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The problem of testing directional hypotheses is examined using the consideration of the basic
and alternative hypotheses in pairs, allowing implementing computation easily and faster with
guaranteed reliability. The concept of mixed directional false discovery rate (mdFDR) is used
for the decision rule optimality. The fact of guaranteeing the quality of a decision (in the
developed approach) at the desired level is proved theoretically and is demonstrated practically
by applied examples. The developed method is enhanced for testing multiple hypotheses that
guarantees the restriction of the total mdFDR on the desired level. It is also shown that
the proposed method can be used for solving the problems of testing intersection-union and
union-intersection hypotheses also. The proposed method is adapted to testing large numbers
of the subsets of individual hypotheses in testing multiple hypotheses that saves computational
time and resources. Reliability and convenience of the developed method for big data are also
demonstrated.
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1. Introduction

The consideration of directional hypotheses was started in the fifties of the last
century [1, 25]. Since that period, many investigations were dedicated to the solu-
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tion of this problem (see, for example, [4, 9, 10, 23, 26, 32]). The authors of the
present work started developing a new approach of statistical hypotheses testing
called Constrained Bayesian Method (CBM) in the mid-seventies of the last cen-
tury [11–14, 18, 20]. Application of CBM to different types of hypotheses showed
its advantage in comparison to other known classical methods [14]. Superiority of
CBM over other methods is related not only with the minimality of the number
of observations necessary for making decisions with the guaranteed reliability, but
also with the simplicity, clarity and elegance of accommodating the restrictions of
all possible criteria of optimality. In particular, for testing directional hypotheses,
CBM allows us to provide very simple and clear restrictions on the desired levels
of such criteria of quality of making decisions as: pure directional false discovery
rate (pdFDR), mixed directional false discovery rate (mdFDR), Type III error
rates and false acceptance rate (FAR) [2, 5, 6, 17, 32]. Decision making regions in
CBM are formally similar to the regions of classical Bayesian approach except for
Lagrange multipliers included as multiplication coefficients in the appropriate ex-
pressions. The existence of Lagrange multipliers in decision making regions of CBM
cardinally changes their properties, giving them a unique character. In particular,
unlike existing methods, it allows us to make a decision if the available information
is sufficient to make a decision at the required level of confidence. Otherwise, we can
increase the information if possible. If it is not possible to increase the information,
make a decision based on the available information and indicate the probability of
confidence in the decision made. If the information can be increased, move on to
sequential analysis, where for each additional piece of information, the ability to
make a decision with proper confidence is checked and a decision is made when it
becomes possible.

When testing more than two hypotheses, in many statements of CBM, deter-
mination of vectors of Lagrange multipliers is necessary. This is quite problematic
and a time consuming procedure because it is related to the solution of nonlin-
ear equations. When testing multiple hypotheses, especially for a big number of
the subsets of individual hypotheses in multiple hypotheses, this problem becomes
more formidable. For overcoming this problem, consideration of hypotheses “two-
by-two” for testing both a simple set of directional hypotheses and of multiple di-
rectional hypotheses is proposed below. Similar approach for testing a large number
of simple hypotheses were previously developed in [11, 19, 28]. The idea to define
the critical region of a statistical test as the union of separate critical regions was
developed in [28] and later was considered, in e.g., [7, 8]. Analytical Determination
of the Decision Making Regions of testing directional hypotheses, developed below,
can be considered as a generalization of Roy’s principle that was used for simple
hypotheses, especially as here the offered rule is based on CBM.

General statement of the problem is given in Section 2. Analytical approaches of
testing the individual and multiple directional hypotheses are given in Sections 3
and 4, respectively. Consideration of the normally distributed directional hypothe-
ses constitutes Section 5. Computation results for practical examples are presented
in Section 6. Discussion of the obtained results is offered in Section 7 and conclusion
is presented in Section 8.
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2. Statement of the problem

For parametric models, the problem of testing directional hypotheses can be stated
as

H0 : θ = θ0 vs. H− : θ < θ0 or H+ : θ > θ0, (2.1)

where θ is the parameter of the model and θ0 is known. These alternatives will be
termed directional alternatives.

In many applications such as Biology, Medicine, Genetics, Epidemiology, De-
fense, Environment, Economics, Communication, Radio Astronomy, Video Signals,
Computers and Networks and more, the case of multiple directional hypotheses is
considered, i.e. the hypotheses of interest are the following [2, 3, 5, 9, 32]:

H
(0)
i : θi = θ

(0)
i vs. H

(−)
i : θi < θ

(0)
i or H

(+)
i : θi > θ

(0)
i , i = 1, . . . ,m, (2.2)

where m is the number of individual hypotheses about parameters θ1, . . . , θm that
must be tested by test statistics X = (X1, . . . , Xm), where Xi ∼ f(xi | θi).

Let us introduce the following notations for our testing of hypotheses problem
[14]. Let the sample xT = (x1, . . . , xn) be generated from p(x, θ), and the problem
of interest is to test Hi : θi ∈ Θi, i = 1, . . . , S, where Θi ⊂ R

m, i = 1, . . . , S, are
disjoint subsets contained in R

m. The number of hypotheses to be tested is S. Let

the prior on θ be denoted by
S∑

i=1
π(θ | Hi)p(Hi), where for each i = 1, . . . , S, p(Hi)

is the a priori probability of hypothesis Hi and π(θ | Hi) is a prior density with
support Θi; p(x | Hi) denotes the marginal density of x given Hi, i.e., p(x | Hi) =∫
Θi

p(x | θ)π(θ | Hi) dθ and D = {d} is the set of solutions, where d = {d1, . . . , dS},

it being so that

di =

{
1, if hypothesis Hi is accepted,

0, otherwise,

δ(x) = {δ1(x), . . . , δS(x)} is the decision function that associates each observation
vector x with a certain decision

x
δ(x)

// d ∈ D;

Γj is the region of acceptance of hypothesis Hj , i.e. Γj = {x : δj(x) = 1}. It is obvi-
ous that δ(x) is completely determined by the Γj regions, i.e. δ(x) = {Γ1, . . . ,ΓS}.
Let L1(Hi, δj(x) = 1) and let L2(Hi, δj(x) = 1) be the losses of incorrectly accepted
and incorrectly rejected hypotheses. Then the total loss of incorrectly accepted and
incorrectly rejected hypotheses L(Hi, δ(x)) is the following:

L(Hi, δ(x)) =
S∑

j=1

L1(Hi, δj(x) = 1) +
S∑

j=1

L2(Hi, δj(x) = 0).
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In many cases, testing of hypotheses (2.1), especially (2.2), requires making a
decision so that all possible errors of incorrect conclusions are restricted to the
desired levels. Unfortunately, the existing classical methods do not have such op-
portunities. Contrary to this, CBM allows us to make such decisions. But, when
the number of hypotheses surpasses two, in many statements of CBM, the determi-
nation of vectors of Lagrange multipliers is necessary. This is quite a difficult and
time consuming procedure, as it requires the solution of nonlinear equations con-
cerning Lagrange multipliers. These problems thus necessitate the simplification
of the computation process with the reduction of necessary time at the expense
of the determination of scalar Lagrange multipliers and, consequently, increase the
accuracy of the obtained results. We propose to mitigate the above problems and
achieve these goals by considering the hypotheses (2.1) in pairs as presented below.

Let us, instead of simultaneous consideration of the three hypotheses competing
among themselves as is done in (2.1), consider them in pairs as follows:

H0 : θ = θ0 vs. H− : θ < θ0,

H0 : θ = θ0 vs. H+ : θ > θ0,
(2.3)

H− : θ < θ0 vs. H0 : θ = θ0,

H− : θ < θ0 vs. H+ : θ > θ0,
(2.4)

H+ : θ > θ0 vs. H0 : θ = θ0,

H+ : θ > θ0 vs. H− : θ < θ0,
(2.5)

Let us denote: E0j , E−j and let E+j be the regions of acceptance of testing the
hypotheses H0, H− and H+ versus hypotheses Hj , j ∈ (−,+), j ∈ (0,+) and
j ∈ (0,+) accordingly (see (2.3), (2.4) and (2.5), respectively). Then hypothesis
Hi, i ∈ (−, 0,+) is accepted if an observation results x ∈ Eij , ∀ j ∈ {−, 0,+},
j 6= i. For finding the regions Eij , i, j ∈ {−, 0,+}, i 6= j, let us consider one of the
possible statements of CBM [14]:

max
{Eij}

∫
Eij

p(Hi)p(x | Hi) dx, (2.6)

subject to∫
Eij

p(Hj)p(x | Hj) dx ≤ γij , i ∈ (−, 0,+), j ∈ (−, 0,+), j 6= i. (2.7)

Here γij , i, j ∈ {−, 0,+}, i 6= j, are real numbers (close to zero) in the interval
(0, 1).

Following [19], let us call our proposed method of determination of regions Eij ,
i, j ∈ {−, 0,+}, i 6= j, using statements (2.6) and (2.7) as Quasi-Optimal Con-
strained Bayesian Method (QOCBM) for testing directional hypotheses.

Finally, let us note that the hypotheses (2.1), as well as the hypotheses (2.2), can
be presented as a case of intersection-union and of union-intersection hypotheses,
see e.g., [15, 28, 29]. For applications, see e.g., [27, 30, 31]. Therefore, an approach
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developed below can be used for solving the problems of intersection-union and of
union-intersection hypotheses also.

3. Analytical determination of the decision making
regions of testing the hypotheses

The solution of the constrained optimization problems (2.6) and (2.7) is the fol-
lowing [14, 16]

Eij =
{

x :
p(Hj)p(x | Hj)
p(Hi)p(x | Hi)

<
1

λij

}
, (3.1)

where the Lagrange multiplier λij is determined so that the equality takes place in
(2.7).

Let Γ0 = E0− ∩ E0+, Γ− = E−0 ∩ E−+ and let Γ+ = E+0 ∩ E+− be the regions
of acceptance of hypotheses H0, H− and H+, respectively in the initial problem
(2.1); Then the decision making rule is defined by the following procedure:

Procedure A

- if x ∈ Γ− = E−0 ∩ E−+ only, accept the hypothesis H−,
- if x ∈ Γ0 = E0− ∩ E0+ only, accept the hypothesis H0,
- if x ∈ Γ+ = E+0 ∩ E+− only, accept the hypothesis H+.

Here it must be noted that because of the property of the decision making rule
of CBM, along with the hypotheses acceptance regions there exist the regions of
impossibility of making a decision [16, 21]. Therefore, instead of the condition

P (x ∈ Γ− | Hi) + P (x ∈ Γ0 | Hi) + P (x ∈ Γ+ | Hi) = 1, i ∈ {−, 0,+},

of the classical decision making procedures, the following condition is fulfilled in
CBM

P (x ∈ Γ− | Hi) + P (x ∈ Γ0 | Hi)

+ P (x ∈ Γ+ | Hi) + P (imd | Hi) = 1, i ∈ {−, 0,+}, (3.2)

where imd is the abbreviation of the impossibility of making a decision.
The averaged risk function of incorrect acceptance of the tested directional hy-

potheses is computed by the formula

rQ
CBM = p(H−)

[ ∫
Γ0

p(x | H−) dx +
∫
Γ+

p(x | H−) dx

]

+ p(H0)
[ ∫
Γ−

p(x | H0) dx +
∫
Γ+

p(x | H0) dx

]

+ p(H+)
[ ∫
Γ−

p(x | H+) dx +
∫
Γ0

p(x | H+) dx

]



78 Bulletin of TICMI

= p(H−)
[
P

(
x ∈ E0− ∩ E0+ | H−

)
+ P

(
x ∈ E+0 ∩ E+− | H−

)]
+ p(H0)

[
P

(
x ∈ E−0 ∩ E−+ | H0

)
+ P

(
x ∈ E+0 ∩ E+− | H0

)]
+ p(H+)

[
P

(
x ∈ E−0 ∩ E−+ | H+

)
+ P

(
x ∈ E0− ∩ E0+ | H+

)]
. (3.3)

One of the basic criteria of optimality of testing directional hypotheses is mdFDR
[5, 6] that has the following form for our present case [2, 18]:

mdFDR = P (x ∈ Γ− | H+)

+ P (x ∈ Γ− | H0) + P (x ∈ Γ+ | H−) + P (x ∈ Γ+ | H0). (3.4)

Another criteria of optimality of testing directional hypotheses is Type III error
rate [5, 6, 26, 32]. As is shown in [18, 22] there exists the relation mdFDR =
SERRIII between mdFDR and the summary Type III error rate (SERRIII).

Taking into account our above notations, for mdFDR we have

mdFDR = P
(
x ∈ E−0 ∩ E−+ | H+

)
+ P

(
x ∈ E−0 ∩ E−+ | H0

)
+ P

(
x ∈ E+0 ∩ E+− | H−

)
+ P

(
x ∈ E+0 ∩ E+− | H0

)
= P

(
x ∈ E−+ | H+

)
P

(
x ∈ E−0 | x ∈ E−+,H+

)
+ P

(
x ∈ E−0 | H0

)
P

(
x ∈ E−+ | x ∈ E−0,H0

)
+ P

(
x ∈ E+− | H+

)
P

(
x ∈ E+0 | x ∈ E+−,H−

)
+ P

(
x ∈ E+0 | H0

)
P

(
x ∈ E+− | x ∈ E+0,H0

)
. (3.5)

Recalling the condition of determination of Lagrange multipliers, restrictions (2.7)
can be rewritten as follows

P (x ∈ E−+ | H+) =
γ−+

p(H+)
, P (x ∈ E−0 | H0) =

γ−0

p(H0)
,

P (x ∈ E0− | H−) =
γ0−

p(H−)
, P (x ∈ E0+ | H+) =

γ0+

p(H+)
,

P (x ∈ E+− | H−) =
γ+−

p(H−)
, P (x ∈ E+0 | H0) =

γ+0

p(H0)
.

(3.6)

Theorem 3.1 : QOCBM with restriction levels (2.7) (that is (3.6)), at satisfying
a condition

γ−+

p(H+)
+

γ−0

p(H0)
+

γ+−
p(H−)

+
γ+0

p(H0)
= q,

where 0 < q < 1, ensures a decision rule with mdFDR (that is with SERRIII) less
or equal to q, i.e. with the condition mdFDR = SERRIII ≤ q.

Proof : Because the second multipliers in (3.5) are less than 1 and taking into
account conditions (3.6), we can write
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mdFDR ≤ P (x ∈ E−+ | H+)

+ P (x ∈ E−0 | H0) + P (x ∈ E+− | H−) + P (x ∈ E+0 | H0)

=
γ−+

p(H+)
+

γ−0

p(H0)
+

γ+−
p(H−)

+
γ+0

p(H0)
= q. (3.7)

This theorem is proved. �

Theorem 3.2 : QOCBM with restriction levels (2.7) (that is (3.6)), at satisfying
the condition ∑

i∈{−,0,+}

∑
j∈{−,0,+}

j 6=i

γij = q,

where 0 < q < 1, ensures a decision rule with the averaged risk function (3.3) of
incorrect acceptance of tested directional hypotheses of at most less or equal q, i.e.
with the condition rQ

CBM ≤ q.

Proof : Let us rewrite the risk function (3.3) as follows

rQ
CBM = p(H−)

[
P (x ∈ E0− | H−) · P

(
x ∈ E0+ | x ∈ E0−,H−

)
+ P (x ∈ E+− | H−) · P

(
x ∈ E+0 | x ∈ E+−,H−

)]
+ p(H0)

[
P (x ∈ E−0 | H0) · P

(
x ∈ E−+ | x ∈ E−0,H0

)
+ P (x ∈ E+0 | H0) · P

(
x ∈ E+− | x ∈ E+0,H0

)]
+ p(H+)

[
P (x ∈ E−+ | H+) · P

(
x ∈ E−0 | x ∈ E−+,H+

)
+ P (x ∈ E0+ | H+) · P

(
x ∈ E0− | x ∈ E0+,H+

)]
≤ p(H−)

[
P (x ∈ E0− | H−) + P (x ∈ E+− | H−)

]
+ p(H0)

[
P (x ∈ E−0 | H0) + P (x ∈ E+0 | H0)

]
+ p(H+)

[
P (x ∈ E−+ | H+) + P (x ∈ E0+ | H+)

]
= p(H−)

γ0− + γ+−
p(H−)

+ p(H0)
γ−0 + γ+0

p(H0)
+ p(H+)

γ−+ + γ0+

p(H+)

=
∑

i∈{−,0,+}

∑
j∈{−,0,+}

j 6=i

γij = q. (3.8)

This theorem is proved. �

Theorem 3.3 : For given restriction levels in (2.7) when minimum value of the
Kullback–Leibler divergence between hypotheses Hi and Hj tends to infinity, i.e.
min
{i,j}

J(Hi,Hj) → ∞, i, j ∈ {−, 0+}, i 6= j, both the risk function (rQ
CBM ) and

mdFDR, for fixed Lagrange multipliers defined by formulae (2.7) satisfying (3.7)
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and (3.8), respectively, tend to zero.

Proof : It is not difficult to see that when minimum value of the Kullback–Leibler
divergence between hypotheses Hi and Hj ,

min
{i,j}

J(Hi,Hj) →∞, i, j ∈ {−, 0+}, i 6= j

(see [24]), the second multipliers in (3.5) and (3.8) as well tend to zero and the
values of the first multipliers are determined by condition (2.7). Therefore, their
product tends to zero and, accordingly, the values of rQ

CBM and mdFDR tend to
zero too. �

In general, it is impossible to determine the relation between rQ
CBM and mdFDR,

even when the values of both rQ
CBM and mdFDR are restricted on one and the

same level because the value of rQ
CBM depends on a priori probabilities whereas

mdFDR does not.
Because of the specific nature of the acceptance regions of CBM (see formula

(3.2) of [14]), in testing directional hypotheses using Procedure A it can so happen
that making a simple decision becomes impossible, e.g. when the test statistic
belongs to the intersection areas of the acceptance regions or does not belong to
any of these regions. In such a situation, it becomes impossible to make a simple
decision with a specified confidence level on the basis of the existing information
and more information is required to achieve this. If acquiring more information
is impossible, then the restriction levels in (2.7) must be changed until a simple
decision can be made. When acquiring more information is possible, we appeal to
the sequential experiment, i.e. to increase a sample size, and apply Procedure A
to all the observations until a decision can be made. The appropriate sequential
procedure of making a decision in such a manner is given in Procedure B.

Procedure B
Let us denote the existing sample by x = (x1, . . . , xn) and the test statistic on

the basis of n observations by xn. Then the sequential procedure is as follows:

Step 1

- if xn belongs to only region Γ− = E−0 ∩ E−+, accept hypothesis H−,
- if xn belongs to only region Γ0 = E0− ∩ E0+, accept hypothesis H0,
- if xn belongs to only region Γ+ = E+0 ∩ E+−, accept hypothesis H+,
- otherwise continue sampling; collect xn+1 and compute new test statistics

xn+1;

Step 2

- if xn+1 belongs to only region Γ− = E−0 ∩ E−+, accept hypothesis H−,
- if xn+1 belongs to only region Γ0 = E0− ∩ E0+, accept hypothesis H0,
- if xn+1 belongs to only region Γ+ = E+0 ∩ E+−, accept hypothesis H+,
- otherwise continue sampling; collect xn+2 and compute new test statistics

xn+2;

etc.
The sampling continues until the test statistic does not belong to only one ac-

ceptance region.
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Note 3.1. It is clear that in the beginning of the sequential test a sample size can
be equal to one, i.e. n = 1 and this corresponds to the parallel experiment on which
the testing process finishes if the desired level of reliability of making a decision is
achievable for this amount of information. Otherwise sampling continues, i.e. the
parallel experiment generalizes to the sequential experiment naturally.

4. Testing multiple directional hypotheses

For testing multiple directional hypotheses (2.2), let us introduce the concept of
the total mixed directional false discovery rate (tmdFDR) [2, 3, 18], defined as

tmdFDR =
m∑

i=1

mdFDRi. (4.1)

For guaranteeing the level q, in testing hypotheses (2.2), we have to consider m
subsets of directional hypotheses. Then for each of them, we use the Procedure B
described above for providing level of qi for the subset of hypotheses, so that
m∑

i=1
qi = q is achieved.

We act similarly to provide a level q for the total averaged risk function. Namely,
we provide qi, the level of the appropriate averaged risk function for the ith subset
of the individual directional hypotheses. As a result, we have

rQ
CBM =

m∑
i=1

rQ
i,CBM (4.2)

for the total averaged risk function, where rQ
i,CBM is the averaged risk function of

the ith subset of directional hypotheses [18].
The values of qi in both cases (for tmdFDR and for rQ

CBM ) can be chosen to be
equal, i.e. qi = q/m or different, e.g. inversely proportional to the informational
distances between the tested hypotheses in the subsets of directional hypotheses
[18].

In both the cases with restriction of tmdFDR and of rQ
CBM on the desired levels,

we use the above described sequential Procedure B where the sampling continues
until a simple decision is not made for all the subsets of multiple hypotheses (2.2).
The stopping rules remain the same as in [18] and we choose one of them de-
pending on whether the components of the vector X = (X1, . . . .Xm) are observed
independently or dependently. The Theorems 5 and 6 of the work [18], proving the
appropriateness of stopping rules for both the cases, are in force for the considered
directional hypotheses as well.

Currently, in many real-life applications, we indeed encounter situations where
the number of individual hypotheses in the set of multiple hypotheses (2.2) is very
big, i.e. when data is big [2, 3]. In such a situation, determination of Lagrange
multipliers for each subset of an individual hypothesis requires a long time for
computation. Though the computation of Lagrange multipliers is completed in
the preparatory stage before making a decision, still the reduction of computation
time is important for many practical applications from the operational and cost



82 Bulletin of TICMI

considerations. For this purpose, the following theorem is provided.

Theorem 4.1 : Let individual hypotheses in the set of multiple hypotheses (2.2) be
stated concerning values of parameters θ1, . . . , θm when distribution laws f(x | θi)
of test statistics Xi (i = 1, . . . ,m) are similar in the form for all of subsets of
individual hypotheses. Then, if for testing for all of subsets of individual hypotheses,
we use one and the same Lagrange multipliers, determined for a subset of individual
hypothesis with lowest divergence among directional hypotheses at the level qi =

q/m, satisfying condition
m∑

i=1
qi = q, the total mixed directional false discovery rate

(4.1) and the total risk function (4.2) will be restricted to the level q.

Proof : Theorem 4.1 follows from Theorem 3.3 according to which mdFDR and
rQ
i,CBM (i = 1, . . . ,m) tend to zero when the Kullback–Leibler divergence among

directional hypotheses tends to infinity. �

5. Consideration of the directional hypotheses
in the case of normal distributions

For illustrating the theoretical results presented above, let us consider the following
example. Let sample X1, . . . , Xn be derived from N(θ, σ2) with known σ2 at H0,
p(x | H−) and let p(x | H+) be the truncated normal densities N(0, ω−1

0 σ2) (ω0

known) over (−∞, 0) and (0,+∞), respectively [3, 4]. Let us use x as a test statistic.
Then, for the density of x given Hi, i ∈ {−, 0,+}, we have

p(x | H0) =
√

n√
2π · σ

· exp
{
− nx 2

2σ2

}
,

p(x | H−) =

0∫
−∞

√
n√

2π · σ
· exp

{
− n(x− θ)2

2σ2

}

×
2
√

ω0√
2π · σ

· exp
{
− ω2

0θ
2

2σ2

}
dθ,

p(x | H+) =

+∞∫
0

√
n√

2π · σ
· exp

{
− n(x− θ)2

2σ2

}

×
2
√

ω0√
2π · σ

· exp
{
− ω2

0θ
2

2σ2

}
dθ.

(5.1)

After routine transformation, we have

p(u | H0) =
√

n√
2π · σ

· exp
{
− u2

2

}
· exp

{
− ω0u

2

2n

}
,

p(u | H−) =
2
√

ω0√
n + ω0

·
√

n√
2π · σ

· (1− Φ(u)) · exp
{
− ω0u

2

2n

}
,

p(x | H+) =
2
√

ω0√
n + ω0

·
√

n√
2π · σ

· Φ(u) · exp
{
− ω0u

2

2n

}
,

(5.2)
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where u = nx/(σ
√

n + ω0) and Φ( · ) is the standard normal distribution function.
Putting these values into (3.1), we will obtain the following ratios for acceptance

regions

E0− =
{

u :
p(H−) · 2 · √ω0 · (1− Φ(u))
p(H0) ·

√
n + ω0 · exp{−u2

2 }
<

1
λ0−

}
,

E0+ =
{

u :
p(H+) · 2 · √ω0 · Φ(u)

p(H0) ·
√

n + ω0 · exp{−u2

2 }
<

1
λ0+

}
,

E−0 =
{

u :
p(H0) ·

√
n + ω0 · exp{−u2

2 }
p(H−) · 2 · √ω0 · (1− Φ(u))

<
1

λ−0

}
,

E−+ =
{

u :
p(H+) · Φ(u)

p(H−) · (1− Φ(u))
<

1
λ−+

}
,

E+0 =
{

u :
p(H0) ·

√
n + ω0 · exp{−u2

2 }
p(H+) · 2 · √ω0 · Φ(u)

<
1

λ+0

}
,

E+− =
{

u :
p(H−) · (1− Φ(u))

p(H+) · Φ(u)
<

1
λ+−

}
.

The Lagrange multipliers are determined so that in the conditions (2.7) the
equalities hold. For the solution of the relevant equations, the suitable probability
integrals are computed by the Monte-Carlo method (see, for example, [14, 18]).

6. Computation results

Example 6.1 Testing individual directional hypotheses
Let us consider a concrete example with the initial data from [4] and [18]: the

values of the loss functions K0 = K1 = 1; coefficient ω0 = 1; variance σ2 = 1;
the restricted levels for both mdFDR and risk function rQ

CBM are the same as
q = 0.05. Let us consider the case when a priori probabilities p− = p0 = p+ = 1/3
and restriction levels in (2.7) γ−0 = γ−+ = γ0− = γ0+ = γ+− = γ+0 = γ; for
keeping restriction levels of both mdFDR and rQ

CBM on the level of 0.05, we have
to choose γ = 0.00416(6) for mdFDR and γ = 0.0083(3) for rQ

CBM .

Example 6.2 Testing multiple directional hypotheses
As multiple directional hypotheses (2.2), let us consider the case when the

number of individual hypotheses m = 3. Let sample X1, . . . ,Xn of independent
observations with the independently observed components Xi = (Xi

1, X
i
2, X

i
3)

(i = 1, . . . , n) of the test statistics be derived from N(θ, σ2) with known σ2

at H0 and from the truncated normal densities N(µ, ω−1
0 σ2) (ω0 known) over

(−∞, 0) and (0,+∞) at H− and H+, respectively. Let us consider a case when
a priori probabilities p− = p0 = p+ = 1/3 and restriction levels in (2.7)
γ−0 = γ−+ = γ0− = γ0+ = γ+− = γ+0 = γ for each subset of individual hy-
potheses. If for each set of individual hypotheses, we choose γ = 0.00416(6) for
mdFDR and γ = 0.0083(3) for rQ

CBM , then, in accordance with (4.1) and (4.2),
restriction levels of both tmdFDR and total averaged risk function rQ

CBM will be
on the level of 0.15.
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For testing directional hypotheses in both the cases, of individual and multiple
directional hypotheses, we used Procedure B. The probability integrals from the re-
striction conditions (2.7) at determination of Lagrange multipliers were computed
by Monte–Carlo method, simulating the samples with 10, 000 observations from
the appropriate distributions. Computed values of Lagrange multipliers for differ-
ent n are given in Table 6.1. Computation results at testing individual directional
hypotheses (2.1) are given in Tables 6.2 and 6.3. Computation results at testing
multiple directional hypotheses (2.2) when the number of individual hypotheses
m = 3, are given in Table 6.4. The values of mdFDR and Risk function computed
by samples with different sizes in parallel experiments are given in Table A1. The
values of mdFDR and of rQ

CBM are computed by simulation of random sequences
with 10.000 observations at consideration of both individual and multiple direc-
tional hypotheses.

It is well known that the results of hypotheses testing depend on the Kullback–
Leibler divergence between test hypotheses (see also above Theorems 3.3 and 4.1).
For demonstration of this fact, let us calculate the mean information for discrimi-
nation of the considered hypotheses in Examples 6.1 and 6.2. Because hypotheses
H− and H+ are symmetrical in relation to H0, the divergences between couples of
hypotheses (H−,H0) and (H0,H+) are identical. Therefore, only the mean infor-
mation for discrimination in favor of H0 against H+ is considered below.

The mean information for discrimination in favor of H0 against H+ per observa-
tion from p(u | H0) is

I(H0,H+) =

+∞∫
−∞

log
p(u | H0)
p(u | H+)

· p(u | H0) du. (6.1)

This definition was introduced in [24] for absolutely continuous measures with
respect to one another; that means that there exists no set where one density
is equal to zero and another differs from zero. In the considered case p(u | H+)
is determined on the region [0,+∞) but p(u | H0) is determined on the region
(−∞,+∞). Therefore, as the mean information for discrimination of considering
hypotheses, instead of (6.1), let us use the following expression

I(H0,H+) = 0.5 +

+∞∫
0

log
p(u | H0)
p(u | H+)

· p(u | H0) du. (6.2)

Taking into account formulae (5.2), expression (6.2) becomes

I(H0,H+) =
n

2 ·
√

n + ω0 · σ
−

√
n√

2π · σ
· log

(
2
√

ω0√
n + ω0

·
√

n√
2π · σ

)

×
[ +∞∫

0

log Φ(u) · exp
(
− n + ω0

2n
u2

)
du−

√
π · ω0 ·

√
n

23/2 · (n + ω0)3/2

]

− n

22 · σ ·
√

n + ω0
· log

( √
n√

2π · σ

)
, (6.3)
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where Φ( · ) is the standard normal distribution function. Computed values of (6.3),
depending on n, are given in Figure 1. The code for computation of (6.3), as well
as all other necessary codes, were written on MATLAB.

From here it is seen that the mean information for discrimination in favor of
H0 against H+ increases with increasing n. Computed values for some n are the
following:

n = 1, I = 0.717797042647688; n = 2, I = 1.045859242626548;

n = 3, I = 1.256701156104494; n = 5, I = 1.539416780111406;

n = 7, I = 1.736014441439005; n = 10, I = 1.953347963317561;

n = 50, I = 2.989780557332991; n = 100, I = 3.359592492397021.

Computed values of (6.3), depending on σ2, are given on Figure 2. The mean
information for discrimination of hypotheses are computed for the values σ2 =
1

200 , 2
200 , . . . , 1, 2, . . . , 200 at n = 1.

Figure 1. Dependence of the mean information for discrimination in favor of H0 against H+ on the sample
size n at σ2 = 1.).

From here it is seen that the mean information for discrimination in favor of H0

against H+ is maximum for σ2 = 1/2 and it decreases in both cases when σ2 is
decreasing or increasing. Computed values for some σ2 at n = 1 are the following:

σ2 = 1, I = 0.717797042647688; σ2 =
1
2

, I = 0.755671797836857;

σ2 =
1
3

, I = 0.739629938177342; σ2 =
1
4

, I = 0.701768525112110;

σ2 =
1
5

, I = 0.652539411480660; σ2 = 2, I = 0.637282413825231;

σ2 = 3, I = 0.582297318866539; σ2 = 4, I = 0.542354911369660;

σ2 = 5, I = 0.511509310267286; σ2 = 10, I = 0.419705706315754.

When σ2 changes from 1/100 to 1/2 the mean information for discrimination in fa-
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Figure 2. Dependence of the mean information for discrimination in favor of H0 against H+ on the sample
variance σ2 at n = 1.

vor of H0 against H+ increases from −5.010608299119358 up to 0.755671797836857
and after, at increasing σ2 from 1/2 up to 100, it decreases from 0.755671797836857
up to 0.193665491520731. When σ2 = 200 the mean information for discrimination
in favour of H0 against H+ is equal to 0.149914508081475.

Computational results given in tables of Appendix A confirm the fact that when
we use Lagrange multipliers computed for minimal divergence between hypotheses
for testing hypotheses with greater divergence, both mdFDR and Risk function
remain restricted on the desired levels (see Table A1). If for testing hypotheses
with less divergence, we use Lagrange multipliers computed for greater divergence,
both or one of mdFDR or Risk function may be not restricted on the desired levels
(see Lines for n = 1, σ2 = 3 and n = 1, σ2 = 5 of Table A1). When for testing
hypotheses we use optimal Lagrange multipliers then the bigger is the divergence
between hypotheses, the less are mdFDR and Risk function (see Tables 6.2 and
6.3).
Note 6.1. For keeping restriction levels of mdFDR and Risk function on one and
the same level q, restrictions in (2.7) are different. For mdFDR they are less than
for Risk function. Therefore, Lagrange multipliers, defined for mdFDR supporting
the level q, provide the same restriction level for Risk function whereas Lagrange
multipliers defined for Risk function supporting the level q do not guarantee the
same restriction level for mdFDR.

The results of testing multiple directional hypotheses when the number of indi-
vidual hypotheses m = 3 for different scenarios are given in Table 6.4.
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io
n
;

N
D

–
n
u
m

b
e
r

o
f

m
a
d
e

d
e
c
is

io
n
s;

A
V

–
a
v
e
ra

g
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d

n
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m
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r

o
f

e
x
p
e
ri

m
e
n
ts

;
T

N
D

–
to
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m
a
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e

d
e
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is

io
n
s;

T
A

V
–

to
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n
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b
e
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o
f

o
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se

rv
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ti
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;

P
0

,0
–

P
(x

∈
Γ

0
|

H
0
);

P
1

,0
–

P
(x

∈
Γ
−
|

H
0
);

P
2

,0
–

P
(x

∈
Γ

+
|H

0
);

P
0

,1
–

P
(x

∈
Γ

0
|H

1
);

P
1

,1
–

P
(x

∈
Γ
−
|H

1
);

P
2

,1
–

P
(x

∈
Γ

+
|H

1
);

P
0

,2
–

P
(x

∈
Γ

0
|H

2
);

P
1

,2
–

P
(x

∈
Γ
−
|H

2
);

P
2

,2
–

P
(x

∈
Γ

+
|H

2
).
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7. Discussions

On the basis of the computational results, given in Tables 6.2, 6.3 and 6.4, the
following are obvious.

1. The larger is the divergence between hypotheses, the smaller are mdFDR
and Risk functions (see Tables 6.2 and 6.3; also cases 4 and 5 of Table 6.4)
as a result of making decision in sequential experiments.

2. Statements of Theorems 3.1 and 3.2 are confirmed by the computational
results given in Tables A1, 6.2 and 6.3.

3. Statement of Theorem 3.3 is confirmed by computational results given in
Tables 6.2 and 6.3.

4. Statement of Theorem 4.1 is confirmed by computational results given in
Table 6.4.

5. When for ith (i = 1, . . . ,m) subset of individual directional hypotheses
appropriate mdFDR (as well as appropriate Risk function) are restricted

on the level qi and the following condition
m∑

i=1
qi = q are satisfied, then

tmdFDR (as well as rQ
CBM ) is restricted on the level q (see Table 6.4).

6. At testing multiple hypotheses the values of tmdFDR and rQ
CBM are basi-

cally determined by true basic hypotheses H0 in the subsets of individual
hypotheses, i.e. the larger is the number of true basic hypotheses in the sub-
sets of tested individual hypotheses, the larger are the values of tmdFDR
and rQ

CBM (see Table 6.4).
7. The use of Lagrange multipliers computed for only one subset of individual

hypotheses with less divergence among them, gives significant savings of
computational time and resources for testing multiple hypotheses with a
large number of subsets of individual hypotheses (see Table 6.4).

8. Conclusions

Consideration of the basic and alternative hypotheses in pairs is offered for testing
individual and multiple directional hypotheses. The concepts of mdFDR and Risk
function are used as criteria of testing. Theorems proving restrictions of mdFDR
and Risk function on the desired levels at the suitably chosen restriction levels
in CBM for testing individual and multiple directional hypotheses are presented.
Reliability and convenience of the developed method for testing a big number of
the subsets of individual hypotheses at testing multiple hypotheses allowing signif-
icant reduction of the necessary computation time for obtaining the final results
are established. Computational results for concrete examples validate the theo-
retical results. The advantage of the presented method against classical methods
(Bayes and frequentist) lies in the opportunities to restrict criteria of testing such
as mdFDR and Risk function. There is no difference between the proposed method
and the Bayes method in terms of the computations required to make a direct de-
cision, except that at the preparatory stage, which is not executed in real time, it
is necessary to compute the Lagrange multipliers for further use. Another positive
side of the proposed approach is that in the case of a large number of hypotheses
to be tested, it allows to perform calculations in parallel, that is, to perform calcu-
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lations for each pair of hypotheses on parallel processors and combine the results
to make a final decision.
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