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ON 2-STRONG HOMOMORPHISMS AND 2-NORMED
HYPERSETS IN HYPERVECTOR SPACES

P. RAJA1 AND S. M. VAEZPOUR2,∗

Abstract. In this paper the notion of a 2−normed hyperset in hypervector
spaces is introduced. Also we construct some special 2−normed hypersets
of strong homomorphisms over hypervector spaces. Among other results we
consider 2−strong homomorphisms and investigate some of their properties.

1. Introduction and preliminaries

In 1964, Gähler introduced the definition of a 2−norm space, see [1]. Subse-
quently, many authors worked on this new construction and proved many theo-
rems about it, see for example [5], [6], and [11]. In 1999, Lewandowska gave a
generalization of Gähler’s 2−norm in [2] as following:

Let X and Y be real linear spaces and D a non-empty subset of X × Y such
that for every x ∈ X and y ∈ Y the sets

Dx = {y ∈ Y : (x, y) ∈ D} and Dy = {x ∈ X : (x, y) ∈ D}
are linear subspaces of the space Y and X, respectively.

A function ||., .|| : D −→ [0, ∞) will be called a generalized 2−norm on D if
it satisfies the following conditions:

(i) ||x, αy|| = |α|||x, y|| = ||αx, y||, for any real number α and all (x, y) ∈ D,
(ii) ||x, y+z|| 6 ||x, y||+||x, z||, for x ∈ X, y, z ∈ Y such that (x, y), (x, z) ∈

D,
(iii) ||x+y, z|| 6 ||x, y||+||w, y||, for x, y ∈ X, y, z ∈ Y such that (x, z), (y, z) ∈

D.
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Some of mathematicians worked on this construction and found some generaliza-
tions of classic theorems. In 1988, Scafati Tallini defined the concept of hyper-
vector spaces and recently, we have proved some theorems about them, see [7],
[8], and [9].

Let P (X) be the power set of a set X, P ?(X) = P (X)\{∅}, and K a field. A
hypervector space over K that is defined in [7], is a quadruplet (X, +, ◦, K) such
that (X, +) is an abelean group and

◦ : K ×X −→ P ?(X)

is a mapping that for all a, b ∈ K and x, y ∈ X the following properties holds:

(i) (a + b) ◦ x ⊆ (a ◦ x) + (b ◦ x),
(ii) a ◦ (x + y) ⊆ (a ◦ x) + (a ◦ y),
(iii) a ◦ (b ◦ x) = (ab) ◦ x, where a ◦ (b ◦ x) = { a ◦ y : y ∈ b ◦ x },
(iv) (−a) ◦ x = a ◦ (−x),
(v) x ∈ 1 ◦ x.

A non-empty subset of a hypervector space X over a field K is called a subspace
of X if the following hold:

(i) H −H ⊆ H,
(ii) a ◦ H ⊆ H, for every a ∈ K.

Let (X, +, ◦, K) be a hypervector space. Suppose that for every a ∈ K, |a|
denoted the valuation of a in K. A norm on a hypervector space ,X, is a mapping

|| . || : X −→ R

that for all a ∈ K and x, y ∈ X has the following properties:

(i) ||x|| = 0 if and only if x = 0,
(ii) ||x + y|| 6 ||x||+ ||y||,
(iii) sup ||a ◦ x|| = |a| ||x||,

Let (X, +1, ◦1, K) and (Y, +2, ◦2, K) be two hypervector spaces. A strong homo-
morphism between X and Y , is a mapping

f : X −→ Y

such that for all a ∈ K and x, y ∈ X the following hold:

(i) f(x +1 y) = f(x) +2 f(y),
(ii) f(a ◦1 x) = a ◦2 f(x).

For more details see [7], [8], and [10].

Remark 1.1. Let X = (X, +1, ◦1,R) and Y = (Y, +2, ◦2,R) be real hypervector
spaces. Assume that L(X, Y ) denotes the set of all strong homomorphisms from
X to Y . For every f, g ∈ L(X, Y ), α ∈ R, and x ∈ X, suppose that:

(i) (f + g)(x) = f(x) +2 g(x),
(ii) α ◦ f = {h ∈ L(X, Y ) : h(x) ∈ f(α ◦1 x), for every x ∈ X}.

It is not hard to see that (L(X, Y ), +, ◦, R) is a real hypervector space.
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In this paper the notion of a 2−normed hyperset in hypervector spaces is
introduced. Also we construct some special 2−normed hypersets of strong homo-
morphisms over hypervector spaces. Among other results we consider 2−strong
homomorphisms and investigate some of their properties.

2. Main results

Let X = (X, +1, ◦1,R) and Y = (Y, +2, ◦2,R) be real hypervector spaces,
and D a non-empty subset of X × Y . Put Dx = { y ∈ Y : (x, y) ∈ D } and
Dy = {x ∈ X : (x, y) ∈ D }, for every x ∈ X and y ∈ Y .

Definition 2.1. Let X = (X, +1, ◦1,R) and Y = (Y, +2, ◦2,R) be real hypervec-
tor spaces. Let D be a non-empty subset of X × Y .

A function ||., .|| : D −→ [0, ∞) is called a generalized 2−norm on D if for
all x, w ∈ X, y, z ∈ Y such that (x, y), (x, z), (w, y) ∈ D , and α ∈ R, the
following hold:

(i) sup ||x, α ◦2 y|| = |α|||x, y|| = sup ||α ◦1 x, y||,
(ii) ||x, y +2 z|| 6 ||x, y||+ ||x, z||,
(iii) ||x +1 w, y|| 6 ||x, y||+ ||w, y||.
Moreover if Dx and Dy are subspaces of the hypervector spaces Y and X, re-

spectively, for every x ∈ X, y ∈ Y , then the set D is called a 2−normed hyperset.
In particular, if D = X×Y , the function ||., .|| is called a generalized 2−norm on
X × Y and the pair (X × Y, ||., .||) a generalized 2−normed hypervector space.
Also if X = Y , then the generalized 2−normed hypervector space is denoted by
(X, ||., .||).
Definition 2.2. Let X = (X, +, ◦,R) be real hypervector space. Let D be a non-
empty subset of X ×X such that D = D−1, where D−1 = {(y, x) : (x, y) ∈ D},
and the set Dy is a subspace of X, for every y ∈ X.

A generalized symmetric 2−norm on D is a generalized 2−norm on D such
that ||x, y|| = ||y, x||, for every (x, y) ∈ D.

The set D is called a generalized symmetric 2−normed hyperset. Specially, if
D = X ×X, the function ||., .|| is called a generalized symmetric 2−norm on X
and the pair (X, ||., .||) a generalized symmetric 2−normed hypervector space.

Example 2.3. Let S be the set of all sequences of real numbers. For every
{rn}, {sn} ∈ S and α ∈ R, define:

(i) {rn}+ {sn} = {rn + sn},
(ii) α ◦ {sn} = {{tn} : tn is in the segment between zero and αsn, for n ∈

N}.
It is easily check that (S, +, ◦, R) is a hypervector space. Let

||{sn}, {rn}|| =
∞∑

n=1

|sn||rn|,

for all {rn}, {sn} ∈ S. If D = {({rn}, {sn}) ∈ S2 : ||{rn}, {sn}|| < ∞}, then we
have:

(i) D = D−1,
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(ii) D{sn} is a subspace of S for every {sn} ∈ S.

So ||., .|| : D −→ [0, ∞) is a generalized symmetric 2−norm on D, and D is a
symmetric 2−normed hyperset.

In this section we will consider bounded 2−strong homomorphisms defined on
a 2−normed hyperset into a normed hypervector space.

Definition 2.4. Let X = (X, +1, ◦1, R) be a hypervector space, D ⊆ X × X
a 2−normed hyperset, and Y = (Y, +2, ◦2, || . ||, R) be a normed hypervector
space. An operator F : D −→ Y is said to be a 2−strong homomorphism if the
following hold:

(i) F (a + c, b + d) = F (a, b) + F (a, d) + F (c, b) + F (c, d), for a, b, c, d ∈ X
such that a, c ∈ Db ∩ Dd,

(ii) F (α ◦1 a, β ◦1 b) = (αβ) ◦2 F (a, b), for α, β ∈ R, (a, b) ∈ D.

A 2−strong homomorphism is called bounded, if there is M > 0 such that

||F (a, b)|| 6 M |||a, b||,
for every (a, b) ∈ D. In this case we define

||F || = inf{M > 0 : ∀(a, b) ∈ D ||F (a, b)|| 6 M |||a, b|| }
as the norm of the F .

Theorem 2.5. Let X = (X, +1, ◦1, R) and Y = (Y, +2, ◦2, ||.||, R) be hypervector
spaces, and D ⊆ X × X a 2−normed hyperset. If F : D −→ Y is a bounded
2−strong homomorphism, then we have the following:

(i) ||F || 6 M , for M ∈ P(F ), where P(F ) = {K > 0 : ||F (a, b)|| 6
K||a, b|| for all (a, b) ∈ D },

(ii) ||F (a, b)|| 6 ||F ||||a, b||, for every (a, b) ∈ D,
(iii)

||F || = sup{||F (a, b)|| : (a, b) ∈ D, ||a, b|| 6 1 }
= sup{||F (a, b)||

||a, b|| : (a, b) ∈ D, ||a, b|| 6= 0 }.

Proof. The proofs of (i) and (ii) are obvious.
To prove (iii), by condition (ii), we have

sup{||F (a, b)||
||(a, b)|| : (a, b) ∈ D, ||a, b|| 6= 0 } 6 ||F ||.

Let α = sup{||F (a, b)|| : (a, b) ∈ D, ||a, b|| 6 1 }. Then

α = sup{||F (a, b)|| : (a, b) ∈ D, ||a, b|| 6 1 }
6 sup{||F (a, b)||

||a, b|| : (a, b) ∈ D, ||a, b|| 6 1 }

6 sup{||F (a, b)||
||a, b|| : (a, b) ∈ D, ||a, b|| 6= 0 }

6 ||F ||.
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Let (a, b) ∈ D be such that ||a, b|| 6= 0. Since sup || 1
||a, b|| ◦1 a, b|| = 1

||a, b|| ||a, b|| =
1, then we have ||c, d|| 6 1, for every (c, d) ∈ ( 1

||a, b|| ◦1 a, b), and so

1

||a, b|| ||F (a, b)|| = sup || 1

||a, b|| ◦2 F (a, b)|| = sup ||F (
1

||a, b|| ◦1 a, b)|| 6 α.

On the other hand if (a, b) ∈ D and ||a, b|| = 0, then 0 6 ||F (a, b)|| 6
||F ||||a, b|| = 0 and so ||F (a, b)|| = 0. Hence ||F (a, b)|| 6 α||a, b||, for every
(a, b) ∈ D, and therefore α ∈ P(F ). So ||F || 6 α. This completes the proof. ¤
Remark 2.6. Let X = (X, +1, ◦1, R) and Y = (Y, +2, ◦2, R) be hypervector
spaces, and D ⊆ X×X a 2−normed hyperset. Denote by L2(D, Y ) the set of all
bounded 2−strong homomorphisms from D into Y . For every F, G ∈ L2(D, Y ),
α ∈ R, and (a, b) ∈ D, suppose that:

(i) (F + G)(a, b) = F (a, b) +2 G(a, b),
(ii) α ◦ F = {H ∈ L2(D, Y ) : H(a, b) ∈ α ◦2 F (a, b), for every (a, b) ∈ D}.

It is not hard to see that (L2(D, Y ), +, ◦, R) is a real hypervector space.

Theorem 2.7. Let X = (X, +1, ◦1, R) and Y = (Y, +2, ◦2, || . ||, R) be hyper-
vector spaces, and D ⊆ X ×X a 2−normed hyperset. If we define

||F || = inf{M > 0 : ∀(a, b) ∈ D ||F (a, b)|| 6 M |||a, b|| },
for every F ∈ L2(D, Y ), then (L2(D, Y ), +, ◦, || . ||, R) is a normed hypervector
space.

Proof. If ||F || = 0, then ||F (a, b)|| = 0, for every (a, b) ∈ D. Thus F (a, b) = 0,
for every (a, b) ∈ D. Conversely, if F is the zero 2−strong homomorphism, then

||F || = sup{||F (a, b)|| : (a, b) ∈ D, ||a, b|| 6 1 } = 0.

Now, suppose that F, G ∈ L2(D, Y ). We have

||(F + G)(a, b)|| = ||F (a, b) + G(a, b)||
6 ||F (a, b)||+ ||G(a, b)||
6 ||F ||||a, b||+ ||G||||a, b||
= (||F ||+ ||G||)||a, b||,

for every (a, b) ∈ D. So ||F + G|| 6 ||F ||+ ||G||.
Finally, suppose that α ∈ R. We have

sup ||(α ◦ F )(a, b)|| 6 sup ||α ◦2 F (a, b)|| 6 |α|||F (a, b)|| 6 |α|||F ||||a, b||,
for every (a, b) ∈ D. So sup ||α ◦ F || = |α|||F ||. Now, assume that α 6= 0, then

||F || 6 sup || 1
α
◦ (α ◦ F )|| 6 sup | 1

α
|||α ◦ F ||.

Hence |α|||F || 6 sup ||α ◦ F ||, and therefore sup ||α ◦ F || = |α|||F ||, for every
α 6= 0. On the other hand it is obvious that this equality is true for α = 0. So
the proof is complete. ¤

We recall that if X = (X, +, ◦,R) is a real hypervector space, then (X ×
X, +, ◦,R) is also a hypervector space with the following operations:
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(i) x + y = (x1 +1 y1, x2 +1 y2),
(ii) α ◦ (x1, x2) = (α ◦1 x1, α ◦1 x2),

for x = (x1, x2), y = (y1, y2) ∈ X ×X and α ∈ R.
Let X and Y be hypervector spaces. Clearly, if F : X −→ Y × Y is a strong

homomorphism, then there are f, g ∈ L(X, Y ) such that F (x) = (f(x), g(x)), for
every x ∈ X. Also the function F : X −→ Y × Y defined by the formula F (x) =
(f(x), g(x)), for every x ∈ X, where f, g ∈ L(X, Y ), is a strong homomorphism.

Now, we are going to construct two 2−normed hypersets of L(X, Y )2.

Definition 2.8. Let X = (X, +1, ◦1, ||.||1, R) be a real normed hypervector space,
Y a real hypervector space, and Y ⊆ Y × Y a 2−normed hyperset. The set
MY ⊆ L(X, Y )2 is a set that (f, g) ∈MY if for every x ∈ X, the following hold:

(i) (f(x), g(x)) ∈ Y ,
(ii) There is M > 0 such that ||f(x), g(x)|| 6 M ||x||21.

Lemma 2.9. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2,R) be hypervector
spaces. The set MY , for Y ⊆ Y × Y has the following properties:

(i) If Y is a symmetric 2−normed hyperset, then MY = M−1
Y ,

(ii) The sets Mg
Y = {h ∈ L(X, Y ) : (h, g) ∈ MY} and (MY)f = {h ∈

L(X, Y ) : (f, h) ∈MY} are subspaces of the hypervector space L(X, Y ),
for every f, g ∈ L(X, Y ).

Moreover, if Y is a symmetric 2−normed hyperset, we have (MY)f = Mf
Y .

Proof. Clearly, (i) is a consequence of the definition of MY .
To prove (ii), let g : X −→ Y be a strong homomorphism. Assume that

h : X −→ Y is a strong homomorphism such that h(x) = 0, for every x ∈ X.
We show that if H is a subspace of Y , then 0 ∈ H. Since H is a subspace, then
H 6= ∅, so suppose that y ∈ H. Now, we have −y ∈ (−1) ◦2 y and therefore
0 = y − y ∈ H + (−1) ◦2 y ⊆ H + H ⊆ H. Since for every x ∈ X, the set
Yg(x) is a subspace of Y , then h(x) = 0 ∈ Yg(x), for every x ∈ X. Therefore
(h(x), g(x)) ∈ Y , for every x ∈ X. Also if M > 0, then

||h(x), g(x)|| = ||0, g(x)|| = 0 6 M ||x||21,
for every x ∈ X. So H ∈Mg

Y and Mg
Y 6= ∅.

Now, let f1, f2 ∈ Mg
Y . Therefore (f1(x), g(x)), (f2(x), g(x)) ∈ Y and so

f1(x), f2(x) ∈ Yg(x). Since Yg(x) is a subspace of Y , then f1(x) + f2(x) ∈ Yg(x),
and we have (f1 + f2)(x, g(x)) ∈ Y , for every x ∈ X. Moreover there are
M1, M2 > 0 such that ||f1(x), g(x)|| 6 M1||x||21 and ||f2(x), g(x)|| 6 M2||x||21,
for every x ∈ X. Hence

||f1(x) + f2(x), g(x)|| 6 ||f1(x), g(x)||+ ||f2(x), g(x)|| 6 (M1 + M2)||x||21,
for every x ∈ X. Therefore f1 + f2 ∈Mg

Y .
Suppose that α ∈ R, f ∈ Mg

Y . It shows that (f(x), g(x)) ∈ Y and conse-

quently, f(x) ∈ Yg(x), for every x ∈ X. Since Yg(x) is a subspace of Y , then
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α ◦2 f(x) ⊆ Yg(x) and therefore

(α ◦2 f(x), g(x)) = {(t, g(x)) : t ∈ α ◦2 f(x) = f(α ◦1 x))} ⊆ Y ,

for every x ∈ X. Moreover, there exists M > 0 such that ||f(x), g(x)|| 6 M ||x||21,
for every x ∈ X. Hence for h ∈ α ◦ f , we have

||h(x), g(x)|| 6 sup ||α ◦2 f(x), g(x)|| = |α|||f(x), g(x)|| 6 |α|M ||x||21,
for every x ∈ X. Therefore α ◦ f ⊆Mg

Y . So Mg
Y is a subspace of L(X, Y ).

Similarly, it can be shown that (MY)f is a subspace of L(X, Y ). The condition

(i) implies the equality (MY)f = Mf
Y . This completes the proof. ¤

Definition 2.10. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2,R) be hyper-
vector spaces and (f, g) ∈MY , for Y ⊆ Y × Y . Define

||f, g|| = inf{M > 0 : ||f(x), g(x)|| 6 M ||x||21 for all x ∈ X}.
Theorem 2.11. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2,R) be hyper-
vector spaces and (f, g) ∈M, for Y ⊆ Y × Y . Then the following hold:

(i) ||f, g|| 6 M , for every M ∈ P (f, g), where

P (f, g) = {K > 0 : ||f(x), g(x)|| 6 K||x||21 for all x ∈ X},
(ii) ||f(x), g(x)|| 6 ||f, g||||x||21, for every x ∈ X,
(iii)

||f, g|| = sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}
= sup{||f(x), g(x)||

||x||21
: x ∈ X, ||x||1 6= 0}.

(iv) If Y is a symmetric 2−normed hyperset, then ||f, g|| = ||g, f ||, for every
(f, g) ∈MY .

Proof. The proofs of (i), (ii), and (iv) are obvious.
To prove (iii), by condition (ii), we have

sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1} 6 ||f, g||. (2.1)

Let α = sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}, and x ∈ X with x 6= 0. Then

||f(x), g(x)|| = sup ||( 1

||x||1 ||x||1) ◦2 f(x), (
1

||x||1 ||x||1) ◦2 g(x)||

= sup ||||x||1 ◦2 f(
1

||x||1 ◦1 x), ||x||1 ◦2 g(
1

||x||1 ◦1 x)||

= ||x||21 sup ||f(
1

||x||1 ◦1 x), g(
1

||x||1 ◦1 x)||.

If y ∈ 1
||x||1 ◦1 x, then ||y|| 6 1 and ||f(y), g(y)|| 6 α. Thus ||f(x), g(x)|| 6 α||x||21,

for x 6= 0. Also ||f(x), g(x)|| = 0 6 α||x||21, for x = 0. Therefore ||f(x), g(x)|| 6
α||x||21, for every x ∈ X, and it means that α ∈ P (f, g). By (i), we have ||f, g|| 6 α
and by (1), we conclude that ||f, g|| = sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}.
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Now, suppose that 0 6= x ∈ X. By (ii), we have

||f(x), g(x)||
||x||21

6 ||f, g||,

and so

sup{||f(x), g(x)||
||x||21

: x ∈ X, ||x||1 6= 0} 6 ||f, g||.

So if we put β = sup{ ||f(x), g(x)||
||x||21

: x ∈ X, ||x||1 6= 0}, then ||f(x), g(x)|| 6 β||x||21,
for every x 6= 0. On the other hand if x = 0, then ||f(x), g(x)|| = 0. Thus
||f(x), g(x)|| 6 β||x||21, for every x ∈ X, which means that β ∈ P (f, g) and
||f, g|| 6 β. This completes the proof. ¤

Theorem 2.12. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2,R) be hyper-
vector spaces. The set MY , for Y ⊆ Y × Y , is a 2−normed hyperset with the
following 2−norm:

||f, g|| = sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1},
for (f, g) ∈MY . Moreover, if Y is a symmetric 2−normed set, then the set MY
is also symmetric.

Proof. Suppose that (f, g) ∈ MY . It means that there is M > 0 such that
||f(x), g(x)|| 6 M ||x||21, for every x ∈ X. Therefore

sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1} 6 M < ∞,

and so the function ||., .|| has finite non-negative values. Moreover we have the
following:

(i) If x ∈ X, ||x|| 6 1, α ∈ R. Then

sup ||f(x), (α ◦ g)(x)|| 6 sup ||f(x), α ◦ g(x)||
= |α|||f(x), g(x)||
6 |α| sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}
= |α|||f, g||,

and consequently, we have

sup ||f, α ◦ g|| 6 |α|||f, g||. (2.2)

Now, let α 6= 0. Using (2), we have

||f, g|| 6 sup ||f, (
1

α
α) ◦ g|| 6 1

α
sup ||f, α ◦ g||,

and |α|||f, g|| 6 sup ||f, α ◦ g||, for α 6= 0. On the other hand if α = 0,
then |α|||f, g|| = 0 = sup ||f, α ◦ g||. So |α|||f, g|| 6 sup ||f, α ◦ g||, for
all α ∈ R, and by using (2), we have

sup ||f, α ◦ g|| = |α|||f, g||.
Similarly, we can show that sup ||α ◦ f, g|| = |α|||f, g||.
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(ii) Suppose that f, g, h ∈ L(X, Y ) such that (f, g), (f, h) ∈ MY . Let
x ∈ X be such that ||x|| 6 1. Then we have

||f(x), (g + h)(x)|| = ||f(x), g(x) + h(x)|| 6 ||f(x), g(x)||+ ||f(x), h(x)||
6 sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}
+ sup{||f(x), h(x)|| : x ∈ X, ||x||1 6 1}
= ||f, g||+ ||f, h||.

It implies that

||f, g + h|| 6 ||f, g||+ ||f, h||.
(iii) In a similar way we may prove that

||f + g, h|| 6 ||f, h||+ ||g, h||.
Now, suppose that Y is a symmetric 2−normed hyperset. Then MY = M−1

Y and
we have

||f, g|| = sup{||f(x), g(x)|| : x ∈ X, ||x||1 6 1}
= sup{||g(x), f(x)|| : x ∈ X, ||x||1 6 1} = ||g, f ||.

Therefore || ., . || is a generalized 2−norm on MY . Moreover by Lemma 2.9, the
set (MY)f and (MY)f are subspaces of L(X, Y ), for every f ∈ L(X, Y ). So the
set MY is a symmetric 2−normed hyperset and this completes the proof of the
theorem. ¤

Let X and Y be hypervector spaces, and f, g ∈ L(X, Y ), then the map (f, g) :
X ×X −→ Y × Y which is defined (f, g)(x) = (f(x), g(x)), for every x ∈ X, is
a strong homomorphisms as above.

Definition 2.13. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2, ||.||2, R) be
normed hypervector spaces, and Y ⊆ Y × Y a 2−normed hyperset. The set
NY ⊆ L(X, Y )2 is a set that (f, g) ∈ NY if for every x ∈ X and y ∈ Y , the
following hold:

(i) (f(x), g(y)) ∈ NY ,
(ii) There is M > 0 such that ||f(x), g(y)|| 6 M ||x||1||y||2.

Similar to Theorem 2.11 and Theorem 2.12, we have the following theorems.
So their proofs are omitted.

Lemma 2.14. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2, ||.||2, R) be
normed hypervector spaces. The set NY , for Y ⊆ Y × Y has the following prop-
erties:

(i) If Y is a symmetric 2−normed hyperset, then NY = N−1
Y ,

(ii) The sets N g
Y = {h ∈ L(X, Y ) : (h, g) ∈ NY} and (NY)f = {h ∈

L(X, Y ) : (f, h) ∈ NY} are subspaces of the hypervector space L(X, Y ),
for every f, g ∈ L(X, Y ).

Moreover, if Y is a symmetric 2−normed hyperset, we have (NY)f = N f
Y .

The proof is similar to the proof of Lemma 2.9, so we omit it.
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Definition 2.15. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2, ||.||2, R) be
normed hypervector spaces, and (f, g) ∈ NY , for Y ⊆ Y × Y . Define

||f, g|| = inf{M > 0 : ∀x ∈ X, y ∈ Y ||f(x), g(y)|| 6 M ||x||1||y||2}.
Theorem 2.16. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2, ||.||2, R) be
normed hypervector spaces, and (f, g) ∈ NY , for Y ⊆ Y ×Y . Then the following
hold:

(i) ||f, g|| 6 M , for every M ∈ R(f, g), where

R(f, g) = {K > 0 : ||f(x), g(y)|| 6 K||x||1||y||2 for every x ∈ X, y ∈ Y },
(ii) ||f(x), g(y)|| 6 ||f, g||||x||1||y||2, for every x ∈ X and y ∈ Y ,
(iii)

||f, g|| = sup{||f(x), g(y)|| : x ∈ X, y ∈ Y, ||x||1, ||y||2 6 1}
= sup{||f(x), g(y)||

||x||21
: x ∈ X, y ∈ Y, ||x||1, ||y||2 6= 0}.

(iv) If Y is a symmetric 2−normed hyperset, then ||f, g|| = ||g, f ||, for every
(f, g) ∈ NY .

Theorem 2.17. Let X = (X, +1, ◦1, ||.||1, R) and Y = (Y, +2, ◦2, ||.||2, R) be
normed hypervector spaces. The set NY , for Y ⊆ Y ×Y , is a 2−normed hyperset
with the following 2−norm:

||f, g|| = sup{||f(x), g(y)|| : x ∈ X, y ∈ Y, ||x||1, ||y||2 6 1},
for (f, g) ∈ NY . Moreover, if Y is a symmetric 2−normed set, then the set NY
is symmetric, too.

Remark 2.18. Note that the 2−normed hypersets (MY , ||., .||MY ) and (NY , ||., .||NY )
have the following properties:

(i) NY ⊆MY ,
(ii) ||f, g||MY 6 ||f, g||NY , for every (f, g) ∈ NY .
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