1 n}\right| \leq c_{3} \frac{\sqrt{n} \alpha_{n}}{a_{n}^{1 / 2}}=O\left(\frac{1}{a_{n}^{1 / 4}}\right)
$$

Hence

$$
\begin{equation*}
a_{n}^{1 / 2} A_{1 n}=o_{p}(1) \tag{8}
\end{equation*}
$$

Let us now proceed to the calculation of the limiting distribution of the functional $T_{n}^{(1)}$:

$$
\begin{equation*}
T_{n}^{(1)}=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int\left[\widehat{f}_{i}(x)-E \widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j}\left(\widehat{f}_{j}(x)-E \widehat{f}_{j}(x)\right)\right]^{2} r(x) d x \tag{9}
\end{equation*}
$$

where $\bar{k}=k_{1}+\cdots+k_{p}$.
After performing some simple transformation in (9), we obtain

$$
T_{n}^{(1)}=\int\left[\sum_{i=1}^{p}\left(\sqrt{\frac{n_{i}}{a_{n}}}\left(\widehat{f}_{i}(x)-E \widehat{f}_{i}(x)\right)\right)^{2}-\left(\sum_{j=1}^{p} \alpha_{j} \sqrt{\frac{n_{j}}{a_{n}}}\left(\widehat{f}_{j}(x)-E \widehat{f}_{j}(x)\right)\right)^{2}\right] r(x) d x
$$

where $\alpha_{i}^{2}=\frac{k_{i}}{k_{1}+\cdots+k_{p}}$.
Let

$$
\mathbf{Z}(x)=\left(Z_{1}(x), \ldots, Z_{p}(x)\right)
$$

be the vector with the component

$$
Z_{i}(x)=\sqrt{\frac{n_{i}}{a_{n}}}\left(\widehat{f}_{i}(x)-E \widehat{f_{i}}(x)\right), \quad i=1, \ldots, p
$$

Then

$$
T_{n}^{(1)}=\int\left[|Z(x)|^{2}-\left(\sum_{j=1}^{p} \alpha_{j} Z_{j}(x)\right)^{2}\right] r(x) d x
$$

where $|a|$ is the length of the vector $a=\left(a_{1}, \ldots, a_{p}\right)$.
There exists an orthogonal matrix $\mathbf{C}=\left\|c_{i j}\right\|, i, j=1, \ldots, p$, depending only on $k_{1}, k_{2}, \ldots, k_{p}$, for which

$$
c_{p i}=\alpha_{i}=\sqrt{\frac{k_{i}}{k_{1}+\cdots+k_{p}}}, \quad i=1, \ldots, p
$$

Since under orthogonal transformation the vector length does not change, we have

$$
\begin{align*}
T_{n}^{(1)} & =\int\left[|\mathbf{C Z}|^{2}-\left(\sum_{j=1}^{p} \alpha_{j} Z_{j}(x)\right)^{2}\right] r(x) d x \\
& =\sum_{i=1}^{p-1} \int\left(\sum_{j=1}^{p} c_{i j} Z_{j}(x)\right)^{2} r(x) d x \tag{10}
\end{align*}
$$

Let $F_{i}(x)$ be a distribution function of the random variable $X_{1}^{(i)}$ and let $\widehat{F}_{n_{i}}(x)$ be an empirical distribution function of the sample $X^{(i)}=\left(X_{1}^{(i)}, \ldots, X_{n_{i}}^{(i)}\right)$.

Further, by Theorem 3 in [5] we can write that

$$
\begin{gather*}
\widehat{F}_{n_{i}}(x)-F_{i}(x)=n_{i}^{-1 / 2} W_{i}^{0}\left(F_{i}\right)+\varepsilon_{n}^{(1)}(x) \tag{11}\\
\sup _{-\infty<x<\infty}\left|\varepsilon_{n}^{(1)}(x)\right|=O\left(\frac{\ln n}{n}\right)
\end{gather*}
$$

$W_{i}^{0}(t), i=1, \ldots, p$, are the independent Brownian bridges depending only on $X^{(i)}$.
Using (11), it is easy to establish ([4], [8]) that

$$
\begin{align*}
Z_{i}(x)= & \sqrt{\frac{n_{i}}{a_{n}}}\left(\widehat{f}_{i}(x)-E \widehat{f_{i}}(x)\right)=\xi_{i}(x)+\varepsilon_{n}^{(2)}(x) \tag{12}\\
& \sup _{-\infty<x<\infty}\left|\varepsilon_{n}^{(2)}(x)\right|=O_{p}\left(\frac{\ln n}{\sqrt{n a_{n}^{-1}}}\right)
\end{align*}
$$

where

$$
\xi_{i}(x)=a_{n}^{1 / 2} \int K\left(a_{n}(x-u)\right) d W_{i}^{0}\left(F_{i}(u)\right), \quad i=1, \ldots, p
$$

then by virtue of (12) we can write

$$
\begin{gather*}
\sum_{j=1}^{p} c_{i j} Z_{j}(x)=\sum_{j=1}^{p} c_{i j} \xi_{j}(x)+\varepsilon_{n}^{(3)}(x) \tag{13}\\
\sup _{-\infty<x<\infty}\left|\varepsilon_{n}^{(3)}(x)\right|=O_{p}\left(\frac{\ln n}{\sqrt{n a_{n}^{-1}}}\right)
\end{gather*}
$$

Further, $\xi_{j}(x)$ can be represented as

$$
\xi_{j}(x)=a_{n}^{1 / 2} \int\left[K\left(a_{n}(x-t)\right)-\int K\left(a_{n}(x-u)\right) d F_{j}(u)\right] d W_{j}\left(F_{j}\right)
$$

where $W_{j}(t), j=1, \ldots, p$ are independent standard Wiener processes on $[0,1]$.
From this representation it follows that

$$
\sup _{-\infty<x<\infty} E \xi_{j}^{2}(x)<\infty, \quad j=1,2, \ldots, p
$$

From this we have

$$
A_{n}=\sum_{i=1}^{p-1} \int \sum_{j=1}^{p} c_{i j} \xi_{j}(x) r(x) d x
$$

is uniformly bounded in probability, i.e. $P\left\{\left|A_{n}\right| \geq M\right\} \longrightarrow 0$ as $M \rightarrow \infty$ uniformly with respect to n.

Therefore

$$
\begin{equation*}
A_{n} \cdot O_{p}\left(\frac{a_{n} \ln n}{\sqrt{n}}\right)=o_{p}(1), \tag{14}
\end{equation*}
$$

since, by assumption, $\frac{a_{n}^{9 / 2}}{n} \rightarrow 0$.
Thus, from representations (10) and (13), and also from relation (14), we find

$$
\begin{equation*}
\sqrt{a_{n}}\left(T_{n}^{(1)}-T_{n}^{(2)}\right)=o_{p}(1)+O_{p}\left(\frac{a_{n}^{3 / 2} \ln ^{2} n}{n}\right) \tag{15}
\end{equation*}
$$

where

$$
T_{n}^{(2)}=\sum_{i=1}^{p-1} \int\left(\sum_{j=1}^{p} c_{i j} \xi_{j}(t)\right)^{2} r(t) d t
$$

Denote

$$
\begin{aligned}
\eta_{i}(t) & =a_{n}^{1 / 2} \int K\left(a_{n}(t-u)\right) d W_{i}\left(F_{i}(u)\right) \\
T_{n}^{(3)} & =\sum_{i=1}^{p-1} \int\left(\sum_{j=1}^{p} c_{i j} \eta_{j}(t)\right)^{2} r(t) d t \\
\varepsilon_{i}(t) & =a_{n}^{1 / 2} W_{i}(1) \int K\left(a_{n}(t-u)\right) f_{i}(u) d u
\end{aligned}
$$

Then

$$
\begin{equation*}
a_{n}^{1 / 2}\left(T_{n}^{(2)}-T_{n}^{(3)}\right)=o_{p}(1) \tag{16}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
E\left|T_{n}^{(2)}-T_{n}^{(3)}\right| \leq 2 \sum_{i=1}^{p-1} E \mid & \int \sum_{j=1}^{p} c_{i j} \eta_{j}(t) \sum_{r=1}^{p} c_{i r} \varepsilon_{r}(t) \mid r(t) d t \\
& +\sum_{i=1}^{p-1} E \int\left(\sum_{j=1}^{p} c_{i j} \varepsilon_{j}(t)\right)^{2} r(t) d t=B_{n}^{(1)}+B_{n}^{(2)} \tag{17}
\end{align*}
$$

It is easy to check that

$$
B_{n}^{(2)} \leq c_{4} a_{n}^{-1}
$$

Let us now estimate $B_{n}^{(1)}$. We have

$$
\begin{aligned}
B_{n}^{(1)} & \leq 2 \sum_{i=1}^{p-1}\left[\sum_{j, r}^{p}\left|c_{i j} c_{i r}\right| E\left|W_{r}(1)\right|\left|\int\left[\int \Psi_{r}(t) K\left(a_{n}(t-u)\right) r(t) d t\right] d W_{j}\left(F_{j}\right)\right|\right] \\
& \leq 2 \sum_{i=1}^{p-1} \sum_{j=1}^{p} \sum_{r=1}^{p}\left|c_{i j} c_{i r}\right|\left\{\int\left(\int \Psi_{r}(t) K\left(a_{n}(t-u)\right) r(t) d t\right)^{2} d F_{j}(u)\right\}^{1 / 2} \leq c_{5} a_{n}^{-1}
\end{aligned}
$$

where

$$
\Psi_{r}(t)=\int K(z) f_{r}\left(t-z a_{n}^{-1}\right) d z
$$

So, substituting the estimators of the expressions $B_{n}^{(1)}$ and $B_{n}^{(2)}$ into (17), we obtain statement (16).

Denote

$$
\eta_{i}^{0}(t)=a_{n}^{1 / 2} \int K\left(a_{n}(t-x)\right) d W_{i}\left(F_{0}\right),
$$

where $F_{0}(x)$ is a distribution function with density $f_{0}(x)$. Since $F_{i}(x)=F_{0}(x)+$ $\alpha_{n} U_{i}(x), U_{i}^{(1)}(x)=\varphi_{i}(x)$ and, by assumption, $\varphi_{i}(x)$ is bounded and $K^{(1)}(x) \in$ $L_{1}(-\infty, \infty)$, we have

$$
\begin{align*}
E\left(\eta_{j}(t)-\eta_{j}^{0}(t)\right)^{2} & =O\left(a_{n} \alpha_{n}\right) \\
E\left(\eta_{j}^{0}(t)\right)^{2} & =O(1) \tag{18}
\end{align*}
$$

uniformly with respect to $t \in(-\infty, \infty)$ and $j, j=1, \ldots, p$. Indeed, we have

$$
\begin{aligned}
& E\left(\eta_{j}(t)-\eta_{j}^{0}(t)\right)^{2} \\
& \quad=a_{n} E\left(\int\left(W_{j}\left(F_{j}\left(a_{n}(t-x)\right)\right)-W_{j}\left(F_{0}\left(a_{n}(t-x)\right)\right)\right) K^{(1)}(x) d x\right)^{2}
\end{aligned}
$$

$$
\leq a_{n} \int\left|F_{j}\left(a_{n}(t-x)\right)-F_{0}\left(a_{n}(t-x)\right)\right|\left|K^{(1)}(z)\right| d x \cdot \int\left|K^{(1)}(x)\right| d x \leq c_{6} a_{n} \alpha_{n}
$$

and also

$$
E\left(\eta_{n}^{0}(t)\right)^{2}=a_{n} \int K^{2}\left(a_{n}(t-x)\right) f_{0}(x) d x \leq \max _{x} f_{0}(x) \cdot \int K^{2}(u) d u
$$

Further, using (18) and the Cauchy-Schwarz inequality we establish that

$$
\begin{equation*}
\sqrt{a_{n}} E\left|T_{n}^{(3)}-T_{n}^{(4)}\right|=O\left(a_{n} \sqrt{\alpha_{n}}\right)+O\left(a_{n}^{3 / 2} \alpha_{n}\right) \tag{19}
\end{equation*}
$$

where

$$
T_{n}^{(4)}=\sum_{i=1}^{p-1} \int\left(\sum_{j=1}^{p} c_{i j} \eta_{j}^{0}(t)\right)^{2} r(t) d t
$$

Let us now study the limiting distribution of the functional $T_{n}^{(4)}$.
The processes $\eta_{j}^{0}(t), j=1, \ldots, p$, are independent and Gaussian and therefore the new processes $\sum_{j=1}^{p} c_{i j} \eta_{j}^{0}(t), i=1, \ldots, p$, are also independent and Gaussian by virtue of the orthogonality of the matrix $\left\|c_{i j}\right\|$. Therefore to find the limiting distribution $T_{n}^{(4)}$ it remains to establish the limiting distribution of the functional

$$
U_{n}^{(i)}=\int\left(\sum_{j=1}^{p} c_{i j} \eta_{j}^{0}(t)\right)^{2} r(t) d t
$$

for every fixed $i, i=1, \ldots, p-1$.
The covariant function $R_{n}^{(i)}\left(t_{1}, t_{2}\right)$ of the Gaussian process $\sum_{j=1}^{p} c_{i j} \eta_{j}^{0}(t)$ is equal to

$$
R_{n}^{(i)}\left(t_{1}, t_{2}\right)=\sum_{j=1}^{p} c_{i j}^{2} E \eta_{j}^{0}\left(t_{1}\right) \eta_{j}^{0}\left(t_{2}\right)
$$

However,

$$
\begin{align*}
E \eta_{j}^{0}\left(t_{1}\right) \eta_{j}^{0}\left(t_{2}\right) & =\int K(u) K\left(a_{n}\left(t_{1}-t_{2}\right)+u\right) f_{0}\left(t_{1}-a_{n}^{-1} u\right) d u \\
& =f_{0}\left(t_{1}\right) K_{0}\left(a_{n}\left(t_{1}-t_{2}\right)\right)+O\left(a_{n}^{-1}\right) \tag{20}
\end{align*}
$$

where the estimator $O(\cdot)$ is uniform with respect to t_{1}, t_{2} and $K_{0}=K * K$.
From (20) it follows that

$$
\begin{equation*}
R_{n}^{(i)}\left(t_{1}, t_{2}\right)=f_{0}\left(t_{1}\right) K_{0}\left(a_{n}\left(t_{1}-t_{2}\right)\right)+O\left(a_{n}^{-1}\right) \tag{21}
\end{equation*}
$$

A semi-invariant $\chi_{n}^{(i)}(s)$ of order s of the random variable $U_{n}^{(i)}$ is defined by the formula [3]

$$
\begin{align*}
\chi_{n}^{(i)}(s)=(s-1)!\cdot 2^{s-1} \int \cdots \int & R_{n}^{(i)}\left(x_{1}, x_{2}\right) R_{n}^{(i)}\left(x_{2}, x_{3}\right) \cdots R_{n}^{(i)}\left(x_{s}, x_{1}\right) \\
& \times r\left(x_{1}\right) r\left(x_{2}\right) \cdots r\left(x_{s}\right) d x_{1} d x_{2} \cdots d x_{s} . \tag{22}
\end{align*}
$$

Using (21) and (22) it is not difficult to establish that

$$
\begin{align*}
& E U_{n}^{(i)}=\chi_{n}^{(i)}(1) \\
&=R(K) \int f_{0}(x) r(x) d x+O\left(a_{n}^{-1}\right) \tag{23}\\
& \operatorname{Var} U_{n}^{(i)}=\chi_{n}^{(i)}(2)
\end{align*}=2 R\left(K_{0}\right) a_{n}^{-1} \int f_{0}^{2}(x) r^{2}(x) d x+o\left(a_{n}^{-1}\right), ~ l
$$

and the s-th semi-invariant $\chi_{n}^{(i)}(s)$ is equal, with an accuracy of terms of higher order smallness, to [3]:

$$
\begin{equation*}
(s-1)!2^{s-1}\left(a_{n}^{-1}\right)^{s-1}[K * K]^{(s)}(0) \int f_{0}^{s}(x) r^{s}(x) d x \tag{24}
\end{equation*}
$$

where $[K * K]^{(s)}(0)$ means an s-fold convolution of $K_{0}(x)$ with itself.
From relations (23) and (24) it follows [3] (see also [8]) that

$$
a_{n}^{1 / 2}\left(U_{n}^{(i)}-R(K) \int f_{0}(x) r(x) d x\right)
$$

has a normal limiting distribution with mathematical expectation 0 and dispersion

$$
2 R\left(K_{0}\right) \int f_{0}^{2}(u) r^{2}(u) d u, \quad R(g)=\int g^{2}(x) d x
$$

and therefore $\sqrt{a_{n}}\left(T_{n}^{(4)}-\mu\right)$ has a normal limiting distribution $\left(0, \sigma^{2}\right)$.
Finally, taking into account (6), (8), (15), (16), (19) and the representation

$$
\begin{align*}
a_{n}^{1 / 2}\left(T_{n}-\mu\right)=a_{n}^{1 / 2}\left(T_{n}^{(4)}-\mu\right) & +A(\varphi)+O\left(a_{n}^{-1 / 2}\right)+o_{p}(1) \\
& +O_{p}\left(\frac{a_{n}^{3 / 2} \ln ^{2} n}{n}\right)+O_{p}\left(a_{n} \sqrt{\alpha_{n}}\right)+O\left(a_{n}^{3 / 2} \alpha_{n}\right) \tag{25}
\end{align*}
$$

we conclude that $a_{n}^{1 / 2}\left(T_{n}-\mu\right)$ has a normal limiting distribution $\left(A(\varphi), \sigma^{2}\right)$.
Proof of Theorem 3.4: It is obvious that

$$
a_{n}^{1 / 2}\left(T_{n}-\mu_{n}\right) \sigma_{n}^{-1}=a_{n}^{1 / 2}\left(T_{n}-\mu\right) \sigma^{-1}\left(\sigma \sigma_{n}^{-1}\right)+a_{n}^{1 / 2}\left(\mu-\mu_{n}\right) \sigma_{n}^{-1}
$$

Therefore it suffices to show that

$$
\begin{equation*}
a_{n}^{1 / 2}\left(\bar{\mu}_{n}-\int f_{0}(x) r(x) d x\right)=o_{p}(1) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{n}^{2}-\int f_{0}^{2}(x) r^{2}(x) d x=o_{p}(1) \tag{27}
\end{equation*}
$$

But (27) immediately follows from Theorem 2.1 of Bhattacharyya G. K., Roussas G. G. [2] (see also [8], [6]).

Let us prove (26). We have

$$
\begin{gathered}
a_{n}^{1 / 2} E\left|\int f_{n}^{*}(x) r(x) d x-\int f_{0}(x) r(x) d x\right| \\
\leq a_{n}^{1 / 2} E\left|\int\left(f_{n}^{*}(x)-E f_{n}^{*}(x)\right) r(x) d x\right|+a_{n}^{1 / 2} \int\left|E f_{n}^{*}(x)-f_{0}(x)\right| r(x) d x \\
=A_{1 n}+A_{2 n}
\end{gathered}
$$

It is not difficult to check that

$$
A_{2 n} \leq c_{7}\left(a_{n}^{-1 / 2}+\sqrt{a_{n}} \alpha_{n}\right)
$$

Further, we have

$$
\begin{gathered}
A_{1 n} \leq a_{n}^{1 / 2} E^{1 / 2}\left(\int\left(f_{n}^{*}(x)-E f_{n}^{*}(x)\right) r(x) d x\right)^{2} \\
\leq c_{8} a_{n}^{1 / 2} \max _{1 \leq j \leq p}\left\{\frac{1}{n} \int f_{j}(u) d u\left(\int K(t) r\left(u-\frac{t}{a_{n}}\right) d t\right)^{2}\right\}^{1 / 2} \leq c_{9}\left(\frac{a_{n}}{n}\right)^{1 / 2}
\end{gathered}
$$

Therefore

$$
A_{1 n}+A_{2 n} \leq c_{10}\left(a_{n}^{-1 / 2}+\sqrt{a_{n}} \alpha_{n}+\left(\frac{a_{n}}{n}\right)^{1 / 2}\right) \longrightarrow 0
$$

Proof of Theorem 3.7: For proving it is enough to state that $\sqrt{a_{n}}\left(T_{n}-\widehat{T}_{n}\right) \rightarrow 0$ in probability. We have

$$
\begin{gathered}
\sqrt{a_{n}}\left|T_{n}-\widehat{T}_{n}\right| \leq L_{n}^{(1)} \cdot L_{n}^{(2)} \\
L_{n}^{(1)}=\sqrt{a_{n}} \sup _{0 \leq x \leq 1}\left|f_{n}^{*}(x)-f_{0}(x)\right|\left(\inf _{0 \leq x \leq 1}\left(f_{0}(x) f_{n}^{*}(x)\right)\right)^{-1} \\
L_{n}^{(2)}=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int_{0}^{1}\left[\widehat{f}_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \widehat{f}_{j}(x)\right]^{2} d x
\end{gathered}
$$

Considering, that $E \widehat{f_{j}}(x)-f_{0}(x)=O\left(a_{n}^{-1}\right)+O\left(\alpha_{n}\right)$ uniformly in x, we obtain

$$
\begin{aligned}
& \sqrt{a_{n}} \sup _{x}\left|f_{n}^{*}(x)-f_{0}(x)\right| \\
& \quad \leq \sum_{i=1}^{p} k_{i} \sqrt{a_{n}} \sup _{x}\left|\widehat{f_{i}}(a)-E \widehat{f_{i}}(x)\right|+O\left(a_{n}^{-1 / 2}\right)+O\left(\sqrt{a_{n}} \alpha_{n}\right) .
\end{aligned}
$$

Further, from inequality (2) in [9] (see also [8, p. 43]) it follows that

$$
\sqrt{a_{n}} \sup _{x}\left|\widehat{f}_{j}(x)-E \widehat{f}_{j}(x)\right| \leq V_{0} a_{n}^{3 / 2} \sup _{x}\left|\widehat{F}_{j}(x)-F_{j}(x)\right|=O\left(\frac{a_{n}^{3} \ln n}{n}\right)^{1 / 2}
$$

with probability 1 , where $V_{0}=\bigvee_{-\infty}^{\infty}(K)$. From this and by condition $\frac{a_{n}^{9 / 2}}{n} \ln n \rightarrow 0$ it follows that

$$
\begin{equation*}
\sqrt{a_{n}} \sup _{x}\left|f_{n}^{*}(x)-f_{0}(x)\right| \longrightarrow 0 \tag{28}
\end{equation*}
$$

with probability 1 .
Further, since

$$
\inf _{0 \leq x \leq 1} f_{0}(x) f_{n}^{*}(x) \geq \Delta_{0} \inf _{0 \leq x \leq 1} f_{n}^{*}(x), \quad \Delta_{0}=\inf _{0 \leq x \leq 1} f_{0}(x)>0
$$

and

$$
\inf _{0 \leq x \leq 1} f_{n}^{*}(x) \geq \Delta_{0}-\sup _{0 \leq x \leq 1}\left|f_{n}^{*}(x)-f_{0}(x)\right|,
$$

then from the last and from (28) it follows that $L_{n}^{(1)} \rightarrow 0$ with probability 1. Further, we have

$$
\begin{equation*}
E L_{n}^{(2)}=\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int_{0}^{1} \operatorname{Var} \widehat{f_{i}}(x) d x+\frac{n}{a_{n}} \sum_{i=1}^{p} k_{i} \int_{0}^{1}\left[E \widehat{f_{i}}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} E \widehat{f_{j}}(x)\right]^{2} d x . \tag{29}
\end{equation*}
$$

It is easity to see that

$$
\begin{gathered}
\int_{0}^{1} \operatorname{Var} \widehat{f}_{i}(x) d x=O\left(\frac{a_{n}}{n}\right) \\
E \widehat{f}_{n}(x)=a_{n} \int K\left(a_{n}(x-u)\right) f_{0}(u) d u+O\left(\alpha_{n}\right)
\end{gathered}
$$

Because from (29) we establish that

$$
E L_{n}^{(2)} \leq c_{12}+c_{13} \frac{n}{a_{n}} \alpha_{n}^{2}=c_{12}+c_{13} a_{n}^{-1 / 2}
$$

(by condition $\frac{n \alpha_{n}^{2}}{\sqrt{a_{n}}}=1$). This means that $L_{n}^{(2)}$ is bounded by probability. Therefore, $\sqrt{a_{n}}\left(T_{n}-\widehat{T}_{n}\right) \rightarrow 0$ in probability.

References

[1] N.H. Anderson, P. Hall, D.M. Titterington, Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimators, J. Multivariate Anal., 50, 1 (1994), 41-54
[2] G.K. Bhattacharyya, G.G. Roussas, Estimation of a certain functional of a probability density function, Skand. Aktuarietidskr, 1969, 1969, (1970), 201-206
3] P.J. Bickel, M. Rosenblatt, On some global measures of the deviations of density function estimators, Ann. Statist., 1 (1973), 1071-1095
[4] P. Hall, Limit theorems for stochastic measures of the accuracy of density estimators, Stochastic Process. Appl., 13, 1 (1982), 11-25
[5] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent RV's and the sample $D F$, I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975), 111-131
[6] D.M. Mason, E.A. Nadaraya, G.A. Sokhadze, Integral functionals of the density, Nonparametrics and robustness in modern statistical inference and time series analysis: a Festschrift in honor of Professor Jana Jurečková, 153-168, Inst. Math. Stat. Collect., 7, Inst. Math. Statist., Beachwood, OH, 2010
[7] E.A. Nadaraya, Limit distribution of the quadratic deviation of two nonparametric estimators of the density of a distribution (Russian), Soobshch. Akad. Nauk Gruz. SSR, 78 (1975), 25-28
[8] E.A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, Translated from the Russian by Samuel Kotz. Mathematics and its Applications (Soviet Series), 20., Kluwer Academic Publishers Group, Dordrecht, 1989
[9] E.A. Nadaraya, On non-parametric estimates of density functions and regression curves (in Russian), Teor. Veroyatn. Primen., 10 (1965), 199-203; translation in Theor. Probab. Appl., 10 (1965), 186-190

[^0]: *Corresponding author. Email: petre.babilua@tsu.ge

