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STABILITY AND STABILIZATION OF IMPULSIVE AND
SWITCHED HYBRID STOCHASTIC DELAY SYSTEMS

JUN LIU1, XINZHI LIU2★, AND WEI-CHAU XIE3

Abstract. Stability analysis is performed and stabilization strategies are pro-
posed for a general class of stochastic delay differential equations subjected
to switching and impulses. Hybrid switching and impulses are combined to
exponentially stabilize an otherwise unstable stochastic delay system. Three
differential stabilization strategies are proposed, i.e. the average dwell-time
approach, the impulsive stabilization, and a combined strategy. Both moment
stability and almost sure stability of the resulting impulsive and switched hy-
brid stochastic delay systems are investigated using the well-known Lyapunov-
Razumikhin method in the hybrid and stochastic setting. Several examples are
presented to illustrate the main results and numerical simulations are presented
to demonstrate the analytical results.

1. Introduction

In the face of growing complexity of both natural and man-made dynamical
systems being encountered in various fields of applications, hybrid systems are
currently becoming a large and growing interdisciplinary area of research. A
hybrid system is a dynamical system that exhibits both continuous and discrete
dynamic behavior. The interaction of continuous- and discrete-time dynamics in
a hybrid system can lead to very rich dynamical behavior and phenomena that are
not encountered in purely continuous- or discrete-time systems and hence brings
difficulties and challenges to the studies of hybrid systems, such as their stability
analysis and control design (see, e.g., [5, 13, 23, 24] and references therein).

Date: Received: Jun 21, 2010; Revised: December 12, 2011.
∗Corresponding author Tel.: +1 519 8884567x36007; fax: +1 519 746 4319

c⃝ 2011 N.A.G.
2000 Mathematics Subject Classification. Primary 93C30; Secondary 34K35, 93E15.
Key words and phrases. Switched system, impulsive system, hybrid system, delay system,

stochastic system, exponential stability, impulsive stabilization, Lyapunov-Razumikhin method.
315



316 J. LIU, X. LIU, W.-C. XIE

Impulsive differential equations or impulsive dynamical systems model real
world processes that undergo abrupt changes (impulses) in the state at discrete
times [10]. Particularly, impulse control and stabilization as a powerful tool to
achieve stability for dynamical systems that can be highly unstable, in the absence
of impulses, has gained increasing popularity and found successful applications in
a wide variety of areas, such as control systems, control and synchronization of
chaotic systems, complex dynamical networks, large-scale dynamical systems, se-
cure communication, spacecraft maneuvers, population growth and biological sys-
tems, neural networks, ecosystems management, and pharmacokinetics (see [18]
and references therein). Impulsive dynamical systems can be naturally viewed as
a class of hybrid systems that consist of three elements: a continuous differential
equation, which governs the continuous evolution of the system of between im-
pulses; a difference equation, which governs the way the system states are changed
at impulse times; and an impulsive law for determining the impulse times.

Another important type of hybrid systems are switched systems. A switched
system is described by a differential equation whose right-hand side is chosen
from a family of functions based on a switching signal. For each switching signal,
the switched system is a time-varying differential equation. We usually study the
properties of a switched system not under a particular switching signal but rather
under various classes of switching signals (see, e.g., [7, 13]).

Both hybrid systems, impulsive systems and switched systems can be naturally
combined to form a more comprehensive model, i.e. impulsive and switched
system, in which the switching signal and the impulsive law can be integrated
as an impulsive and switching law (to be described in this paper). Despite the
apparent abundance of applications, impulsive and switched systems only received
moderate attention since the 2000s (see, e.g., [11, 25, 26]), although, earlier in
1984, switching and impulses have already been combined to provide control for
a reflected diffusion [12].

Even though deterministic hybrid models can capture a wide range of behav-
iors encountered in practice, stochastic features are also very important, because
of the uncertainty inherent in most applications and environmental noise ubiq-
uitous in the real world. There has been increasing interest in stochastic hybrid
systems due to their applications in areas such as insurance pricing, power in-
dustry, flexible manufacturing, fault tolerant control, maneuvering aircraft, and
communication networks (see [1, 2, 21] and references therein). The theory of
stochastic differential equations and stochastic processes provides necessary tools
to formulate and study stochastic hybrid systems.

Most of the hybrid models currently considered in the literature use ordinary
differential equations (ODEs) or its stochastic counterpart, stochastic differential
equations (SDEs). The ODE and SDE models assume that the system under
consideration is governed by a principle of causality, i.e the future state of the
system is independent of the past states and depends only on the present state. It
is well-known that the principle of causality is usually only a first approximation
to the real situation and, in many applications, a more realistic model has to
include some of the past states of the system, which leads to time-delay models
using delay (retarded or functional) differential equations in the classical setting
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(see, e.g., [3, 4, 6, 9]) or its stochastic counterpart, stochastic delay (retarded or
functional) differential equations (see, e.g., [20, 22, 9]). Incorporating time delay
in the hybrid models gives rise to hybrid delay systems. Two important classes of
hybrid delay systems are impulsive delay systems (or impulsive delay differential
equations) and switched delay systems, which both received increasing attention
in recent years (see, e.g., [14, 15, 16, 27, 28, 30]). However, including time delay
makes a dynamical system infinite dimensional and hence its stability analysis
more involved and challenging.

The aim of this paper is to formulate a general mathematical framework for
practical systems that may exhibit all the hybrid characteristics of impulse effects,
switching, stochastic dynamics, and time delays and perform stability analysis
and propose stabilization strategies for such systems. It investigates stability and
stabilization for a general class of impulsive and switched hybrid stochastic delay
systems. Both moment stability and almost sure stability are investigated and
three different stabilization strategies are proposed, i.e. the average dwell-time
approach, the impulsive stabilization, and a combined strategy.

The rest of this paper is organized as follows. In Section 2, we give some
necessary notations and then the general formulation of a class of impulsive and
switched hybrid stochastic delay systems (ISHSDSs). The main results are pre-
sented in Section 3, in which stability analysis and stabilization strategies are
proposed for the ISHSDSs formulated in Section 2. Section 3.1 deals with the the
average dwell-time approach, Section 3.2 investigates the impulsive stabilization,
and Section 3.3 combines both the average dwell-time approach and the impulsive
stabilization strategy. In Section 4, almost sure stability results are established.
Finally, in Section 5, several examples are presented and their numerical simula-
tions are also included to demonstrate the main results.

2. Preliminaries

Let ℤ+ denote the set of all positive integers, ℝn the n-dimensional real Eu-
clidean space , and ℝn×m the space of n×m real matrices. For x ∈ ℝn, ∣x∣ denotes

the Euclidean norm of x. For A = (aij) ∈ ℝn×m, define ∣A∣ :=
√

trace(ATA) =√∑n
i=1

∑m
j=1 ∣aij∣

2 and ∥A∥ :=
√
�max(ATA), i.e. ∣A∣ and ∥A∥ denote the Frobe-

nius norm and spectral norm of the matrix A, respectively.
For −∞ < a < b < ∞, we say that a function from [a, b] to ℝn is piecewise

continuous, if the function has at most a finite number of jump discontinuities
on (a, b] and are continuous from the right for all points in [a, b). Given r > 0,
PC([−r, 0];ℝn) denotes the family of piecewise continuous functions from [−r, 0]
to ℝn. A norm on PC([−r, 0];ℝn) is defined as ∥�∥ := sup−r≤s≤0 ∣�(s)∣ for � ∈
PC([−r, 0];ℝn). For simplicity, PC is used for PC([−r, 0];ℝn) for the rest of this
paper.

Let N be a finite index set. By a impulsive and switching law, we mean a pair
(�, I), where � denotes a switching signal, which is a piecewise constant and right
continuous function from [0,∞) to N , with finitely many discontinuities on each
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bounded subinterval of [0,∞), and

I : N ×N × ℝ+ × PC → ℝn

is an impulse function (or simply an impulse). For a particular impulsive and
switching law (�, I), let$(�, I) be an increasing sequence {tk : tk+1 > tk, k ∈ ℤ+}
in ℝ+, which includes, but not restricted to, all discontinuities (switching times)
of �. The elements in $(�, I) are called impulse and switching times of (�, I).
The notation $(�, I) is used to emphasize that t′ks are associated to the pair
(�, I).

Let (Ω,ℱ , P ) be a given complete probability space with {ℱt}t≥0 as a filtration
satisfying the usual conditions, and W (t) be an m-dimensional standard Wiener
process defined on (Ω,ℱ , P ) and adapted to {ℱt}t≥0. For p > 0 and t ≥ 0, let
ℒpℱt denote the family of all ℱt-measurable PC-valued random variables � such

that E (∥�∥p) < ∞. Let ℒb
ℱt be the family of PC-valued random variables that

are bounded and ℱt-measurable.
Consider the impulsive switched stochastic delay system⎧⎨⎩ dx(t) = f�(t, xt)dt+ g�(t, xt)dW (t), t /∈ $(�, I), t ≥ t0,

Δx(t) = I(�(t−), �(t), t, xt−), t ∈ $(�, I),
xt0 = �,

(2.1)

where xt is defined by xt(s) = x(t + s), for −r ≤ s ≤ 0, and can be treated
as a PC-valued stochastic process. Similarly, the PC-valued stochastic process
xt− is defined by xt−(s) = x(t + s), for s ∈ [−r, 0), and xt−(0) = x(t−), where
x(t−) = lims→t− x(s) and �(t−) = lims→t− �(s). For each i ∈ N , both

fi : ℝ+ × PC → ℝn,

and

gi : ℝ+ × PC → ℝn×m,

are Borel measurable. Moreover, fi, gi, and I are assumed to satisfy necessary
assumptions so that, for any initial data � ∈ ℒb

ℱt0
and a certain pair (�, I), sys-

tem (2.1) has a unique global solution, denoted by x(t; �, �, I), and, moreover,
xt(�, �, I) ∈ ℒpℱt for all t ≥ t0 and p > 0 (e.g., see [17] for existence and unique-
ness results for general impulsive and switched hybrid stochastic delay systems
including (2.1) and see [20] and [22] for stochastic functional (delay) differen-
tial equations without impulse and switching). In addition, it is assumed that
fi(t, 0) ≡ 0, gi(t, 0) ≡ 0, and I(i, j, t, 0) = 0, for all i, j ∈ N and t ∈ [0,∞),
so that system (2.1) admits a trivial solution. Note that, if (�, I) is given, the
impulse function I can also be interpreted as a sequence of functions Ik by letting
Ik(�) = I(�(t−k ), �(tk), tk, �), where t′ks are the consecutive elements in $(�, I).
It is clear from the formulation of (2.1) that, while the switching signal � effec-
tively selects the current mode of the continuous evolution, the impulse function
I resets the state variable at each discrete time in $(�, I).

Definition 2.1. For p > 0, the trivial solution of system (2.1) is said to be
pth moment globally uniformly exponentially stable (g.u.e.s.) on an impulsive
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and switching law set ℐS , if for any given initial data � ∈ ℒb
ℱt0

and each pair

(�, I) ∈ ℐS , the solution x(t; �, �, I) satisfies

E (∣x(t; �, �, I)∣p) ≤ CE (∥�∥p) e−"(t−t0), t ≥ t0, (2.2)

where " and C are positive constants independent of t0 and the choice of (�, I)
in ℐS . It follows from (2.2) that

lim sup
t→∞

1

t
logE (∣x(t; �, �, I)∣p) ≤ −". (2.3)

The left-hand side of (2.3) is called the pth moment Lyapunov exponent for the
solution. Moreover, define

lim sup
t→∞

1

t
log ∣x(t; �, �, I)∣ (2.4)

to be the Lyapunov exponent of the solution. The trivial solution of system (2.1)
is said to be almost surely exponentially stable if the Lyapunov exponent is almost
surely negative for any � ∈ ℒb

ℱt0
.

Remark 2.1. From Definition 2.1, one can see that the stability considered here
is not only “uniform” with respect to the initial time, but also “uniform” with
respect to an admissible set of impulsive and switching laws ℐS (see [7] for this
notion of uniformity for switched linear systems with respect to a particular set
of switching signals).

The following definition formulates some particular classes of impulsive and
switching laws to be used in this paper. The classification is based solely on the
frequency of impulse and switching times.

Definition 2.2. Let � and � be positive real numbers, N0 a nonnegative integer,
and ℳ a certain subset of N . Define

(i) ℐAS (�,N0;ℳ) to be the set of impulsive and switching laws with average
dwell-time � and chatter bound N0 with respect to ℳ, i.e.

ℐAS (�,N0;ℳ) :=

{
(�, I) : N(�,I)(t, s;ℳ) ≤

∫
[s,t]ℳ

ds

�
+N0, ∀t ≥ s ≥ t0

}
,

where [s, t]ℳ = [s, t]∩�−1(ℳ) and N(�,I)(t, s;ℳ) represents the cardinality
of the set $(�, I) ∩ [s, t]ℳ;

(ii) ℐUS (�;ℳ) to be the set of impulsive and switching laws with dwell-time
upper bound � with respect to ℳ, i.e.

ℐUS (�;ℳ) :=
{

(�, I) : tk − tk+1 ≤ �, ∀k ∈ ℤ+ s.t. �(tk−1) ∈ℳ
}
,

where tk (k ∈ ℤ+) are the consecutive members in $(�, I) and t0 is the
initial time.

Definition 2.3. Let C1,2 denote the set of all functions from [t0 − r,∞)×ℝn to
ℝ+ that are continuously differentiable in t and twice continuously differentiable
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in x. Suppose {Vi; i ∈ N} is a family of functions in C1,2. For each i ∈ N , define
an operator from ℝ+ × PC to ℝ by

ℒVi(t, �) := V i
t (t, �(0)) + V i

x(t, �(0))fi(t, �) +
1

2
trace

[
gTi (t, �)V i

xx(t, �(0))gi(t, �)
]
,

where V i
t , V i

x , and V i
xx are functions from ℝ+ × ℝn defined by

V i
t (t, x) =

∂Vi(t, x)

∂t
, V i

x(t, x) =

(
∂Vi(t, x)

∂x1

, ⋅ ⋅ ⋅ , ∂Vi(t, x)

∂xn

)
,

V i
xx(t, x) =

(
∂2Vi(t, x)

∂xi∂xj

)
n×n

.

3. Exponential Stability of the pth Moment

3.1. Average dwell-time approach. In this section, the impulses are only con-
sidered as perturbations. The sufficient conditions for exponential stability are
derived in terms of average dwell-time and Razumikhin-type conditions.

Theorem 3.1. Let p, c1, c2, d̂, �i, and �i ≥ 1 (i ∈ N ) be positive constants.
Suppose that

(i) there exists a family of functions {Vi : i ∈ N} ⊂ C1,2 such that

c1 ∣x∣p ≤ Vi(t, x) ≤ c2 ∣x∣p , (3.1)

for (i, t, x) ∈ N × [t0 − r,∞)× ℝn,
(ii) there exists a family of continuous functions {�i : i ∈ N} from [t0,∞) to ℝ

such that
E (ℒVi(t, �)) ≤ �i(t)E (Vi(t, �(0))) , (3.2)

whenever i ∈ N , t ≥ t0, and � ∈ ℒpℱt satisfies

min
i∈N

E (Vi(t+ s, �(s))) ≤ qE (Vi(t, �(0))) , ∀s ∈ [−r, 0], (3.3)

where q ≥ e�r is a finite constant and

� = max
i∈N

sup
t∈[t0,∞)

�−i (t) <∞, (3.4)

where �−i = max(0,−�i) is the negative part of the function �i,

Then the trivial solution of system (2.1) is pth moment globally uniformly expo-
nentially stable on ℐS , where ℐS includes all (�, I) satisfying

(a) (�, I) ∈ ℐAS (�i, N0; {i}) for each i ∈ N ,
(b) there exists a function d : [t0,∞)→ [1,∞) such that

E (Vi(t, �(0) + I(i, j, t, �))) ≤ �id(t)E (Vj(t, �(0))) , (3.5)

for (t, �) ∈ [t0,∞)× ℒpℱt and i, j ∈ N ,

(c)
∫ t
t0

[��(s)(s) + ��(s)]ds ≤ 0, for all t ≥ t0,

(d)
∏

tk∈$(�,I) d(tk) ≤ d̂, and

(e) �i > ln(�i)/�i for each i ∈ N ,

and its pth moment Lyapunov exponent is guaranteed to be not greater than −Λ,
where Λ = mini∈N {�i − ln(�i)/�i}.
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Proof. Given (�, I) ∈ ℐS and any initial data � ∈ ℒb
ℱt0

, the global solution

x(t; �, �, I) of (2.1) is written as x(t) in this proof. Let $(�, I) = {tk : k ∈ ℤ+}
be the consecutive discontinuities of � as k increases. Without loss of generality,
assume the initial data � is nontrivial so that x(t) is not a trivial solution. Let
v(t) = E

(
V�(t)(t, x(t))

)
, for t ≥ t0 − r, and

u(t) = v(t)− ∥vt0∥
∏
i∈N

�
N(�,I)(t,t0;{i})
i

∏
t0<tk≤t

d(tk) exp

{∫ t

t0

�̃�(s)(s)ds

}
, t ≥ t0,

where ∥vt0∥ = max−r≤s≤0 v(t0 + s) and �̃i(t) = �i(t) + �, with � > 0 to be chosen
later. Extend u(t) to [t0 − r, t0) by letting u(t) = v(t)− ∥vt0∥ for t ∈ [t0 − r, t0).

It is easy to see that u(t) is continuous on [t0, t1) and u(t) ≤ 0 for t ∈ [t0−r, t0].
We proceed to show that u(t) ≤ 0 for t ∈ [t0, t1). Assume this is not true. Then
u(t) ≥ � for some t ∈ [t0, t1) and � > 0. Let t∗ = inf{t ∈ [t0, t1) : u(t) > �}.
Since u(t0) ≤ 0, one must have t∗ ∈ (t0, t1) and u(t∗) = �. Moreover, u(t) ≤ �
for t ∈ [t0 − r, t∗]. Now for any s ∈ [−r, 0], one has

v(t∗ + s) ≤ � + ∥vt0∥ exp

(∫ t∗+s

t0

�̃�(�)(�)d�

)
≤ max

{
1, exp

(∫ t∗+s

t∗
�̃�(�)(�)d�

)}
v(t∗)

≤ qv(t∗),

since ∫ t∗+s

t∗
�̃�(�)(�)d� ≤

∫ t∗+s

t∗
��(�)(�)d� ≤

∫ t∗

t∗+s

�−�(�)(�)d� ≤ �r.

By (3.2) and (3.3), one has

E
(
ℒV�(t∗)(t

∗, xt∗)
)
≤ ��(t∗)(t

∗)E
(
V�(t∗)(t

∗, x(t∗))
)
.

Since u(t∗) = � > 0, it is clear that E
(
V�(t∗)(t

∗, x(t∗))
)

= v(t∗) > 0. Hence

E
(
ℒV�(t∗)(t

∗, xt∗)
)
− �̃�(t∗)(t

∗)E
(
V�(t∗)(t

∗, x(t∗))
)

< E
(
ℒV�(t∗)(t

∗, xt∗)
)
− ��(t∗)(t

∗)E
(
V�(t∗)(t

∗, x(t∗))
)

≤ 0,

which, by continuity, implies that

E
(
ℒV�(�)(�, x�)

)
− �̃�(�)(�)E

(
V�(�)(�, x(�))

)
≤ 0, � ∈ [t∗, t∗ + ℎ],

provided that ℎ is sufficiently small. Applying Itô’s formula on [t∗, t∗+ℎ′], where
ℎ′ ∈ [0, ℎ], one has

u(t∗ + ℎ′)− u(t∗) =

∫ t∗+ℎ′

t∗

[
E
(
ℒV�(�)(�, x�)

)
− �̃�(�)(�)E

(
V�(�)(�, x(�))

) ]
d�

≤ 0,

for all ℎ′ ∈ [0, ℎ], which contradicts the definition of t∗. Therefore, one must have
u(t) ≤ 0 for t ∈ [t0, t1).
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Now assume that u(t) ≤ 0, ∀t ∈ [t0−r, tm), where m ≥ 1 is a positive integer.
We proceed to show that u(t) ≤ 0 on [tm, tm+1). To derive a contradiction, assume
that u(t) ≤ 0 does not hold on [tm, tm+1). Then u(t) ≥ � for some t ∈ [tm, tm+1)
and some � > 0. Let t∗ = inf{t ∈ [tm, tm+1) : u(t) > �}. Since, by (3.5),

u(tm) = v(tm)− ∥vt0∥
∏
i∈N

�
N(�,I)(tm,t0;{i})
i

∏
t0<tk≤tm

d(tk) exp

(∫ tm

t0

�̃�(�)(�)d�

)
≤ ��(tm)d(tm)

{
v(t−m)− ∥vt0∥

∏
i∈N

�
N(�,I)(t

−
m,t0;{i})

i

×
∏

t0<tk<tm

d(tk) exp

(∫ tm

t0

�̃�(�)(�)d�

)}
≤ 0,

one must have t∗ ∈ (tm, tm+1) and u(t∗) = �. Moreover, u(t) ≤ � for t ∈ [t0−r, t∗].
For s ∈ [−r, 0], one now has,

v(t∗ + s) ≤ � + ∥vt0∥
∏
i∈N

�
N(�,I)(t

∗+s,t0;{i})
i

∏
t0<tk≤t∗+s

d(tk) exp

(∫ t∗+s

t0

�̃�(�)(�)d�

)

≤ max

{
1, exp

(∫ t∗+s

t∗
�̃�(�)(�)d�

)}
v(t∗)

≤ qv(t∗).

Repeating the same argument as on [t0, t1), one can derive a contradiction and
hence show that u(t) ≤ 0 for t ∈ [tm, tm+1). By induction on m, one can conclude
that u(t) ≤ 0 for all t ≥ t0, which implies

v(t) ≤ d̂∥vt0∥
∏
i∈N

�
N(�,I)(t,t0;{i})
i exp

(∫ t

t0

�̃�(s)(s)

)
ds, ∀t ≥ t0. (3.6)

Since � > 0 is arbitrary and independent of t, (3.6) actually implies

v(t) ≤ d̂∥vt0∥
∏
i∈N

�
N(�,I)(t,t0;{i})
i exp

(∫ t

t0

��(s)(s)ds

)
, ∀t ≥ t0. (3.7)

By (3.1) and the fact that (�, I) ∈ ℐS , (3.7) gives

E (∣x(t)∣p) ≤ CE (∥�∥p) exp

{∑
i∈N

∫
[t0,t]∩�−1({i})

ln(�i)

�i
ds−

∫ t

t0

��(s)ds

}

≤ CE (∥�∥p) exp

{
−
∫ t

t0

[
��(s) −

ln(��(s))

��(s)

]
ds

}
≤ CE (∥�∥p) e−Λ(t−t0),

where C = d̂
∏

i∈N �
N0
i c2/c1, which shows that the pth moment of system (2.1) is

g.u.e.s with its pth moment Lyapunov exponent not greater than −Λ. □



STABILITY OF HYBRID STOCHASTIC DELAY SYSTEMS 323

Remark 3.1. The formulation of the set ℐS of impulsive and switching laws in
Theorem 3.1 essentially proposes an average dwell-time condition �i > ln(�i)/�i
for each individual mode, which generalizes the well-known average dwell-time
notion from [8]. Moreover, it allows the existence of unstable mode (i.e. when
�i(t) might be positive on certain subintervals of ℝ+), as long as the switching
between the stable modes and unstable modes results a “stable” balance such
that

∫ t
t0

[
��(s)(s) + ��(s)

]
ds ≤ 0 (see, e.g., [29] for results on stability of switched

system with both stable and unstable modes).

Remark 3.2. According to Theorem 3.1, the average dwell-time condition for
the ith mode is given by �i > ln(�i)/�i. If �i = 1, this condition reduces to �i > 0,
which would read as the ith mode has a positive average dwell-time condition.
However, a closer scrutiny of the proof (see the estimate (3.7)) reveals that there
is essentially no average dwell-time restriction on the ith mode, if (3.5) is satisfied
with �i = 1.

3.2. Impulsive stabilization. In this section, assuming that all the subsystems
are unstable, impulses are added as a stabilizing mechanism to exponentially
stabilize system (2.1).

Theorem 3.2. Let Λ, p, c1, c2, �i < 1, �i (i ∈ N ), d̂ be positive constants and
�̄i (i ∈ N ) be nonnegative numbers. Suppose that

(i) condition (i) of Theorem 3.1 holds,
(ii) there exists a family of continuous functions {�i : i ∈ N} from [t0,∞) to

ℝ+ satisfying

sup
t∈[t0,∞)

∫ t+�i

t

�i(s) ≤ �̄i�i, (3.8)

such that

E (ℒVi(t, �)) ≤ �i(t)E (Vi(t, �(0))) , (3.9)

whenever i ∈ N , t ≥ t0, and � ∈ ℒpℱt satisfies

min
i∈N

E (Vi(t+ s, �(s))) ≤ qiE (Vi(t, �(0))) , ∀s ∈ [−r, 0], (3.10)

where qi ≥ 1 is a constant such that

qi ≥ exp(Λr + Λ�i + �̄i�i), (3.11)

Then the trivial solution of system (2.1) is pth moment globally uniformly expo-
nentially stable on ℐS , where ℐS includes all (�, I) satisfying

(a) (�, I) ∈ S(�i; {i}) for all i ∈ N ,
(b) same as (b) in Theorem 3.1,

(c)
∏

tk∈$(�,I) d(tk) ≤ d̂,

(d) �i < − ln(�i)/(Λ + �̄i), for all i ∈ N ,

and its pth moment Lyapunov exponent is not greater than −Λ.

Proof. Given (�, I) ∈ ℐS and any initial data � ∈ ℒb
ℱt0

, keep the same notation

for x(t), v(t), $(�, I) as in the proof for Theorem 3.1. Let Λ̃ = Λ−�, where � > 0
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being an arbitrary number such that Λ̃ > 0. Choose M ∈ (e(Λ+�̄i0 )�i0 , qi0e
Λ�i0 ) so

that

∥vt0∥ < M∥vt0∥e−(Λ+�̄i0 )�i0 < M∥vt0∥e−Λ�i0 < qi0∥vt0∥, (3.12)

where i0 = �(t0) and ∥vt0∥ = max−r≤s≤0 v(t0 + s). We will show that

v(t) ≤ME (∥�∥p) e−Λ̃(t1−t0), ∀t ∈ [t0, t1), (3.13)

by proving a stronger claim:

v(t) ≤M∥vt0∥e−Λ�i0 , ∀t ∈ [t0, t1). (3.14)

Suppose (3.14) is not true and observe that

v(t) ≤ ∥vt0∥ < M∥vt0∥e−Λ�i0 , (3.15)

holds on [t0 − r, t0]. Define t∗ = inf{t ∈ [t0, t1) : v(t) > M∥vt0∥e−Λ�i0}. Then
t∗ ∈ (t0, t1) and, by continuity of v(t),

v(t) ≤ v(t∗) = M∥vt0∥e−Λ�i0 , ∀t ∈ [t0, t
∗]. (3.16)

In view of (3.15), define t∗ = sup{t ∈ [t0, t
∗) : v(t) ≤ ∥vt0∥}. Then t∗ ∈ [t0, t

∗)
and, by continuity of v(t),

v(t) ≥ v(t∗) = ∥vt0∥, ∀t ∈ [t∗, t
∗]. (3.17)

Now in view of (3.12), (3.16), and (3.17), one has, for t ∈ [t∗, t
∗] and s ∈ [−r, 0],

v(t+ s) ≤ v(t∗) = M∥vt0∥e−Λ�i0 < qi0∥vt0∥ ≤ qi0v(t).

By the Razumikhin-type conditions (3.9) and (3.10), one has

E
(
ℒV�(t)(t, xt)

)
≤ ��(t)(t)E

(
V�(t,x(t))

)
, ∀t ∈ [t∗, t

∗]. (3.18)

Applying Itô’s fomula on [t∗, t
∗] and by (3.18), one obtains that

e
∫ t∗
t0
��(s)(s)dsv(t∗)− e

∫ t∗
t0
��(s)(s)dsv(t∗)

=

∫ t∗

t∗

e
∫ s
t0
��(s)(s)ds

[
E
(
ℒV�(s)(s, xs)

)
− ��(s)(s)E

(
V�(s)(s, x(s))

) ]
ds

≤ 0,

which implies, by (3.8),

v(t∗) ≤ v(t∗)e
∫ t∗
t∗ ��(s)(s)ds ≤ v(t∗)e

�̄i0�i0 . (3.19)

Since (3.19) contradicts what is implied by (3.12), (3.16), and (3.17), claim (3.14)
must be true and so is (3.13). Although the choice of M in (3.12) depends on i0,
one can choose some M independent of i0 such that (3.13) holds, due to the fact
that N is a finite set.

Now, assume that

v(t) ≤Mk∥vt0∥e−Λ̃(tk−t0), ∀t ∈ [tk−1, tk), (3.20)

for all k ≤ m, where k, m ∈ ℤ+ and Mk is defined by M1 = M and Mk =
Mk−1d(tk−1), for k ≥ 2. We proceed to show that

v(t) ≤Mm+1∥vt0∥e−Λ̃(tm+1−t0), ∀t ∈ [tm, tm+1), (3.21)
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by proving a stronger claim:

v(t) ≤Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ], ∀t ∈ [tm, tm+1), (3.22)

where im = �(tm). From (3.20) and (3.5), one has

v(tm) ≤ �imd(tm)v(t−m) ≤ �imd(tm)Mm∥vt0∥e−Λ̃(tm−t0) = �imMm+1∥vt0∥e−Λ̃(tm−t0),

which implies, by the fact that � ∈ ℐS ,

v(tm) < e−�̄im�imMm+1∥vt0∥e−Λ̃[(tm−t0)+�im ]. (3.23)

Choose " > 0 sufficiently small such that

v(tm) < e−�̄im�im−"Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ]

< e−�̄im�imMm+1∥vt0∥e−Λ̃[(tm−t0)+�im ]. (3.24)

Suppose claim (3.22) is not true. Define

t̄ = inf
{
t ∈ [tm, tm+1) : v(t) > Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ]

}
.

In view of (3.23), one has t̄ ∈ (tm, tm+1) and, by continuity of v(t).

v(t) ≤ v(t̄) = Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ], ∀t ∈ [tm, t̄]. (3.25)

In view of (3.24), define

t = sup
{
t ∈ [tm, t̄) : v(t) ≤ e−�̄im�im−"Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ]

}
.

Then t ∈ (tm, t̄) and, by continuity of v(t),

v(t) ≥ v(t) = e−�̄im�im−"Mm+1∥vt0∥e−Λ̃[(tm−t0)+�im ] = e−�̄im�im−"v(t̄), (3.26)

for all t ∈ [t, t̄]. Now for t ∈ [t, t̄] and s ∈ [−r, 0], from (3.11), (3.20), (3.26), and
the fact that t+ s ∈ [tm−1, t̄], one has

v(t+ s) ≤Mm+1∥vt0∥e−Λ̃(t+s−t0) = eΛ̃(tm−t)−Λ̃s+Λ̃�imv(t̄)

≤ eΛ̃r+Λ̃�im+�̄im�im+"v(t)

≤ qimv(t),

provided that " defined in (3.24) is chosen sufficiently small. Similar to the
argument on [t∗, t

∗], an application of Itô’s formula on [t, t̄] will lead to v(t̄) ≤
v(t)e�̄im�im , which would contradict (3.26). Therefore, claim (3.22) must be true
and so is (3.21). By induction on m and the definition of Mm, one can conclude
that

v(t) ≤M
∏

t0<tk≤t

d(tk)∥vt0∥e−Λ̃(t−t0), ∀t ≥ t0.

By (3.1) and the condition on d(t), one has

E (∣x(t)∣p) ≤Md̂
c2

c1

E (∥�∥p) e−Λ̃(t−t0), ∀t ≥ t0.

Since � > 0 is arbitrary and indpendent of t, we actually have shown

E (∣x(t)∣p) ≤Md̂
c2

c1

E (∥�∥p) e−Λ(t−t0), ∀t ≥ t0,
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which shows that the pth moment of system (2.1) is g.u.e.s with its pth moment
Lyapunov exponent not greater than −Λ. □

3.3. Combination of average dwell-time approach and impulsive sta-
bilization. Theorems 3.1 and 3.2 address the average dwell-time approach and
impulsive stabilization, respectively. While Theorem 3.1 applies to the situation
when both stable and unstable modes are present in the switched system and
stability is achieved by restricting the switching signal so that a certain balance
between the activation time of the stable mode and the unstable mode, Theorem
3.2 assumes all the modes are unstable and addresses how one can seek an im-
pulsive stabilization rule for a certain class of switching signals. In this section,
these two approaches are combined to achieve a stabilization result for impulsive
switched stochastic delay systems.

The motivation for proposing this strategy is the fact that the impulse stabi-
lization should be kept to a minimal in many applications due to its cost. We
consider applying impulses only when the system is about to switch to an un-
stable mode. Otherwise, the requirement for stability is guaranteed by imposing
an average dwell-time condition. For this purpose, we propose a partition of the
subsystems, i.e. assume N = Navg ∪ Nimp and Navg ∩ Nimp = ∅. Let �[s, t]
(t ≥ s ≥ t0) denotes the image of the interval [s, t] under the mapping of �. The
combined hybrid strategy can be described as follows:

(i) on [s, t] such that �[s, t] ⊂ Navg, stabilization is achieved by an average
dwell-time approach and impulsive stabilization is not performed; and

(ii) on [s, t] such that �[s, t] ⊂ Nimp, an stabilizing impulse is added at each
switching time between s and t.

For t ≥ s ≥ t0, let [s, t]�avg = [s, t] ∩ �−1(Navg) and [s, t]�imp = [s, t] ∩ �−1(Nimp).

Theorem 3.3. Let �, Λ, p, c1, c2, d̂, �i ≥ 1 (i ∈ Navg), �i, �i, �i < 1 be positive
constants and �̄i (i ∈ Nimp) be nonnegative constants. Suppose that

(i) condition (i) of Theorem 3.1 holds,
(ii) there exists a family of continuous functions {�i : i ∈ Navg} from [t0,∞) to

ℝ such that condition (ii) of Theorem 3.1 holds, for all i ∈ Navg, with

� = max
i∈Navg

sup
t∈[t0,∞)

�−i (t), (3.27)

(iii) there exists a family of continuous functions {�i : i ∈ Nimp} from [t0,∞) to
ℝ+ satisfying (3.8) such that condition (ii) of Theorem 3.2 is satisfied, for
all i ∈ Nimp, with

qi ≥ exp(�r + Λ�i + �̄i�i), (3.28)

Then the trivial solution of system (2.1) is pth moment globally uniformly expo-
nentially stable on ℐS , where ℐS includes all (�, I) satisfying

(a) (�, I) ∈ ℐAS (�i, N0; {i}) for all i ∈ Navg and (�, I) ∈ ℐUS (�i; {i}) for all i ∈
Nimp,

(b) same as (b) in Theorem 3.1,

(c)
∏

tk∈$(�,I) d(tk) ≤ d̂,

(d)
∫

[t0,t]�avg
[��(s)(s) + ��(s)]ds ≤ 0, for all t ≥ t0,



STABILITY OF HYBRID STOCHASTIC DELAY SYSTEMS 327

(e) �i > ln(�i)/�i, for all i ∈ Navg,
(f) �i < − ln(�i)/(Λ + �̄i), for all i ∈ Nimp,

where Λ = mini∈Navg {�i − ln(�i)/�i}, and its pth moment Lyapunov exponent is
not greater than −Λ.

Proof. Given (�, I) ∈ ℐS and any initial data � ∈ ℒb
ℱt0

, keep the same notation for

x(t), v(t), and $(�, I) as in the proof for Theorem 3.1. The proof is essentially
a combination of the proofs for Theorem 3.1 and Theorem 3.2. Let � ∈ (0,Λ) be
an arbitrary number and define

Λ̃ = Λ− �, �̃i(t) = �i(t) + �, t ≥ t0, i ∈ Navg.

We claim that, for all t ≥ t0,

v(t) ≤M∥vt0∥
∏

i∈Navg

�
N�(t,t0;{i})
i

∏
t0<tk≤t

d(tk) exp

(∫
[t0,t]�avg

�̃�(s)(s)ds−
∫

[t0,t� ]�imp

Λ̃ds

)
,

where ∥vt0∥ = max−r≤s≤0 v(t0 + s), M > 1 is as chosen in the proof of Theorem
3.2, and t� is the next switching instant of � beyond t. For simplicity, let u(t)
denote the right-hand side of the claimed inequality. We shall prove the claim
by induction on [tk−1, tk), k ∈ ℤ+. Starting on [t0, t1), consider two cases: (i)
i0 = �(t0) ∈ Navg, (ii) i0 ∈ Nimp. We have

(i) following the argument in the proof of Theorem 3.1,

v(t) ≤ ∥vt0∥e
∫ t
t0
�̃�(s)(s)ds, t ∈ [t0, t1),

which implies the claim on [t0, t1),
(ii) following the argument in the proof for Theorem 3.2,

v(t) ≤M∥vt0∥e−Λ̃�i0 , ∀t ∈ [t0, t1),

which also implies the claim on [t0, t1).

Now suppose that the claim is true on [t0, tm), where m ∈ ℤ+. We shall show
that it is also true on [tm, tm+1). Consider the following three cases:

(a) �(tm) ∈ Navg. Suppose that the claim is not true on [tm, tm+1). Then
there exists some � > 0 such that v(t) ≤ u(t) + �, for some t ∈ [tm, tm+1). Let
t∗ = inf{t ∈ [tm, tm+1) : v(t) > u(t) + �}. Since v(tm) ≤ u(tm), one must have
t∗ ∈ (tm, tm+1). Moreover, by continuity of v and u on [tm, tm+1), v(t∗) = u(t∗)+�
and v(t) ≤ u(t) + � for t ∈ [t0 − r, t∗]. Now for any s ∈ [−r, 0], one has

v(t∗ + s) ≤ u(t∗ + s) + � ≤ max

{
1,
u(t∗ + s)

u(t∗)

}
v(t∗),
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where

u(t∗ + s)

u(t∗)
= exp

(∫
[t∗,t∗+s]�avg

�̃�(s)(s)ds−
∫

[t∗� ,(t
∗+s)� ]�imp

Λ̃ds

)

≤ exp

(∫
[t∗,t∗+s]�avg

�̃�(s)(s)ds−
∫

[t∗,(t∗+s)]�imp

Λ̃ds

)

≤ exp

(∫
[t∗+s,t∗]�avg

�ds+

∫
[t∗+s,t∗]�imp

Λds

)
≤ exp(�r),

where in the last inequality the fact that Λ ≤ � (implied by the theorem con-
ditions) is used. Following the same argument as in the proof of Theorem 3.1,
one can draw a contradiction by applying Itô’s formula and the Razumikhin-type
argument. Therefore, we have shown that the claim holds on [tm, tm+1).

(b) �(tm) ∈ Nimp. On [tm − r, tm), one has, by the inductive assumption,

v(t) ≤ u(t) ≤ Cme
�r, (3.29)

where

Cm = M∥vt0∥
∏

i∈Navg

�
N�(tm,t0;{i})
i

∏
1≤k≤m

d(tk) exp

(∫
[t0,tm]�avg

�̃�(s)(s)ds−
∫

[t0,tm]�imp

Λ̃ds

)
,

and

v(tm) < Cme
−�̄im�im−Λ̃�im−" < Cme

−�̄im�im−Λ̃�im ,

where im = �(tm) and " > 0 is a sufficiently small number.
We shall show that

v(t) ≤ Cme
−Λ̃�im , ∀t ∈ [tm, tm+1). (3.30)

Assume (3.30) is not true. Define

t̄ = inf
{
t ∈ [tm, tm+1) : v(t) > Cme

−Λ̃�im

}
.

and

t = sup
{
t ∈ [tm, t̄) : v(t) ≤ Cme

−�̄im�im−Λ̃�im−"
}
.

Then

v(t) = Cme
−�̄im�im−Λ̃�im−" = e−�̄im�im−"v(t̄), (3.31)

and

v(t) ≤ v(t̄), ∀t ∈ [tm, t̄], (3.32)

v(t) ≥ v(t), ∀t ∈ [t, t̄]. (3.33)

Therefore, for t ∈ [t, t̄] and s ∈ [−r, 0], from (3.29), (3.32), and (3.33), one can
obtain

v(t+ s) ≤ Cme
�r ≤ e�r+�̄im�im+Λ̃�im+"v(t) ≤ qimv(t),

provided that " > 0 has been chosen sufficiently small.
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By the Razumikhin-type conditions (iii) and applying Itô’s formula on [t, t̄],
one can show that

v(t̄) ≤ v(t)e�̄im�im ,

which would contradict (3.31). Therefore (3.30) must be true. It follows imme-
diately that the claim holds on [tm, tm+1).

We can now conclude that the claim holds for all t ≥ t0. By the arbitrary
choice of �, we actually have

v(t) ≤M∥vt0∥
∏

i∈Navg

�N�(t,t0;{i})
∏

t0<tk≤t

d(tk) exp

(∫
[t0,t]�avg

��(s)(s)ds−
∫

[t0,t� ]�imp

Λds

)
,

which, by the fact that � ∈ ℐS , implies

v(t) ≤Md̂∥vt0∥
∏

i∈Navg

�N0
i exp

(∫
[t0,t]�avg

[
ln(��(s))

��(s)

− ��(s)

]
ds−

∫
[t0,t� ]�imp

Λds

)
= Md̂∥vt0∥

∏
i∈Navg

�N0
i e−Λ(t−t0).

Finally, by (3.1), we have

E (∣x(t)∣p) ≤ CE (∥�∥p) e−Λ(t−t0), ∀t ≥ t0,

with C = Md̂
∏

i∈Navg
�N0
i c2/c1, which shows the pth moment of system (2.1) is

g.u.e.s. with its pth moment Lyapunov exponent not greater than −Λ. □

4. Almost Sure Exponential Stability

In this section, with some additional conditions, we show that the trivial so-
lution of system (2.1) is also almost surely exponential stable, provided that the
conditions in Theorems 3.1, 3.2, or 3.3 are satisfied.

Theorem 4.1. Let p ≥ 1, C > 0 and Λ > 0. Suppose there exists a constant
K > 0 such that

E (∣fi(t, �)∣p ∨ ∣gi(t, �)∣p ∨ ∣I(i, j, t, �)∣p) ≤ K sup
−r≤s≤0

E (∣�(s)∣p) , (4.1)

for all i, j ∈ N and (t, �) ∈ ℒpℱt. Moreover, suppose (�, I) ∈ ℐAS (�,N0;N ). Then

E (∣x(t; �, �, I)∣p) ≤ CE (∥�∥p) e−Λ(t−t0), t ≥ t0, (4.2)

implies

lim sup
t→∞

1

t
log ∣x(t; �, �, I)∣ ≤ −Λ

p
, a.s. (4.3)

where x(t; �, �, I) is a given solution to system (2.1).

Proof. Write x(t) = x(t; �, �, I) in the following. Let sm = t0 +mr, where m ≥ 1
is a positive integer. Consider system (2.1) on [sm−1, sm] for m ≥ 2. We have

x(t) = x(sm−1) +

∫ sm

sm−1

f�(s)(s, xs)ds+

∫ sm

sm−1

g�(s)(s, xs)dW (s) + Σm, (4.4)
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where

Σm =
∑

tk∈$(�,I)
tk∈(sm−1,sm]

I(�(t−k ), �(tk), tk, xt−k
).

By Hölder’s inequality, (4.4) implies

E (∥xsm∥p) ≤ 4p−1

[
E (∣x(sm−1)∣p) + E

(∫ sm

sm−1

∣∣f�(s)(s, xs)
∣∣ ds)p

+ E

(
sup

0≤ℎ≤r

∣∣∣∣∫ sm−1+ℎ

sm−1

g�(s)(s, xs)dW (s)

∣∣∣∣p
)

+ E (∣Σm∣p)
]
.

(4.5)

Now, according to (4.1) and (4.2) and using Hölder’s inequality,

E
(∫ sm

sm−1

∣∣f�(s)(s, xs)
∣∣ ds)p ≤ Krp−1

∫ sm

sm−1

sup
−r≤�≤0

E (∣x(s+ �)∣p) ds

≤ Krp−1CE (∥�∥p)
∫ sm

sm−1

e−Λ(s−r−t0)ds

≤ KrpCE (∥�∥p) e−Λ(m−2)r. (4.6)

By the Burkholder-Davis-Gundy inequality (see, e.g., [20, p.40, Theorem 7.3]),

E

(
sup

0≤ℎ≤r

∣∣∣∣∫ sm−1+ℎ

sm−1

g�(s)(s, xs)dW (s)

∣∣∣∣p
)
≤ CpE

(∫ sm

sm−1

∣∣g�(s)(s, xs)
∣∣2 ds) p

2

,

(4.7)

where Cp is a constant that depends only on p. Note that (4.1) actually implies
∣gi(t, �)∣p ≤ K∥�∥p, for all (i, t, �) ∈ N × [t0,∞)× PC. Hence we can show that

E
(∫ sm

sm−1

∣∣g�(s)(s, xs)
∣∣2 ds) p

2

≤ E
(

sup
sm−1≤s≤sm

∣∣g�(s)(s, xs)
∣∣ ∫ sm

sm−1

∣∣g�(s)(s, xs)
∣∣ ds) p

2

≤ �E
(

sup
sm−1≤s≤sm

∣∣g�(s)(s, xs)
∣∣p)+ �−1E

(∫ sm

sm−1

∣∣g�(s)(s, xs)
∣∣ ds)p

≤ �KE
(

sup
sm−1≤s≤sm

∥xs∥p
)

+ �−1rp−1

∫ sm

sm−1

E
(∣∣g�(s)(s, xs)

∣∣p) ds
≤ �KE (∥xsm∥p) + �KE

(
∥xsm−1∥p

)
+ �−1KrpCE (∥�∥p) e−Λ(m−2)r, (4.8)
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where � > 0 is to be chosen later. Since � ∈ ℐSa(�,N0), there are at most
N = ⌊r/� +N0⌋ terms in Σm and hence

E (∣Σm∣p) ≤ Np−1
∑

tk∈$(�,I)
tk∈(sm−1,sm]

∣∣∣I(�(t−k ), �(tk), tk, xt−k
)
∣∣∣p

≤ Np−1K
∑

tk∈$(�,I)
tk∈(sm−1,sm]

sup
−r≤s<0

E (∣x(tk + s)∣p)

≤ NpKCE (∥�∥p) e−Λ(m−2)r. (4.9)

Combining (4.5)–(4.9) gives

E (∥xsm∥p) ≤ 4p−1�KCp
[
E (∥xsm∥p) + E

(
∥xsm−1∥p

) ]
+ Le−Λ(m−2)r, (4.10)

where L = [(Cp�
−1rp + Np)KC + 1]E (∥�∥p) , a quantity independent of k. Now

choose � > 0 sufficiently small such that

0 <
4p−1�KCp

1− 4p−1�KCp
< e−Λr.

Then (4.10) implies

E (∥xsm∥p) ≤ e−ΛrE
(
∥xsm−1∥p

)
+ Le−Λ(m−2)r,

which is valid for all m ≥ 2 and hence, by induction, implies

E (∥xsm∥p) ≤ e−Λ(m−1)rE (∥xs1∥p) + (m− 1)Le−Λ(m−2)r,

≤
[
E (∥xs1∥p) + eΛr

]
mLe−Λ(m−1)r, ∀m ≥ 2. (4.11)

Define, for m ≥ 2,

Am :=
{
! : ∥xsm∥p > e−(Λ−")(m−1)r

}
,

where " ∈ (0,Λ) is arbitrary. By (4.11),

P (Am) ≤ e(Λ−")(m−1)rE (∥xsm∥p) ≤
[
E (∥xs1∥p) + eΛr

]
mLe−"(m−1)r.

The Borel-Cantelli lemma implies that P (lim supm→∞Am) = 0, i.e. for almost
all ! ∈ Ω, there exists an M(!) such that

∥xsm∥p ≤ e−(Λ−")(m−1)r, ∀m ≥M(!), (4.12)

which implies that, for t ∈ [sm−1, sm],

1

t
log ∣x(t)∣p ≤ −(Λ− ")(m− 1)r

t0 +mr
, ∀m ≥M(!).

Therefore, for all most all ! ∈ Ω,

lim sup
t→∞

1

t
log(∣x(t)∣) ≤ lim

m→∞
−(Λ− ")(m− 1)r

(t0 +mr)p
= −Λ− "

p
. (4.13)

Since " ∈ (0,Λ) is arbitrary, (4.3) follows from (4.13). The proof is complete. □
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Corollary 4.1. If p ≥ 1, then the same conditions as in Theorems 3.1– 3.2
together with the conditions in Theorem 4.1 imply (4.3), i.e. the trivial solution of
system (2.1) is also almost surely exponentially stable with its Lyapunov exponent
not greater than −Λ/p.

If 0 < p < 1, a slightly stronger assumption on the coefficients fi and gi is
needed while the assumption on I remains the same.

Theorem 4.2. Let 0 < p < 1 and suppose there exists a constant K > 0 such
that the solution process xt satisfies

E
(

sup
−r≤s≤0

[
∣fi(t+ s, xt+s)∣p ∨ ∣gi(t+ s, xt+s)∣p

])
≤ K sup

−2r≤s≤0
E (∣x(s)∣p) ,

(4.14)
for all i ∈ N and t ≥ t0 + r and

E (∣I(i, j, t, �)∣p) ≤ K sup
−r≤s≤0

E (∣�(s)∣p) , (4.15)

for all i, j ∈ N and (t, �) ∈ ℒpℱt. Suppose, in addition, (�, I) ∈ ℐAS (�,N0;N ).
Then (4.2) implies (4.3).

Proof. From (4.4), we have

E (∥xsm∥p) ≤
[
E (∣x(sm−1)∣p) + E

(∫ sm

sm−1

∣∣f�(s)(s, xs)
∣∣ ds)p

+ E

(
sup

0≤ℎ≤r

∣∣∣∣∫ sm−1+ℎ

sm−1

g�(s)(s, xs)dW (s)

∣∣∣∣p
)

+ E (∣Σm∣p)
]
,

(4.16)

where the fact that (
∑
ai)

p ≤
∑
api , for nonnegative reals ai and 0 < p < 1, is

used. According to (4.2) and (4.14),

E
(∫ sm

sm−1

∣∣f�(s)(s, xs)
∣∣ ds)p ≤ rpE

(
sup

sm−1≤s≤sm

∣∣f�(s)(s, xs)
∣∣p)

≤ Krp sup
sm−2≤s≤sm

E (∣x(s)∣p)

≤ KrpCE (∥�∥p) e−Λ(m−2)r. (4.17)

While (4.7) remains valid, (4.14) implies

E
(∫ sm

sm−1

∣∣g�(s)(s, xs)
∣∣2 ds) p

2

≤ r
p
2E
(

sup
sm−1≤s≤sm

∣∣g�(s)(s, xs)
∣∣p)

≤ Kr
p
2CE (∥�∥p) e−Λ(m−2)r. (4.18)
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On the other hand, according to (4.15),

E (∣Σm∣p) ≤
∑

tk∈$(�,I)
tk∈(sm−1,sm]

E
(∣∣∣I(�(t−k ), �(tk), tk, xt−k

)
∣∣∣p)

≤ K
∑

tk∈$(�,I)
tk∈(sm−1,sm]

sup
−r≤s<0

E (∣x(tk + s)∣p)

≤ NKCE (∥�∥p) e−Λ(m−2)r. (4.19)

Combining (4.16)–(4.19) gives

E (∥xsm∥p) ≤ 4p−1�KCp
[
E (∥xsm∥p) + E

(
∥xsm−1∥p

) ]
+ Le−Λ(m−2)r, (4.20)

where L = [K(rp + Cpr
p
2 +N) + 1]CE (∥�∥p) , a quantity independent of k. The

rest of proof is the same as in the proof of Theorem 4.1. □

Remark 4.1. Deriving almost sure exponential stability from exponential stabil-
ity in moment under certain conditions on the growth of coefficients for stochastic
functional differential equation is first done in [19] (see also [20, p.175–178]). The
proofs here for Theorem 4.1 and Theorem 4.2 are based on the proofs in [20],
now taking switching and impulses into account. It can be seen that additional
conditions on switching signal and the impulse function are necessary for the
implication.

Corollary 4.2. If 0 < p < 1, then the same conditions as in Theorems 3.1– 3.3
together with the conditions in Theorem 4.2 imply (4.3), i.e. the trivial solution
system (2.1) is also almost surely exponentially stable with its sample Lyapunov
exponent not greater than −Λ/p.

5. Examples

In this section, we shall omit mentioning the initial data, which are always
assumed to be in ℒb

ℱt0
. For simplicity, only second moment stability (p = 2) is

considered. Almost sure stability would follow from Theorem 4.1 under suitable
assumptions.

Example 5.1. Consider the switched stochastic delay system

dx(t) =
[
A�x(t) + f�(t, x(t), x(t− r(t)))

]
dt

+ g�(t, x(t), x(t− r(t)))dW (t), t /∈ $(�, I), t > t0, (5.1)

Δx(t) = I(�(t−), �(t), t, xt−), t ∈ $(�, I),

where � : [0,∞) → N and there exist positive constants �i, �̃i, �i, and �̃i such
that

∣fi(t, x, y))∣ ≤ �i ∣x∣+ �̃i ∣y∣ , (5.2)

and

∣gi(t, x, y)∣2 ≤ �i ∣x∣2 + �̃i ∣y∣2 , (5.3)
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for i ∈ N and (t, x, y) ∈ [t0,∞)× ℝn × ℝn. A single time-varying delay is given
by r(t), which is continues on [t0,∞) and satisfies 0 ≤ r(t) ≤ r, for some constant
r > 0.

Stability analysis. Assume that there exist real symmetric matrices Pi and
Qi such that Pi is positive definite and ATi Pi + PiAi = Qi, for all i ∈ N . Let
Vi(t, x) = xTPix, i ∈ N . Then

min
i∈N

�min(Pi) ∣x∣2 ≤ Vi(t, x) ≤ max
i∈N

�max(Pi) ∣x∣2 ,

for all (i, t, x) ∈ N × [t0 − r,∞)× ℝn. For � ∈ ℒ2
ℱt , we have

ℒVi(t, �) = 2�T (0)Pi
[
Ai�(0) + fi(t, �, �(−r(t)))

]
+ trace

[
gTi (t, �(0), �(−r(t)))Pigi(t, �(0), �(−r(t)))

]
≤ �max(Qi) ∣�(0)∣2 + 2�i�max(Pi) ∣�(0)∣2

+ 2�̃i�max(Pi) ∣�(0)�(−r(t))∣
+ �i�max(Pi) ∣�(0)∣2 + �̃i�max(Pi) ∣�(−r(t))∣2 . (5.4)

If, for some q > 1, we have

min
i∈N

E
(
�T (s)Pi�(s))

)
≤ qE

(
�T (0)Pi�(0))

)
, ∀s ∈ [−r, 0],

which implies,

min
i∈N

�min(Pi)E
(
∣�(s)∣2

)
≤ qE

(
�T (0)Pi�(0))

)
, ∀s ∈ [−r, 0].

Hence, by (5.4),

E (ℒVi(t, �)) ≤ �iE (Vi(t, �(0))) , (5.5)

where �i = �i + q�̃i, with

�i =
�max(Qi)

�max(Pi)
+ (2�i + �̃i + �i)

�max(Pi)

�min(Pi)
, (5.6)

and

�̃i = (�̃i + �̃i)
�max(Pi)

mini∈N �min(Pi)
. (5.7)

I. Average dwell-time approach .

If �i + �̃i < 0 for all i ∈ N , it is clear that the equations

− (�i + q�̃i) =
log(q)

r
, (5.8)

for i ∈ N , each has a unique solution qi in (1,−�i/�̃i). Let q = maxi∈N qi,
and � = maxi∈N (−�i). Then q = e�r and condition (ii) of Theorem 3.1 is
satisfied. Assume, in this case, the impulse function is constantly zero. We
have Vi(t, x) ≤ maxi∈N �max(PiP

−1
j )Vj(t, x), for all (t, x) ∈ [t0,∞) × ℝn and

i, j ∈ N , which implies that condition (b) of Theorem 3.1 is satisfied with
�i = maxj∈N �max(PiP

−1
j ). By Theorem 3.1, the trivial solution of system (5.1) is

second moment globally uniformly exponentially stable on
∩
i∈N ℐAS (�i, N0; {i}),
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where �i > ln(�i)/(−�i), for all i ∈ N , and its second moment Lyapunov exponent
is not greater than −Λ = −mini∈N{(−�i)− ln(�i)/�i}.

II. Impulsive stabilization.

If �i + �̃i ≥ 0 for all i ∈ N , we can consider the situation as all subsystems of
(5.1) without impulses are unstable and seek impulsive stabilization for (5.1) by
Theorem 3.2. For given Λ and r, we can find qi > 1 such that

qi = exp(Λr + Λ�i + �i�i), (5.9)

where �i = �i+qi�̃i, provided that �i is sufficiently small. Now according to The-
orem 3.2, if we choose the impulses accordingly such that �i < − ln(�i)/(Λ + �i),
then the trivial solution of system (5.1) is second moment globally uniformly ex-
ponentially stable on

∩
i∈N ℐUS (�i, {i}) with a second moment Lyapunov exponent

not greater than −Λ.

III. Combined hybrid strategy.

Suppose N = Navg∪Nimp with �i+ �̃i < 0, for all i ∈ Navg, and �i+ �̃i ≥ 0, for
all i ∈ Nimp. Following case I, it is clear that, for each i ∈ Navg, (5.8) has a unique
solution qi in (1,−�i/�̃i). Let q = maxi∈Navg qi and � = maxi∈Navg(−�i). Then
q = e�r and condition (ii) of Theorem 3.3 is satisfied. Choose the average dwell-
time �i > ln(�i)/(−�i) for i ∈ Navg. We seek appropriate impulsive stabilization
for the subsystems in Nimp. Let Λ = mini∈Navg{(−�i) > ln(�i)/�i}. For each
i ∈ Nimp and a sufficiently small �i, we can find qi > 1 such that

qi = exp(�r + Λ�i + �i�i), (5.10)

and �i = �i + qi�̃i. According to Theorem 3.3, if we choose the impulses such
that �i < − ln(�i)/(Λ + �i) for i ∈ Nimp, then the trivial solution of system (5.1)
is second moment globally uniformly exponentially stable on{ ∩

i∈Nimp

ℐUS (�i, {i})
}∩{ ∩

i∈Navg

ℐAS (�,N0; {i})
}
,

with its second moment Lyapunov exponent not greater than −Λ.

The stability analysis for Example 5.1 can be summarized in the following
Theorem, while the notations are explained in the above argument.

Theorem 5.1. The trivial solution of system (5.1) is second moment globally
uniformly exponentially stable on

(i)
∩
i∈N ℐAS (�i, N0; {i}), if �i + �̃i < 0 and �i > ln(�i)/(−�i), for all i ∈ N ,

(ii)
∩
i∈N ℐUS (�i, {i}), if �i + �̃i ≥ 0 and �i < − ln(�i)/(Λ + �i), for all i ∈ N ,

(iii)
{∩

i∈Nimp
ℐUS (�i, {i})

}∩{∩
i∈Navg

ℐAS (�,N0; {i})
}
, if �i + �̃i < 0 and �i >

ln(�i)/(−�i), for all i ∈ Navg, and �i + �̃i ≥ 0 and �i < − ln(�i)/(Λ + �i),
for all i ∈ Nimp.

In all three cases, the second moment Lyapunov exponent is guaranteed to be not
greater than −Λ. If, in addition, assumptions of Theorem 4.1 are satisfied, then
the Lyapunov exponent is guaranteed to be not greater than −Λ/2.
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Example 5.2. Let N = {1, 2} and choose

A1 =

⎛⎝−4.05 2.01 −1.31
−4.53 −4.18 −0.33
−1.24 0.15 −3.15

⎞⎠ , A2 =

⎛⎝−0.87 −0.64 0.05
0.87 0.85 2.70
−1.52 −3.37 0.59

⎞⎠ .

Consider a special case of (5.1),

dx(t) =
[
A�x(t) +B�x(t− r)

]
dt+ C�x(t− r)dW (t), t > t0, (5.11)

with

I(i, j, t, �) = D(i, j)�(0),

where r > 0 is a constant, Bi = Ci = I3 (I3 is the 3 × 3 identity matrix), and
D(i, j) are 3× 3 constant matrices for i, j ∈ N .

Combined hybrid stabilization. We shall follow the same notations and
argument as in Example 5.1. Choose V1(t, x) = V2(t, x) = x2 (i.e. P1 = P2 = I3).
Taking fi(t, x, y) := Biy, gi(t, x, y) := Ciy, it is clear that (5.2) and (5.3) are

satisfied with �̃i = ∥Bi∥, �̃i = ∥Ci∥2, and �i = �i = 0. We can compute, from
(5.6) and (5.7),

�1 = �max(AT1 + A1) + ∥B1∥ = −3.0139, �̃1 = ∥B1∥+ ∥C1∥2 = 2,

and

�2 = �max(AT2 + A2) + ∥B2∥ = 2.4545, �̃2 = ∥B2∥+ ∥C2∥2 = 2.

Therefore, �1 + �̃1 < 0 and �2 + �̃2 > 0. Following case (iii) of Theorem 5.1,
we can choose a combined hybrid strategy to stabilize system (5.11). The key
steps are to find the average dwell-time condition �1 for the first mode, and the
constants �2 and �2, which characterize, respectively, the impulse frequency and
impulse strength for the second mode. Since P1 = P2 = I3 and there are no
impulses applied when the first mode is to be activated, we have that (3.5) (in
condition (b) of Theorem 3.1), for j = 1, is satisfied with �1 = 1 and d(t) ≡ 1,
which, according to Remark 3.2, implies that there is essentially no average dwell-
time restriction for the first mode. Solving (5.8) for i = 1 gives q1 = 1.3550 and
�1 = −0.3038. Hence Λ = � = 0.3038. Choose �2 = 0.1. Solving (5.10) for i = 2
gives q2 = 3.8765. Hence �2 = 10.2075. To introduce impulses for the second
mode only, let

D(i, 1) = 0, D(i, 2) = −0.5I3, i = 1, 2. (5.12)

Therefore, (3.5) is satisfied with �2 = 0.25 and d(t) ≡ 1. It is verified that

�2 = 0.1 < 0.1319 = − ln(�2)

Λ + �2

.

According to Theorem 3.2, the trivial solution of (5.11) is second moment globally
uniformly exponentially stable and its second moment Lyapunov exponent is not
greater than -0.3038. If, in addition, (�, I) satisfies an overall average dwell-time
condition, Theorem 4.1 also guarantees that trivial solution of (5.11) is almost
surely exponentially stable and its Lyapunov exponent is not greater than -0.1519.
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Figure 1. Simulation results for Example 5.1.

Numerical simulation. With (�, I) ∈ ℐUS (0.1; {2}), typical samples of (5.11)
are simulated and shown in Figure 1. It is demonstrated that the combined
strategy can successfully stabilize system (5.11), which, in the absence of impulses,
can be highly unstable, as shown in Figure 3.

Average dwell-time approach. Now we illustrate, still by Example 5.2, that
Theorem 3.1 can well cover switched systems with both stable and unstable modes
and an average dwell-time switching would exponentially stabilize system (5.11).
Solving (5.8) for i = 1 gives q1 = 1.3550 and �1 = −0.3038. Choose q = q1 =
1.3550 and �2 = �2 + q�̃2 = 5.1645. It is easy to verify that condition (ii) of
Theorem 3.1 is satisfied. Suppose that there are no impulses, i.e. D(i, j) = 0
for all i, j ∈ N . Therefore, (3.5) is satisfied with �i = 1 for i = 1, 2. According
to Remark 3.2, there are no average dwell-time restrictions for both modes. The
only condition in 3.1 remains to be verified is condition (c), which reads

∫ t

t0

��(s)ds ≤ −�(t− t0), t ≥ t0, (5.13)
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Figure 2. Simulation results for Example 5.1.

for some constant � > 0. To check (5.13), define, for i = 1, 2, �i(t) to the the
total activation time of the ith mode up to time t. If (�, I) is such that

�2(t)

�1(t)
≤ #, t > t0. (5.14)

for some constant # > 0, then, by the identity �1(t) + �2(t) = t− t0, we have

�1(t) ≥ t− t0
1 + #

,

and, consequently,∫ t

t0

��(s)ds = �1(t)�1 + �2(t)�2 ≤
(�1 + #�2)(t− t0)

1 + #
, t > t0.

Therefore, if we choose # = 0.05 > 0 such that �1 + #�2 = −0.0456 < 0, then
(5.13) is verified and Theorem 3.1 guarantees that the trivial solution of (5.11) is
second moment globally uniformly exponentially stable and its second moment
Lyapunov exponent is not greater than -0.0456. If, in addition, (�, I) satisfies
an overall average dwell-time condition, Theorem 4.1 also guarantees that trivial
solution of (5.11) is almost surely exponentially stable and its Lyapunov exponent
is not greater than -0.0228.
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Figure 3. Simulation results for Example 5.1.

Numerical simulation. With (�, I) satisfying (5.14) with # = 0.05, typical
samples of (5.11) are simulated and shown in Figure 2. It is demonstrated that
the average dwell-time switching under the balance condition (5.14) can success-
fully stabilize system (5.11), which has both stable and unstable subsystems.
Moreover, it is shown in Figure 3 that, a switching signal that fails to satisfy the
balance condition (5.14) may also fail to stabilize the system.
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