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POSITIVE SOLUTIONS OF FOURTH-ORDER BOUNDARY
VALUE PROBLEM WITH VARIABLE PARAMETERS

XIN DONG! AND ZHANBING BAT 2*

ABSTRACT. By means of calculation of the fixed point index in cone we con-
sider the existence of one or two positive solutions for the fourth-order bound-
ary value problem with variable parameters

{ u® (t) + B(t)u" (t) — A(t)u(t) = f(t,u(t),u’(t)), 0 <t <1,
u(0) = u(1) = u”(0) = u”(1) = 0,
where A(t), B(t) € C[0,1] and f(¢,u,v) : [0,1] X [0,00) x R — [0,00) is contin-

uous.

1. INTRODUCTION AND PRELIMINARIES

The deformation of an elastic beam in equilibrium state, whose two ends are sim-
ply supported, can be described by the fourth-order ordinary equation bound-
ary value problem (BVP). Owning to its significance in physical, biological and
chemical phenomena, the existence of positive solution for this problem has been
studied by many authors. For example, some authors studied by the method of
upper and lower solutions [2,4,7], some studied by the fixed point index theorem
[9,10].

In 2003, Li [8] investigated the existence of positive solutions for fourth-order
BVP with two parameters

{ u®(t) + Bu"(t) — au(t) = f(t,u(t)), 0 <t <1, (11)
w(0) = u(1) = u"(0) = u"(1) = 0 '

under the assumptions:
(J1) f(t,u) :[0,1] x [0,4+00) — [0,400) is continuous;
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(J2) o, € Rand B < 27%,a > —3%/4,a/7* + /7% < 1.
Recently, Chai [5] studied the generalizing form as follows:
u® () + B(t)u"(t) — A(t)u(t) = f(t,u(t)), 0 <t <1,
u(0) = u(1) =u"(0) =u"(1) = 0.
where A(t) is non-negative.
In this paper, we concerned the following fourth-order boundary value problem

(1.2)

{ u® () + B(t)u"(t) — At)u(t) = f(t,u(t),u"(t), 0 <t <1, (1.3)

u(0) = u(1) =u"(0) =u"(1) = 0.
Assume the following condition hold:
(A1) f(t,u,v):[0,1] x [0,400) X R — [0, +00) is continuous;
(A2) A(t),B(t) € C[0,1],a = infiepoA(t), [ = inficpyB(t), [ < 2n*,a >
AN
where A(t) can take negative values and the nonlinear function has the bending
term.

This paper is organized as follows. In section 1 we give the introduction and
some lemmas which needed in the proof of main results; Section 2 contain results
for one or two positive solutions of the BVP(1.3).

LetY = C[0,1], Yy = {u € Y :u(t) > 0,t € [0,1]}. Obviously, (Y, ||ullo) is
Banach space, where ||ullo = supsepo,|u(t)],u € Y. Setting X = {u € C?0,1] :
u(0) = u(1) = 0}, |Jul|; = max{||ullo, |u"|lo}, then (X, ||ul|) is also Banach space.
If u € C?[0,1] () C*(0,1) satisfies BVP(1.3) and u(t) > 0, t € [0, 1], then we call
u is the positive solution of BVP(1.3).

Lemma 1.1. (/5]) Vu € X, |ullo < ||u"[o.

Given h € Y, consider the following BVP:
u®(t) + pu’(t) — au(t) = h(t), 0 <t <1,
u(0) = u(l) = u"(0) = w"(1) = 0.
where «, 3 such that the condition (A2).
Obviously, the equation P(A\) = A2 4 3\ —a = 0 has two real solutions A, Ay =

“oEy e V2ﬁ2+4a, owning to (A2), we can get A\; > Ay > —72.
We assume that G;(t,s) (i = 1,2) is the Green’s function of the following
boundary value problem:
—u" (t) + Nu(t) = 0, u(0) =u(1) = 0. (1.5)
We also need some other lemmas as follows:

Lemma 1.2. (/8]) G;(t,s)(i = 1,2) has some properties as follows:
(i) Gi(t,s) >0, ¥V t,s€(0,1);
(i) Gi(t,s) < C;Gy(s,s), ¥V t,s €[0,1];
(111) Gz(t, S) Z (51Gz(t, t)Gl(S, S), v t, S € [O, 1]
where, if \; >0, C; = 1,0, = =24—:if \; =0,C; = 1,6, = 1; if —m2 < )\ <

sinh w; ’

(1.4)

0, Cz =_1_ (51 = W Sinwi.

sinw; ’



BOUNDARY VALUE PROBLEM 23

Lemma 1.3. ([5]) Let K,(t) = [, Gi(t, s)ds, t € [0,1] and D; = max,ejo 1 Ki(t), (i =
1,2), then D; = K( ) >0, (i =1,2) and satisfies
()[f)\>0D:)\%(1 coshl)
(ii) If \; =0, D; = %
(iii) If —m2 < X\ <0, D; = %(1 - 1),

sk %
Ccos B)

For any h € Y, the linear BVP(1.4) has a unique solution « which is denoted
by Th = u, the operator T' can be expressed by

(Th)(t) / / G (¢, $)Ga(s, T)h(r)drds, (1.6)

Lemma 1.4. T:Y — (X, ||u|l1) is linear completely continuous, and ||T|| < M,
where M = max{(|/\1|D1D2 + DQ), (|/\2|D1D2 + Dl)}

Proof. By the definition of T" we known that 7' : Y — (X, ||u||y) is linear com-
pletely continuous, so we only need to prove ||T|| < M.

For Vh € Y, uw = Th € X,u(0) = u(l) = «"(0) = «"(1) = 0, setting v =
—u” 4+ Au, then v(0) = v(1) = 0. By (1.5) and (1.6), we get

{—v”+>\v— h(t), 0 <t <1,
v(0) =v(1) =0.

So v(t) = [, Gi(t, s)h(s)ds, t € [0,1], namely
1
—u" + Xu = / G1(t, s)h(s)ds, t € ]0,1]. (1.7)
0
Similarly, we get

4+ \u = /1 Gs(t, s)h(s)ds, t € [0, 1]. (1.8)

Owning to (1.7), (1.8) and lemma 1.2, for Vh € Y, we have

()] < MzHu(t)H/o Gi(t, s)[(s)lds

11 1
< ()\2/ / G (t, S)GQ(S,T)des+/ Gl(t,s)ds) 120
o Jo 0
< ([X2[D1D2 + Dy)l|Allo. (1.9)
Similarly to (1.9), by (1.6), (1.7) and lemma 1.2, we obtain
" (8)] < (IA|D1D2 + Da)|| 2o (1.10)
Hence ||u”(t)]|o < M]||h||o, in view of lemma 1.1, we get ||Th||; = |Jull;s < M||h||o,
so ||| < M. O
Let K = sup,cp[A(t) + B(t) — (a + B)], ¢:(t) = Gu(t,1), P = {U SR

u(t) > 015(1 — L)g1(t)||ullo,t € [0,1]}, where if A\; >0, S =1, f -2 <\ <0,
S = sinw;, and assume

(A3)L = KM < 1
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(Ad)a < 0,6 >0 or a > 0.
Lemma 1.5. If (A1) — (A4) hold, then QP C P.

Proof. The proof for the conclusion of A\; > 0 is completely similar and so we
omit it. we only prove the result when —72 < \; < 0.

For Vh € Y, consider BVP(1.3) with f = h, obviously, it is equal to the
following equation:

uO(t) + Bu(t) — au(t) = —(B(t) — B)u’(t) + (A() — aut) + h(t).
u(0) = u(l) = " (0) = " (1) = 0.
(1.11)
For Vv € X, setting Gv = —(B(t) — B)v" + (A(t) — a)v. It is easy to see that
G : X — Y is linear and |[(Gv)(t)| < [B(t) + A(t) — (a + B)]||v|l < K|v]|1, so
|G|| < K. On the other hand, u € C?[0,1](C*(0,1) is the solution of (1.11) if
and only if v € X satisfies u = T'(Gu + h), namely

ue X, (I —TG)u="Th. (1.12)

Owningto G : X - Y, T:Y — X, the operator I — TG : X — X .Furthermore
17| < M,||G|| < K and L = MK < 1 satisfy the conditions of the operator
spectral theorem, so there exists (I — T'G)~! which is bounded. If we set H =
(I — TG)™'T then (1.12) is equivalent to u = Hh, by the Neumann expansion
formula, we get

H=I+TG+ - +(TG)"+-- T =T+(TG)T+---+(TG)"T'+---. (1.13)

Since T' is completely continuous and (I — T'G)™! is continuous, then H is com-
pletely continuous. For Vh € Y, , setting u = Th, then v € X (Y, and assuming
(A4), then u” < 0, we have (Gv)(t) = — (B(t) — ) u"(t) + (A(t) — @) u(t) >
0, te[0,1], ie.
VheY,, (GTh)(t) >0, t €[0,1]. (1.14)
By induction, for Vn > 1, h € Y,, t € [0,1], we have (T'G)"(Th)(t) > 0.
Hence, by (1.13) we get

(HR)(t) = (Th)(t)+(TG)(Th)(t)+---+(TG)"(Th)(t)+---T > (Th)(t). (1.15)
So H:Y — Y, () X. On the other hand, Vh € Y, , t € [0, 1], we obtain

(HR)(t) < (Th)() + TG|(Th)(E) + -+ [[TG|"(Th)() + - - -
< U+LA4--4+L"+---)(Th)(t)
_ %(Th)(t). (1.16)

So, the following inequalities hold:
1
|Ehllo < ——Th]. (117)

For Vu € P,let h = Fu, Q = HF, then h € Y, by (1.15) we get
(Qu)(t) = (HFu)(t) > (TFu)(t),t € [0,1].
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Owning to lemma 1.2, V ¢,0 € [0, 1], we have

(TFu)(t) = / / G1(t, s)Ga(s, 7)(Fu)(T)drds

v

dqr(t / / G1(s,8)Ga(s, 7)(Fu)(T)drds

v

5lgl(t)sinwi/0 /0 G1(o,5)Ga(s, 7)(Fu)(T)drds
> 6191(t) sinw; (T Fu)(o).

So (Qu)(t) > 0191(¢t) sinw;||T Fullp, t € [0,1], by (1.17), we get | TFullo > (1 —
L)||HFullo = (1 — L)||Qullp. Hence (Qu)(t) > d191(t)(1 — L) sinw;||Qul|o, i.e.
QP CP. 0

2. MAIN RESULTS

We introduce the notations and assumptions as follows:

t,u,v t,u,v
fo = limsup max sup M f = liminf min inf —f( — )7
u—0+ t€[0,1] yeR U u—0* tel0,1]veR U
7 t,u,v tou. v
u—+oo t€[01] veR U =0 u—+oo tel0,1] vER U

[ =7*—pr? —a, dy = min g(t),
te[1,3]

d=0,5(1—L)dy, by = min_ G(t,s),

—<t5<3

where if \; >0, 5 =1,if -2 < \; <0, S = sinw;. It is easy to see that § > 0
and b; > 0,the hypothesis -5 + % < 1 assures that I' > 0. We shall use the
following assumptions:
(A5) There exist constants p; > 0, a; > 0, ¢ > 0 such that f(¢,u,v) < aju —
qv, YVt € [0,1],0 < u < py,|v| < p; and a; + 7% < (1 — L)T;
(A6) There exist constants py > 0, as > 0, g2 > 0 such that f(¢,u,v) > asu +
Q@|v], Yt €10,1], 0 <u < py, |v] < pe and ag — gom? > T

Theorem 2.1. Assume that f > T, f > T, and (Al) — (A5) hold then
BVP(1.3) has at least two positive solutions.

Proof. Let Q,, = {u € P;|jullo < p1}, for Vu € 0€,,, 0 < p < 1, we get pQu # u.
In fact, if Jup € 09Q,, and 0 < pp < 1 such that peQue = up and (A4) hold,

then \, = Ve ”fgﬂa <0, by (1.7), we can get u”’(t) <0, Vt € [0,1]. Because
(A5) we also have

f(t,ug,uy) < aju — qru, 0 <wug < p1, |lugll < p1, Vt €10,1].
By (1.16), we obtain uy = poQuy < Qug < n(TFuO). Let vog = T Fug, then
uy < ﬁvo and vy satisfies the BVP(1.4) with h = Fuy, i.e.

u () + B (t) — ave(t) = f(t, uo(t), ul(t)).
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Multiplying the above equation by sin 7t and integrating on [0, 1] combined with
v0(0) = vo(1) = v5(0) = vj (1) = 0 and (Ab), we get

1

1 1
I / up(t)sinmtdt < ——T / sin 7tvg (t)dt
; -7 Jy

1
= ﬁ/ f(t, uo(t), ug(t)) sin wtdt
0

1 1
< (a1 + q17r2)/ wo(t) sin tdt. (2.1)
1—L ;

soI' < 137 (a;+by7?), which contradicts a; +¢17* < (1—L)T. Soi(Q, 8y, P) = 1.
By the definition of 0 and d;, we have

1 3]
474"
Owning to io > I', we can choose € > 0 such that io > I" + ¢, then there exists
0 < rp < pp satisfies
flt,z,y) > (C+e)x, t€[0,1],0<z <71,y € R.

Setting €, = {u € P : ||ullo < m}, for any u € 09Q,,, we have u(t) > d||ullo =
ory, t € [}L, %], SO

Vu € P, u(t) = dljullo, t €|

13

v

Next we prove (a) in fucoq,, |Qullo >0, (b) Yu € 09Q,,,0 < p < 1,Qu # pu.
(a) Yu € 082,,, by (1.14), we get

IQulo = Quiz) = (TF(G) = [ [ GilG9Gal5 i utr). ' (r)ards

ft,ut),u’"(t) > (T +e)u(t) > (C+¢e)ory, t €|

> (F+5)57’1K4 Kél Gl(%,S)GQ(S,T)deS

1
Z Z(F—I—S)éblbgrl. (22)

So, we obtain in fueaq,, [|Qull > 0.

(b) Assume on the contrary that Jug € 09Q,, and 0 < gy < 1 such that
Qug = poug. By (1.15), we get ug(t) > pouo(t) = (Quo) > (T'Fug)(t), t € [0, 1].
Similarly to the proof of (2.1), we obtain

1 1
r / sin g (1)t > / sin £ (£, o (£), ! (£))dt
0 0
By view of f(t,u(t),u"(t)) > (I' + €)ug(t), we have
1 1
F/ sin wtug(t)dt > (I + 5)/ sin g (t)dt,
0 0

so we get [' > I' + ¢, this is a contradiction.
Now, owning to (a) (b) and the fixed point index theory, we get i(Q, Qry, P) =
0.
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Because f > I', we choose ¢ > 0 such that f > I" 4 ¢, then there exists
Ry >0 satistied with flt,xz,y) > (C+e)x, t € [0 1], x > Ry, y € R. By
SUD (1. 2.)e(0,1]x[0,Ro]x & J (6 T y) < 00, we know that M > 0 such that

flt,z,y) > (T +e)x—M, t€[0,1], 0 <z < Ry, y €R.

Take Ry > max{p;,d 'Ry, %} and let Qr, = {u € P : ||u|lo < R:i}, next we
prove (c) infucoay, [|Qullo > 0 and (d) Yu € IQp,,0 < p < 1, Qu # pu.
(¢) Similar to (2.2), we can get

1Qulo > <1>z<TFux1>

> / / G1 L ) Ga(s, 7) (7, u(r), o (7)) drds
Z 2(F+€)5b2D1R1

Hence (c) in fucoay, [|Qullo > 0.
(d) Assume on the contrary that Juy € 0Qp, and 0 < uo < 1 such that
Quo = poup, by (1.15) we have (Quo)(t) > (T Fup)(t), t € [0,1]. Similar to (2.1)

we have

1 1
r / up(t) sintdt > / f(t, uo(t), ug(t)) sin wtdt
0 0

v

1 1

(C'+¢) / uo(t) sinwtdt — M | sinnwtdt, (2.3)
0 0

S0

1 1 3
M [ sinwtdt > 5/ uo(t) sin wtdt > 55||u0||0/ sin 7tdt, (2.4)
0 0 i

4

thus Ry = ||ullo < % which contradicts the choice of R;. With the proof of
(c) (d), we get i(Q, O, P) = 0.

Hence
i<Q7QR1\QP17P) = Z‘(627{21%17P) - i(Q,Qpl,P) =0-1= _17

i(Q7Qp1\Qr1ap) :i(Q’QP17P) _i<Q79rlap) =1-0=1.

Thus BVP(1.3) has at least two positive solutions z1, 9 such that r < ;3 < p; <
To < Rl. O

Theorem 2.2. Assume that ., < (1 — L)T, f, < (1 — L)T, (A1) — (A4) and
(A6) hold, then BVP(1.3) has at least two positive solutions.

Proof. Set Q,, = {u € P : |lullo < p2}, next we prove (e) infucaq,, |Qulo >
0, (f) Yue 09,,, 0 <pu<l1, Qu# pu.
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(e) Yu € 09, by (A6) we have f(t,u,u") > agu + go|u"| > (a2 + g2)p2, similar
0 (2.2), by lemma 1.2 we have

Qulo > Qug) = TF0G) = [ [ 61 96als (). (r)irds
> [ [ Gatrrariaslulo + aelo’lo

1
> Zble(aQ + q2)p2, (2.5)

80 in fucaq,, |Qullo > 0.
(f) Assume on the contrary that Jug € 052, and po > 1 such that p1oQuo = uo,
in view of lemma 1.1, (A6), and »” < 0 similar to (2.1), we obtain

1 1
r / uo(t) sin wtdt = / F(t, (1), ul(t)) sin wtdt
0 0
1
> / (aguo(t) + g2||u”|o) sin wtdt
0
1 1
= ag/ U()(t)SiIl’]Ttdt—QQ/ ug (t) sin wtdt
0 0

— (a2_q27r2)/0 ug(t) sin wtdt. (2.6)

It is easy to see that it contradicts ag — gom* > T, s0 i(Q, 2, P) = 0.

Owning to f, < (1—L)I',let N = (1—L)I', we choose 0 < £ < N satisfied with
foo <N —¢,50 30 < ry < py such that f(t,2,9) < (N —¢)z, 0 <z <71y 0<
t <1, y€ R. Set Q., ={ueP:lulo<r}, then Vu € Q,,, f(t,u(t),u"(t)) <
(N —e)u(t). We shall prove Vu € 9Q,.,, 1 > 1, Qu # uu.

In fact, assume on the contrary that Juy € 0€2,, and py > 1 such that Quy =
toto, by (1.15) and setting vg = T F'ug, similar to (2.1), we have

1 1
N/ up(t) sinwtdt < F/ vo(t) sin wtdt
0 0
1
= /f(t,ug(t),ug(t))sinﬂtdt
0
1
< (N—e)/ ug(t) sin wtdt. (2.7)
0

Because fol up(t)sinwtdt > 0, we get N < N — ¢, which is a contradiction,
i(Q,Q,, P) = 1.

By f, < (1— L), similar to the case of f_ < (1 — L)T, setting N = (1 — L)T,
we choose 0 < ¢ < N such that f, < (N — ¢), then there exists Ry > 0 for
x> RO) f(tv$7y) < (N_g)xv vt e [0> 1]' Let M = SUDP (¢,u,0)€[0,1]x[0,00) X R f(t,u,v),
then

ft,z,y) < (N —¢e)x+ M, ¥t € [0,1], z € [0, 00).
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Take Ry > max{ps, Ry, %} and let Qp, = {u € P : ||uljop < Ra}. Next we shall
prove Yu € 0Qg,, > 1, Qu # uu.

Given on the contrary, there exists po > 1,uq € 0€Qg, satisfied with Quy =
fotg. Similar to (2.2)(2.4), we can get

1 1 3
M/ sinwtdt > 5/ uo(t) sin wtdt > 55||u0||0/ sin 7tdt.
0 0 !

4

So Ry = ||ullo < % which contradicts the choice of Ry. Hence, by the fixed

point index theory, we get i(Q, Qg,, P) = 1.
So

i(Q79R2\QP27P> = i(Q>QR2>P) - i(QanwP) =1-0= 17
i(Q?sz\Qrzap) = i(Q>Qp27P) —i(Q,Qrz,P) =0-1=-1,

namely, BVP(1.3) has at least two positive solutions x;, z5 such that ro < z; <
P2 < To < Rs. O

Corollary 2.3. Assume that (Al) — (A4) hold and either
(i) io >T,f. < (1 —L)T; or
(i) fo<@—=L)I, f >T;

then BVP(1.3) has at least one solution.
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