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Abstract

Let fn(x, y, z) be a symmetric homogeneous polynomial of degree n = 4 or n = 6, in three real variables. We
give necessary and sufficient conditions to have fn(x, y, z) ≥ 0 for all real numbers x, y, z. Then, we apply
the obtained results to prove several relevant symmetric homogeneous polynomial inequalities of degree four
and six.
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1. Introduction

A symmetric and homogeneous polynomial of degree four in three variables x, y, z can be written as

f4(x, y, z) = A1

∑
x4 +A2

∑
xy(x2 + y2) +A3

∑
x2y2 +A4xyz

∑
x,

where A1, A2, A3, A4 are real constants, and
∑

denotes a cyclic sum over x, y, z. Using the notations

p = x+ y + z, q = xy + yz + zx, r = xyz,
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by the known identities ∑
x4 = p4 − 4p2q + 2q2 + 4pr,∑
xy(x2 + y2) = p2q − 2q2 − pr,∑

x2y2 = q2 − 2pr,

we can write f4(x, y, z) in the form

f4(x, y, z) = Ar +Bp4 + Cp2q +Dq2, (1.1)

where A,B,C,D are real constants.
The best known fourth degree symmetric homogeneous polynomial inequality in three real variables is

no doubt Schur’s inequality, which states that∑
x2(x− y)(x− z) ≥ 0,

or, equivalently, ∑
x4 + xyz

∑
x ≥

∑
xy(x2 + y2).

The following generalization of the fourth degree Schur’s inequality was proved in [2].

Proposition 1.1. Let α and β be real numbers. The inequality∑
x4 + β

∑
x2y2 + (2α− β + 1)xyz

∑
x ≥ (α+ 1)

∑
xy(x2 + y2)

holds for all real numbers x, y, z if and only if β ≥ α2 + 2α.

In the main particular case β = α2 + 2α, the inequality in Proposition 1.1 is equivalent to the elegant
inequality ([3], pp. 77) ∑

(x− y)(x− z)(x− αy)(x− αz) ≥ 0,

where equality holds for x = y = z, and for x/α = y = z (if α 6= 0).
On the other hand, Tetsuya Ando proved in [1] the following fourth degree symmetric homogeneous

polynomial inequality.

Proposition 1.2. If α and x, y, z are real numbers, then∑
x4 + (α2 + 2)

∑
x2y2 + 2α(α− 1)xyz

∑
x ≥ 2α

∑
xy(x2 + y2),

with equality for x2 + y2 + z2 = α(xy + yz + zx).

A symmetric and homogeneous polynomial of degree six can be written as

f6(x, y, z) = A1

∑
x6 +A2

∑
xy(x4 + y4) +A3

∑
x2y2(x2 + y2)

+A4

∑
x3y3 +A5xyz

∑
x3 +A6xyz

∑
xy(x+ y) +A7x

2y2z2,

where A1, ..., A7 are real constants. Using the identities∑
x6 = 3r2 + 6(p3 − 2pq)r + p6 − 6p4q + 9p2q2 − 2q3, (1.2)∑

xy(x4 + y4) = −3r2 + (7pq − p3)r + p4q − 4p2q2 + 2q3, (1.3)∑
x2y2(x2 + y2) = −3r2 − 2(p3 − 2pq)r + p2q2 − 2q3, (1.4)
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x3y3 = 3r2 − 3pqr + q3, (1.5)∑

x3 = 3r + p3 − 3pq,
∑

xy(x+ y) = pq − 3r, (1.6)

f6(x, y, z) can be expressed in the form

f6(x, y, z) = Ar2 + g1(p, q)r + g2(p, q), (1.7)

with
g1(p, q) = Bp3 + Cpq, g2(p, q) = Dp6 + Ep4q + Fp2q2 +Gq3,

where A, B, C, D, E, F , G are real constants. Throughout the paper, we call the coefficient A of r2 in the
development (1.7) the highest coefficient of f6(x, y, z).

As we will show in the next section, the first step in proving the inequality f6(x, y, z) ≥ 0 using necessary
and sufficient conditions is to write the sixth degree symmetric homogeneous polynomial f6(x, y, z) in the
form (1.7). To make this, the following identities are also useful sometimes:

(x− y)2(y − z)2(z − x)2 =
∑

x2y2(x2 + y2)− 2
∑

x3y3

−2xyz
∑

x3 + 2xyz
∑

xy(x+ y)− 6x2y2z2, (1.8)

(x− y)2(y − z)2(z − x)2 = −27r2 + 2(9pq − 2p3)r + p2q2 − 4q3. (1.9)

In our opinion, to prove sixth degree symmetric homogeneous polynomial inequalities using necessary
and sufficient conditions is always possible, but rather complicated and tedious when the highest coefficient
of f6(x, y, z) is positive. For this reason, it is beneficent to find out a suitable technique based on strong
sufficient conditions for proving such inequalities in a simpler way, without making the development (1.7)
in p, q and r. On the other hand, the approach of the symmetric homogeneous polynomial inequalities with
nonnegative real variables, using either necessary and sufficient conditions or only some strong sufficient
conditions, is also an interesting and opportune work, already under our investigation.

Our proposed necessary and sufficient conditions for inequalities in real variables are presented in section
2 and proved in section 3. In section 4, we apply the obtained results for proving some relevant symmetric
homogeneous polynomial inequalities of degree four and six. The last six applications are sixth degree
inequalities having the highest coefficient positive, which were posted in 2009 and 2010 on the well-known
website Art of Problem Solving ([4], [5], [6], [7]). Notice that no solution was given to these difficult
inequalities.

2. Main Results

In order to prove our main results, we need the following lemma.

Lemma 2.1. Let x ≤ y ≤ z be real numbers such that x+ y + z = p and xy + yz + zx = q, where p and q
are given real numbers satisfying p2 ≥ 3q. The product

r = xyz

is minimal when y = z, and is maximal when x = y; that is,

r ∈ [rmin(p, q), rmax(p, q)],

where

rmin(p, q) =
(p− 2

√
p2 − 3q)(p+

√
p2 − 3q)2

27
,

rmax(p, q) =
(p−

√
p2 − 3q)2(p+ 2

√
p2 − 3q)

27
.
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Using Lemma 2.1, we can prove the following theorems.

Theorem 2.2. Let f4(x, y, z) be a fourth degree symmetric homogeneous polynomial. The inequality

f4(x, y, z) ≥ 0

holds for all real x, y, z if and only if f4(x, 1, 1) ≥ 0 and f4(x, 0, 0) ≥ 0 for all real x.

Theorem 2.3. Let f6(x, y, z) be a sixth degree symmetric homogeneous polynomial which has its highest
coefficient non-positive (A ≤ 0). The inequality

f6(x, y, z) ≥ 0

holds for all real x, y, z if and only if f6(x, 1, 1) ≥ 0 and f6(x, 0, 0) ≥ 0 for all real x.

Notice that using Theorem 2.2 leads to a short solution for any fourth degree symmetric homogeneous
polynomial inequality in real variables. For instant, with regards to Proposition 1.1, if we denote

f4(x, y, z) =
∑

x4 + β
∑

x2y2 + (2α− β + 1)xyz
∑

x− (α+ 1)
∑

xy(x2 + y2),

then
f4(x, 1, 1) = (x− 1)2[(x− α)2 + β − α2 − 2α]

and
f4(x, 0, 0) = x4.

Thus, by Theorem 2.2, the conclusion follows. Also, with regards to Proposition 1.2, if we denote

f4(x, y, z) =
∑

x4 + (α2 + 2)
∑

x2y2 + 2α(α− 1)xyz
∑

x− 2α
∑

xy(x2 + y2),

then
f4(x, 1, 1) = (x2 − 2αx+ 2− α)2 ≥ 0

and
f4(x, 0, 0) = x4 ≥ 0.

With regard to the polynomial f6(x, y, z) written in the form

f6(x, y, z) = Ar2 + g1(p, q)r + g2(p, q),

where p = x+ y + z, q = xy + yz + zx, r = xyz, let us denote

h1(t) = 2At+ g1(t+ 2, 2t+ 1),

h2(t) = 2At2 + g1(1 + 2t, 2t+ t2),

d(p, q) = g21(p, q)− 4Ag2(p, q).

In addition, assume that
d(t+ 2, 2t+ 1) > 0 ⇐⇒ t ∈ Γ1,

d(1 + 2t, 2t+ t2) > 0 ⇐⇒ t ∈ Γ2.

Theorem 2.4. Let f6(x, y, z) be a sixth degree symmetric homogeneous polynomial having the highest coef-
ficient A > 0. Consider the following three conditions:

(a) f6(t, 1, 1) ≥ 0 and f6(t, 0, 0) ≥ 0 for all real t;
(b) h1(t) ≥ 0 for t ∈ [−2, 1] ∩ Γ1;
(c) h2(t) ≤ 0 for t ∈ [−1/2, 1] ∩ Γ2.

The inequality f6(x, y, z) ≥ 0 holds for all real x, y, z if and only if the condition (a) and one of the conditions
(b) and (c) are fulfilled.
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3. Proof of Lemma 2.1 and Theorems 2.2, 2.3, 2.4

Proof of Lemma 2.1. First, we show that x ∈ [x1, x2], where

x1 =
p− 2

√
p2 − 3q

3
, x2 =

p−
√
p2 − 3q

3
.

From

(y − z)2 = (y + z)2 − 4yz = (y + z)2 + 4x(y + z)− 4q

= (p− x)2 + 4x(p− x)− 4q = −3x2 + 2px+ p2 − 4q ≥ 0,

we get x ≥ x1, with equality for y = z. Similarly, from

(x− y)(x− z) = x2 − 2x(y + z) + q = x2 − 2x(p− x) + q = 3x2 − 2px+ q ≥ 0,

we get x ≤ x2, with equality for x = y.
On the other hand, from

xyz = x[q − x(y + z)] = xq − x2(p− x) = x3 − px2 + qx,

we get r(x) = x3− px2 + qx. Since r′(x) = 3x2− 2px+ q = (x− y)(x− z) ≥ 0, r(x) is increasing on [x1, x2],
and hence r(x) is minimal for x = x1, when y = z, and is maximal for x = x2, when x = y. It is easy to
check that r is minimal for

x =
p− 2

√
p2 − 3q

3
, y = z =

p+
√
p2 − 3q

3
,

and is maximal for

x = y =
p−

√
p2 − 3q

3
, z =

p+ 2
√
p2 − 3q

3
.

�

Proof of Theorem 2.2. Let p = x + y + z, q = xy + yz + zx, r = xyz. For fixed p and q, the inequality
f4(x, y, z) ≥ 0 can be written as g(r) ≥ 0, where g(r) is a linear function having the form (1.1). Since g(r) is
minimal when r is minimal or maximal, by Lemma 2.1, it follows that g(r) is minimal when two of x, y, z are
equal. Since the polynomial f4(x, y, z) is symmetric, homogeneous and satisfies f4(−x,−y,−z) = f4(x, y, z),
the conclusion follows.

�

Proof of Theorem 2.3. Let p = x + y + z, q = xy + yz + zx, r = xyz. For fixed p and q, the inequality
f6(x, y, z) ≥ 0 can be written as g(r) ≥ 0, where g(r) is a quadratic function having the form (1.7). Since
g(r) is concave for A ≤ 0, it is minimal when r is minimal or maximal. By Lemma 2.1, it follows that g(r)
is minimal when two of x, y, z are equal. Since the polynomial f6(x, y, z) is symmetric, homogeneous and
satisfies f6(−x,−y,−z) = f4(x, y, z), the conclusion follows.

�

Proof of Theorem 2.4. Since d(p, q) is the discriminant of the quadratic function

g(r) = Ar2 + g1(p, q)r + g2(p, q), A > 0,

the desired inequality g(r) ≥ 0 holds if d(p, q) ≤ 0. Consider further that d(p, q) > 0. By Lemma 2.1, for
fixed p and q, r attains its extreme values when two of x, y, z are equal. Then, the necessary conditions
g(rmin) ≥ 0 and g(rmax) ≥ 0 are satisfied if the necessary conditions in (a) are fulfilled. In addition,
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the inequality g(r) ≥ 0 holds for all real numbers x, y, z if and only if either rmin(p, q) ≥ −g1(p, q)
2A

, or

rmax(p, q) ≤ −g1(p, q)
2A

; that is, either

2Armin(p, q) + g1(p, q) ≥ 0,

or
2Armax(p, q) + g1(p, q) ≤ 0.

Due to the property f6(−x,−y,−z) = f6(x, y, z), we may consider that p = x+ y+ z ≥ 0. Since d(p, q) = 0
for p = q = 0, assume further that p2 + q2 6= 0, p ≥ 0. The following two cases generate the conditions in
(b) and (c), respectively.

Case 1. 2Armin(p, q) + g1(p, q) ≥ 0.

We will show that the desired inequality holds if the conditions (a) and (b) are fulfilled. Let us denote

a =
p− 2

√
p2 − 3q

3
, b =

p+
√
p2 − 3q

3
> 0, t =

a

b
.

It is easy to check that
p = a+ 2b, q = 2ab+ b2.

From a ≤ b, b > 0, and p = a + 2b = b(t + 2) ≥ 0, we get −2 ≤ t ≤ 1. By Lemma 2.1, we can write the
condition 2Armin(p, q) + g1(p, q) ≥ 0 as

2Aab2 + g1(a+ 2b, 2ab+ b2) ≥ 0.

Dividing by b3, we obtain h1(t) ≥ 0. In addition, we can write the condition d(p, q) > 0 as d(a+2b, 2ab+b2) >
0. Dividing by b6, we get d(t+ 2, 2t+ 1) > 0, which is equivalent to t ∈ Γ1. Thus, the conclusion follows.

Case 2. 2Armax(p, q) + g1(p, q) ≤ 0.

We will show that the desired inequality holds if the conditions (a) and (c) are fulfilled. Let

a =
p−

√
p2 − 3q

3
, b =

p+ 2
√
p2 − 3q

3
, t =

a

b
.

It is easy to check that
p = 2a+ b, q = a2 + 2ab.

From a ≤ b, b > 0, and p = 2a+ b = b(2t+ 1) ≥ 0, we get −1/2 ≤ t ≤ 1. By Lemma 2.1, we can write the
condition 2Armax(p, q) + g1(p, q) ≤ 0 as

2Aa2b+ g1(2a+ b, a2 + 2ab) ≤ 0.

Dividing by b3, we obtain h2(t) ≤ 0. In addition, we can write the condition d(p, q) > 0 as d(2a+b, a2+2ab) >
0. Dividing by b6, we get d(1 + 2t, 2t+ t2) > 0, which is equivalent to t ∈ Γ2. This completes the proof.

4. Applications

We will prove one inequality of fourth degree and ten inequalities of sixth degree, the last six of them
having the highest coefficient positive. Notice that the coefficient of the product (x− y)2(y− z)2(z − x)2 in
these six inequalities has the best values.

Proposition 4.1. If x, y, z are real numbers, then

10
∑

x4 + 64
∑

x2y2 ≥ 33
∑

xy(x2 + y2),

with equality for x/3 = y = z [8].
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Proof. By Theorem 2.2, it suffices to prove that f4(x, 1, 1) ≥ 0 and f4(x, 0, 0) ≥ 0 for all real x, where

f4(x, y, z) = 10
∑

x4 + 64
∑

x2y2 − 33
∑

xy(x2 + y2).

We have
f4(x, 1, 1) = 2(x− 3)2(5x2 − 3x+ 1) ≥ 0, f4(x, 0, 0) = 10x4 ≥ 0.

�

Proposition 4.2. If x, y, z are real numbers, then∑ 1

x2 + 7(y2 + z2)
≤ 9

5(x+ y + z)2
,

with equality for x = y = z, and for x/4 = y = z [9].

Proof. Let p = x+ y + z and q = xy + yz + zx. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = 9
∏

(x2 + 7y2 + 7z2)− 5p2
∑

(7x2 + y2 + 7z2)(7x2 + 7y2 + z2).

Since ∏
(x2 + 7y2 + 7z2) =

∏
[7(p2 − 2q)− 6x2],

f6(x, y, z) has the highest coefficient A = 9(−6)3 < 0. By Theorem 2.3, it suffices to prove the desired
inequality for y = z = 1 and for y = z = 0. Indeed, we have

f6(x, 1, 1) = 18(7x2 + 8)(x− 1)2(x− 4)2 ≥ 0, f6(x, 0, 0) = 126x6 ≥ 0.

�

Proposition 4.3. If x, y, z are real numbers, then∑ (x+ y)(x+ z)

x2 + 4(y2 + z2)
≤ 4

3
,

with equality for x = y = z, and for 2x/7 = y = z.

Proof. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) =4
∏

(x2 + 4y2 + 4z2)

−3
∑

(x+ y)(x+ z)(4x2 + y2 + 4z2)(4x2 + 4y2 + z2).

Let p = x+ y + z and q = xy + yz + zx. From

f6(x, y, z) =4
∏

(4p2 − 8q − 3x2)

−3
∑

(x2 + q)(4p2 − 8q − 3y2)(4p2 − 8q − 3z2),

it follows that f6 has the highest coefficient A = 4(−3)3 − 33 < 0. By Theorem 2.3, it suffices to prove the
desired inequality for y = z = 1 and for y = z = 0. We have

f6(x, 1, 1) = (4x2 + 5)(x− 1)2(2x− 7)2 ≥ 0, f6(x, 0, 0) = 16x6 ≥ 0.

�
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Proposition 4.4. If x, y, z are real numbers such that x+ y + z = 3, then∑ 1

8 + 5(y2 + z2)
≤ 1

6
,

with equality for x = y = z, and for x/13 = y = z [10].

Proof. Let p = x+ y + z and q = xy + yz + zx. Write the inequality in the homogeneous form∑ 3

8p2 + 45(y2 + z2)
≤ 1

2p2
,

which is equivalent to f6(x, y, z) ≥ 0, where

f6(x, y, z) =
∏

(53p2 − 90q − 45x2)− 6p2
∑

(53p2 − 90q − 45y2)(53p2 − 90q − 45z2).

Clearly, f6 has the highest coefficient A = (−45)3. Since A < 0, it suffices to prove the desired inequality
for y = z (see Theorem 2.3). In this case, the original inequality is equivalent to the obvious inequality

(x− 1)2(x− 13)2 ≥ 0.

�

Proposition 4.5. Let x, y, z be real numbers. If k ≥ 2, then∑ k(k − 3)x2 + 2(k − 1)yz

kx2 + y2 + z2
≤ 3(k + 1)(k − 2)

k + 2
,

with equality for x = y = z, and for kx/2 = y = z [11].

Proof. Setting m =
k(k − 3)

2(k − 1)
, we have to prove that f6(x, y, z) ≥ 0, where

f6(x, y, z) = 3(m+ 1)
∏

(kx2 + y2 + z2)

− (k + 2)
∑

(mx2 + yz)(x2 + ky2 + z2)(x2 + y2 + kz2).

Let p = x+ y + z, q = xy + yz + zx, r = xyz. From

f6(x, y, z) = 3(m+ 1)
∏

[p2 − 2q + (k − 1)x2]

− (k + 2)
∑

(mx2 + yz)[p2 − 2q + (k − 1)y2][p2 − 2q + (k − 1)z2],

it follows that f6(x, y, z) has the same highest coefficient as

f(x, y, z) = 3(m+ 1)(k − 1)3r2 − (k + 2)(k − 1)2
∑

y2z2(mx2 + yz)

= 3(k − 1)2[(k − 1)(m+ 1)− (k + 2)m]r2 − (k + 2)(k − 1)2
∑

y3z3.

Therefore,

A = 3(k − 1)2[(k − 1)(m+ 1)− (k + 2)m− (k + 2)] =
9(k2 − 1)(2− k)

2
.

We see that A ≤ 0 for k ≥ 2. By Theorem 2.3, the inequality f6(x, y, z) ≥ 0 holds if and only if f6(x, 1, 1) ≥ 0
and f6(x, 0, 0) ≥ 0 for all real x. Indeed,

f6(x, 1, 1) = (x2 + k + 1)(x− 1)2(kx− 2)2 ≥ 0, f6(x, 0, 0) = k2x6 ≥ 0.

�
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Proposition 4.6. If x, y, z are real numbers, then∑
(x− y)(x− z)(x− 2y)(x− 2z)(x− 3y)(x− 3z) ≥ 3(x− y)2(y − z)2(z − x)2,

with equality for x = y = z, for x/2 = y = z, for x/3 = y = z, and for x = 0 and y + z = 0 [4].

Proof. Write the inequality in the form f6(x, y, z) ≥ 0, and apply Theorem 2.4. Using (1.2)...(1.6), we get∑
(x− y)(x− z)(x− 2y)(x− 2z)(x− 3y)(x− 3z) =

=
∑

x6 − 6
∑

xy(x4 + y4) + 11
∑

x2y2(x2 + y2) + 24
∑

x3y3

+36xyz
∑

x3 − 96xyz
∑

xy(x+ y) + 363x2y2z2

= 819r2 + 26(p3 − 11pq)r + p6 − 12p4q + 44p2q2 − 12q3.

Using now (1.9), we can write f6(x, y, z) in the form (1.7), where

A = 900, g1(p, q) = 2(19p3 − 170pq), g2(p, q) = p6 − 12p4q + 41p2q2.

The condition (a) in Theorem 2.4 is fulfilled since

f6(t, 1, 1) = (t− 1)2(t− 2)2(t− 3)2 ≥ 0, f6(t, 0, 0) = t6 ≥ 0.

We will show that the condition (c) in Theorem 2.4 is also fulfilled. We have

d(p, q) = g21(p, q)− 4Ag2(p, q) = −4p2(539p4 − 4340p2q + 8000q2).

Since d(p, q) > 0 yields p2 < 6q, it follows that

d(1 + 2t, 2t+ t2) > 0 ⇒ 2t2 + 8t− 1 > 0 ⇒ t ∈ (−∞,−2) ∪ (
1

9
,∞),

and hence

Γ2 ⊂ (−∞,−2) ∪ (
1

9
,∞).

The condition (c) is fulfilled if h2(t) ≤ 0 for t ∈ [−1/2, 1] ∩ Γ2 = (1/9, 1]. Indeed,

h2(t) = 2At2 + g1(1 + 2t, 2t+ t2)

= 2[900t2 + 19(1 + 2t)3 − 170(1 + 2t)(2t+ t2)]

< 20[90t2 + 2(1 + 2t)3 − 17(1 + 2t)(2t+ t2)]

= 20(−18t3 + 29t2 − 22t+ 2)

< 40(−5t3 + 15t2 − 11t+ 1)

= 40(1− t)(1− 10t+ 5t2) ≤ 0.

�

Proposition 4.7. If x, y, z are real numbers, then∑
x2(x− y)(x− z) ≥ 2(x− y)2(y − z)2(z − x)2

x2 + y2 + z2

with equality for x = y = z, and for x = 0 and y = z [5].
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Proof. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = (x2 + y2 + z2)
∑

x2(x− y)(x− z)− 2(x− y)2(y − z)2(z − x)2,

and apply Theorem 2.4. Using (1.9) and the identities∑
x2(x− y)(x− z) =

∑
x4 −

∑
xy(x2 + y2) + xyz

∑
x

= 6pr + p4 − 5p2q + 4q2,

we can write f6(x, y, z) in the form (1.7), where

A = 54, g1(p, q) = 2(7p3 − 24pq), g2(p, q) = p6 − 7p4q + 12p2q2.

The condition (a) in Theorem 2.4 is fulfilled since

f6(t, 1, 1) = (t2 + 2)t2(t− 1)2 ≥ 0, f6(t, 0, 0) = t6 ≥ 0.

We will show that the condition (b) in Theorem 2.4 is also fulfilled. We have

d(p, q) = g21(p, q)− 4Ag2(p, q) = 4p2(5p2 − 12q)(6q − p2).

Since d(p, q) > 0 is equivalent to 6q > p2, we get

d(t+ 2, 2t+ 1) > 0 ⇐⇒ 6(2t+ 1) > (t+ 2)2 ⇐⇒ Γ1 = (4− 3
√

2, 4 + 3
√

2),

and hence
[−2, 1] ∩ Γ1 = (4− 3

√
2, 1].

Since 4− 3
√

2 > −1/4, it suffices to show that h1(t) ≥ 0 for t ∈ [−1/4, 1]. We have

h1(t) = 2At+ g1(t+ 2, 2t+ 1) = 2(7t3 − 6t2 + 18t+ 8).

Clearly, h1(t) > 0 for t ≥ 0. Also, h1(t) > 0 for t ∈ [−1/4, 0), since

7t3 − 6t2 + 18t+ 8 > 8t3 − 6t2 + 30t+ 8 = 2(4t+ 1)(t2 − t+ 4) ≥ 0.

�

Proposition 4.8. Let x, y, z be real numbers. If −1/2 ≤ k ≤ 1, then

4
∑

yz(x− y)(x− z)(x− ky)(x− kz) + (x− y)2(y − z)2(z − x)2 ≥ 0,

with equality for x = y = z, for y = z = 0, and for x/k = y = z, k 6= 0. If k = 0, then equality occurs also
for x = 0 and y = z [6].

Proof. Denote the left-hand side of the inequality by f6(x, y, z). From (1.8) and∑
yz(x− y)(x− z)(x− ky)(x− kz) = k2

∑
x3y3 + xyz

∑
x3

− (k2 + k + 1)xyz
∑

xy(x+ y) + 3(k + 1)2x2y2z2,

we get

f6(x, y, z) =
∑

x2y2(x2 + y2) + 2(2k2 − 1)
∑

x3y3 + 2xyz
∑

x3

−2(2k2 + 2k + 1)xyz
∑

xy(x+ y) + 6(2k2 + 4k + 1)x2y2z2.



V. Cirtoaje, J. Nonlinear Sci. Appl. 5 (2012), 307–320 317

Using (1.2)...(1.6), we can write f6(x, y, z) in the form (1.7), where

A = 9(2k + 1)2, g1(p, q) = −2(8k2 + 2k − 1)pq, g2(p, q) = p2q2 + 4(k2 − 1)q3.

For k = −1/2, we have f6(x, y, z) = q2(p2 − 3q) ≥ 0, and for k = 1, we have f6(x, y, z) = (pq − 9r)2 ≥ 0.
Then, we consider further that −1/2 < k < 1. Since A > 0, we apply Theorem 2.4. The condition (a) in
Theorem 2.4 is fulfilled since

f6(t, 1, 1) = 4(t− 1)2(t− k)2 ≥ 0, f6(t, 0, 0) = 0.

To complete the proof, we will show that the condition (b) in Theorem 2.4 is fulfilled. We have

d(p, q) = 16(1− k)(1 + 2k)2q2[9(k + 1)q − 2(2k + 1)p2],

d(p, q) > 0 ⇐⇒ 9(k + 1)q − 2(2k + 1)p2 > 0,

d(t+ 2, 2t+ 1) > 0 ⇐⇒ 2(2k + 1)t2 − 2(k + 5)t+ 7k − 1 < 0,

Γ1 =

(
k + 5− 3

√
3(1− k2)

2(2k + 1)
,
k + 5 + 3

√
3(1− k2)

2(2k + 1)

)
,

[−2, 1] ∩ Γ1 = (t1, 1],

where

t1 =
k + 5− 3

√
3(1− k2)

2(2k + 1)
>
−1

2
.

We need to show that h1(t) ≥ 0 for t1 < t ≤ 1, where

h1(t) = 2At+ g1(t+ 2, 2t+ 1) = 18(2k + 1)2t− 2(4k − 1)(2k + 1)(t+ 2)(2t+ 1).

This is true if h(t) ≥ 0 for t1 < t ≤ 1, where

h(t) = 9(2k + 1)t− (4k − 1)(t+ 2)(2t+ 1),

with
h′(t) = 4(1− 4k)t+ 14− 2k.

Since h′(−1/2) = 6(k+2) > 0 and h′(1) = 18(1−k) > 0, we have h′(t) > 0 for −1/2 ≤ t ≤ 1, and hence h(t)
is increasing on [t1, 1]. Therefore, it suffices to show that h(t1) ≥ 0. From 2(2k+1)t21−2(k+5)t1+7k−1 = 0,
we get

h(t1) =
3(1− k)[4(2 + k)t1 + 1− 4k]

2k + 1
.

Thus, we need to show that 4(2 + k)t1 + 1− 4k ≥ 0, which can be written as

7 + 4k − 2k2 ≥ 3(2 + k)
√

3(1− k2).

By squaring, we get the obvious inequality (2k + 1)4 ≥ 0.

�

Proposition 4.9. If x, y, z are real numbers, then

16
∑

yz(x2 − y2)(x2 − z2) + 5(x− y)2(y − z)2(z − x)2 ≥ 0,

with equality for x = y = z, for −x = y = z, and for y = z = 0 [6].
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Proof. Denote the left-hand side of the inequality by f6(x, y, z) and apply Theorem 2.4. From∑
yz(x2 − y2)(x2 − z2) =

∑
x3y3 + xyz

∑
x3 − xyz

∑
xy(x+ y)

and (1.8), we have

f6(x, y, z) =5
∑

x2y2(x2 + y2) + 6
∑

x3y3 + 6xyz
∑

x3

−6xyz
∑

xy(x+ y)− 30x2y2z2.

Using (1.2)...(1.6), we can write f6(x, y, z) in the form (1.7), where

A = 9, g1(p, q) = −2(2p3 + 11q), g2(p, q) = 5p2q2 − 4q3.

The condition (a) in Theorem 2.4 is fulfilled since

f6(t, 1, 1) = 16(t2 − 1)2 ≥ 0, f6(t, 0, 0) = 0.

To complete the proof, we will show that the condition (c) in Theorem 2.4 is fulfilled. We have

d(p, q) = g21(p, q)− 4Ag2(p, q) = 16(p2 + q)2(p2 + 9q),

d(p, q) > 0 ⇐⇒ p2 + 9q > 0,

d(1 + 2t, 2t+ t2) > 0⇐⇒ 13t2 + 22t+ 1 > 0,

Γ2 =

(
−∞, −11− 6

√
3

13

)
∪

(
−11 + 6

√
3

13
,∞

)
,

[
−1

2
, 1

]
∩ Γ2 =

(
−11 + 6

√
3

13
, 1

]
.

We need to show that h2(t) ≤ 0 for
−11 + 6

√
3

13
< t ≤ 1. Indeed,

h2(t) = 2At2 + g1(1 + 2t, 2t+ t2) = 18t2 − 4(1 + 2t)3 − 22(1 + 2t)(2t+ t2)

= −4(t+ 1)(19t2 + 16t+ 1) < 0.

�

Proposition 4.10. Let x, y, z be real numbers. If 1 ≤ k ≤ 4, then∑
x2(x− y)(x− z)(x− ky)(x− kz) ≥ (5− 3k)(x− y)2(y − z)2(z − x)2,

with equality for x = y = z, for x = 0 and y = z, and for x/k = y = z [7].

Proof. Denote the left-hand side of the inequality by f(x, y, z) and write the desired inequality as f6(x, y, z) ≥
0. Using (1.2)...(1.6), we have

f(x, y, z) =
∑

x6 − (k + 1)
∑

xy(x4 + y4) + k
∑

x2y2(x2 + y2)

+ (k + 1)2xyz
∑

x3 − k(k + 1)xyz
∑

xy(x+ y) + 3k2x2y2z2,

f(x, y, z) =9(k2 + k + 1)r2 + [(k2 + k + 8)p3 − 2(2k2 + 5k + 11)pq]r + p6

− (k + 7)p4q + (5k + 13)p2q2 − 4(k + 1)q3. (4.1)
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Using then (1.9), we can write f6(x, y, z) in the form (1.7), where

A = 9(k − 4)2, g1 = (4− k)(7− k)p(p2 − 4q), g2 = (p2 − 4q)2[p2 − (k − 1)q].

For k = 1, we have f6(x, y, z) = (9r−p3+4pq)2 ≥ 0, and for k = 4, we have f6(x, y, z) = (p2−4q)2(p2−3q) ≥
0. Then, we consider further that 1 < k < 4. Since A > 0, we apply Theorem 2.4. The condition (a) in
Theorem 2.4 is fulfilled since

f6(t, 1, 1) = t2(t− 1)2(t− k)2 ≥ 0, f6(t, 0, 0) = t6 ≥ 0.

We will show that the condition (c) is satisfied. We have

d(p, q) = g21 − 4Ag2 = (k − 1)(4− k)2(p2 − 4q)2[36q − (13− k)p2].

Since d(p, q) > 0 is equivalent to 36q > (13− k)p2, we get

d(1 + 2t, 2t+ t2) > 0 ⇐⇒ k(1 + 2t)2 > 16t2 − 20t+ 13.

The condition (c) is satisfied if h2(t) ≤ 0 for k(1 + 2t)2 > 16t2 − 20t+ 13. Since

h2(t) = 2At2 + g1(1 + 2t, 2t+ t2)

= (4− k)[16t2 − 14t+ 7− k(10t2 − 2t+ 1)],

we need to show that k(10t2 − 2t+ 1) ≥ 16t2 − 14t+ 7. Indeed,

k(10t2 − 2t+ 1)− 16t2 + 14t− 7 >

>
(16t2 − 20t+ 13)(10t2 − 2t+ 1)

(1 + 2t)2
− 16t2 + 14t− 7

=
6(t− 1)2(4t− 1)2

(1 + 2t)2
≥ 0.

�

Proposition 4.11. If x, y, z are real numbers, then∑
x2(x− y)(x− z)(x+ 3y)(x+ 3z) +

133

64
(x− y)2(y − z)2(z − x)2 ≥ 0,

with equality for x = y = z, for x = 0 and y = z, and for −x/3 = y = z [7].

Proof. Let us denote

f(x, y, z) =
∑

x2(x− y)(x− z)(x+ 3y)(x+ 3z),

and write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = 64f(x, y, z) + 133(x− y)2(y − z)2(z − x)2 ≥ 0.

Applying (4.1) for k = −3, we get

f(x, y, z) = 63r2 + 14(p3 − 2pq)r + p6 − 4p4q − 2p2q2 + 8q3.

Using then (1.9), we can write f6(x, y, z) in the form (1.7), where

A = 441, g1 = 14p(26p2 + 43q), g2 = (p2 − 4q)(64p4 + 5q2).



V. Cirtoaje, J. Nonlinear Sci. Appl. 5 (2012), 307–320 320

The condition (a) in Theorem 2.4 is fulfilled since

f6(t, 1, 1) = 64t2(t− 1)2(t+ 3)2 ≥ 0, f6(t, 0, 0) = 64t6 ≥ 0.

We will show that the condition (b) is satisfied. We have

d(p, q) = g21 − 4Ag2 = 25600(p2 + 2q)2(p2 + 45q).

Since d(p, q) > 0 is equivalent to p2 + 45q > 0, we get

d(t+ 2, 2t+ 1) > 0 ⇐⇒ t2 + 94t+ 49 > 0,

Γ1 = (−∞, t1) ∪ (t2,∞), t1 ≈ −93.47, t2 ≈ −0.524,

[−2, 1] ∩ Γ1 = (t2, 1].

Therefore, we need to show that h1(t) ≥ 0 for t ∈ (t2, 1]. Indeed,

h1(t) = 2At+ g1(t+ 2, 2t+ 1) = 28(t+ 3)(13t2 + 82t+ 49) > 0,

since 13t2 + 82t+ 49 ≥ 82t+ 49 > 0.
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