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POSITIVE SOLUTIONS OF FOURTH-ORDER BOUNDARY
VALUE PROBLEM WITH VARIABLE PARAMETERS

XIN DONG1 AND ZHANBING BAI 2∗

Abstract. By means of calculation of the fixed point index in cone we con-
sider the existence of one or two positive solutions for the fourth-order bound-
ary value problem with variable parameters{

u(4)(t) + B(t)u′′(t)−A(t)u(t) = f(t, u(t), u′′(t)), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0,

where A(t), B(t) ∈ C[0, 1] and f(t, u, v) : [0, 1]× [0,∞)×R → [0,∞) is contin-
uous.

1. Introduction and preliminaries

The deformation of an elastic beam in equilibrium state, whose two ends are sim-
ply supported, can be described by the fourth-order ordinary equation bound-
ary value problem (BVP). Owning to its significance in physical, biological and
chemical phenomena, the existence of positive solution for this problem has been
studied by many authors. For example, some authors studied by the method of
upper and lower solutions [2,4,7], some studied by the fixed point index theorem
[9,10].

In 2003, Li [8] investigated the existence of positive solutions for fourth-order
BVP with two parameters{

u(4)(t) + βu′′(t)− αu(t) = f(t, u(t)), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0

(1.1)

under the assumptions:

(J1) f(t, u) : [0, 1]× [0, +∞) → [0, +∞) is continuous;

Date: Received: 2 March 2006; Revised: 15 August 15.
∗ Corresponding author.
2000 Mathematics Subject Classification. Primary 34B15; Secondary 34B18.
Key words and phrases. Boundary value problem, positive solution, fixed point, cone.

21



22 X. DONG, Z.B. BAI

(J2) α, β ∈ R and β < 2π2, α ≥ −β2/4, α/π4 + β/π2 < 1.

Recently, Chai [5] studied the generalizing form as follows:{
u(4)(t) + B(t)u′′(t)− A(t)u(t) = f(t, u(t)), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.2)

where A(t) is non-negative.
In this paper, we concerned the following fourth-order boundary value problem{

u(4)(t) + B(t)u′′(t)− A(t)u(t) = f(t, u(t), u′′(t)), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.3)

Assume the following condition hold:

(A1) f(t, u, v) : [0, 1]× [0, +∞)×R → [0, +∞) is continuous;
(A2) A(t), B(t) ∈ C[0, 1], α = inft∈[0,1]A(t), β = inft∈[0,1]B(t), β < 2π2, α ≥

−β2

4
, α

π4 + β
π2 < 1.

where A(t) can take negative values and the nonlinear function has the bending
term.

This paper is organized as follows. In section 1 we give the introduction and
some lemmas which needed in the proof of main results; Section 2 contain results
for one or two positive solutions of the BVP(1.3).

LetY = C[0, 1], Y+ = {u ∈ Y : u(t) ≥ 0, t ∈ [0, 1]}. Obviously, (Y, ‖u‖0) is
Banach space, where ‖u‖0 = supt∈[0,1]|u(t)|, u ∈ Y. Setting X = {u ∈ C2[0, 1] :

u(0) = u(1) = 0}, ‖u‖1 = max{‖u‖0, ‖u
′′‖0}, then (X, ‖u‖1) is also Banach space.

If u ∈ C2[0, 1]
⋂

C4(0, 1) satisfies BVP(1.3) and u(t) ≥ 0, t ∈ [0, 1], then we call
u is the positive solution of BVP(1.3).

Lemma 1.1. ([5]) ∀u ∈ X, ‖u‖0 ≤ ‖u′′‖0.

Given h ∈ Y , consider the following BVP:{
u(4)(t) + βu′′(t)− αu(t) = h(t), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.4)

where α, β such that the condition (A2).
Obviously, the equation P (λ) , λ2 +βλ−α = 0 has two real solutions λ1, λ2 =

−β±
√

β2+4α

2
, owning to (A2), we can get λ1 > λ2 > −π2.

We assume that Gi(t, s) (i = 1, 2) is the Green’s function of the following
boundary value problem:

−u
′′
(t) + λiu(t) = 0, u(0) = u(1) = 0. (1.5)

We also need some other lemmas as follows:

Lemma 1.2. ([8]) Gi(t, s)(i = 1, 2) has some properties as follows:

(i) Gi(t, s) > 0, ∀ t, s ∈ (0, 1);
(ii) Gi(t, s) ≤ CiGi(s, s), ∀ t, s ∈ [0, 1];
(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s), ∀ t, s ∈ [0, 1].

where, if λi > 0, Ci = 1, δi = ωi

sinh ωi
; if λi = 0, Ci = 1, δi = 1; if −π2 < λi <

0, Ci = 1
sin ωi

, δi = ωi sin ωi.
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Lemma 1.3. ([5]) Let Ki(t) =
∫ 1

0
Gi(t, s)ds, t ∈ [0, 1] and Di = maxt∈[0,1] Ki(t), (i =

1, 2), then Di = Ki(
1
2
) > 0, (i = 1, 2) and satisfies

(i) If λi > 0, Di = 1
λi

(1− 1
cosh

ωi
2

),

(ii) If λi = 0, Di = 1
8
,

(iii) If −π2 < λi < 0, Di = 1
λi

(1− 1
cos

ωi
2

).

For any h ∈ Y , the linear BVP(1.4) has a unique solution u which is denoted
by Th = u, the operator T can be expressed by

(Th)(t) =

∫ 1

0

∫ 1

0

G1(t, s)G2(s, τ)h(τ)dτds. (1.6)

Lemma 1.4. T : Y → (X, ‖u‖1) is linear completely continuous, and ‖T‖ ≤ M ,
where M = max{(|λ1|D1D2 + D2), (|λ2|D1D2 + D1)}.

Proof. By the definition of T we known that T : Y → (X, ‖u‖1) is linear com-
pletely continuous, so we only need to prove ‖T‖ ≤ M .

For ∀h ∈ Y, u = Th ∈ X, u(0) = u(1) = u′′(0) = u′′(1) = 0, setting v =
−u′′ + λ2u, then v(0) = v(1) = 0. By (1.5) and (1.6), we get{

−v′′ + λ1v = h(t), 0 < t < 1,
v(0) = v(1) = 0.

So v(t) =
∫ 1

0
G1(t, s)h(s)ds, t ∈ [0, 1], namely

−u′′ + λ2u =

∫ 1

0

G1(t, s)h(s)ds, t ∈ [0, 1]. (1.7)

Similarly, we get

−u′′ + λ1u =

∫ 1

0

G2(t, s)h(s)ds, t ∈ [0, 1]. (1.8)

Owning to (1.7), (1.8) and lemma 1.2, for ∀h ∈ Y , we have

|u′′(t)| ≤ |λ2||u(t)|+
∫ 1

0

G1(t, s)|h(s)|ds

≤
(

λ2

∫ 1

0

∫ 1

0

G1(t, s)G2(s, τ)dτds +

∫ 1

0

G1(t, s)ds

)
‖h‖0

≤ (|λ2|D1D2 + D1)‖h‖0. (1.9)

Similarly to (1.9), by (1.6), (1.7) and lemma 1.2, we obtain

|u′′(t)| ≤ (|λ1|D1D2 + D2)‖h‖0. (1.10)

Hence ‖u′′(t)‖0 ≤ M‖h‖0, in view of lemma 1.1, we get ‖Th‖1 = ‖u‖1 ≤ M‖h‖0,
so ‖T‖ ≤ M . �

Let K = supt∈[0,1][A(t) + B(t) − (α + β)], g1(t) = G1(t, t), P = {u ∈ Y+ :

u(t) ≥ δ1S(1 − L)g1(t)‖u‖0, t ∈ [0, 1]}, where if λi ≥ 0, S = 1, if −π2 < λi < 0,
S = sin ωi, and assume

(A3)L = KM < 1;
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(A4)α < 0, β > 0 or α ≥ 0.

Lemma 1.5. If (A1)− (A4) hold, then QP ⊂ P .

Proof. The proof for the conclusion of λi ≥ 0 is completely similar and so we
omit it. we only prove the result when −π2 < λi < 0.

For ∀h ∈ Y , consider BVP(1.3) with f = h, obviously, it is equal to the
following equation:{

u(4)(t) + βu′′(t)− αu(t) = −(B(t)− β)u′′(t) + (A(t)− α)u(t) + h(t),
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.11)
For ∀v ∈ X, setting Gv = −(B(t)− β)v′′ + (A(t)− α)v. It is easy to see that

G : X → Y is linear and |(Gv)(t)| ≤ [B(t) + A(t) − (α + β)]‖v‖1 ≤ K‖v‖1, so
‖G‖ ≤ K. On the other hand, u ∈ C2[0, 1]

⋂
C4(0, 1) is the solution of (1.11) if

and only if u ∈ X satisfies u = T (Gu + h), namely

u ∈ X, (I − TG)u = Th. (1.12)

Owning to G : X → Y , T : Y → X, the operator I − TG : X → X.Furthermore
‖T‖ ≤ M, ‖G‖ ≤ K and L = MK < 1 satisfy the conditions of the operator
spectral theorem, so there exists (I − TG)−1 which is bounded. If we set H =
(I − TG)−1T then (1.12) is equivalent to u = Hh, by the Neumann expansion
formula, we get

H = (I +TG+ · · ·+(TG)n + · · · )T = T +(TG)T + · · ·+(TG)nT + · · · . (1.13)

Since T is completely continuous and (I − TG)−1 is continuous, then H is com-
pletely continuous. For ∀h ∈ Y+, setting u = Th, then u ∈ X

⋂
Y+ and assuming

(A4), then u′′ ≤ 0, we have (Gv)(t) = − (B(t)− β) u′′(t) + (A(t)− α) u(t) ≥
0, t ∈ [0, 1], i.e.

∀h ∈ Y+, (GTh)(t) ≥ 0, t ∈ [0, 1]. (1.14)

By induction, for ∀n ≥ 1, h ∈ Y+, t ∈ [0, 1], we have (TG)n(Th)(t) ≥ 0.
Hence, by (1.13) we get

(Hh)(t) = (Th)(t)+(TG)(Th)(t)+ · · ·+(TG)n(Th)(t)+ · · ·T ≥ (Th)(t). (1.15)

So H : Y → Y+

⋂
X. On the other hand, ∀h ∈ Y+, t ∈ [0, 1], we obtain

(Hh)(t) ≤ (Th)(t) + ‖TG‖(Th)(t) + · · ·+ ‖TG‖n(Th)(t) + · · ·
≤ (I + L + · · ·+ Ln + · · · )(Th)(t)

=
1

1− L
(Th)(t). (1.16)

So, the following inequalities hold:

‖Hh‖0 ≤
1

1− L
‖Th‖0. (1.17)

For ∀u ∈ P , let h = Fu, Q = HF , then h ∈ Y+, by (1.15) we get

(Qu)(t) = (HFu)(t) ≥ (TFu)(t), t ∈ [0, 1].
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Owning to lemma 1.2, ∀ t, σ ∈ [0, 1], we have

(TFu)(t) =

∫ 1

0

∫ 1

0

G1(t, s)G2(s, τ)(Fu)(τ)dτds

≥ δ1g1(t)

∫ 1

0

∫ 1

0

G1(s, s)G2(s, τ)(Fu)(τ)dτds

≥ δ1g1(t) sin ωi

∫ 1

0

∫ 1

0

G1(σ, s)G2(s, τ)(Fu)(τ)dτds

≥ δ1g1(t) sin ωi(TFu)(σ).

So (Qu)(t) ≥ δ1g1(t) sin ωi‖TFu‖0, t ∈ [0, 1], by (1.17), we get ‖TFu‖0 ≥ (1 −
L)‖HFu‖0 = (1 − L)‖Qu‖0. Hence (Qu)(t) ≥ δ1g1(t)(1 − L) sin ωi‖Qu‖0, i.e.
QP ⊂ P . �

2. Main results

We introduce the notations and assumptions as follows:

f 0 = lim sup
u→0+

max
t∈[0,1]

sup
v∈R

f(t, u, v)

u
, f

0
= lim inf

u→0+
min
t∈[0,1]

inf
v∈R

f(t, u, v)

u
,

f∞ = lim sup
u→+∞

max
t∈[0,1]

sup
v∈R

f(t, u, v)

u
, f∞ = lim inf

u→+∞
min
t∈[0,1]

inf
v∈R

f(t, u, v)

u
,

Γ = π4 − βπ2 − α, d1 = min
t∈[ 1

4
, 3
4
]
g1(t),

δ = δ1S(1− L)d1, bi = min
1
4
≤t,s≤ 3

4

Gi(t, s),

where if λi ≥ 0, S = 1, if −π2 < λi < 0, S = sin ωi. It is easy to see that δ > 0
and bi > 0,the hypothesis α

π4 + β
π2 < 1 assures that Γ > 0. We shall use the

following assumptions:

(A5) There exist constants p1 > 0, a1 ≥ 0, q1 ≥ 0 such that f(t, u, v) ≤ a1u−
q1v, ∀t ∈ [0, 1], 0 < u < p1, |v| < p1 and a1 + q1π

2 < (1− L)Γ;
(A6) There exist constants p2 > 0, a2 ≥ 0, q2 ≥ 0 such that f(t, u, v) ≥ a2u +

q2|v|, ∀t ∈ [0, 1], 0 < u < p2, |v| < p2 and a2 − q2π
2 > Γ.

Theorem 2.1. Assume that f∞ > Γ, f
0

> Γ, and (A1) − (A5) hold then

BVP(1.3) has at least two positive solutions.

Proof. Let Ωp1 = {u ∈ P ; ‖u‖0 < p1}, for ∀u ∈ ∂Ωp1 , 0 < µ ≤ 1, we get µQu 6= u.
In fact, if ∃u0 ∈ ∂Ωp1 and 0 < µ0 ≤ 1 such that µ0Qu0 = u0 and (A4) hold,

then λ2 =
−β−

√
β2+4α

2
≤ 0, by (1.7), we can get u′′(t) ≤ 0, ∀t ∈ [0, 1]. Because

(A5) we also have

f(t, u0, u
′′
0) ≤ a1u− q1v, 0 < u0 < p1, ‖u′′0‖ < p1, ∀t ∈ [0, 1].

By (1.16), we obtain u0 = µ0Qu0 ≤ Qu0 ≤ 1
1−L

(TFu0). Let v0 = TFu0, then

u0 ≤ 1
1−L

v0 and v0 satisfies the BVP(1.4) with h = Fu0, i.e.

v
(4)
0 (t) + βv′′0(t)− αv0(t) = f(t, u0(t), u

′′
0(t)).
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Multiplying the above equation by sin πt and integrating on [0, 1] combined with
v0(0) = v0(1) = v′′0(0) = v′′0(1) = 0 and (A5), we get

Γ

∫ 1

0

u0(t) sin πtdt ≤ 1

1− L
Γ

∫ 1

0

sin πtv0(t)dt

=
1

1− L

∫ 1

0

f(t, u0(t), u
′′
0(t)) sin πtdt

≤ 1

1− L
(a1 + q1π

2)

∫ 1

0

u0(t) sin πtdt. (2.1)

so Γ < 1
1−L

(a1+b1π
2), which contradicts a1+q1π

2 < (1−L)Γ. So i(Q, Ωp1 , P ) = 1.
By the definition of δ and d1, we have

∀u ∈ P, u(t) ≥ δ‖u‖0, t ∈ [
1

4
,
3

4
].

Owning to f
0

> Γ, we can choose ε > 0 such that f
0

> Γ + ε, then there exists
0 < r1 < p1 satisfies

f(t, x, y) > (Γ + ε)x, t ∈ [0, 1], 0 < x ≤ r1, y ∈ R.

Setting Ωr1 = {u ∈ P : ‖u‖0 < r1}, for any u ∈ ∂Ωr1 , we have u(t) ≥ δ‖u‖0 =
δr1, t ∈ [1

4
, 3

4
], so

f(t, u(t), u′′(t)) > (Γ + ε)u(t) ≥ (Γ + ε)δr1, t ∈ [
1

4
,
3

4
].

Next we prove (a) infu∈∂Ωr1
‖Qu‖0 > 0, (b) ∀u ∈ ∂Ωr1 , 0 < µ ≤ 1, Qu 6= µu.

(a) ∀u ∈ ∂Ωr1 , by (1.14), we get

‖Qu‖0 ≥ Qu(
1

2
) ≥ (TFu)(

1

2
) =

∫ 1

0

∫ 1

0

G1(
1

2
, s)G2(

1

2
, τ)f(τ, u(τ), u′′(τ))dτds

≥ (Γ + ε)δr1

∫ 3
4

1
4

∫ 3
4

1
4

G1(
1

2
, s)G2(s, τ)dτds

≥ 1

4
(Γ + ε)δb1b2r1. (2.2)

So, we obtain infu∈∂Ωr1
‖Qu‖ > 0.

(b) Assume on the contrary that ∃u0 ∈ ∂Ωr1 and 0 < µ0 ≤ 1 such that
Qu0 = µ0u0. By (1.15), we get u0(t) ≥ µ0u0(t) = (Qu0) ≥ (TFu0)(t), t ∈ [0, 1].
Similarly to the proof of (2.1), we obtain

Γ

∫ 1

0

sin πtu0(t)dt ≥
∫ 1

0

sin πtf(t, u0(t), u
′′
0(t))dt

By view of f(t, u(t), u′′(t)) > (Γ + ε)u0(t), we have

Γ

∫ 1

0

sin πtu0(t)dt ≥ (Γ + ε)

∫ 1

0

sin πtu0(t)dt,

so we get Γ > Γ + ε, this is a contradiction.
Now, owning to (a) (b) and the fixed point index theory, we get i(Q, Ωr1, P ) =

0.
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Because f∞ > Γ, we choose ε > 0 such that f∞ > Γ + ε, then there exists

R0 > 0 satisfied with f(t, x, y) > (Γ + ε)x, t ∈ [0, 1], x > R0, y ∈ R. By
sup(t,x,y)∈[0,1]×[0,R0]×R f(t, x, y) < ∞, we know that ∃M > 0 such that

f(t, x, y) > (Γ + ε)x−M, t ∈ [0, 1], 0 < x ≤ R1, y ∈ R.

Take R1 > max{p1, δ
−1R0,

√
2M
εδ
} and let ΩR1 = {u ∈ P : ‖u‖0 < R1}, next we

prove (c) infu∈∂ΩR1
‖Qu‖0 > 0 and (d) ∀u ∈ ∂ΩR1 , 0 < µ ≤ 1, Qu 6= µu.

(c) Similar to (2.2), we can get

‖Qu‖0 ≥ Qu(
1

2
) ≥ (TFu)(

1

2
)

≥
∫ 1

0

∫ 3
4

1
4

G1(
1

2
, s)G2(s, τ)f(τ, u(τ), u′′(τ))dτds

≥ 1

2
(Γ + ε)δb2D1R1.

Hence (c) infu∈∂ΩR1
‖Qu‖0 > 0.

(d) Assume on the contrary that ∃u0 ∈ ∂ΩR1 and 0 < µ0 ≤ 1 such that
Qu0 = µ0u0, by (1.15) we have (Qu0)(t) ≥ (TFu0)(t), t ∈ [0, 1]. Similar to (2.1)
we have

Γ

∫ 1

0

u0(t) sin πtdt ≥
∫ 1

0

f(t, u0(t), u
′′
0(t)) sin πtdt

≥ (Γ + ε)

∫ 1

0

u0(t) sin πtdt−M

∫ 1

0

sin πtdt, (2.3)

so

M

∫ 1

0

sin πtdt ≥ ε

∫ 1

0

u0(t) sin πtdt ≥ εδ‖u0‖0

∫ 3
4

1
4

sin πtdt, (2.4)

thus R1 = ‖u‖0 ≤
√

2M
εδ

which contradicts the choice of R1. With the proof of
(c) (d), we get i(Q, ΩR1 , P ) = 0.

Hence

i(Q, ΩR1\Ωp1 , P ) = i(Q, ΩR1 , P )− i(Q, Ωp1 , P ) = 0− 1 = −1,

i(Q, Ωp1\Ωr1 , P ) = i(Q, Ωp1 , P )− i(Q, Ωr1 , P ) = 1− 0 = 1.

Thus BVP(1.3) has at least two positive solutions x1, x2 such that r1 < x1 < p1 <
x2 < R1. �

Theorem 2.2. Assume that f∞ < (1 − L)Γ, f 0 < (1 − L)Γ, (A1) − (A4) and
(A6) hold, then BVP(1.3) has at least two positive solutions.

Proof. Set Ωp2 = {u ∈ P : ‖u‖0 < p2}, next we prove (e) infu∈∂Ωp2
‖Qu‖0 >

0, (f) ∀u ∈ ∂Ωp2 , 0 < µ ≤ 1, Qu 6= µu.
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(e) ∀u ∈ ∂Ωp2 by (A6) we have f(t, u, u′′) ≥ a2u + q2|u′′| ≥ (a2 + q2)p2, similar
to (2.2), by lemma 1.2 we have

‖Qu‖0 ≥ Qu(
1

2
) ≥ (TFu)(

1

2
) =

∫ 1

0

∫ 1

0

G1(
1

2
, s)G2(s, τ)f(τ, u(τ), u′′(τ))dτds

≥
∫ 3

4

1
4

∫ 3
4

1
4

G2(τ, τ)dτ [a2‖u‖0 + q2‖u′′‖0]

≥ 1

4
b1b2(a2 + q2)p2, (2.5)

so infu∈∂Ωp2
‖Qu‖0 > 0.

(f) Assume on the contrary that ∃u0 ∈ ∂Ωp2 , and µ0 ≥ 1 such that µ0Qu0 = u0,
in view of lemma 1.1, (A6), and u′′ ≤ 0 similar to (2.1), we obtain

Γ

∫ 1

0

u0(t) sin πtdt =

∫ 1

0

f(t, u0(t), u
′′
0(t)) sin πtdt

≥
∫ 1

0

(a2u0(t) + q2‖u′′‖0) sin πtdt

= a2

∫ 1

0

u0(t) sin πtdt− q2

∫ 1

0

u′′0(t) sin πtdt

= (a2 − q2π
2)

∫ 1

0

u0(t) sin πtdt. (2.6)

It is easy to see that it contradicts a2 − q2π
2 > Γ, so i(Q, Ωp2 , P ) = 0.

Owning to f∞ < (1−L)Γ, let N = (1−L)Γ, we choose 0 < ε < N satisfied with
f∞ < N − ε, so ∃0 < r2 < p2 such that f(t, x, y) ≤ (N − ε)x, 0 < x ≤ r2, 0 ≤
t ≤ 1, y ∈ R. Set Ωr2 = {u ∈ P : ‖u‖0 < r2}, then ∀u ∈ Ωr2 , f(t, u(t), u′′(t)) <
(N − ε)u(t). We shall prove ∀u ∈ ∂Ωr2 , µ ≥ 1, Qu 6= µu.

In fact, assume on the contrary that ∃u0 ∈ ∂Ωr2 and µ0 ≥ 1 such that Qu0 =
µ0u0, by (1.15) and setting v0 = TFu0, similar to (2.1), we have

N

∫ 1

0

u0(t) sin πtdt ≤ Γ

∫ 1

0

v0(t) sin πtdt

=

∫ 1

0

f(t, u0(t), u
′′
0(t)) sin πtdt

≤ (N − ε)

∫ 1

0

u0(t) sin πtdt. (2.7)

Because
∫ 1

0
u0(t) sin πtdt > 0, we get N ≤ N − ε, which is a contradiction,

i(Q, Ωr2 , P ) = 1.
By f 0 < (1−L)Γ, similar to the case of f∞ < (1−L)Γ, setting N = (1−L)Γ,

we choose 0 < ε < N such that f 0 < (N − ε), then there exists R0 > 0 for
x ≥ R0, f(t, x, y) < (N−ε)x, ∀t ∈ [0, 1]. Let M = sup(t,u,v)∈[0,1]×[0,∞)×R f(t, u, v),
then

f(t, x, y) < (N − ε)x + M, ∀t ∈ [0, 1], x ∈ [0,∞).
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Take R2 > max{p2, R0,
√

2M
εδ
} and let ΩR2 = {u ∈ P : ‖u‖0 < R2}. Next we shall

prove ∀u ∈ ∂ΩR2 , µ ≥ 1, Qu 6= µu.
Given on the contrary, there exists µ0 ≥ 1, u0 ∈ ∂ΩR2 satisfied with Qu0 =

µ0u0. Similar to (2.2)(2.4), we can get

M

∫ 1

0

sin πtdt ≥ ε

∫ 1

0

u0(t) sin πtdt ≥ εδ‖u0‖0

∫ 3
4

1
4

sin πtdt.

So R2 = ‖u‖0 ≤
√

2M
εδ

which contradicts the choice of R2. Hence, by the fixed
point index theory, we get i(Q, ΩR2 , P ) = 1.

So

i(Q, ΩR2\Ωp2 , P ) = i(Q, ΩR2 , P )− i(Q, Ωp2 , P ) = 1− 0 = 1,

i(Q, Ωp2\Ωr2 , P ) = i(Q, Ωp2 , P )− i(Q, Ωr2 , P ) = 0− 1 = −1,

namely, BVP(1.3) has at least two positive solutions x1, x2 such that r2 < x1 <
p2 < x2 < R2. �

Corollary 2.3. Assume that (A1)− (A4) hold and either

(i) f
0

> Γ, f∞ < (1− L)Γ; or

(ii) f 0 < (1− L)Γ, f∞ > Γ;

then BVP(1.3) has at least one solution.
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