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AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

K. NEMATI 1∗ AND M. MATINFAR2

Abstract. In this paper, we consider an implicit finite difference method for
solving fuzzy partial differential equations (FPDEs). We present stability of
this method and solve the parabolic equation with this scheme.

1. Introduction

Calculation of the solution of fuzzy partial differential equations is in general
very difficult. We can find the exact solution only in some special cases. When
we are studying in fields of physics and engineering, we often meet the problems
of fuzzy partial differential equations where sometimes have to solving those as
numerical methods. The topics of numerical methods for solving fuzzy differen-
tial equations have been rapidly growing in recent years. The concept of fuzzy
numbers and arithmetic operations with these numbers were first introduced and
investigated by Zadeh [11] and others.The fuzzy derivative was first introduced
by S.L. Chang, Zadeh in [5]. The fuzzy differential equations and fuzzy initial
value problem were regularly treated by O.Kaleva and S.Seikkala in [7, 8, 9]. J.
Buckley and T. Feuring investigate exist of solution for FPDE in [4]. In [1, 2]
T.Allahviranloo used a numerical method (explicit finite difference method) to
solve FPDE, that was based on Seikkala derivative.
This paper is organized as follows:
In Section 2, we bring some basic definitions of fuzzy theory. In Section 3, we in-
troduce fuzzy partial differential equations base on the Siekkala derivative. Finite
difference method for fuzzy partial differential equation is discussed in Section 4.
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The necessary conditions will discuss for stability of the proposed method in Sec-
tion 5. The implicit difference method is illustrated by solving an example in
Section 6. We conclude in Section 7.

2. Preliminaries

• We placed a tilde sign(∼) over a letter to denote a fuzzy number as subset of
the real number.
• We write Ã(x), a number in [0, 1], for the membership function of Ã evaluated
at x.
• An α− cut of Ã, written Ã[α], is defined as {x|Ã(x) ≥ α}, for 0 < α ≤ 1.
• The triangular fuzzy number Ñ is defined by three number a1 < a2 < a3, where
the graph of Ñ(x), the membership function of the fuzzy number Ñ , is a triangle
with the base on the interval [a1, a3] and vertex at x = a2. We specify Ñ as
(a1, a2, a3).
We write:
1. Ñ > 0 if a1 > 0;
2. Ñ ≥ 0 if a1 ≥ 0;
3. Ñ < 0 if a3 < 0;
4. Ñ ≤ 0 if a3 ≤ 0.

We represent an arbitrary fuzzy number by an ordered pair of function (u(r), u(r)),
0 ≤ r ≤ 1, which satisfies the following requirements:
1. u(r) is a bounded left continuous non decreasing function over [0, 1].
2. u(r) is a bounded right continuous non increasing function over [0, 1].
3. u(r) ≤ u(r), 0 ≤ r ≤ 1. Where u(r) and u(r) are crisp number.
For arbitrary fuzzy number x = (x, x), y = (y, y) and real number k :
1. x = y if and only if x(r) = y(r), and x(r) = y(r) for all 0 ≤ r ≤ 1.

2. kx =

{
(kx, kx) k ≥ 0,
(kx, kx) k < 0.

3. x + y = (x(r) + y(r), x(r) + y(r)).
4. x− y = (x(r)− y(r), x(r)− y(r)).
5. x.y = {min{x(r).y(r), x(r).y(r), x(r).y(r), x(r).y(r)},max{x(r).y(r), x(r).y(r), x(r).y(r), x(r).y(r)}}.

Since the α − cut of fuzzy numbers are always a closed and bounded, intervals,
so we can write Ñ [α] = [N(α), N(α)], for all α.
Now we denote the set of all nonempty compact subset of Rn by κn and the
subset of κn consisting of nonempty convex compact sets by κn

c . Recall that

ρ(x,A) = min
a∈A

‖x− a‖,
is the distance of a point x ∈ Rn from A ∈ κn and also the Hausdorff separation
ρ(A,B) of A,B ∈ κn is defined as

ρ(A,B) = max
a∈A

ρ(a,B).
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Note that the notation is consistent, since ρ(a,B) = ρ({a}, B). Now, ρ is not a
metric. In fact, ρ(A,B) = 0 if and only is A ⊆ B.
The Hausdorff metric dH on κn is defined by

dH(A,B) = max{ρ(A,B), ρ(B, A)},
and (κn, dH) is a complete metric space.
Let E be the set of all upper semicontinuous normal convex fuzzy numbers with
bounded α− level sets. The metric dH is defined on E as

d∞(ũ, ṽ) = sup{dH(ũ[α], ṽ[α]) : 0 ≤ r ≤ 1}, ũ, ṽ ∈ E.

3. Finite difference method

Assume Ũ is a fuzzy function of the independent crisp variables x and t. Sub-
divided the x − t plane into sets of equal rectangles of sides δx = h, δt = k,
by equally space grid lines parallel to Oy, defined by xi = ih, i = 0, 1, 2, ... and
equally spaced grid lines parallel to Ox, defined by yj = j = 0, 1, 2, ... . Denote

the value of Ũ at the representative mesh point p(ih, jk) by

Ũp = Ũ(ih, jk) = Ũi,j (3.1)

and also denote the parametric form of fuzzy number, Ũi,j as follow

Ũi,j = (U i,j, U i,j). (3.2)

Then by taylor’s theorem and definition of standard difference (DxDx)Ũi,j =

((DxDx)Ũi,j, (DxDx)Ũi,j),

where

(DxDx)Ũi,j ' u{(i+1)h,jk}−2u{ih,jk}+u{(i−1)h,jk}
h2 ,

(DxDx)Ũi,j ' u{(i+1)h,jk}−2u{ih,jk}+u{(i−1)h,jk}
h2 .

(3.3)

By (10) we have

(DxDx)Ũi,j ' ui+1,j−2ui,j+ui−1,j

h2 ,

(DxDx)Ũi,j ' ui+1,j−2ui,j+ui−1,j

h2 .

(3.4)

with a leading error of order h2. Similarly, with this notation the forward-
difference approximation for (DtŨ) at p is

(Dt)Ũi,j ' ui,j+1−ui,j

k
,

(Dt)Ũi,j ' ui,j+1−ui,j

k
,

(3.5)
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with a leading error of O(k). By (11) and (12) and technique of Crank-Nicolson
(C-N), the finite difference representation of equation

(Dt)Ũ = β2(DxDx)Ũ , (3.6)

is

Ũi,j+1 − Ũi,j

k
=

β2

2
{ Ũi+1,j+1 − 2Ũi,j+1 + Ũi−1,j+1

h2
+

Ũi+1,j − 2Ũi,j + Ũi−1,j

h2
},

or the following equations must be hold:





ui,j+1 − λui−1,j+1 − λui+1,j+1 + 2λui,j+1 = (1− 2λ)ui,j + λui−1,j + λui+1,j

ui,j+1 − λui−1,j+1 − λui+1,j+1 + 2λui,j+1 = (1− 2λ)ui,j + λui−1,j + λui+1,j

(3.7)
where Ũ = (u, u) is the exact solution of the approximating difference equations,

xi = ih, (i = 0, 1, 2, ..., n) and tj = jk, (j = 0, 1, 2, ...), and λ = β2k
2h2 .

4. Finite difference method

Assume Ũ is a fuzzy function of the independent crisp variables x and t. Sub-
divided the x − t plane into sets of equal rectangles of sides δx = h, δt = k,
by equally space grid lines parallel to Oy, defined by xi = ih, i = 0, 1, 2, ... and
equally spaced grid lines parallel to Ox, defined by yj = j = 0, 1, 2, ... . Denote

the value of Ũ at the representative mesh point p(ih, jk) by

Ũp = Ũ(ih, jk) = Ũi,j (4.1)

and also denote the parametric form of fuzzy number, Ũi,j as follow

Ũi,j = (U i,j, U i,j). (4.2)

Then by taylor’s theorem and definition of standard difference (DxDx)Ũi,j =

((DxDx)Ũi,j, (DxDx)Ũi,j),

where

(DxDx)Ũi,j ' u{(i+1)h,jk}−2u{ih,jk}+u{(i−1)h,jk}
h2 ,

(DxDx)Ũi,j ' u{(i+1)h,jk}−2u{ih,jk}+u{(i−1)h,jk}
h2 .

(4.3)

By (10) we have

(DxDx)Ũi,j ' ui+1,j−2ui,j+ui−1,j

h2 ,

(DxDx)Ũi,j ' ui+1,j−2ui,j+ui−1,j

h2 .

(4.4)
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with a leading error of order h2. Similarly, with this notation the forward-
difference approximation for (DtŨ) at p is

(Dt)Ũi,j ' ui,j+1−ui,j

k
,

(Dt)Ũi,j ' ui,j+1−ui,j

k
,

(4.5)

with a leading error of O(k). By (11) and (12) and technique of Crank-Nicolson
(C-N), the finite difference representation of equation

(Dt)Ũ = β2(DxDx)Ũ , (4.6)

is

Ũi,j+1 − Ũi,j

k
=

β2

2
{ Ũi+1,j+1 − 2Ũi,j+1 + Ũi−1,j+1

h2
+

Ũi+1,j − 2Ũi,j + Ũi−1,j

h2
},

or the following equations must be hold:





ui,j+1 − λui−1,j+1 − λui+1,j+1 + 2λui,j+1 = (1− 2λ)ui,j + λui−1,j + λui+1,j

ui,j+1 − λui−1,j+1 − λui+1,j+1 + 2λui,j+1 = (1− 2λ)ui,j + λui−1,j + λui+1,j

(4.7)
where Ũ = (u, u) is the exact solution of the approximating difference equations,

xi = ih, (i = 0, 1, 2, ..., n) and tj = jk, (j = 0, 1, 2, ...), and λ = β2k
2h2 .

5. A Necessary Condition for Stability

Now we are going to consider the stability of the classical implicit equations
(14). If the boundary values are know at i = 0 and N , j > 0, then the 2(N − 1)
equations can be written in matrix as




1 −λ 2λ
−λ 1 −λ 2λ

. . . . . . . . . . . .
−λ

−λ 1 2λ
2λ 1 −λ

2λ −λ 1 −λ
. . . . . . . . . . . .

−λ
2λ −λ 1







u1,j+1

u2,j+1
...

uN−1,j+1

u1,j+1

u2,j+1
...

uN−1,j+1




=



66 K. NEMATI, M. MATINFAR




0 λ 1− 2λ
λ 0 λ 1− 2λ

. . . . . . . . . . . .
λ

λ 0 1− 2λ
1− 2λ 0 λ

1− 2λ λ 0 λ
. . . . . . . . . . . .

λ
1− 2λ λ 0







u1,j

u2,j
...

uN−1,j

u1,j

u2,j
...

uN−1,j




+Cj

i.e,

P

(
wj+1

wj+1

)
= Q

(
wj

wj

)
+ Cj,

where

P =

(
A B
B A

)
, A = I−λ




0 1
1 0 1

. . . . . . . . .
1 0 1

1 0




, B = 2λ




1
1

. . .
1


 = 2λI,

and

Q =

(
E F
F E

)
, F = λ




0 1
1 0 1

. . . . . . . . .
1 0 1

1 0




, E = (1−2λ)




1
1

. . .
1


 = (1−2λ)I.

Thus

(
wj+1

wj+1

)
= P−1Q

(
wj

wj

)
+ P−1Cj, T = P−1Q. (5.1)

We first give Theorem 4.1 and then prove the stability of the above method
in Theorem 4.2.



AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL DIFF. EQUATIONS 67

Theorem 4.1 Let matrix P has spacial structure as follow(
A B
B A

)
.

Then the eigenvalues of P are union of eigenvalues of A + B and eigenvalues of
A−B [3].
Now we prove the stability of C −N method in the following theorem.

Theorem 4.2 Difference equations (14) for all λ are stable.

Proof: It is sufficient to show that ρ(T ) < 1 in (15). Thus, by Theorem 4.1, it
is enough to find eigenvalues of A + B and A−B, where

A + B =




1 + 2λ −λ
−λ 1 + 2λ −λ

. . . . . . . . .
−λ

−λ 1 + 2λ




and

A−B =




1− 2λ −λ
−λ 1− 2λ −λ

. . . . . . . . .
−λ

−λ 1− 2λ




Let matrixes (N − 1)× (N − 1) S and S ′ as follow

S =




2 −1
−1 2 −1

. . . . . . . . .
−1

−1 2




, S ′ =




2 1
1 2 1

. . . . . . . . .
1

1 2




Thus
A + B = I + λS,

A−B = I − λS ′.
where I is the Unit matrix of order (N−1) and S, S ′ are (N−1)×(N−1)matrixes
whose eigenvalues λS and λS′ are given by [10]

λS = λS′ = 2 + 2 cos
kπ

N
= 2(1 + cos

kπ

N
)

= 4 cos2 kπ

N
, k = 1, 2, ..., N − 1.
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Hence, the eigenvalues of A + B and A−B are

λA+B = 1 + 4λ cos2 kπ

2N
,

λA−B = 1 + 4λ cos2 kπ

2N
,

where at those k = 1, 2, ..., N − 1, respectively

E + F =




1− 2λ λ
λ 1− 2λ λ

. . . . . . . . .
λ

λ 1− 2λ




and

E − F =




2λ− 1 λ
λ 2λ− 1 λ

. . . . . . . . .
λ

λ 2λ− 1




thus

E + F = I − λS,

E − F = −I + λS ′.

The eigenvalues for above matrixes are:

λE+F = 1− 4λ cos2 kπ

2N
, k = 1, 2, ..., N − 1

λE−F = −1 + 4λ cos2 kπ

2N
, k = 1, 2, ..., N − 1

We know when ρ(T ) = ρ(P−1Q) < 1, then iterative method is stable.

ρ(T ) = max
k
|1− 4λ cos2 kπ

2N

1 + 4λ cos2 kπ
2N

| < 1,

or

ρ(T ) = max
k
|−1 + 4λ cos2 kπ

2N

1 + 4λ cos2 kπ
2N

| < 1,

for all λ. Therefore, the scheme is stable.
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6. Example

Consider the fuzzy parabolic partial differential equation

∂Ũ

∂t
(x, t) =

∂2Ũ

∂x2
(x, t), 0 ≤ x ≤ 1, t > 0,

with the boundary conditions

Ũ(0, t) = Ũ(1, t) = 0, t > 0,

and
Ũ(x, 0) = f̃(x) = K̃ sin(πx), 0 ≤ x ≤ 1,

and
K̃ = [k(α), k(α)] = [α− 1, 1− α].

The exact solution for

∂U

∂t
(x, t; α) =

∂2U

∂x2
(x, t; α),

∂U

∂t
(x, t; α) =

∂2U

∂x2
(x, t; α),

for 0 ≤ x ≤ 1, t > 0 are U(x, y; α) = k(α)e−π2t sin(πx) and U(x, y; α) =

k(α)e−π2t sin(πx).
We use the equations (14) to approximate the exact solution. We have shown
in Figure1 and Figure2 some of the Ũ value in the various grid points for all
α belong to [0, 1]. In these Figures have compared approximated solutions and
the exact solutions, where Hausdorff distance between the solutions in the case
h = 0.01, k = 0.001, and λ = 5, is 0.00115909722312.

Symbols in the Figures are:

Ũ1,1 :

{
... : approx
¤ : exact,

Ũ5,1 :

{ −.− : approx
+ : exact,

Ũ2,2 :

{ −− : approx
4 : exact,

Ũ3,4 :

{ − : approx
◦ : exact,

7. Conclusion

The fuzzy partial differential equation can be applied for modeling in physics,
engineering and mechanical systems. In this paper, we applied an implicit finite
difference method to solve some partial differential equations. Moreover, the nu-
merical examples gave a good approximation for the solutions.



70 K. NEMATI, M. MATINFAR

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. h = 0.1,k = 0.0001 and λ = 0.005.
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Figure 2. h = 0.01,k = 0.001 and λ = 5
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