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EXISTENCE, UNIQUENESS AND STABILITY RESULTS OF
IMPULSIVE STOCHASTIC SEMILINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

A. VINODKUMAR1,∗

Abstract. This article presents the results on existence, uniqueness and sta-
bility of mild solution for impulsive stochastic semilinear functional differential
equations with non-Lipschitz condition and Lipschitz condition. The results
are obtained by using the method of successive approximation and Bihari’s
inequality.

1. Introduction

Impulsive differential equations are suitable for mathematical model to simulate
the evolution of large classes of real processes. These processes are subjected to
short temporary perturbations. The duration of these perturbations is negligible
compared to the duration of whole process. These perturbations occurs in the
form of impulses (see [8, 14]). There is much notice in the field of impulsive
differential equations [1, 7] and the references therein.

The study of impulsive stochastic differential equations (ISDEs) is a new area of
research. There are few publications in the theory of ISDEs. Jun Yang et al.[15],
studied the stability analysis of ISDEs with delays. Zhiguo Yang et al.[16], studied
the exponential p- stability of ISDEs with delays. In [12, 13], Sakthivel and Luo
studied the existence and asymptotic stability in p-th moment of mild solutions
to ISDEs with and without infinite delays through fixed point theory. In [2],
the author studied the impulsive stochastic partial neutral functional differential
equations under non-Lipschitz condition and Lipschitz condition. Motivated by
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[3, 10, 11], we will generalize the existence and uniqueness of the solution to
impulsive stochastic partial functional differential equations (ISFDEs) under non-
Lipschitz condition and Lipschitz condition. Moreover, we study the stability
through the continuous dependence on the initial values by means of Corollary
of Bihari’s inequality. Further, we refer [3, 5, 6, 9].

The paper is organized as follows. In section 2, we recall briefly the notations,
definitions, lemmas and preliminaries which are used throughout this paper. In
section 3, we study the existence and uniqueness of ISFDEs by relaxing the
linear growth conditions. In section 4, we study stability through the continuous
dependence on the initial values. Finally in section 5, an example is given to
illustrate our results.

2. Preliminaries

Let X, Y be real separable Hilbert spaces and L(Y,X) be the space of bounded
linear operators mapping Y into X. For convenience, we shall use the same
notation ∥.∥ to denote the norms in X, Y and L(Y,X) without any confusion.
Let (Ω, B, P ) be a complete probability space with an increasing right continuous
family {Bt}t≥0 of complete sub σ-algebra of B. Let {w(t) : t ≥ 0} denote a Y -
valued Wiener process defined on the probability space (Ω, B, P ) with covariance
operator Q, that is

E < w(t), x >Y< w(s), y >Y= (t ∧ s) < Qx, y >Y , for all x, y ∈ Y ,

where Q is a positive, self-adjoint, trace class operator on Y . In particular, we
denote w(t), t ≥ 0, a Y - valued Q- Wiener process with respect to {Bt}t≥0.

In order to define stochastic integrals with respect to the Q- Wiener process
w(t), we introduce the subspace Y0 = Q1/2(Y ) of Y which, endowed with the
inner product
< u, v >Y0=< Q−1/2u,Q−1/2v >Y is a Hilbert space. We assume that there exists
a complete orthonormal system {ei}i≥1 in Y , a bounded sequence of nonnegative
real numbers λi such that Qei = λiei, i = 1, 2, . . . , and a sequence {βi}i≥1 of
independent Brownian motions such that

< w(t), e >=
∞∑
n=1

√
λi < ei, e > βi(t), e ∈ Y,

and Bt = Bw
t , where Bw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}.
Let L0

2 = L2(Y0, X) denote the space of all Hilbert- Schmidt operators from Y0

into X. It turns out to be a separable Hilbert space equipped with the norm
∥µ∥2

L0
2
= tr((µQ1/2)(µQ1/2)∗) for any µ ∈ L0

2. Clearly for any bounded operator

µ ∈ L(Y,X) this norm reduces to ∥µ∥2
L0
2
= tr(µQµ∗).

We now make the system (2.1) precise: Let A be the infinitesimal generator of a
strongly continuous semigroup {S(t), t ≥ 0} defined on X. Let the functions f :

ℜ+ × D̂ → X; a : ℜ+ × D̂ → L(Y,X), where ℜ+ = [0,∞), are Borel measurable.

Here D̂ = D((−∞, 0], X) denotes the family of all right piecewise continuous func-
tions with left-hand limit φ from (−∞, 0] to X. The phase space D((−∞, 0], X)
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is assumed to be equipped with the norm ∥φ∥t = sup
−∞<θ≤0

|φ(θ)|. We also as-

sume Db
B0
((−∞, 0], X) to denote the family of all almost surely bounded, B0-

measurable, D̂- valued random variables. Let L2 = L2(Ω, B,X) denote the
Hilbert space of all B- measurable square integrable random variables with val-
ues in X. Further, let BT be a Banach space BT ((−∞, T ], L2), the family of all
Bt-adapted process φ(t, w) with almost surely continuous in t for fixed w ∈ Ω
with norm defined for any φ ∈ BT

∥φ∥BT = ( sup
0≤t≤T

E∥φ∥2t )1/2.

In this article, we will examine impulsive stochastic semilinear functional differ-
ential equations of the form

dx(t) =
[
Ax(t) + f(t, xt)

]
dt+ a(t, xt)dw(t), t ̸= tk, k = 1, 2, . . .m,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), (2.1)

x(t) = φ ∈ Db
B0
((−∞, 0], X),

where 0 ≤ t ≤ T . The fixed moments of time tk satisfies 0 < t1 < . . . < tm < T ,
x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk, respectively.
And ∆x(tk) = x(t+k )−x(t−k ), represents the jump in the state x at time tk with Ik
determining the size of the jump. The notation A is the infinitesimal generator
of strongly continuous semigroup of bounded linear operators {S(t), t ≥ 0} with
D(A) ⊂ X.

Lemma 2.1.[4] Let T > 0 and u0 ≥ 0, u(t), v(t) be the continuous functions on
[0, T ]. Let K : ℜ+ → ℜ+ be a concave continuous and nondecreasing function
such that K(r) > 0 for r > 0. If

u(t) ≤ u0 +

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(
G(u0) +

∫ t

0

v(s)ds
)

for all t ∈ [0, T ] such that

G(u0) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s)
for r ≥ 0 and G−1 is the inverse function of G. In partic-

ular, moreover if, u0 = 0 and
∫
0+

ds
K(s)

= ∞, then u(t) = 0 for all t ∈ [0, T ].

In order to obtain the stability of solutions, we use the following extended
Bihari’s inequality

Lemma 2.2.[10] Let the assumptions of Lemma 2.1 hold. If

u(t) ≤ u0 +

∫ T

t

v(s)K(u(s))ds for all 0 ≤ t ≤ T,
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then

u(t) ≤ G−1
(
G(u0) +

∫ T

t

v(s)ds
)

for all t ∈ [0, T ] such that

G(u0) +

∫ T

t

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s)
for r ≥ 0 and G−1 is the inverse function of G.

Corollary 2.3.[10] Let the assumptions of Lemma 2.1 hold and v(t) ≥ 0 for
t ∈ [0, T ]. If for all ϵ > 0, there exists t1 ≥ 0 such that for 0 ≤ u0 < ϵ,∫ T

t1
v(s)ds ≤

∫ ϵ

u0

ds
K(s)

holds, then for every t ∈ [t1, T ], the estimate u(t) ≤ ϵ holds.

Lemma 2.4.[5] For any r ≥ 1 and for arbitrary L0
2- valued predictable process

Φ(·)

sup
s∈[0,t]

E∥
∫ s

0

Φ(u)dw(u)∥2rX = (r(2r − 1))r
(∫ t

0

(E∥Φ(s)∥2rL0
2
)ds

)r

.

Definition 2.5. A semigroup {S(t), t ≥ 0} is said to be uniformly bounded if
∥S(t)∥ ≤ M for all t ≥ 0, where M ≥ 1 is some constant.

Definition 2.6. A stochastic process {x(t) ∈ BT , t ∈ (−∞, T ]}, (0 < T < ∞) is
called a mild solution of the equation (2.1) if
(i) x(t) ∈ X is Bt- adapted;
(ii) x(t) satisfies the integral equation

x(t) =


φ(t), t ∈ (−∞, 0],

S(t)φ(0) +

∫ t

0

S(t− s)f(s, xs)ds+

∫ t

0

S(t− s)a(s, xs)dw(s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk)), a.s t ∈ [0, T ].

(2.2)

3. Existence and uniqueness

In this section, we discuss the existence and uniqueness of mild solution of the
system (2.1). We use the following hypotheses to prove our results.
Hypotheses:
(H1) : A is the infinitesimal generator of a strongly continuous semigroup S(t),
whose domain D(A) is dense in X.

(H2) : For each x, y ∈ D̂ and for all t ∈ [0, T ], such that,

∥f(t, xt)− f(t, yt)∥2 ∨ ∥a(t, xt)− a(t, yt)∥2 ≤ K(∥x− y∥2t ),
whereK(·) is a concave non-decreasing function fromℜ+ to ℜ+,K(0) = 0,K(u) >
0, for u > 0 and

∫
0+

du
K(u)

= ∞.

(H3) : The function Ik ∈ C(X,X) and there exists some constant hk such that

∥Ik(x(tk))− Ik(y(tk))∥2 ≤ hk ∥x− y∥2t , for each x, y ∈ D̂, k = 1, 2 . . . ,m.
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(H4) : For all t ∈ [0, T ], it follows that f(t, 0), a(t, 0), Ik(0) ∈ L2, for k =
1, 2 . . . ,m such that

∥f(t, 0)∥2 ∨ ∥a(t, 0)∥2 ∨ ∥Ik(0)∥2 ≤ κ0,

where κ0 > 0 is a constant.
Let us now introduce the successive approximations to equation (2.2) as follows

x0(t) =

{
φ(t) for t ∈ (−∞, 0],
S(t)φ(0) for t ∈ [0, T ].

(3.1)

and, for n = 1, 2, . . . ,

xn(t) =


φ(t) for t ∈ (−∞, 0],

S(t)φ(0) +

∫ t

0

S(t− s)f(s, xn−1
s )ds+

∫ t

0

S(t− s)a(s, xn−1
s )dw(s)

+
∑

0<tk<t

S(t− tk)Ik(x
n−1(tk)) for a.s t ∈ [0, T ],

(3.2)
with an arbitrary non-negative initial approximation x0 ∈ BT .

Theorem 3.1. Assume that (H1)− (H4) hold. Then the system (2.1) has unique
mild solution x(t) in BT , provided there is M ≥ 1 such that ∥S(t)∥ ≤ M and

M2m
m∑
k=1

hk <
1

3
.

Proof : Let x0 ∈ BT be a fixed initial approximation to (3.2). First observe
that by (H1) - (H4), ∥S(t)∥ ≤ M for some M ≥ 1 and all t ∈ [0, T ]. Then for
any n ≥ 1, we have,

∥xn(t)∥2 ≤ 4M2 ∥φ(0)∥2

+8TM2

∫ t

0

[
∥f(s, xn−1

s )− f(s, 0)∥2 + ∥f(s, 0)∥2
]
ds

+8M2

∫ t

0

[
∥a(s, xn−1

s )− a(s, 0)∥2 + ∥a(s, 0)∥2
]
ds

+8M2m
m∑
k=1

[
∥Ik(xn−1(tk))− Ik(0)∥2 + ∥Ik(0)∥2

]
.

Thus,

E ∥xn∥2t ≤ Q1 + 8M2(T + 1)E

∫ t

0

K(∥xn−1∥2s)ds

+8M2m

m∑
k=1

hk

{
E∥xn−1∥2t

}
,

where, Q1 = 4M2
(
E∥φ(0)∥2 + 2

(
T (T + 1) +m

∑m
k=1 hk

)
κ0

)
.
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Given that K(·) is concave and K(0) = 0, we can find a pair of positive
constants a and b such that

K(u) ≤ a+ bu, for all u ≥ 0.

Then we have,

E ∥xn∥2t ≤ Q2 + 8M2(T + 1)b

∫ t

0

E∥xn−1∥2sds (3.3)

+8M2m
m∑
k=1

hk{E
∥∥xn−1

∥∥2

t
}, n = 1, 2, . . .

where, Q2 = Q1 + 8M2(T + 1)Ta.
Since

E
∥∥x0

∥∥2

t
≤ M2E ∥φ(0)∥2 = Q3 < ∞. (3.4)

Thus,

E ∥xn∥2t ≤ Q4 < ∞, for all n = 0, 1, 2, . . . and t ∈ [0, T ]. (3.5)

This proves the boundedness of {xn(t), n ∈ N}.
Let us next show that {xn(t)} is Cauchy in BT . For this, for n,m ≥ 1, we have

∥∥xn+1(t)− xm+1(t)
∥∥2 ≤ 3M2(T + 1)

∫ t

0

K(∥xn(s)− xm(s)∥2)ds

+3M2m
m∑
k=1

hk∥xn(t)− xm(t)∥2.

Thus,

sup
0≤s≤t

E
∥∥xn+1 − xm+1

∥∥2

s
≤ Q5

∫ t

0

K
(

sup
0≤r≤s

E∥xn − xm∥2r
)
ds (3.6)

+Q6 sup
0≤s≤t

E∥xn − xm∥2s,

where Q5 = 3M2(T + 1) and Q6 = 3M2m
∑m

k=1 hk.
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Integrating both sides of equation (3.6) and applying Jensen’s inequality gives
that∫ t

0

sup
0≤l≤s

E
∥∥xn+1 − xm+1

∥∥2

l
ds ≤ Q5

∫ t

0

∫ s

0

K
(

sup
0≤r≤l

E∥xn − xm∥2r
)
dlds

+Q6

∫ t

0

sup
0≤l≤s

E∥xn − xm∥2l ds,

≤ Q5

∫ t

0

s

∫ s

0

K
(

sup
0≤r≤l

E∥xn − xm∥2r
)1
s
dlds

+Q6

∫ t

0

sup
0≤l≤s

E∥xn − xm∥2l ds,

≤ Q5t

∫ t

0

K
(∫ s

0

sup
0≤r≤l

E∥xn − xm∥2r
1

s
dl
)
ds

+Q6

∫ t

0

sup
0≤l≤s

E∥xn − xm∥2l ds.

Then,

Ψn+1,m+1(t) ≤ Q5

∫ t

0

K
(
Ψn,m(s)

)
ds+Q6Ψn,m(t), (3.7)

where

Ψn,m(t) =

∫ t

0

sup
0≤l≤s

E∥xn − xm∥2l ds

t
.

From (3.5), it is easy to see that

sup
n,m

Ψn,m(t) < ∞.

So letting Ψ(t) = lim supn,m→∞Ψn,m(t) and taking into account the Fatou’s
lemma, we yield that

Ψ(t) = Q̂

∫ t

0

K
(
Ψ(s)

)
ds, where Q̂ =

Q5

1−Q6

.

Now, applying the Lemma 2.1, immediately reveals Ψ(t) = 0 for any t ∈ [0, T ].
This further means {xn(t), n ∈ N} is a Cauchy sequence in BT . So there is an
x ∈ BT such that

lim
n→∞

∫ T

0

sup
0≤s≤t

E∥xn − x∥2sdt = 0.

In addition, by (3.5), it is easy to follow that E∥x∥2t ≤ Q4. Thus we claim that
x(t) is a mild solutions to (2.1). On the other hand, by (H2) and letting n → ∞,
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we can also claim that for t ∈ [0, T ]

E∥
∫ t

0

S(t− s)
[
f(s, xn−1

s )− f(s, xs)
]
ds∥2 → 0,

E∥
∫ t

0

S(t− s)
[
a(s, xn−1

s )− a(s, xs)
]
dw(s)∥2 → 0

and E∥
∑

0<tk<t

S(t− tk)
[
Ik(x

n−1(tk))− Ik(x(tk))
]
∥2 → 0.

Hence, taking limits on both sides of (3.2),

x(t) = S(t)φ(0) +

∫ t

0

S(t− s)f(s, xs)ds+

∫ t

0

S(t− s)a(s, xs)dw(s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk)).

This certainly demonstrates by the Definition 2.6 that x(t) is a mild solution to
(2.1) on the interval [0, T ].

Now, we prove the uniqueness of the solutions of (2.2). Let x1, x2 ∈ BT be
two solutions of (2.1) on some interval (−∞, T ]. Then, for t ∈ (−∞, 0], the
uniqueness is obvious and for 0 ≤ t ≤ T , we have

E ∥x1 − x2∥2t ≤ Q6E∥x1 − x2∥2t

+Q5

∫ t

0

K(E∥x1 − x2∥2s)ds.

Thus,

E ∥x1 − x2∥2t ≤ Q5

1−Q6

∫ t

0

K(E∥x1 − x2∥2s)ds.

Thus, Bihari’s inequality yields that

sup
t∈[0,T ]

E ∥x1 − x2∥2t = 0, 0 ≤ t ≤ T.

Thus, x1(t) = x2(t), for all 0 ≤ t ≤ T . Therefore, for all −∞ < t ≤ T ,
x1(t) = x2(t). This achieve the proof. �

4. Stability

In this section, we study the stability through the continuous dependence on
initial values.

Definition 4.1. A mild solution x(t) of the system (2.1) with initial value ϕ is
said to be stable in the mean square if for all ϵ > 0, there exists δ > 0 such that

E∥x− x̂∥2t ≤ ϵ whenever E∥ϕ− ϕ̂∥2 < δ, for all t ∈ [0, T ]. (4.1)

where x̂(t) is another mild solution of the system (2.1) with initial value ϕ̂.

Theorem 4.2. Let x(t) and y(t) be mild solutions of the system (2.1) with initial
values φ1 and φ2 respectively. If the assumptions of Theorem 3.1 are satisfied,
then the mild solution of the system (2.1) is stable in the mean square.
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Proof: By the assumptions, x(t) and y(t) are two mild solutions of equations
(2.1) with initial values φ1 and φ2 respectively, then for 0 ≤ t ≤ T

x(t)− y(t) = S(t)
[
φ1(0)− φ2(0)

]
+

∫ t

0

S(t− s)
[
f(s, xs)− f(s, ys)

]
ds

+

∫ t

0

S(t− s)
[
a(s, xs)− a(s, ys)

]
dw(s) +

∑
0<tk<t

S(t− tk)
[
Ik(x(tk))− Ik(y(tk))

]
.

So, estimating as before, we get

E∥x− y∥2t ≤ 4M2E∥φ1 − φ2∥2 + 4M2(T + 1)

∫ t

0

K(E∥x− y∥2s)ds

+4M2m

m∑
k=1

hkE∥x− y∥2t .

Thus,

E∥x− y∥2t ≤ 4M2

1− 4M2m
∑m

k=1 hk

E∥φ1 − φ2∥2

+
4M2(T + 1)

1− 4M2m
∑m

k=1 hk

∫ t

0

K(E∥x− y∥2s)ds.

Let K1(u) = 4M2(T+1)
1−4M2m

∑m
k=1 hk

K(u), where K is a concave increasing function

from ℜ+ to ℜ+ such that K(0) = 0, K(u) > 0 for u > 0 and
∫
0+

du
K(u)

= +∞.

So, K1(u) is obviously, a concave function from ℜ+ to ℜ+ such that K1(0) = 0,
K1(u) ≥ K(u), for 0 ≤ u ≤ 1 and

∫
0+

du
K1(u)

= +∞. Now for any ϵ > 0, ϵ1 =
1
2
ϵ,

we have lim
s→0

∫ ϵ1

s

du

K1(u)
= ∞. So, there is a positive constant δ < ϵ1, such that∫ ϵ1

δ
du

K1(u)
≥ T .

Let

u0 =
4M2

1− 4M2m
∑m

k=1 hk

E∥φ1 − φ2∥2,

u(t) = E∥x− y∥2t , v(t) = 1,

when u0 ≤ δ ≤ ϵ1. From Corollary 2.3 we have∫ ϵ1

u0

du

K1(u)
≥

∫ ϵ1

δ

du

K1(u)
≥ T =

∫ T

0

v(s)ds.

So, for any t ∈ [0, T ], the estimate u(t) ≤ ϵ1 holds. This completes the proof. �

Remark 4.3.
If m = 0 in (2.1), then the system behave as stochastic partial functional

differential equations with infinite delays of the form{
dx(t) =

[
Ax(t) + f(t, xt)

]
dt+ a(t, xt)dw(t), 0 ≤ t ≤ T,

x(t) = φ ∈ Db
B0
((−∞, 0], X).

(4.2)
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By applying Theorem 3.1 under the hypotheses (H1) − (H2), (H4) the system
(4.2) guarantees the existence and uniqueness of the mild solution.

Remark 4.4.
If the system (4.2) satisfies the Remark 4.1, then by Theorem 4.1, the mild

solution of the system (4.2) is stable in the mean square.

5. An example

We conclude this work with an example of the form

du(t, x) =
[∂2u(t, x)

∂x2
+H(t, u(tsint, x))

]
dt+ σ G(t, u(tsint, x))dβ(t),

t ̸= tk, 0 ≤ t ≤ T, 0 ≤ x ≤ π, (5.1)

together with the initial conditions

u(t+k )− u(t−k ) = (1 + bk)u(x(tk)), t = tk, k = 1, 2, . . .m, (5.2)

u(t, 0) = u(t, π) = 0, (5.3)

u(t, x) = Φ(t, x), 0 ≤ x ≤ π, −∞ < t ≤ 0. (5.4)

Let X = L2([0, π]) and Y = R1, the real number σ is magnitude of continuous
noise, β(t) is a standard one dimension Brownian motion, Φ ∈ Db

B0
((−∞, 0], X),

bk ≥ 0 for k = 1, 2, . . . ,m and
∑m

k=1 bk < ∞.

Define an operator A on X by Au = ∂2u
∂x2 with the domain

D(A) =
{
u ∈ X

∣∣∣∣u and
∂u

∂x
are absolutely continuous,

∂2u

∂x2 ∈ X, u(0) = u(π) = 0
}
.

It is well known that A generates a strongly continuous semigroup S(t) which is
compact, analytic and selfadjoint. Moreover, the operator A can be expressed as

Au =
∞∑
n=1

n2 < u, un > un, u ∈ D(A),

where un(ζ) = ( 2
π
)
1
2 sin(nζ), n = 1, 2, . . ., is the orthonormal set of eigenvectors

of A, and

S(t)u =
∞∑
n=1

e−n2t < u, un > un, u ∈ X.

Then the problem (5.1)−(5.4) can be modeled as the abstract impulsive stochastic
semilinear functional differential equation of the form (2.1), as follows

f(t, xt) = H(t, u(tsint, x)), a(t, xt) = σ G(t, u(tsint, x))

and Ik(x(tk)) = (1 + bk)u(x(tk)) for k = 1, 2, . . .m.

The below results are consequence of Theorem 3.1 and Theorem 4.1 respec-
tively.

Proposition 5.1. If the hypotheses (H1)− (H5) hold, then there exists a unique
mild solution u of the system (5.1)− (5.4).
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Proposition 5.2. If all the hypotheses of Proposition 5.1 hold, then the mild
solution u of the system (5.1)− (5.4) is stable in the mean square.
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