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STUDY OF A PREY-PREDATOR DYNAMICS UNDER THE
SIMULTANEOUS EFFECT OF TOXICANT AND DISEASE

SUDIPA SINHA1, O.P.MISRA2 AND JOYDIP DHAR3∗

Abstract. A mathematical model is proposed to study the simultaneous ef-
fects of toxicant and infectious disease on Lotka-Volterra prey-predator system.
It is considered in the model that only the prey population is being affected by
disease and toxicant both, and the susceptible and infected prey populations
are being predated by predator. All the feasible equilibrium of the model are
obtained and the condition for the existence of interior equilibrium point is also
been determined. The criteria for both local stability and instability involv-
ing ecotoxicological and epidemiological parameters are derived. The global
stability of the interior equilibrium point is discussed using Lyapunov’s direct
method. The results are compared with the case when environmental toxicant
is absent. Moreover, threshold conditions depending upon toxicant, disease
and predation related parameters for the non-linear stability of the model is
determined. Finally, the numerical verifications of analytic results are carried
out.

1. Introduction and preliminaries

The classical Lotka-Volterra model is well known among the ecologists. Also the
study of the epidemic models accounting for the spread of disease in a population
and the models to study the effect of pollutants emitted into environment on
existence of population has been done by previous researchers. Our purpose is
to study the combined system. There has been growing interest in the study of
disease in a prey-predator system. The invasion of a resident prey-predator or
host-parasite system by a new strain of parasite has been studied by [2]. The
conditions for long term persistence of two populations growing exponentially [8],
and each affected by disease has been studied by [16]. [5] studied the role of more
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complicated models, including multispecies interactions, where an ecological view
point is taken that the host density itself becomes a dynamical variable. The co-
existence and stability regulated by inter and intra-specific infection has been
investigated analytically by [6], but, the numerical investigations do not show ex-
istence of stable limit cycle. Some more models discussing infection in populations
are studied in [4, 6, 3], and disease transmission problems and epidemiological
models are studied in [7, 13, 17, 18, 19, 20, 1, 23]. In present days, the effect of
pollutant on the survival or persistence of the population is also a major problem.
The industrial units and many man-made projects emit pollutant in the form of
Sulphur Dioxide, Nitrogen Dioxide, Carbon Monoxide, Hydrocarbons, Fluorine,
Fly ash etc. The pollutants effect the ecosystem in general and plant in particular
[14, 24, 11]. In recent years, the effect of toxicants on biological species has also
been investigated [25, 26, 12, 27, 22, 21, 11, 10]. The effect of toxicants shown in
various models is that, it decreases the growth rate of biological species as well
as its carrying capacity. A single species model in polluted closed environment
with toxicant input at fixed moment has been studied [21] and it has been shown
that the population will extinct if the impulsive period is less than some critical
value otherwise population will persist. Thus, to study the simultaneous effect of
pollution stress and the effect of infection in an interacting species is of a great
importance to derive the feasible situations of an ecosystem.

Keeping in view the ecological relevant questions of species-survival and the
long term behavior of the system, in the present study, we have proposed a
mathematical model which has been constructed by combining three basic models
dealing with prey-predator interaction, disease spread (SI model) and the effect of
environmental pollution on single prey species. In the SI model, it is considered
that prey-population is affected by infectious disease. This paper is organized
as follows : In section 2 we have given a sub-model, i.e., Model 1 and the main
model,i.e., Model 2. In section 3 we have done the boundedness and the dynamical
analysis of Model 1 and Model 2 respectively. In section 4, numerical results and
graphical illustration has been given. Finally, in the last section a brief conclusion
of the proposed model has also been included.

2. Mathematical Model

Here, we have considered a general prey-predator system, in which prey is
subjected to some disease. In this way, the prey population is subdivided into two
parts one of which is susceptible prey population and another one is infected prey
population; represented by x1(t) and x2(t) state variables respectively. Predator
population y(t) is assumed to feed on both the susceptible and infected prey
population with different predation rates. Thus, to study the effect of spread of
disease on the prey population, which is also assumed to be predated by some
predator species, we have proposed the following model:

Model 1:
dx1

dt
= θ − βx1x2 − α1x1y − d1x1 (2.1)
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dx2

dt
= βx1x2 − α2x2y − dx2 (2.2)

dy

dt
= α1x1y + α2x2y − d3y (2.3)

The above ordinary differential equations are associated with the following initial
conditions: x1(0) = x10 > 0, x2(0) = x20 > 0, y(0) = y0 > 0; where, θ is
recruitment rate of susceptible prey, α1, α2 are the predation rates among the
susceptible and infected preys,β is the disease contact rate, d1, d3 are the natural
death rates in susceptible prey and predator populations, and d = (d2 + h) is the
net death rate in infective prey population which is sum of natural and disease
induced death rates.

Now, we consider that only the prey population is being affected by toxicant
in the system described by equations (2.1)-(2.3) . Let U(t) be the toxicant con-
centration in the population x(t) = (x1(t) + x2(t)). C(t) is the environmental
concentration of toxicant. After incorporating the effect of toxicant in the model
1, we get the following model:

Model 2:
dx1

dt
= θ − βx1x2 − α1x1y − r1Ux1 − d1x1 (2.4)

dx2

dt
= βx1x2 − α2x2y − r2Ux2 − dx2 (2.5)

dy

dt
= α1x1y + α2x2y − d3y (2.6)

dC

dt
= Q− αC − δC(x1 + x2) (2.7)

dU

dt
= δC(x1 + x2)−mU (2.8)

The above ordinary differential equations are associated with the following initial
conditions: x1(0) = x10 > 0, x2(0) = x20 > 0, y(0) = y0 > 0, U(0) = U0 >
0, C(0) = C0 > 0.

Along with the parameters of model 1, we have following additional parameters
in model 2:
m is the natural wash out rate of the toxicant from the organism, r1, r2 are
the rates at which susceptible and infected prey are decreasing due to toxicant,
δ is uptake rate of toxicant by organism, α is the natural depletion rate of the
environmental toxicant, and Q is the exogenous input rate of the toxicant in the
environment. Basically, by means of above model we want to study the effect
of environmental pollution on a prey-predator system when prey population is
already subjected to some disease.

In the next section we have studied the boundedness and the dynamical be-
haviour of the both the models.
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3. Boundedness and Dynamical Behaviour

3.1. Analysis of Model 1: In this section, it has been established that, all the
solutions of Model 1 are bounded in a positive orthant in R3

+. The boundedness
of solutions of Model 1 is given by the following lemma.

Lemma 3.1. All the solutions of Model 1, will lie in the region B1 = {(x1, x2, y) ∈
R3

+ : 0 ≤ x1+x2+y ≤ θ
θ1
} as t −→∞, for all positive initial values (x10, x20, y0) ∈

R3
+; where θ1 = min(d1, d, d3).

Proof. : Let us consider the following function:

W (t) = x1(t) + x2(t) + y(t)

from equations (2.1)-(2.3), and if θ1 = min(d1, d, d3) then we get:

Ẇ (t) ≤ θ − θ1W

then by usual comparison theorem [Hale, 1980], we get the following expression
as t −→∞:

W (t) ≤ θ
θ1

, and hence, x1(t) + x2(t) + y(t) ≤ θ
θ1

This completes the proof of lemma. ¤
Now, we will discuss the stability of the boundary equilibrium points and inte-

rior equilibrium point. Model 1 has the following set of feasible set of boundary
equilibrium points: E0 = (0, 0, 0), E1 = (θ/d1, 0, 0), E2 = (d/β, βθ−d1d

d
, 0), E3 =

(d3/α1, 0,
θα1−d1d3

d3
) and non-trivial equilibrium point:

E4 = (
d3−α2x∗2

α1
, d3

α2
+ θα1

dα1−d1α2−βd3
,

βd3−dα1−βα2x∗2
α1α2

). Now, we will discuss the dynam-

ical behavior of the Model 1.

• E0 is the trivial equilibrium point. Corresponding to this equilibrium
point we have the eigen values−d1,−d,−d3. Thus, this point is attracting.

• Corresponding to the equilibrium point E1 we have the eigen values−d1, (βθ−
dd1)/d1, (α1θ−d1d3)/d1. This point is also stable in x1 direction and may
be stable or unstable in x2− y plane depending up on system parameters.

• The equilibrium point E2 is feasible when θ > d1d
β

, biologically, which

means that the recruitment rate in the susceptible population should be
greater than some positive threshold value, which depends upon disease
contact rate. The eigen values corresponding to this equilibrium point in
x1 and x2 directions are real negative roots of the following characteristic
polynomial:

λ2 + (β
βθ − d1d

d
+ d1)λ + β(βθ − d1d) = 0

and eigen value in y direction is α1β/d + α2
βθ−d1d

d
− d3. This point is

attracting in x1 − x2 plane if βθ > dd1.
• The equilibrium point E3 is feasible when θ > d1d3

α1
and corresponding to

this point, we get the following characteristic equation:

(λ2 + (α1ỹ + d1)λ + α2
1x̃1ỹ)(λ− (βx̃1 − α2ỹ − d)) = 0
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E3 is attracting in x1 − y plane and may be stable or repulsive in x2

direction depending up on system parameters.
• Finally, the equilibrium point E4 is feasible when d3 > α2x

∗
2, βd3 > dα1 +

βα2x
∗
2, and (β + d1 + aα1)d3 > θα3 and corresponding to this point, we

get the following characteristic equation:

λ3 + a1λ
2 + a2λ + a3 = 0

where a1 = (βx∗2 + α1y
∗ + d1), a2 = (β2x∗1x

∗
2 + α2

1x
∗
1y
∗ + α2

2x
∗
2y
∗) and

a3 = α2
2x
∗
2y
∗(βx∗2 + α1y

∗ + d1). Then, by Routh-Hurwitz criteria E4 is
locally asymptotically stable if a1 > 0, a2 > 0, a3 > 0 and a1a3 − a2 > 0.

Now, we will discuss the global stability of interior equilibrium point E4.The
global stability has been achieved using Lyapunov’s direct method. The global
stability of interior equilibrium point E4 is determined by the following theorem.

Theorem 3.2. The interior equilibria E4 of the system described in Model 1, is
globally asymptotically stable for all positive initial values (x10, x20, y0) ∈ R3

+.

Proof. Let we consider the following positive definite function :

V1(x1, x2, y) =
2∑

i=1

wi(xi − x∗i − x∗i ln
xi

x∗i
) + w3(y − y∗ − y∗ln

y

y∗
) (3.1)

then the time derivative of above function is given as:

V̇1(t) = w1z1
ẋ1

x1

+ w2z2
ẋ2

x2

+ w3z3
ẏ

y
(3.2)

where, z1 = (x1 − x∗1), z2 = (x2 − x∗2), and z3 = (y − y∗).
Now from equations (2.1)-(2.3) and from equation (3.2), we get:

V̇1(t) = −θw1z
2
1

x1x∗1
−βw1z1z2−α1w1z1z3+βw2z1z2−α2w2z2z3+α1w3z1z3+α2w3z2z3

(3.3)
Now, choosing w1 = w2 = w3 = 1, and putting these values in equation (3.3), we
get:

V̇1 = − θz2
1

x1x∗1
≤ 0 (3.4)

It is clear, by LaSalle’s invariance principle, that {E4} is the only invariant set
in B ⊂ R3

+. Thus, by LaSalle-Lyapunov theorem E4 is globally asymptotically
stable. This completes the proof of theorem. ¤

Remark 3.3. Equation (3.4) represents that V̇1(t) = 0 on the set where x1 =
x∗1. Since, ẋ1(t) 6= 0 on x1 = x∗1 unless x2 = x∗2 and y = y∗, thus the largest
positive invariant set is equilibrium point (x∗1, x

∗
2, y

∗). So that the Lyapunov-
LaSalle theorem (Hale, 1980) implies that (x∗1, x

∗
2, y

∗) is globally asymptotically
stable in R3

+.

Now, we come to our original model, i.e., Model 2; where we will discuss the
boundedness and the dynamical behaviour of the Model 2.
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3.2. Analysis of Model 2: Now, we will show that all the solutions of the
Model 2 are bounded. The boundedness of the solutions can be achieved by the
following lemma.

Lemma 3.4. All the solutions of the Model 2 will lie in the following region as
t −→∞:

B2 = {(x1, x2, y, C, U) ∈ R5
+ : 0 ≤ x1 + x2 + y ≤ M1,m3 ≤ C ≤ M2,m4 ≤ U ≤

M3, x1 ≥ m1, x1 + x2 ≥ m2}
where Mi (i=1, 2, 3) and mj (j=1, 2, 3, 4) are given in proof of the lemma.

Proof. Let us consider the following function:

W (t) = x1(t) + x2(t) + y(t)

then from equations (2.4)-(2.6), we get:

Ẇ (t) ≤ θ − d1x1 − dx2 − d3y

if θ1 = min(d1, d, d3) then by usual comparison theorem, we get following expres-
sion as t −→∞:

W ≤ θ

θ1

= M1(say)

hence

x1(t) + x2(t) + y(t) ≤ θ

θ1

From equation (2.7) and equation(2.8) we obtain:

dC
dt
≤ Q− αC

and

dU
dt
≤ δM1M2 −mU

then by usual comparison theorem,we get the following expressions as t −→∞:

C(t) ≤ Q

α
= M2(say)

and

U(t) ≤ δM1M2

m
= M3(say)

Again from equation(2.1),we get

dx1

dt
≥ θ − η1x1

where

η1 =
βθ

θ1

+
α1θ

θ1

+
r1Q

θ2

+ d1

then we have

lim inf
t−→∞

x1(t) ≥ θ

η1

hence

x1min ≥ θ

η1

= m1(say)
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Similarly, we can calculated the minimum values for x1+x2, C, U . The calculated
minimum values of x1 + x2, C and U are given as:

x1min + x2min ≥ θ

3η2

= m2(say)

Cmin ≥ Qθ1

2δθ + αθ1

= m3(say)

Umin ≥ Cminδθ

3mη2

= m4(say)

where,
η2 = max{d1, d, α1ymax, α2ymax, r1Umax, r2Umax}

This completes the proof of the lemma. ¤
Now, we will discuss the feasibility and local stability of boundary equilibrium

points and global stability of interior equilibrium point of the Model 2. We have
considered the following set of equilibrium points: E0(0, 0, 0, C, 0), E1(x̄1, x̄2, ȳ, 0, 0),
E∗(x∗1, x

∗
2, y

∗, C∗, U∗) and local behavior of equilibrium points E0 and E1 is given
as follows:

• E0(0, 0, 0,
Q
α
, 0) is always feasible. Corresponding to this equilibrium point

we have the eigen values −d1,−α,−m, 0, 0.Thus E0 is unstable.
• E1(x̄1, x̄2, ȳ, 0, 0), the feasibility of this point is obvious. The characteristic

equation corresponding to the equilibrium point E1 is given as:

λ5 + Aλ4 + Bλ3 + Cλ2 + Dλ + E = 0

where,
A = βx2 + α1y + d1 + α + m + δ(x1 + x2)
B = (βx2 + α1y + d1)(α + m + δ(x1 + x2)) + m(α + δ(x1 + x2)) + α2

2x2y +
β2x1x2 + α2

1x1y
C = (βx2 + α1y + d1)(αm + δm(x1 + x2) + α2

2x2y) + (α2
2x2y + β2x1x2 +

α2
1x1y)(α + m + δ(x1 + x2))

D = α2
2x2y(βx2 + α1y + d1)(α + m + δ(x1 + x2)) + m(α2

2x2y + β2x1x2 +
α2

1x1y)(α + δ(x1 + x2))
E = α2

2x2ym(βx2 + α1y + d1)(α + δ(x1 + x2)).

For the convenience, we have dropped the bars from x1, x2 and y. It is clear
that all the coefficients of characteristic equation are positive. Thus, by Routh-
Hurwitz criteria E1 is locally asymptotically stable if the following conditions
hold:

A > 0,

∣∣∣∣
A C
1 B

∣∣∣∣ > 0,

∣∣∣∣∣∣

A C E
1 B D
0 A C

∣∣∣∣∣∣
> 0

Now, we will show the existence of the interior equilibrium point E∗ for the
Model 2. The non-trivial positive equilibrium point can be found by the following
system of equations:

θ − βx∗1x
∗
2 − α1x

∗
1y
∗ − r1U

∗x∗1 − d1x
∗
1 = 0

βx∗1 − α2x
∗
2y
∗ − r2U

∗ − d = 0
α1x

∗
1 + α2x

∗
2 − d3 = 0
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Q− C∗(α− δ(x∗1 + x∗2)) = 0
δC∗(x∗1 + x∗2)−mU∗ = 0

Thus on solving the above set of equations we get the positive interior equilibrium
point E∗ = (x∗1, x

∗
2, y

∗, C∗, U∗), where :

x∗1 = d3

α1
− α2x∗2

α1

C∗ = Q
α+δ(x∗1+x∗2)

y∗ =
βx∗1
α2
− r2U∗

α2
− d

α2
,

and on solving the following isoclines, we can find x∗2 and U∗:

F (x2, U) = k1x2 + k2U + k3Ux2 − k4 = 0 (3.5)

G(x2, U) = l1U + l2x2U + l3x2 − l4 = 0 (3.6)

where, k1 = βd3

α1
− d + d1α2

α1
, k2 = r2d3

α2
− r1d3

α1
− r2, k3 = r1α2

α1
, k4 = − βd2

3

α1α2
+ 2dd3

α2
−

d1d3

α1
+ θ, l1 = mα + δd3m

α1
, l2 = mδ − mδα2

α1
, l3 = δQ(α2

α1
− 1) and l4 = d3δQ

α1
.

From the equations (3.5) and (3.6) we obtain :
1(a) F (x2, 0) = 0 i.e. x∗2 = k4/k1 = S11 (say)
1(b) F (0, U) = 0 i.e. U∗ = k4/k2 = S12 (say),
and
2(a) G(x2, 0) = 0 i.e. x∗2 = l4/l3 = S21 (say)
2(b) G(0, U) = 0 i.e. U∗ = l4/l1 = S22 (say)

Thus two isoclines intersects in positive phase space if either of the following
case holds:

(a) S11 > S21 and S12 < S22

(b) S11 < S21 and S12 > S22

The intersection of these two isoclines in positive phase space ensures the existence
of (x∗2, U

∗) and this point is unique if U ′(x2) < 0; hence, E∗ exists in positive phase
plane [see, Figure 1].

Now, we will discuss the global stability of the interior equilibrium point E∗

by Lyapunov’s direct method. This result has been established in the following
theorem.
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Theorem 3.5. E∗ is globally asymptotically stable if β < β∗, α1 < α∗1, α2 < α∗2,
δ < δ∗, r1 < r∗1, r2 < r∗2, Q < Q∗, and m > m∗, where β∗, α∗1, α∗2, δ∗, r∗1, r∗2, Q∗

and m∗ are given in proof.

Proof. Let we consider the following positive definite function:

V2(x1, x2, y, C, U) =
1

2
(x1 − x∗1)

2 +
1

2
(x2 − x∗2)

2 +
1

2
(y − y∗)2 + (3.7)

1

2
(C − C∗)2 +

1

2
(U − U∗)2

then the time derivative of above equation is given as:

V̇2(t) = z1ẋ1 + z2ẋ2 + z3ẏ + z4Ċ + z5U̇ (3.8)

where, z1 = (x1 − x∗1), z2 = (x2 − x∗2), z3 = (y − y∗), z4 = (C − C∗), and
z5 = (U − U∗)
Now, from equations (2.4)-(3.1) and from equation (3.8) we get:

V̇2(t) = V̇21 + V̇22 + V̇23 + V̇24 + V̇25 (3.9)

where
V̇21 = −{(βx2 + α1y + r1U + d1)z

2
1 + βx∗1z1z2 + α1x

∗
1z1z3 + r1x

∗
1z1z5}

V̇22 = −{(d + α2y + r2U − βx1)z
2
2 − βx∗2z1z2 + α2x

∗
2z2z3 + r2x

∗
2z2z5}

V̇23 = −{(d3 − α1x1 − α2x2)z
2
3 − α1y

∗z1z3 − α2y
∗z2z3}

V̇24 = −{(α + δ(x1 + x2))z
2
4 + δC∗z1z4 + δC∗z2z4}

V̇25 = −{mz2
5 − δ(x1 + x2)z4z5 − δC∗z1z5 − δC∗z2z5}

thus we can write equation (3.9) in the following form:

V̇2 = −{a11z
2
1 + a12z1z2 + a13z1z3 + a15z1z5 + a22z

2
2 + a23z2z3 + a25z2z5

+a33z
2
3 + a44z

2
4 + a14z1z4 + a24Z2z4 + a55z

2
5 + a45z4z5} (3.10)

where,
a11 = (βx2 + α1y + r1U + d1), a12 = β(x∗1 − x∗2), a13 = α1(x

∗
1 − y∗), a24 = δC∗,

a15 = (r1x
∗
1 − δC∗), a22 = (d + α2y + r2U − βx1), a23 = α2(x

∗
2 − y∗), a24 = δC∗,

a25 = (r2x
∗
2 − δC∗), a33 = (d3 − α1x1 − α2x2), a44 = (α + δ(x1 + x2)), a45 =

−δ(x1 + x2), a55 = m.
Now, we see that by Sylvester’s criteria under the following conditions V̇2(t) is

negative definite.

(i) 4a2
12 < a11a22, (ii) 2a2

13 < a11a33, (iii) 3a2
14 < a11a44 (iv) 3a2

15 < a11a55,
(v) 2a2

23 < a22a33, (vi) 3a2
24 < a22a44, (vii) 3a2

25 < a22a55, (viii) 9a2
45 < 4a44a55

Clearly, by Lyapunov’s direct method E∗ is globally asymptotically stable.
Further, the above conditions (i)-(viii), obtained using Sylvester’s criteria, can

be rewritten respectively in the following form:

4β2(x∗1− x∗2)
2 < (βx2max + α1ymax + r1Umax + d1)(d + α2ymax + r2Umax− βx1min)

(3.11)
2α2

1(x
∗
1−y∗)2 < (βx2max + r1Umax +α1ymax +d1)(d3−α1x1min−α2x2min) (3.12)

3δ2C∗2 < (βx2max + r1Umax + α1ymax + d1)(α + δ(x1max + x2max)) (3.13)

3(r1x
∗
1 − δC∗)2 < m(βx2max + r1Umax + α1ymax + d1) (3.14)
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2α2(x∗2− y∗)2 < (d + r2Umax− βx1min + α2ymax)(d3−α1x1min−α2x2min) (3.15)

3δ2C∗2 < (d + α2ymax + r2Umax − βx1min)(α + δ(x1max + x2max)) (3.16)

3(r2x
∗
2 − δC∗)2 < m(d + α2ymax + r2Umax − βx1min) (3.17)

9δ2(x1min + x2min)2 < 4mα + 4mδ(x1max + x2max) (3.18)

where x1max, xmax, ymax, Cmax, Umax, x1min, x2min, Cmin can be obtained from
region of attraction in lemma 3.2. Here, we have taken above inequalities in such
a way that left hand side becomes minimum and the right hand side becomes
maximum. This particular case represents the weakest situation for the inequali-
ties to be held and ,moreover, if inequalities are dissatisfied in this situation then
the paths starting in B2 will not go to interior equilibrium point. Thus, under this
particular situation we will break the above inequalities (3.11)-(3.18) to obtain
the threshold conditions depending upon toxicant, disease and predation related
parameters.
Now, on rearranging inequality (3.11), we obtain:

f1(β) = π11β
2 + π12β − π13 < 0 (3.19)

where,
π11 = 4(x∗1 − x∗2)

2 + x1minx2max,
π12 = x1min(α1ymax + r1Umax + d1)− x2max(d + α2ymax + r2Umax)
π13 = (d + α2ymax + r2Umax)(α1ymax + r1Umax + d1)
by theory of equations there exists a positive root of f1(β) = 0, say it is β = β∗.
Then, clearly inequality (3.19) holds when β < β∗.
Now, on rearranging inequality (3.12), we obtain the following result:

f2(α1) = π21α
2
1 + π22α1 − π23 < 0 (3.20)

where,
π21 = 2(x∗1 − y∗)2 + x1minymax

π22 = x1min(βx2max + r1Umax + d1)− ymax(d3 − α2x2min)
π23 = (βx2max + r1Umax + d1)(d3 − α2x2min)
by theory of equations there exists a positive root of f2(α1) = 0, say it is α1 = α∗1.
Then, clearly inequality (3.20) holds when α1 < α∗1.
Now, on rearranging inequality (3.13), we obtain:

f3(δ) = π31δ
2 − π32δ − π33 < 0 (3.21)

where,
π31 = 3C∗2

π23 = (βx2max + α1ymax + r1Umax + d1)(x1max + x2max)
π33 = α(βx2max + α1ymax + r1Umax + d1)
by theory of equations there exists a positive root of f3(δ) = 0, say it is δ = δ∗.
Then, clearly inequality (3.21) holds when δ < δ∗.
Now, on rearranging inequality (3.14), we obtain that inequality (3.14) holds
when r1 < r∗1, where

r∗1 = 1
x∗1
{(m(βx2max + α1ymax + r1Umax + d1)/3)1/2 + δC∗}
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Now, on rearranging inequality (3.15), we obtain the following result:

f4(α2) = π41α
2
2 + π42α2 − π43 < 0 (3.22)

where,
π41 = 2(x∗2 − y∗)2 + ymaxx2min

π42 = x2min(d + r2Umax − βx1min)− ymax(d3 − α1x1min)
π43 = (d + r2Umax − βx1min)(d3 − α1x1min)
by theory of equations there exists a positive root of f4(α2) = 0, say it is α2 = α∗2.
Then, clearly inequality (3.22) holds when α2 < α∗2.
Now, on rearranging inequality (3.16), we obtain that inequality (3.16) holds
when Q < Q∗, where

Q∗ = (α/δ+x∗1+x∗2){((d+α2ymax+r2Umax−βx1min)(α+δ(x1max+x2max))/3)}1/2

Now, on rearranging inequality (3.17), we obtain that inequality (3.17) holds
when r2 < r∗2, where

r∗2 = 1
x∗2
{(m(d + α2ymax + r1Umax − βx1min)/3)1/2 + δC∗}

Now, on rearranging inequality (3.18), we obtain that inequality (3.18) holds
when m > m∗, where

m∗ = 9δ2(x1min+x2min)2

4α+4δ(x1max+x2max)

Its clear that E∗ is globally asymptotically stable if β < β∗, α1 < α∗1, α2 < α∗2,
δ < δ∗, r1 < r∗1, r2 < r∗2, Q < Q∗, and m > m∗.
This completes the proof of the theorem. ¤

Remark 3.6. Biologically, we can say that if the disease contact rate, predation
rates among susceptible and infected prey populations, toxicant uptake rate by
prey population, rates at which susceptible and infected prey populations are
decreasing due to toxicant and exogenous input rate of toxicant in environment
are under upper threshold values; and natural wash-out rate of the toxicant from
the organism is higher than the lower threshold value then interior equilibria of the
system given by model 2 is globally asymptotically stable. The threshold values
that we have obtained in the above theorem are important to ensure the global
stability of the interior equilibrium point. If any one of the threshold conditions
is disturbed then paths starting in interior of the region B2 can approach to the
boundaries.

4. Numerical Example

We consider the following set of parameters:
θ = 50, α1 = 0.01, α2 = 0.02, β = 0.01, r1 = 0.001, r2 = 0.01, d1 = 0.01, d = 0.1,
d3 = 1, Q = 10, α = 0.2, δ = 0.1, m = 0.2
Then we get the following results:
(1) Region of attraction for the Model 1 is:

B1 = {(x1, x2, y) ∈ R3
+ : 0 ≤ x1 + x2 + y ≤ 500}
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and the interior equilibrium point of Model 1 is E4 = (9.9010, 45.0495, 44.5050)
[see Figure 3].
(2) Region of attraction for the Model 2 is:

B2 = {(x1, x2, y, C, U) ∈ R5
+ : 0 ≤ x1 + x2 + y ≤ 500, 0 ≤ C + U ≤ 50}

and corresponding interior equilibrium point is E∗ = (10.2994, 44.8528, 22.3470,
1.7499, 48.2509). From theorem 3.2, E∗ is globally asymptotically stable if β < β∗,
α1 < α∗1, α2 < α∗2, δ < δ∗, r1 < r∗1, r2 < r∗2, Q < Q∗, and m > m∗, where

β∗ = 1.0229, α∗1 = 1.0229, δ∗ = 1.0e + 003 ∗ 6.0034, r∗1 = 0.2032, α∗2 = 0.3554,
Q∗ = 1.0708e + 003, r∗2 = 0.0226, m∗ = 0.000623

Hence, E∗ is globally asymptotically stable [see Figure 2]. All the feasible local
and global stability conditions have also been verified by these numerical values.
For this example, both the systems are long term persistent under the basic
results given by Theorem (3.1) and Theorem (3.2).

Remark 4.1. By the analysis of both the Model 1 and the Model 2, it is clear
that due to adverse effect of toxicant the equilibria level of prey-predator system,
when prey is infected due to some disease, decreases.

Remark 4.2. Numerically, it has been observed that both the susceptible and
infected prey population can not increase simultaneously; on the account of this
fact, we can say that if susceptible prey population increases then correspondingly
infected prey population will decrease and vice-versa [see Figure 2 and Figure 3].

5. Conclusion

We have proposed a mathematical model to study the effect of toxicant in prey-
predator system when the prey population is already subjected to some disease.
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It has been determined that when the effect of toxicant is not considered in the
prey species, Model 1 is globally asymptotically stable, for any positive non-zero
recruitment rate in susceptible population. Further, the interior equilibrium point
of the Model 1 is the only invariant set in solution space in positive phase plane.
Again, when we consider the effect of toxicant in prey population then it has been
observed that the interior equilibrium point is the only invariant set in solution
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space, but, global stability of the system is now depending upon system param-
eters. Moreover, it has been observed that when the disease contact rate (i.e.,
β), predation rates among susceptible and infected prey populations (i.e., α1 and
α2), toxicant uptake rate by prey population (i.e., δ), rates at which susceptible
and infected prey populations are decreasing due to toxicant (i.e., r1 and r2) and
exogenous input rate (i.e, Q) of toxicant in environment are under upper thresh-
old values; and natural wash-out rate of the toxicant from the organism (i.e, m)
is higher than the lower threshold value then prey and predator population can
survive for long period. Finally, numerical verifications of analytic results have
shown in figures 1-3.
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