
J. Nonlinear Sci. Appl. 2 (2009), no. 3, 168–173

The Journal of Nonlinear Sciences and Applications

http://www.tjnsa.com

COMMENTS ON THE PAPERS “ ARCH. MATH. (BRNO),
42(2006), 51-58” “ THAI J. MATH., 3(2005), 63-70” AND

“MATH. COMMUNICATIONS 13(2008), 85-96”

N. HUSSAIN

Communicated by Lj. B. Ćirić

Abstract. Using Dotsonś convexity structure, the authors in [16, 17, 18]
established some deterministic and random common fixed point results. In this
note, we comment that the proofs of the results in [16, 17, 18] are incomplete
and incorrect.

1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function (0 < p ≤ 1),
satisfying the following conditions:

(i) ‖x‖p ≥ 0 and ‖x‖p = 0 ⇔ x = 0

(ii) ‖αx‖p = |α|p‖x‖p

(iii)‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X and all scalars α. The pair (X, ‖.‖p) is called a p-normed
space. It is a metric linear space with a translation invariant metric dp defined by
dp(x, y) = ‖x− y‖p for all x, y ∈ X. If p = 1, we obtain the concept of a normed
space. It is well-known that the topology of every Hausdorff locally bounded

Date: Revised: 2 May 2009.
∗ Corresponding author.
2000 Mathematics Subject Classification. Primary 47H10; Secondary 47H10, 54H25.
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topological linear space is given by some p-norm, 0 < p ≤ 1(see [7, 14, 19]).

Let X be a metric linear space and M a nonempty subset of X. Let I : M → X
be a mapping. A mapping T : M → X is called I-Lipschitz if there exists k ≥ 0
such that d(Tx, Ty) ≤ kd(Ix, Iy) for any x, y ∈ M . If k < 1 (respectively,
k = 1), then T is called I-contraction (respectively, I-nonexpansive). The map
T : M → X is said to be completely continuous if {xn} converges weakly to x im-
plies that {Txn} converges strongly to Tx. The map T : M → X is demiclosed at
0 if for every sequence {xn} in M converging weakly to x and {Txn} convergent
strongly to 0, we have Tx = 0. The set of best approximations of u ∈ X from M
is defined by PM(u) = {x ∈ M : d(x, u) = dist(u,M) = infy∈Md(u, y)}. The set
of fixed points of T ( resp. I) is denoted by F (T )(resp. F (I)). A point x ∈ M is
a common fixed (coincidence) point of I and T if x = Ix = Tx (Ix = Tx). The
set of coincidence points of I and T is denoted by C(I, T ). Two selfmaps I and
T of M are called:
(1) commuting if ITx = TIx for all x ∈ M ;
(2) R-weakly commuting if for all x ∈ M there exists R > 0 such that d(ITx, TIx) ≤
Rd(Ix, Tx);
(3) compatible if limn d(TIxn, ITxn) = 0 whenever {xn} is a sequence such that
limn Txn = limn Ixn = t for some t in M ;
(4) weakly compatible if they commute at their coincidence points, i.e. ITx =
TIx whenever Ix = Tx.

The set M is called q-starshaped with q ∈ M if the segment [q, x] = {(1−k)q+
kx : 0 ≤ k ≤ 1} joining q to x, is contained in M for all x ∈ M . Suppose M is
q-starshaped with q ∈ F (I) and is both T - and I-invariant in a p-normed space
X. Then T and I are called:
(5) R-subcommuting on M if there exists a real number R > 0 such that
‖ITx − TIx‖p ≤ R

k
‖(kTx + (1 − k)q) − Ix‖P for all x ∈ M, k ∈ (0, 1]. If

R = 1, then the maps are called 1-subcommuting;
(6) R-subweakly commuting on M if for all x ∈ M, there exists a real number
R > 0 such that ‖ITx− TIx‖p ≤R dist(Ix, [q, Tx]);
(7) Cq-commuting if ITx = TIx for all x ∈ Cq(I, T ), where Cq(I, T ) = ∪{C(I, Tk) :
0 ≤ k ≤ 1} and Tkx = (1− k)q + kTx.

Clearly, commuting maps are R-subweakly commuting, R-subweakly commut-
ing maps are R-subcommuting and R-subcommuting maps are Cq-commuting
but the converse, in each case, does not hold in general (see [8, 11] and references
therein).

Following important extension of the concept of starshapedness was defined by
Dotson [4] and has been studied by many authors (see [2]-[7],[9]-[18],[20]).

Definition 1.1. (Dotsonś convexity). Let M be subset of a p-normed space X
and F = {fx}x∈M a family of functions from [0, 1] into M such that fx(1) = x
for each x ∈ M. The family F is said to be contractive [4, 5, 12, 14] if there
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exists a function φ : (0, 1) → (0, 1) such that for all x, y ∈ M and all t ∈ (0, 1),
we have ‖fx(t) − fy(t)‖p ≤ [φ(t)]p‖x − y‖p. The family F is said to be jointly
(weakly) continuous if t → t0 in [0,1] and x → x0 (x → x0 weakly) in M , then
fx(t) → fx0(t0) (fx(t) → fx0(t0) weakly) in M . We observe that if M ⊂ X is
q-starshaped and fx(t) = (1 − t)q + tx, (x ∈ M ; t ∈ [0, 1]), then F = {fx}x∈M

is a contractive jointly continuous and jointly weakly continuous family with
φ(t) = t. Thus the class of subsets of X with the property of contractiveness and
joint continuity contains the class of starshaped sets which in turn contains the
class of convex sets (see [3, 4, 6, 12, 14]).

2. Main Results

In the papers [16, 17] under consideration, the author defines the so called
(S)-convex structure for a linear space X which is absurd as starshaped sets
and hence linear spaces satisfy the so called (S)-convex structure. Therefore, we
always define convex and starshaped structure on a nonempty subset M of X.
Thus Definition 1 in [15], Definition 2.7 in [16] and Definition 2.3 in [17] should
be modified in the context of a nonempty subset of a linear space X(see defi-
nition 1.1 above). Condition (iv) of the definition has no meanings and should
be deleted and in Condition (v) the function φ should be from (0, 1) → (0, 1).
Similarly, Definition 2.8 [16] should be modified as follows(see [4, 6, 12, 14]):

Let T be a selfmap of the set M having a family of functions F = {fx}x∈M as
defined above. Then T is said to satisfy the property (A), if T (fx(t)) = fTx(t)
for all x ∈ M and t ∈ [0, 1].

Example 2.1. An affine map T defined on q-starshaped set with Tq = q satisfies
the property (A). For this note that each q-starshaped set M has a contractive
jointly continuous family of functions F = {fx}x∈M defined by fx(t) = tx+(1−t)q,
for each x ∈ M and t ∈ [0, 1]. Thus fx(1) = x for all x ∈ M . Also, if the selfmap T
of M is affine and Tq = q, we have T (fx(t)) = T (tx+(1− t)q) = tTx+(1− t)q =
fTx(t) for all x ∈ M and all t ∈ [0, 1]. Thus T satisfies the property (A); a
property considered first time in 2000, by Khan, the author and Thaheem (see
[12], Theorems 3.7,3.10,3.12). This signifies that (S)-convex structure should be
introduced on a nonempty subset M of a linear space X.

Here is the main result of Nashine [16].

Theorem 2.2. Let X be a p-normed space with a (S)-convex structure. Let
T, I : X → X, C a subset of X such that T (∂C) ⊂ C and u ∈ F (T ) ∩ F (I).
Suppose that D = PM(u) and T is I-nonexpansive on D ∪ u, I satisfies property
(A), I is continuous, TI = IT on D, cl(T (D)) is compact on D. Also assume,
range of fα is contained in I(D). If D is nonempty, closed and if I(D) ⊂ D,
then D ∩ F (I) ∩ F (T ) 6= ∅.

My comments to Theorem 2.2 are as follows:



COMMENTS ON THE PAPERS 171

(a) The condition “range of fα is contained in I(D)” makes the result trivial. As
a matter of fact take fα(t) = tα for each α ∈ X and t ∈ [0, 1]; now X is a linear
space with zero element so {fα} is a (S)-convex structure with range of fα equal
to X. Thus X ⊆ I(D) ⊆ D ⊆ X.

(b) The (S)-convex structure is not a hereditary property so the set D here is
without any convexity structure and hence the statement in the proof of this
theorem “Tn is a well-defined map from D into D for each n” makes no sense; it
is worth mentioning that the entire proof depends on this important fact. Same
concerns the proof of Theorem 2 in [15].

(c) The statement in the proof of Theorem 2.2, “Since cl(T (D)) is compact, each
cl(Tn(D)) is compact” needs to be verified which is crucial for the application
of Theorem 2.9 stated in [16]. Actually, when D is q-starshaped, it has (S)-
convex structure fx(t) = tx + (1 − t)q, for each x ∈ D and t ∈ [0, 1]. Further,
if Tnx = (1 − kn)q + knTx for all x ∈ D and a fixed sequence of real numbers
kn(0 < kn < 1) converging to 1, then cl(Tn(M)) is compact for each n provided
cl(T (D)) is compact.

The second and last result in [16] is the following:

Theorem 2.3. Let X be a complete p-normed space whose dual separates the
points of X with a (S)-convex structure. Let T, I : X → X, C a subset of X
such that T (∂C) ⊂ C and u ∈ F (T ) ∩ F (I). Suppose that T is I-nonexpansive
on D ∪ u, I satisfies property (A), I is weakly continuous, TI = IT on D. Also
assume that range of fα is contained in I(D). If D is nonempty, weakly compact
and if I(D) ⊂ D, then D ∩ F (I) ∩ F (T ) 6= ∅.
The above comments (a) and (b) apply to Theorem 2.3 as well.

(d) The author has utilized Theorem 3.2 (stated in [16]) in the proof of Theorem
2.3 (see p.56, line 15 ) which holds for a compact metric space whereas the under-
lying set D here is assumed to be weakly compact and I is not continuous as well.

(e) The author seems to claim in equality (3.1) that ym → 0 which can not be
true unless Txm → Ty which is impossible under the assumed hypotheses. If we
assume that T is completely continuous to assure Txm → Ty, then the condition
“I−T is demiclosed” becomes superfluous and we directly get the conclusion(see
[5, 6, 10, 12, 14]). Thus the proof of Theorem 2.3 is incomplete and incorrect.
Consequently, Remark 3.5–Remark 3.9 in [16] are invalid.

(f) For more general and comprehensive results for noncommuting maps namely,
R-subweakly commuting, R-subcommuting and Cq-commuting maps defined on
the set M satisfying the Dotsonś convexity condition (or the so called (S)-convex
structure), we refer the reader to [5, 6, 10, 11].
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Comments on the results in [17]

(g) The author defines in the proofs of Theorems 3.1 and 3.2 in [17]; Tn :
Ω × PM(x0) → PM(x0) by Tn(ω, x) = fT (ω,x)(kn) and claims that each Tn is
a random operator without proving the measurability of Tn. The measurability
of Tn is still an open problem(see [2, 13] and references therein). Thus all the
results, Theorems 3.1-3.3 in [17], are deterministic in nature and hence are simple
corollaries to more general results in [5, 6, 10, 11].

(h) The author has utilized Lemma 2.5 (stated in [17]) in the proof of his The-
orem 3.2(see p.67, line 29) which holds for a compact metric space whereas the
underlying set PM(x0) here is assumed to be weakly compact and g is not con-
tinuous as well.

(i) The author seems to claim in lines 7 to 12 on page 68, that ym → 0 strongly
which can not be true unless T (ω, ξm(ω)) → T (ω, ξ(ω)). This is impossible as T is
not assumed to have any type of continuity. Thus the proof of Theorem 3.2 is in-
complete and incorrect. Consequently, Remark 3.5–Remark 3.7 in [17] are invalid.

Comments on the results in [18]

The proofs of all the results in [18] depends on the following statement:

If the maps I and T are compatible, then I and Tn are also compatible for
each n ≥ 1 where Tn(x) = (1 − kn)q + knTx for fixed sequence of real numbers
kn(0 < kn < 1) converging to 1.

Here we give an example to show that the above statement is not correct.

Example 2.4. Let X = R with usual norm and M = [1,∞). Let I(x) = 2x− 1
and T (x) = x2, for all x ∈ M . Let q = 1. Then M is q-starshaped with Iq = q.
Note that I and T are compatible. Further C(I, T 2

3
) = {1, 2} and IT 2

3
(2) 6=

T 2
3
I(2), which implies that I and T 2

3
are not weakly compatible. Thus I and

T 2
3

are not compatible maps. Consequently, all the results proved in [18] are

incorrect.

The results in [18] can be corrected if the compatibility of I and T is replaced
by the condition of subcompatibility (see [1]).
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