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The linear stability and Hopf bifurcation of a solution of the initial-boundary value problem
for one system of nonlinear partial differential equations (NPDEs) is studied. A blow up result
is given.
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Nonlinear evolution equations as mathematical models are widely used in almost
all scientific disciplines. A lot of natural processes are described using the nonlinear
systems of partial differential equations.
The main aim of the present paper is to study the linear stability and Hopf

bifurcation of a solution of the initial-boundary value problem for one diffusion
system of NPDEs. Such systems arise in mathematical modeling of the process of
penetration of an electromagnetic field into a substance [11].
In this note, at first, we illustrate two reasonably simple problems, examples of

blow up to obtain nonexistence results for classes of problems that arise in the
studied NPDEs. The conditions which imply that the solution must blow up in
finite time are given.
For most of NPDEs it is very difficult to find exact solutions and there is no

general solution available in a closed form. It is known that, in some cases, it is
possible to construct specific exact solutions of the initial-boundary value problem
for NPDEs. The exact analytical solution is constructed in this note too.
Now, in the domain Q = (0; 1) × (0;∞), let us consider the following initial-

boundary value problem:
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U(0, t) = V (0, t) =W (0, t) = 0,

U(1, t) = ψ1 > 0, V (1, t) = ψ2 > 0, W (1, t) = ψ3 > 0,
(2)

U(x, 0) = U0(x), V (x, 0) = V0(x),

W (x, 0) =W0(x), S(x, 0) = S0(x) > 0.
(3)

Here (x, t)∈Q; α, β, γ∈R; a, b, ψ1, ψ2, ψ3 are positive constants, and U0(x), V0(x),
W0(x), S0(x) are the given functions.
Systems of (1) type arise in mathematical modeling of many practical processes

and in theoretical spears too (see, for example, [1] - [4], [6], [8], [13] - [15] and
references therein). Some qualitative and structural properties of solutions of (1)
type systems are established in many works. If a = 0, b = 1, when system (1),
(2) may be considered as one-dimensional analogue of the model of process of
penetration of an electromagnetic field into a substance [11].
It is easy to check that if a = 0, b = 1, γ = α, U0(x) = ψ1x, V0(x) = ψ2x,

W0(x) = ψ3x and S0(x) = S0 = const > 0, then when α ≠ 1 the solution of the
problem (1) - (3) is:

U(x, t) = ψ1x, V (x, t) = ψ2x, W (x, t) = ψ3x,

S(x, t) =
[
S1−α
0 + (1− α)

(
ψ2
1 + ψ2

2 + ψ2
3

)
t
] 1

t−α

(4)

As it can be seen from (4), for a finite value of time, namely, when

t0 = S1−α
0 /

[(
ψ2
1 + ψ2

2 + ψ2
3

)
(α− 1)

]
and α > 1, the function S(x, t) is not bounded.
The above example shows that (1) - (3) has no global solution at all. So, the

solution of problem (1) - (3) with smooth initial and boundary conditions can be
blown up at a finite time.
The questions of unique solvability of some cases of problems of this type are

studied in above-mentioned literature and in the number of other works as well.
Note that if we add to (2) the following boundary conditions:

∂S

∂x

∣∣∣∣
x=0

=
∂S

∂x

∣∣∣∣
x=1

= 0, (5)

then U, V, W and S defined by formulas (4) are also solutions of the following
system:



Vol. 25, No. 2, 2021 139

∂U

∂t
=

∂

∂x

(
Sα∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα∂V

∂x

)
,

∂W

∂t
=

∂

∂x

(
Sα∂W

∂x

)
,

∂S

∂t
= Sα

[(
∂U

∂x

)2

+

(
∂V

∂x

)2

+

(
∂W

∂x

)2
]
+
∂2S

∂x2
,

(6)

with (2), (3), (5) boundary and initial conditions. We conclude that for α > 1,
neither (2), (3), (5), (6) the problem has no global solution.
In the remaining part, we give detailed formulations of the most important results

mentioned in the abstract. Now, let us consider general system (1), (2). In some
cases, linear and global problems of stability of stationary solutions are studied.
There appears the possibility of Hopf bifurcation. The small perturbations may
cause the transformation of a solution into periodic oscillations [12].
The study of similar problems in this area was firstly carried out in the article

[5] for the two component case. The following works [6], [7], [9], [10] are devoted to
similar studies for two and three component (U, V, S) cases of (1), (2) type systems.
It is not difficult to show that if β ̸= γ the stationary solution (Us, Vs,Ws, Ss) of

problem (1) - (3) has the form:

Us = ψ1x, Vs = ψ2x, Ws = ψ3x, Ss =

[
b

a

(
ψ2
1 + ψ2

2 + ψ2
3

)] 1

β−γ

. (7)

problem (1) - (3) is linearly stable if and only if the following inequality is fulfilled

a(γ − β)

[
b

a

(
ψ2
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2 + ψ2
3

)] β−α−1

β−γ

< π2. (8)

Proof : Assume, that the solution of problem (1) - (3) has the following form:

U(x, t) = Us + u(x, t), V (x, t) = Vs + v(x, t),

W (x, t) =Ws + w(x, t), S(x, t) = Ss + s(x, t),
(9)

where u(x, t), v(x, t), w(x, t), s(x, t) are small perturbations.
As a result of system (1) linearization, we obtain:
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(10)

The following statement takes place.

Theorem 1:    Let 2α + β − γ > 0, β ̸= γ, then stationary solution (7) of the
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where the following notations are introduced:
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Let us seek the solution of system (10) in the following form:

u(x, t) = u(x)eωt, v(x, t) = v(x)eωt,

w(x, t) = w(x)eωt, s(x, t) = s(x)eωt,
(11)

then we get the problem on eigenvalues for the following system of ordinary differ-
ential equations:

ωu = αs
ds

dx
+ βs

d2u

dx2
,

ωv = γs
ds

dx
+ βs

d2v

dx2
,

ωw = ρs
ds

dx
+ βs

d2w

dx2
,

ωs = νss+ ηs
du

dx
+ µs

dv

dx
+ τs

dw

dx
.

(12)

Now, assume that the solution of system (12) has the following form:

u(x) = u0e
ikx, v(x) = v0e

ikx, w(x) = w0e
ikx, s(x) = s0e

ikx.

Substituting these functions in (12), after simple transformations, we get:

u0(ω + βsk
2)− αsiks0 = 0,

v0(ω + βsk
2)− γsiks0 = 0,

w0(ω + βsk
2)− ρsiks0 = 0,

ηsiku0 + µsikv0 + τsikw0 + s0(νs − ω) = 0.
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It is clear that this system has a nontrivial solution if and only if the following
condition is fulfilled

∆(ω, k) =

∣∣∣∣∣∣∣∣
ω + βsk

2 0 0 −αsik
0 ω + βsk

2 0 −γsik
0 0 ω + βsk

2 −ρsik
ηsik µsik τsik νs − ω

∣∣∣∣∣∣∣∣
= (ω + βsk

2)2[(νs − ω)(ω + βsk
2)− αsηsk

2 − γsµsk
2 − τsρsk

2] = 0.

Since the case ω + βsk
2 = 0 is trivial, from this we get

k2(βsνs − βsω − αsηs − γsµs − τsρs)− ω2 + νsω = 0. (13)

The latest equality gives two values of the parameter k such as k1 = −k2.
It is easy to show that the solution of system (12) has the following form:

u(x) =
ik1αs

ω + βsk21

(
S1e

ik1x − S2e
−ik1x

)
,

v(x) =
ik1γs

ω + βsk21

(
S1e

ik1x − S2e
−ik1x

)
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w(x) =
ik1ρs

ω + βsk21

(
S1e

ik1x − S2e
−ik1x

)
,

s(x) = S1e
ik1x + S2e

−ik1x,

(14)

where S1 and S2 are constants.
Taking into account boundary conditions (2), from (9) and (11) we get

u(0) = u(1) = 0.

From this, taking into account (14) we get the following system:

S1 − S2 = 0,

S1e
ik1 − S2e

−ik1 = 0.

The above system has a nontrivial solution when

∆ =

∣∣∣∣ 1 −1
eik1 −eik1

∣∣∣∣ = 2isink1 = 0,

or

k1n = πn, n ∈ Z.

Let us rewrite equation (13) in the following form

ω2
n + Pn(βs, kn, νs)ωn + Ln(βs, kn, νs, ηs, µs, γs, τs, ρs) = 0,
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where:

Pn(βs, kn, νs) = βsk
2
n − νs,

Ln(βs, kn, νs, ηs, µs, γs, τs, ρs) = −βsνsk2n + αsηsk
2
n + γsµsk

2
n + τsρsk

2
n.

One must note that the solution of problem (1) - (3) is linearly stable if and only
if for all n the following inequality holds Re(ωn) < 0. It is easy to show that if
2α+ β − γ > 0, then Ln(βs, kn, νs, ηs, µs, γs, τs, ρs) > 0.
Therefore, for the linear stability of solution it is necessary and sufficient that

the following inequality

Pn(βs, kn, νs) = βsk
2
n − νs

=
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(
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2 + ψ2
3

)] α
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[
b

a

(
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3

)] β−α−1

β−γ

< π2, (n = 1).

�

Remark 1 : As we see from the inequality i.e. from (8), when γ < β, then the
solution of problem (1) - (3) is always linearly stable.

Assume, γ > β, β − α− 1 ̸= 0 and consider the value

ψs =

[
π2

γ − β
b

α−β+1

β−γ a
γ−α−1

β−γ

] β−γ

β−α−1

,

for which we have

P1(ψs, α, β, γ) = 0, Pn(ψs, α, β, γ) > 0, n = 2, 3, ....

In addition, if we assume that β−α−1 < 0, then for ψ ∈ (0, ψs), ψ = ψ2
1+ψ

2
2+ψ

2
3,

we have Pn(ψ, α, β, γ) > 0, n ∈ Z0.
Therefore, when ψ ∈ (0, ψs), then the solution of problem (1) - (3) is linearly

stable, and when ψ > ψs it is unstable. When ψ = ψs, we have Re(ω1) = 0
and Im(ω1) ̸= 0, i.e. there appears possibility of Hoph bifurcation. The small
perturbations may cause transformation of solution in periodic oscillations [12].
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