
Bulletin of TICMI
Vol. 28, No. 2, 2024, 111–117

Mathematical Model of a Waveguide Junction Containing a

Dielectric Layer

Giorgi Kekelia1∗, Maia Kevkhishvili2, Marina Shengelia2

1A.Razmadze Mathematical Institute of I.Javakhishvili Tbilisi State University
2, Merab Aleksidze II Lane, 0193, Tbilisi, Georgia;

2Georgian Technical University
77 Merab Kostava St., 0175, Tbilisi, Georgia

(Received February 1, 2024; Revised November 16, 2024; Accepted November 25, 2024)

In the paper, we consider a three-port waveguide junction with a matching inhomogeneity
in the form of a dielectric layer included in the side branch. The system is excited from
different ports simultaneously. We construct a mathematical model for the structure under
consideration, and additionally, we present the fields in a convenient form for further analysis
and optimization. For the structure being studied, we have developed a so-called scattering
matrix, which allows us to draw a parallel between the structure and the neural center.
Furthermore, it enables the development of a strategy for optimizing the structure parameters.
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1. Introduction

Gratings consisting of open ends of waveguides belong to one of the fundamental
classes of antenna gratings [1]. Such gratings are the basic elements of mesas in
the construction of communication systems that require high transmission power.
Gratings consisting of open ends of waveguides are also widely used in aircraft,
since they do not require additional protrusions on the body and therefore do not
create problems in the aerodynamics of the aircraft.

The increase in the speed, maneuvering and flight intensity of flying machines
leads to an increase in the area of problems, the solution of which significantly
depends on the efficient operation of the radio-electronic equipment of these ma-
chines.

During the building and construction of flying machines, the problem of placing
a large number of antennas and systems necessary for their provision arises.

One way to solve this problem is to create multifunctional (complex) antenna-
feeder systems, which will combine antennas, filters, switches, splitters, control
units and other functional elements, which will enable the distribution of elec-
tromagnetic energy between different radio-electronic devices and their radiation
(reception).
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The effectiveness of using the results achieved in the fields of radio engineer-
ing, radio physics and radio electronics in communication systems depends to a
large extent on the capabilities of the base of elements (transmission and recep-
tion sources, channels and oscillatory systems). Therefore, special importance is
given to new methods of constructing super-high-frequency (SHF) devices based
on planar (PIS) and volume (VIS) integrated circuits.

VIS can have a complex purpose (transmission line reversal, transfer between
cascades, T-junction, phase reversal, line break, etc.). Therefore, for the analysis
of VIS, a certain value is assigned to the study of multiport waveguides [2, 3].

Multi-cascade waveguide systems containing inhomogeneities can be used as VIS
elements in SHF devices, the transition between cascades of which is carried out
by means of waveguide fragments containing inhomogeneities.

In order to increase the efficiency of multi-port waveguide junctions within the
framework of radio-electronic and communication systems, it is necessary first of all
to increase their bandwidth and reduce energy losses. In addition, when branching,
splitting and converting the signal in such systems, it is necessary to ensure an
acceptable agreement between the arms, that is, a fairly high level of transmission
in the desired arms and a low level in the others. Finally, for the stable operation
of the system, it is necessary to achieve stable characteristics in a fairly wide range
of frequencies.

To achieve this goal, it is possible to include artificial inhomogeneities in differ-
ent branches of the structure, which also perform the functions of filters, phase
reversers, multiplexers and other functions. But, the analysis of the characteristics
of such structures shows that it is often not possible to achieve the desired level
of electromagnetic compatibility in the system only by including inhomogeneities
[4–6].

On the basis of the studies conducted in the works [7, 8], it becomes clear that
the electrodynamic properties of the multi-level waveguide junction/splitter can be
changed by the variation of the system’s power supply mode.

Figure 1. The considered system and the obtained geometric notations.

In the presented paper, a three-port waveguide junction is considered, with
matching inhomogeneity in the form of a dielectric layer included in the side branch,
and the system is excited from the different ports at the same time. The considered
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system and the obtained geometric notations are shown in figure 1.
Assume that the fields entering the system from each port have a single tangential

Ey component of the electric strength vector.
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The full field in system ports can be written as
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Here we introduce the notations: p1(j) (j = 1, 2, 3) are the logical multipliers of
exciting, p1(j) = 0, means that from port j power is not supplied to the system,
p1(j) = 1-supplied); α
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The tangential component of the electric strength vector in the resonator part
of the structure (0 ≤ x ≤ a; 0 ≤ z ≤ b) can be represented in the following form
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(1)–(9) represent the field record over the entire physical area for the problem
under consideration. This representation is fictitious since it contains sequences
of unknown coefficients, which in their essence represent the complex amplitudes
of reflected and passed fields from real or imaginary surfaces separating different
areas.

Let’s find these sequences of coefficients.
As a result of the implementation of the boundary conditions for the tangential

components of the electric and magnetic strength vectors on the surfaces of the
dielectric layer located in port II, we obtain
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Using the continuity condition of Ey on the imaginary surface separating port II
and the resonator part of the structure, we have
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If we consider (14) in (9), move to the complex plane, use the theory of residues,
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Jordan’s lemma, Cauchy’s theorem and correctly take into account the areas of an-
alyticity of the integral function, the tangential component of the electric strength
vector in the resonator part can be rewritten in the following form
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As a result of the realization of the continuity condition of Ey on the imaginary
surface separating imaginary surfaces separating ports I, III and the resonator part,
we write
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Let’s realize the smoothness conditions of the tangential component of the electric
strength vector on the imaginary surfaces separating ports I, III and the resonator
part of the structure. As a result we get
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Let’s insert (19), (20) into (16)
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Finally, let’s use the smoothness condition of the electric stress vector on the
imaginary surface separating port II and the resonator part of the structure under
consideration, from which we can write:
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(22) represents an infinite system of linear algebraic equations with respect to the
sequence of coefficients
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(17)–(20) and (10)–(13) relate this sequence to all other sequences of coefficients.

Therefore, we can say that for the structure under consideration a full field has
been represented in the entire physical area.

The analysis of the matrix elements and free terms of (22) reveals that the system
is quasi-regular, so it can be solved on a computer by the reduction method.
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