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Abstract

In this paper we introduce the notion of asymptotic contraction of integral Meir-Keeler type on a metric
space and we prove a theorem which ensures existence and uniqueness of fixed points for such contractions.
This result generalizes some recent results in the literature. c©2012 NGA. All rights reserved.
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1. Introduction and preliminaries

Fixed point theory is an important and actual topic of nonlinear analysis. For the most important contribu-
tions on the metric and non-metric setting, see Goebel and Kirk [3], Kirk and Kang [4] and Kirk and Sims
[5] (and the references therein). In 1969, Meir and Keeler [7] proved the following very interesting fixed
point theorem, which is a generalization of the Banach contraction principle [1]. See also [8, 9, 10].

Theorem 1.1 (Meir and Keeler [7]). Let (X, d) be a complete metric space and T be a mapping on X.
Assume that for every ε > 0, there exists δ >0 such that ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε for
x, y ∈ X. Then T has a unique fixed point.

In 2002, Branciari [2] introduced a contraction of integral type and proved the following fixed point
theorem, which is also a generalization of the Banach contraction principle.
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Theorem 1.2. Let (X, d) be a complete metric space, c ∈]0, 1[, and f : X → X be a mapping such that for
each x, y ∈ X, ∫ d(fx,fy)

0
ψ(t)dt ≤ c

∫ d(x,y)

0
ψ(t)dt,

where ψ : [0,+∞[→ [0,+∞[ is a Lebesgue-integrable mapping which is summable (i.e., with finite integral)
on each compact subset of [0,+∞[, nonnegative, and such that for each ε > 0,

∫ ε
0 ψ(t)dt > 0; then f has a

unique fixed point a ∈ X such that for each x ∈ X, lim
n→+∞

fnx = a.

In 2003, Kirk [6] introduced the notion of asymptotic contraction on a metric space.

Definition 1.3. Let (X, d) be a metric space and let T be a mapping on X. Then T is called an asymptotic
contraction on X if there exists a continuous function ϕ from [0,+∞[ into itself and a sequence {ϕn} of
functions from [0,+∞[ into itself such that

(i) ϕ(0) = 0,

(ii) ϕ(r) < r for r ∈]0,+∞[,

(iii) {ϕn} converges to ϕ uniformly on the range of d,

(iv) for x, y ∈ X and n ∈ N,
d(Tnx, Tny) ≤ ϕn(d(x, y)).

For the class of asymptotic contractions, we have the following interesting result.

Theorem 1.4 (Kirk [6]). Let (X, d) be a complete metric space and T be a continuous, asymptotic con-
traction on X with {ϕn} and ϕ in Definition 1.3. Assume that there exists x ∈ X such that the orbit
{Tnx : n ∈ N} of x is bounded, and that ϕn is continuous for n ∈ N. Then there exists a unique fixed point
z ∈ X. Moreover, lim

n→+∞
Tnx = z for all x ∈ X.

Recently, Suzuki [11] introduced the notion of asymptotic contraction of Meir-Keeler type on a metric
space, and proved a fixed point theorem for such class of contractions.

Definition 1.5. Let (X, d) be a metric space. Then a mapping T on X is said to be an asymptotic
contraction of Meir-Keeler type (ACMK, for short) if there exists a sequence {ϕn} of functions from [0, +∞[
into itself satisfying the following:

(i) lim sup
n→+∞

ϕn(ε) ≤ ε for all ε > 0,

(ii) for each ε > 0 there exist δ > 0 and ν ∈ N such that ϕν(t) ≤ ε for all t ∈ [ε, ε+ δ],

(iii) d(Tnx, Tny) < ϕn(d(x, y)) for all n ∈ N and x, y ∈ X with x 6= y.

Theorem 1.6. Let (X, d) be a complete metric space and T be an ACMK on X. Assume that Tm is
continuous for some m ∈ N. Then there exists a unique fixed point z ∈ X. Moreover, lim

n→+∞
Tnx = z for

all x ∈ X.

Remark 1.7. Every contraction of Meir-Keeler type and each asymptotic contraction on a metric space is
an asymptotic contraction of Meir-Keeler type (see Propositions 2 and 3 of [11]).

In this paper, we introduce the notion of asymptotic contraction of integral Meir-Keeler type, and prove
a fixed point theorem for such contractions. Our result is a generalization of Theorem 1.6. Moreover, since
Theorem 1.6 is a generalization of Theorems 1.1 and 1.4, our result generalizes also Theorems 1.1 and 1.4.



E. Canzoneri, P. Vetro, J. Nonlinear Sci. Appl. 5 (2012), 126–132 128

2. Asymptotic contraction of integral Meir-Keeler type

In this section we introduce the notion of asymptotic contraction of Meir-Keeler type, and prove a fixed
point result for such class of contractions.

Let Ψ be the class of functions ψ : [0,+∞[→ [0,+∞[ with the following properties:

(j) ψ is Lebesgue-integrable on each interval [0, a[, with a > 0,

(jj)
∫ ε
0 ψ(t)dt > 0 for each ε > 0.

Definition 2.1. Let (X, d) be a metric space. Then a mapping T on X is said to be an asymptotic
contraction of integral Meir-Keeler type (ACIMK, for short) if there exists a sequence {ϕn} of functions
from [0, +∞[ into itself satisfying the following:

(i) lim sup
n→+∞

ϕn(ε) ≤ ε for all ε > 0,

(ii) for each ε > 0 there exist δ > 0 and s ∈ N such that ϕs(t) ≤ ε for all t ∈ [ε, ε+ δ],

(iii)
∫ d(Tnx,Tny)
0 ψ(t)dt < ϕn(

∫ d(x,y)
0 ψ(t)dt) for all n ∈ N and x, y ∈ X with x 6= y, where ψ ∈ Ψ.

Lemma 2.2. Let (X, d) be a complete metric space and T : X → X a mapping. Assume that there exists
a sequence {ϕn} of functions from [0, +∞[ into itself satisfying the following:

(a) for each ε > 0 there exist δ > 0 and s ∈ N such that ϕs(t) ≤ ε for all t ∈ [ε, ε+ δ],

(b)
∫ d(Tnx,Tny)
0 ψ(t)dt < ϕn(

∫ d(x,y)
0 ψ(t)dt) for all n ∈ N and x, y ∈ X with x 6= y, where ψ ∈ Ψ.

If d(Tnu, Tn+1u)→ 0 for some u ∈ X, then {Tnu} is a Cauchy sequence.

Proof. For fixed ε > 0, let σ =
∫ ε
0 ψ(t)dt. By (a), there exist δ > 0 and s ∈ N such that ϕs(t) ≤ σ for each

t ∈ [σ, σ + δ]. Now, we choose ν ∈]0, ε[ such that∫ ε+ν

ε
ψ(t)dt < δ.

In correspondence of ν, there exists n(ν) ∈ N such that d(un, un+1) <
ν
s for all n ≥ n(ν), where un = Tnu.

Suppose that there exist m, p ∈ N, with m > p ≥ n(ν) such that d(um, up) > 2ε and define

k = min{j ∈ N : p < j and ε+ ν ≤ d(up, uj)} ≤ m.

From

2ν < ε+ ν ≤ d(up, uk) ≤
k−1∑
j=p

d(uj , uj+1) ≤
k−1∑
j=p

ν

s
= (k − p)ν

s
,

we deduce that 2s < k − p and hence p < k − 2s < k − s. It implies that d(up, uk−s) < ε+ ν. Then

d(up, uk−s) ≥ d(up, uk)− d(uk−s, uk)

≥ d(up, uk)−
s−1∑
j=0

d(uk−j−1, uk−j)

≥ ε+ ν − sν
s

= ε.

Consequently,

σ =

∫ ε

0
ψ(t)dt ≤

∫ d(up,uk−s)

0
ψ(t)dt ≤

∫ ε+ν

0
ψ(t)dt < σ + δ.
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We show that d(up+s, uk) ≤ ε. If d(up+s, uk) > ε, by (b), we have∫ ε

0
ψ(t)dt ≤

∫ d(up+s,uk)

0
ψ(t)dt =

∫ d(T sup,T suk−s)

0
ψ(t)dt

< ϕs(

∫ d(up,uk−s)

0
ψ(t)dt)

≤
∫ ε

0
ψ(t)dt = σ,

which is a contradiction. Then

d(up, uk) ≤
s∑
j=1

d(up+j−1, up+j) + d(up+s, uk) < s
ν

s
+ ε = ν + ε,

that is a contradiction with the definition of k. Therefore d(un, um) < 2ε for all m > n ≥ n(ν) and so {un}
is a Cauchy sequence.

Theorem 2.3. Let (X, d) be a complete metric space and T be an ACIMK on X. Assume that Tm is
continuous for some m ∈ N. Then there exists a unique fixed point z ∈ X. Moreover, lim

n→+∞
Tnx = z for

all x ∈ X.

Proof. Let {ϕn} be as in Definition 2.1. We first show that

lim
n→+∞

d(Tnx, Tny) = 0 for all x, y ∈ X. (2.1)

Fix x, y ∈ X with x 6= y. If Tmx = Tmy for some m ∈ N, clearly (2.1) holds. We assume that Tmx 6= Tmy
for all m ∈ N and define

α := lim sup
n→+∞

∫ d(Tnx,Tny)

0
ψ(t)dt > 0.

Now, (ii) of Definition 2.1 ensures that there is s ∈ N such that∫ d(T sx,T sy)

0
ψ(t)dt < ϕs(

∫ d(x,y)

0
ψ(t)dt) ≤

∫ d(x,y)

0
ψ(t)dt.

By (i) of Definition 2.1, we have

α := lim sup
n→+∞

∫ d(Tn+sx,Tn+sy)

0
ψ(t)dt

≤ lim sup
n→+∞

ϕn(

∫ d(T sx,T sy)

0
ψ(t)dt)

≤
∫ d(T sx,T sy)

0
ψ(t)dt

< ϕs(

∫ d(x,y)

0
ψ(t)dt) ≤

∫ d(x,y)

0
ψ(t)dt.

Consequently, we deduce that α <
∫ d(T px,T py)
0 ψ(t)dt for all p ∈ N and hence

lim
n→+∞

∫ d(Tnx,Tny)

0
ψ(t)dt = α. (2.2)
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By (ii) of Definition 2.1, there exist δ > 0 and m ∈ N such that ϕm(t) ≤ α for every t ∈ [α, α+ δ]. Now,
we choose p ∈ N such that ∫ d(T px,T py)

0
ψ(t)dt ≤ α+ δ.

From ∫ d(Tm+px,Tm+py)

0
ψ(t)dt < ϕm(

∫ d(T px,T py)

0
ψ(t)dt) ≤ α,

which is a contradiction, we deduce that α = 0. Therefore, we obtain (2.1) as consequence of the property∫ ε
0 ψ(t)dt > 0 for all ε > 0 and (2.2), with α = 0.

Let x ∈ X and consider the sequence {Tnx}, which is a Cauchy sequence by Lemma 2.2. Since X is
complete, there exists z ∈ X such that Tnx→ z. Then, from the continuity of Tm, we have

z = lim
n→+∞

Tn+mx = lim
n→+∞

Tm(Tnx) = Tmz,

that is, z is a fixed point of Tm. Since

lim
n→+∞

d(Tnm+1x, Tz) = lim
n→+∞

d(Tnm+1x, Tnm+1z) = 0

by (2.1), we have
Tz = lim

n→+∞
Tnm+1x = z,

that is, z is a fixed point of T . If Tx = x, then

d(z, x) = lim
n→+∞

d(Tnz, Tnx) = 0

by (2.1), and hence x = z. Therefore the fixed point of T is unique. Finally, since x is arbitrary, lim
n→+∞

Tnx =

z for every x ∈ X. This completes the proof.

Remark 2.4. Every asymptotic contraction of Meir-Keeler is an asymptotic contraction of integral Meir-
Keeler type and so Theorem 2.3 is a generalization of Theorem 1.6. Moreover, since each contraction
of Branciari is an asymptotic contraction of integral Meir-Keeler type, we deduce that Theorem 2.3 is a
generalization of Theorem 1.2.

The following example shows that Theorem 2.3 is a proper generalization of Theorem 1.2.

Example 2.5. Let X = [0,+∞[ be endowed with the Euclidean metric d(x, y) = |x−y|. Define T : X → X
and ψ,ϕ : [0,+∞[→ [0,+∞[ by

T (x) =
x

1 + x
, ∀ x ∈ X, ψ(t) = 2t and ϕ(t) =

t

1 + t
, ∀ t ∈ [0,+∞[.

We have∫ d(Tx,Ty)

0
ψ(t)dt =

|x− y|2

[(1 + x)(1 + y)]2

<
|x− y|2

1 + |x− y|2

= ϕ(|x− y|2)

= ϕ(

∫ d(x,y)

0
ψ(t)dt).
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This implies that T is an asymptotic contraction of integral Meir-Keeler type with respect to the sequence
{ϕn}, where ϕn = ϕ for all n ∈ N. Therefore all the conditions of Theorem 2.3 are fulfilled. Consequently,
it follows from Theorem 2.3 that T has a unique fixed point 0 ∈ X.
In this case Theorem 1.2 cannot be used to have the existence of a fixed point of T in X because its
assumptions are not satisfied. In fact, assume that there exists some constant c ∈]0, 1[ such that∫ d(Tx,Ty)

0
ψ(t)dt ≤ c

∫ d(x,y)

0
ψ(t)dt,

that is
|x− y|2

[(1 + x)(1 + y)]2
≤ c|x− y|2

for all x, y ∈ X with x 6= y. This yields that 1 ≤ c < 1, which is a contradiction.

Now, we give an example of an asymptotic contraction of integral Meir-Keeler type that is not an
asymptotic contraction of Meir-Keeler type.

Example 2.6. Let X = {0} ∪ { 1n : n ∈ N, n ≥ 2} be endowed with the Euclidean metric d(x, y) = |x− y|.
Define T : X → X and ψ,ϕn : [0,+∞[→ [0,+∞[ by

Tx =

{
0 if x = 0
1

n+1 if x = 1
n ,

ψ(t) =


0 if t = 0

t1/t−2[1− ln t] if t ∈]0, 1/2]
1/4 if t > 1/2,

ϕn(t) =

{
t if n is odd
t/2 if n is even.

Since ∫ d(Tx,Ty)

0
ψ(t)dt ≤ 1

2

∫ d(x,y)

0
ψ(t)dt

for all x, y ∈ X with x 6= y (see Example 3.6 of [2]), we deduce that T is an asymptotic contraction of
integral Meir-Keeler type with respect to the sequence {ϕn}.
We note that for every even n ∈ N, one can choose p ∈ N such that p

n+p > k for every k ∈]0, 1[. Then, for
x = 0 and y = 1/p, we have

d(Tnx, Tny) =
1

n+ p
>
k

p
= k d(x, y).

It follows that T is not an asymptotic contraction of Meir-Keeler type with respect to the sequence {ϕn}.
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