The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY

R. ZARGHAMI¹

Communicated by Romi Shamoyan

ABSTRACT. In this paper we apply the Bishop-Phelps Theorem to show that if X is a Banach space and $G \subseteq X$ is a maximal subspace so that $G^{\perp} = \{x^* \in X^* | x^*(y) = 0; \forall y \in G\}$ is an L-summand in X^* , then $L^1(\Omega, G)$ is contained in a maximal proximinal subspace of $L^1(\Omega, X)$.

1. INTRODUCTION

To follow the note we need some definitions and notations which are following. Let (Ω, Σ, μ) be a measure space with nonnegative complete σ -finite measure μ and σ -algebra Σ of μ -measurable sets. We denote by $L^p(\Omega, \Sigma, \mu : X) = L^p(\Omega, X)$ the Banach space of all equivalence classes of all Bochner integrable functions $f: \Omega \to X$ with norm

$$\|f\| = \left(\int_{\Omega} \|f(t)\|^{p} d\mu\right)^{\frac{1}{p}}; 1 \le p < \infty,$$
$$\|f\|_{\infty} = \operatorname{ess\,sup}_{t \in \Omega} \|f(t)\|; p = \infty.$$

A subset $A \subseteq X$ is decomposable if for any two elements f, g in A and $E \subseteq \Sigma$, we get $\chi_E f + \chi_{X \setminus E} g \in A$. Where χ_A is the characteristic function. Let X be a real or complex Banach space and C be a closed convex subset of X. The set of support points of C, is the collection of all points $z \in C$ for which there exists nontrivial $f \in X^*$ such that $\sup_{x \in C} |f(x)| = |f(z)|$. Such an f is called support functional. The support point z is said to be exposed, if Ref(x) < Ref(z), for

Date: Revised : 24 Jan. 2010.

²⁰⁰⁰ Mathematics Subject Classification. 46E99.

Key words and phrases. Bishop-Phelps Theorem; support point; proximinality; L-projection.

 $x(\neq z) \in C$. We denote by SuppC and ΣC the set of support points and support functionals, respectively. Bishop and Phelps [1, 7] have shown that if C is a closed convex and bounded subset of X then SuppC is dense in the boundary of C and ΣC is dense in X^* . The complex case of the Bishop-Phelps Theorem is also studied in [6, 8] and some results are given.

Let X be a Banach space and G a closed subspace of X. The subspace G is called proximinal in X if for every $x \in X$ there exists at least one $y \in G$ such that

$$||x - y|| = \inf\{||x - z|| : z \in G\}.$$

A linear projecton $P: X \longrightarrow Y$ is called an L - projecton if

$$||x|| = ||Px|| + ||x - Px||; \quad \forall x \in X.$$

A closed subspace $Y \subset X$ is called an L – summand if it is the range of an L – projection. The natural question is that, whether or not $L^1(\Omega, G)$ is proximinal in $L^1(\Omega, X)$ if G is proximinal in X [4]. We will show that if G^{\perp} is an L – summand then $L^1(\Omega, G)$ is contained in a maximal proximinal subspace of $L^1(\Omega, X)$.

2. The main results

Theorem 2.1. [5] If X is a Banach space and $T \in X^*$, then kerT is a proximinal set in X if and only if T supports some points of the closed unit ball of X.

Lemma 2.2. Let X be a Banach space and G a support set in X. Suppose $L^1(\Omega, G)$ is a decomposable set. Then each constant function of $L^1(\Omega, G)$ is a support point for $L^1(\Omega, G)$.

Proof. Let $g_0 \in L^1(\Omega, G)$ be a constant function, then there exists a point $x_0 \in G$ such that $g_0(t) = x_0$. Since G is a support set, we have

$$\exists T_0 \in X^* \ s.t. \ inf_G T_0 = T_0(x_0).$$

We define $F_0: L^1(\Omega, X) \to R$ as follows:

$$F_0(g) = \int_{\Omega} T_0(g(t)) d\mu.$$

It is obvious that $F_0 \in L^1(\Omega, X)^*$, because if

$$g_n \to g \quad (\|g_n - g\| \to 0),$$

then

$$|F_{0}(g_{n}) - F_{0}(g)| = |\int_{\Omega} T_{0}(g_{n}(t) - g(t))d\mu|$$

$$\leq \int_{\Omega} |T_{0}(g_{n}(t) - g(t))|d\mu$$

$$\leq \int_{\Omega} ||T_{0}|| ||g_{n}(t) - g(t)||d\mu$$

$$= ||T_{0}|| ||g_{n} - g|| \to 0.$$
(2.1)

hence $F_0(g_n) \to F_0(g)$ therefore $F_0 \in L^1(\Omega, X)^*$. Now by Theorem 2.2 [3], we have

$$inf_{L^{1}(\Omega,G)}F_{0} = inf_{L^{1}(\Omega,G)}\int_{\Omega}T_{0}(g(t))d\mu$$
$$= \int_{\Omega}T_{0}(x_{0})d\mu = T_{0}(x_{0}).$$
(2.2)

Note that the middle equality is true, because $L^1(\Omega, G)$ is a decomposable set. By letting $g_0(t) = x_0$ we get that $g_0 \in L^1(\Omega, G)$, and the required result follows:

$$inf_{L^1(\Omega,G)}F_0 = F_0(g_0) = T_0(x_0) = inf_G T_0.$$

Therefore, $g_0 \in L^1(\Omega, G)$ is a support point for $L^1(\Omega, G)$.

Theorem 2.3. (See Proposition 1.1 of [2]). Let G be a subspace of a Banach space X such that $G^{\perp} = \{x^* \in X^* | x^*(y) = 0; \forall y \in G\}$ be an L-summand in X^* , then G is proximinal in X.

By applying the above results we will have the following theorem.

Theorem 2.4. Let X be a Banach space and $G \subset X$ be a maximal subspace such that $G^{\perp} = \{x^* \in X^* | x^*(y) = 0; \forall y \in G\}$ be an L-summand in X^* , then $L^1(\Omega, G)$ is contained in a maximal proximinal subspace of $L^1(\Omega, X)$.

Proof. Since G^{\perp} is an L-summand in Banach space X^* then by theorem 2.3, G is proximinal in X. On the other hand G is a maximal subspace, so there exists $T \in X^*$ such that kerT = G. Applying Theorem 2.1, there exists a point x_0 in the closed unit ball of X such that T supports x_0 . It is trivial that

$$F(g) = \int_{\Omega} T(g(t)) d\mu$$

is a continuous linear functional on $L^1(\Omega, X)$. Since T is a support functional by the proof of Lemma 2.2, that F is also a support functional for the closed unit ball of $L^1(\Omega, X)$ (by choosing $g_0(t) = x_0$), therefore kerF is proximinal in $L^1(\Omega, X)$ It is obvious that $L^1(\Omega, G) \subseteq kerF$ and kerF is a maximal subspace, so $L^1(\Omega, G)$ is contained in maximal proximinal subspace of $L^1(\Omega, X)$. \Box

Remark 2.5. It is easy to see that if x_0 is a support point for a closed convex subset C of a Banach space $(X, \|.\|_1)$ then it may not be a support point for $C \subseteq (X, \|.\|_2)$ even when $\|.\|_2$ is equivalent norm to $\|.\|_1$. Now from above results we conclude that the proximinality of a subset of a Banach space does not hold with two equivalent norm in general.

Acknowledgments

The author would like to thank Dr. I. Sadeqi for his valuable remarks.

This research is supported by University of Tabriz-Faculty of Mathematical Sciences, Tabriz, Iran.

146

References

- E. Bishop, R. R. Phelps, The support functionals of a convex set, Proc. Symposia in Pure Math. AMS. 7 (1963), 27–35.
- [2] P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Math. 1574, Springer, Berlin, Heidelberg, New York, (1993).
- [3] F. Hiai and H. Umegaki, Integrals, conditional expection, and martingales multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.
- [4] R. Khalil and F. Said, Best approximation in $L^1(\Omega, X)$, Proceeding of the Amer. Math. Soc. 1 (1999), 183–189.
- [5] P. Mani. A characterization of convex set, Handbook of convex geometry (1993).
- [6] R. R. Phelps, The Bishop-Phelps Theorem in complex spaces: an open problem, Pure App. Math. 131 (1991), 337–340.
- [7] M. Sababheh, R. Khalil, Remarks on remotal sets in vector valued function spaces, The J. Nonlinear Sci. Appl., (2009), no. 1, 1–10.
- [8] I. Sadeqi, Support functionals and their relation to the RNP, IJMMS, 16 (2004), 827–832.

 1 University of Tabriz-Faculty of Mathematical Sciences, Tabriz, Iran $E\text{-}mail\ address: \texttt{zarghamir0gmail.com}$