The Journal of Nonlinear Sciences and its Applications http://www.tjnsa.com

COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES

A.R. SHABANI^{1,*}, S. GHASEMPOUR²

ABSTRACT. In this paper, we consider complete probabilistic quasi-metric space and prove a common fixed point theorem for R-weakly commuting maps in this space.

1. INTRODUCTION

Menger introduced the notion of a probabilistic metric spaces in 1942 and, since then, the theory of probabilistic metric spaces has developed in many directions, especially, in nonlinear analysis and applications [5]. The idea of Menger was to use distribution functions instead of nonnegative real numbers as values of the metric.

Recently, Pant introduced the notion of R-weak commutativity of mappings in metric spaces and proved some common fixed point theorems.

In this paper, we define R-weak commutativity of mapping in probabilistic quasi-metric spaces and prove the probabilistic version of Pant's theorem. In the sequel, we shall adopt usual terminology, notation and conventions of the theory of probabilistic metric spaces, as in [1, 5].

Throughout this paper, the space of all probability distribution functions (briefly, d.f.'s) denotes $\Delta^+ = \{F : \mathbf{R} \cup \{-\infty, +\infty\} \longrightarrow [0, 1] : F$ is left-continuous and non-decreasing on \mathbf{R} , F(0) = 0 and $F(+\infty) = 1\}$ and the subset $D^+ \subseteq \Delta^+$ is the set $D^+ = \{F \in \Delta^+ : l^-F(+\infty) = 1\}$. Here $l^-f(x)$ denotes the left limit of the function f at the point x, $l^-f(x) = \lim_{t\to x^-} f(t)$. The space Δ^+ is partially ordered by the usual point-wise ordering of functions, i.e., $F \leq G$ if and only if

Date: Received: 2 March 2008.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E70; Secondary 54H25.

Key words and phrases. Probabilistic metric spaces; quasi-metric spaces; fixed point theorem; *R*-weakly commuting maps; triangle function.

 $F(x) \leq G(x)$ for all x in **R**. The maximal element for Δ^+ in this order is the d.f. given by $\varepsilon_0 = 0$, if $x \leq 0$ and $\varepsilon_0 = 1$, if x > 0

We assume that Δ^+ is metrized by the Sibley metric d_S , which is the modified Lévy metric [4, 6]. If F and G are d.f.'s and $h \in (0, 1]$, let (F, G; h) denote the condition

$$F(x-h) - h \le G(x) \le F(x+h) + h$$

for all x in (-1/h, 1/h). Then the modified Lévy metric (Sibley metric) is defined by

$$d_S(F,G) := \inf\{h : both (F,G;h) and (G,F;h) hold\}.$$

For any F in Δ^+ ,

$$d_S(F,\varepsilon_0) = \inf\{h : (F,\varepsilon_0;h) \ holds\}$$

= $\inf\{h : F(h^+) > 1 - h\}$

and, for any t > 0,

$$F(t) > 1 - t \iff d_S(F, \varepsilon_0) < t.$$

It follows that, for every F, G in Δ^+ ,

$$F \leq G \Longrightarrow d_S(G, \varepsilon_0) \leq d_S(F, \varepsilon_0).$$

A triangle function is a binary operation on Δ^+ , namely, a function $\tau : \Delta^+ \times \Delta^+ \longrightarrow \Delta^+$ that is associative, commutative, nondecreasing and which has ε_0 as unit, i.e., for all $F, G, H \in \Delta^+$,

$$\tau(\tau(F,G),H) = \tau(F,\tau(G,H)),$$

$$\tau(F,G) = \tau(G,F),$$

$$F \le G \implies \tau(F,H) \le \tau(G,H),$$

$$\tau(F,\varepsilon_0) = F.$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^+ . Typical continuous triangle function is $\tau_T(F, G)(x) =$ $\sup_{s+t=x} T(F(s), G(t))$. Here T is a continuous t-norm, i.e., a continuous binary operation on [0, 1] that is commutative, associative, nondecreasing in each variable and has 1 as identity. Two typical examples of continuous t-norm are $\pi(a, b) = ab$ and $W(a, b) = \max(a + b - 1, 0)$.

Definition 1.1. A Probabilistic Quasi-Metric (briefly, PQM) space is a triple (X, \mathcal{F}, τ) , where X is a nonempty set, τ is a continuous triangle function, and **F** is a mapping from $X \times X$ into D^+ such that, if $F_{p,q}$ denotes the value of \mathcal{F} at the pair (p,q), the following conditions hold for all p, q, r in X:

(PQM1) $F_{p,q} = F_{q,p} = \varepsilon_0$ if and only if, p = q; (PQM2) $F_{p,q} \ge \tau(F_{p,r}, F_{r,q})$ for all $p, q, r \in X$.

Choorem 1.2 ([5]) If $(X \not\in \tau)$ is a POM space with $\tau > \tau_{rec}$ as

Theorem 1.2. ([5]) If (X, \mathcal{F}, τ) is a PQM space with $\tau \geq \tau_W$ and function β is defined by

$$\beta(p,q) = d_S(F_{p,q},\varepsilon_0).$$

Then β is a quasi-metric.

Definition 1.3. Let (X, \mathcal{F}, τ) be a PQM space.

(1) A sequence $\{p_n\}_n$ in X is said to be strongly convergent to p in X if, for every $\lambda > 0$, there exists positive integer N such that $F_{p_n,p}(\lambda) > 1 - \lambda$ whenever $n \ge N$.

(2) A sequence $\{p_n\}_n$ in X is called strong right (left) Cauchy sequence [3] if, for every $\lambda > 0$, there exists positive integer N such that $F_{p_n,p_m}(\lambda) > 1 - \lambda$ whenever $n \ge m \ge N$ ($m \ge n \ge N$).

(3) A PQM space (X, \mathcal{F}, τ) is said to be strong right (left) complete in the strong topology if and only if every strong right (left) Cauchy sequence in X is strongly convergent to a point in X.

Theorem 1.4. ([5]) Let (X, \mathcal{F}, τ) be a PQM space and let $\{p_n\}$ be a sequence in X. Then $p_n \to p$ if and only if $d_S(F_{p_n,p}, \varepsilon_0) \to 0$ if and only if $\beta(p_n, p) \to 0$. Similarly, $\{p_n\}$ is a strong right (left) Cauchy sequence if and only if for every $\epsilon > 0$ there exists positive integer N such that

$$\beta(p_n, p_m) < \epsilon$$

whenever $n \ge m \ge N$ $(m \ge n \ge N)$.

Theorem 1.5. ([4]) If τ is a continuous triangle function and $\{p_n\}$ and $\{q_n\}$ are sequences such that $p_n \to p$ and $q_n \to q$, then $\lim_{n\to\infty} F_{p_n,q_n} = F_{p,q}$.

2. Main Results

Definition 2.1. Let f and g be maps from a PQM space (X, \mathcal{F}, τ) into itself. The maps f and g are said to be *weakly commuting* if

$$F_{fgx,gfx} \ge F_{fx,gx}$$

for each x in X.

Definition 2.2. Let f and g be maps from a PQM space (X, \mathcal{F}, τ) into itself. The maps f and g are said to be *R*-weakly commuting of type (A_f) if there exists a positive real number R such that

$$F_{fgx,ggx}(t) \ge F_{fx,gx}(t/R)$$

for each $x \in X$ and t > 0.

Weak commutativity implies *R*-weak commutativity in PQM space. However, *R*-weak commutativity implies weak commutativity only when $R \leq 1$.

Theorem 2.3. Let (X, \mathcal{F}, τ) be a left complete PQM space in which $\tau \geq \tau_W$ and let f, g be R-weakly commuting self-mappings of X satisfying the following conditions:

(i) $f(X) \subseteq g(X)$;

(ii) f or g is continuous;

(iii) for all $x, y \in X$,

$$F_{fx,fy} \ge C(F_{gx,gy}),$$

where $C: D^+ \longrightarrow D^+$ is a continuous function such that C(F) > F for each $F \in D^+$ with $F < \varepsilon_0$.

Then f and g have a unique common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. By (i), choose a point x_1 in X such that $fx_0 = gx_1$. In general, choose x_{n+1} such that $fx_n = gx_{n+1}$. Then we have

$$F_{fx_n, fx_{n+1}} \ge C(F_{gx_n, gx_{n+1}}) = C(F_{fx_{n-1}, fx_n})$$

> F_{fx_{n-1}, fx_n}

Thus $\{F_{fx_n,fx_{n+1}}\}\$ is increasing sequence in D^+ . Therefore, it converges to a limit $G \leq \varepsilon_0$. We claim that $G = \varepsilon_0$. For, if $G < \varepsilon_0$ on making $n \longrightarrow \infty$ in the above inequality, we get $G \geq C(G) > G$, which is a contradiction. Hence $G = \varepsilon_0$, i.e.,

$$\lim_{n \to \infty} F_{fx_n, fx_{n+1}} = \varepsilon_0.$$

By Theorem 1.4, there exists $n_0 \in \mathbf{N}$ such that, for every $n \ge n_0$,

$$\beta(fx_n, fx_{n+1}) \le \frac{1}{2^n}.$$

Now, for every $m, n \in \mathbf{N}$ with m > n, we have

$$\beta(fx_n, fx_m) \le \sum_{j=n}^m \beta(fx_j, fx_{j+1}) \le \sum_{j=n}^m \frac{1}{2^j} \longrightarrow 0$$

as $m, n \to \infty$. Thus, by Theorem 1.4, $\{fx_n\}$ is left Cauchy sequence and, by the left completeness of X, $\{fx_n\}$ converges to $z \in X$. Also $\{gx_n\}$ converges to z in X. Let us suppose that the mapping f is continuous. Then $\lim_{n\to\infty} ffx_n = fz$ and $\lim_{n\to\infty} fgx_n = fz$. Further, since f and g are R-weakly commuting, we have

$$F_{fgx_n,gfx_n}(t) \ge F_{fx_n,gx_n}(t/R).$$

On letting $n \to \infty$ in the above inequality, we have $\lim_{n\to\infty} gfx_n = fz$ by Theorem 1.5.

We now prove that z = fz. Suppose $z \neq fz$. Then $F_{z,fz} < \varepsilon_0$. By (iii),

$$F_{fx_n, ffx_n} \ge C(F_{gx_n, gfx_n}).$$

On letting $n \to \infty$ in the above inequality, we have

$$F_{z,fz} \ge C(F_{z,fz}) > F_{z,fz},$$

which is a contradiction. Therefore, z = fz. Since $f(X) \subseteq g(X)$, we can find a point $z_1 \in X$ such that $z = fz = gz_1$. Now,

$$F_{ffx_n, fz_1} \ge C(F_{gfx_n, gz_1}).$$

Taking limit as $n \to \infty$, we have

$$F_{fz,fz_1} \ge C(F_{fz,gz_1}) = \varepsilon_0$$

since $C(\varepsilon_0) = \varepsilon_0$, which implies that $fz = fz_1$, i.e., $z = fz = fz_1 = gz_1$. Also, for any t > 0,

$$F_{fz,gz}(t) = F_{fgz_1,gfz_1}(t) \ge F_{fz_1,gz_1}(t/R) = \varepsilon_0(t/R) = 1$$

which again implies that fz = gz. Thus z is a common fixed point of f and g.

Now, to prove the uniqueness of the common fixed point z, let $z' \neq z$ be another common fixed point of f and g. Then $F_{z,z'} < \varepsilon_0$ and

$$F_{z,z'} = F_{fz,fz'} \ge C(F_{gz,gz'}) = C(F_{z,z'}) > F_{z,z'},$$

which is contradiction. Therefore, z = z', i.e., z is a unique common fixed point of f and g.

References

- I. Beg, Fixed points of contractive mappings on probabilistic Banach spaces, Stoch. Anal. Appl. 19 (2001), 455–460.
- [2] S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and J. S. Jung, Generalized contraction mapping principles and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. 124 (1996), 2367–2376. 1
- [3] I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasipseudo- metric spaces, Monatsh. Math. 93 (1982), 127–140.
- [4] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, (Elsevier North Holand, New York, 1983).
- [5] B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1(1988), 5–17.
- [6] D. A. Sibley, A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971), 427–430. 1.3

1, 1.5

1, 1.2, 1.41

 $^{1}\mathrm{Department}$ of Mathematics, Imam Khomaini Mritime University of Nowshahr Nowshahr, Iran

E-mail address: a.r.shabai@yahoo.com

² DEPARTMENT OF MATHEMATICS, PAYAM NOOR UNIVERSITY, AMOL, IRAN *E-mail address:* ghasempour_pnu@yahoo.com