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1. Introduction

In this paper we are concerned with the following semilinear differential inclusion

x′ ∈ Ax+ F (t, x), x(0) ∈ X0 (1.1)

where F : [0, T ] × X → P(X) is a set valued map, A is the infinitesimal generator of a C0-semigroup
{G(t)}t≥0 on a separable Banach space X and X0 ⊂ X. Let SF be the set of all mild solutions of (1.1) and
let RF (T ) be the reachable set of (1.1). For a mild solution z(.) ∈ SF and for a locally Lipschitz function
h : X → X we say that the semilinear differential inclusion (1.1) is h-locally controllable around z(.) if
h(z(T )) ∈ int(h(RF (T ))). In particular, if h is the identity mapping the above definitions reduces to the
usual concept of local controllability of systems around a solution.

The aim of the present paper is to obtain a sufficient condition for h-local controllability of inclusion (1.1)
when X is finite dimensional. This result is derived using a technique developed by Tuan for differential
inclusions ([13]). More exactly, we show that inclusion (1.1) is h-locally controlable around the mild solution
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z(.) if a certain linearized inclusion is λ-locally controlable around the null solution for every λ ∈ ∂h(z(T )),
where ∂h(.) denotes Clarke’s generalized Jacobian of the locally Lipschitz function h. The key tools in the
proof of our result is a continuous version of Filippov’s theorem for mild solutions of semilinear differential
inclusions obtained in [2] and a certain generalization of the classical open mapping principle in [14].

Our results may be interpreted as extensions of the results in [13] to semilinear differential inclusions
and as extensions of the controllability results in [3] to h-controllability.

We note that existence results and qualitative properties of the mild solutions of problem (1.1) may be
found in [2], [3], [4], [5], [6], [8], [9], [10], [12] etc..

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the
sequel and in Section 3 we present our main results.

2. Preliminaries

Let denote by I the interval [0, T ] and let X be a real separable Banach space with the norm ||.|| and
with the corresponding metric d(., .). Denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I,
by P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel subsets of X. Recall
that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
As usual, we denote by C(I,X) the Banach space of all continuous functions x(.) : I → X endowed with

the norm ||x(.)||C = supt∈I ||x(t)|| and by L1(I,X) the Banach space of all (Bochner) integrable functions
x(.) : I → X endowed with the norm ||x(.)||1 =

∫
I ||x(t)||dt.

We consider {G(t)}t≥0 ⊂ L(X,X) a strongly continuous semigroup of bounded linear operators from X
to X having the infinitesimal generator A and a set valued map F (., .) defined on I × X with nonempty
closed subsets of X, which define the following differential inclusion:

x′(t) ∈ Ax(t) + F (t, x(t)) a.e. (I) x(0) = x0 (2.1)

It is well known that, in general, the Cauchy problem

x′ = Ax+ f(t, x), f(t, x) ∈ F (t, x), x(0) = x0 (2.2)

may not have a classical solution and that a way to overcome this difficulty is to look for continuous solutions
of the integral equation

x(t) = G(t)x0 +

∫ t

0
G(t− u)f(u, x(u))du.

This is why the concept of the mild solution is convenient for solving (2.1)
A mapping x(.) ∈ C(I,X) is called a mild solution of (2.1) if there exists a (Bochner) integrable function

f(.) ∈ L1(I,X) such that
f(t) ∈ F (t, x(t)) a.e. (I), (2.3)

x(t) = G(t)x0 +

∫ t

0
G(t− u)f(u)du ∀t ∈ I, (2.4)

i.e., f(.) is a locally (Bochner) integrable selection of the set-valued map F (., x(.)) and x(.) is the mild
solution of the initial value problem

x′(t) = Ax(t) + f(t), x(0) = x0. (2.5)

We shall call (x(.), f(.)) a trajectory-selection pair of (2.1) if f(.) verifies (2.3) and x(.) is a mild solution
of (2.5).
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Hypothesis 2.1. i) F (., .) : I ×X → P(X) has nonempty closed values and is L(I)⊗ B(X) measurable.
ii) There exists L(.) ∈ L1(I,R+) such that, for any t ∈ I, F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)||x1 − x2|| ∀x1, x2 ∈ X.

In the theorem to follow, S is a separable metric space, X0 ⊂ X, a(.) : S → X0 and c(.) : S → (0,∞)
are given continuous mappings.

Hypothesis 2.2. The continuous mappings g(.) : S → L1(I,X), y(.) : S → C(I,X) are given such that

(y(s))′(t) = Ay(s)(t) + g(s)(t), t ∈ I, y(s)(0) ∈ X0.

There exists a continuous function p(.) : S → L1(I,R+) such that

d(g(s)(t), F (t, y(s)(t))) ≤ p(s)(t) a.e. (I), ∀ s ∈ S.

Theorem 2.1. Assume that Hypotheses 2.1 and 2.2 are satisfied.
Then there exist M > 0 and the continuous functions x(.) : S → L1(I,X), h(.) : S → C(I,X) such that

for any s ∈ S (x(s)(.), h(s)(.)) is a trajectory-selection of (1.1) satisfying for any (t, s) ∈ I × S

x(s)(0) = a(s),

||x(s)(t)− y(s)(t)|| ≤M [c(s) + ||a(s)− y(s)(0)||+
∫ t

0
p(s)(u)du].

The proof of Theorem 2.1 may be found in [2].

In what follows we assume that X = Rn. We recall that if X = Rn then (2.5) is a Cauchy problem
associated to an affine (linear nonhomogenous) differential equation and its solution (2.4) is obtained with
the variation of constants method. In this case G(t) = exp(tA), A ∈ L(Rn,Rn), t ∈ I.

A closed convex cone C ⊂ Rn is said to be regular tangent cone to the set X at x ∈ X ([11]) if there
exists continuous mappings qλ : C ∩B → Rn, ∀λ > 0 satisfying

lim
λ→0+

max
v∈C∩B

||qλ(v)||
λ

= 0,

x+ λv + qλ(v) ∈ X ∀λ > 0, v ∈ C ∩B.

From the multitude of the intrinsic tangent cones in the literature (e.g. [1]) the contingent, the quasitan-
gent and Clarke’s tangent cones, defined, respectively, by

KxX = {v ∈ Rn; ∃ sm → 0+, xm ∈ X : xm−x
sm
→ v}

QxX = {v ∈ Rn; ∀ sm → 0+,∃xm ∈ X : xm−x
sm
→ v}

CxX = {v ∈ Rn;∀ (xm, sm)→ (x, 0+), xm ∈ X, ∃ ym ∈ X : ym−xm
sm

→ v}

seem to be among the most often used in the study of different problems involving nonsmooth sets and
mappings. We recall that, in contrast with KxX,QxX, the cone CxX is convex and one has CxX ⊂ QxX ⊂
KxX.

The results in the next section will be expressed, in the case when the mapping g(.) : X ⊂ Rn → Rm is
locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([7])

∂g(x) = co{ lim
i→∞

g′(xi); xi → x, xi ∈ X\Ωg},

where Ωg is the set of points at which g is not differentiable.
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Corresponding to each type of tangent cone, say τxX one may introduce (e.g. [1]) a set-valued directional
derivative of a multifunction G(.) : X ⊂ Rn → P(Rn) (in particular of a single-valued mapping) at a point
(x, y) ∈ graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v, w) ∈ τ(x,y)graph(G)}, ∈ τxX.

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a convex (respectively, closed convex)
process if graph(A(.)) ⊂ Rn ×Rn is a convex (respectively, closed convex) cone. For the basic properties of
convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis 2.3. i) Hypothesis 2.1 is satisfied and X0 ⊂ Rn is a closed set.
ii) (z(.), f(.)) ∈ C(I,Rn) × L1(I,Rn) is a trajectory-selection pair of (1.1) and a family P (t, .) : Rn →

P(Rn), t ∈ I of convex processes satisfying the condition

P (t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(P (t, .)), a.e. t ∈ I (2.6)

is assumed to be given and defines the variational inclusion

v′ ∈ Av + P (t, v). (2.7)

We note that for any set-valued map F (., .), one may find an infinite number of families of convex process
P (t, .), t ∈ I, satisfying condition (2.6); in fact any family of closed convex subcones of the quasitangent
cones, P (t) ⊂ Q(z(t),f(t))graph(F (t, .)), defines the family of closed convex process

P (t, u) = {v ∈ Rn; (u, v) ∈ P (t)}, u, v ∈ Rn, t ∈ I

that satisfy condition (2.6). One is tempted, of course, to take as an ”intrinsic” family of such closed convex
process, for example Clarke’s convex-valued directional derivatives Cf(t)F (t, .)(z(t); .).

We recall (e.g. [1]) that, since F (t, .) is assumed to be Lipschitz a.e. on I, the quasitangent directional
derivative is given by

Qf(t)F (t, .)((z(t);u)) = {w ∈ Rn; lim
θ→0+

1

θ
d(f(t) + θw, F (t, z(t) + θu)) = 0}. (2.8)

In what follows B or BRn denotes the closed unit ball in Rn and 0n denotes the null element in Rn.
Consider h : Rn → Rm an arbitrary given function. Inclusion (1.1) is said to be h-locally controllable

around z(.) if h(z(T )) ∈ int(h(RF (T ))). Inclusion (1.1) is said to be locally controllable around the solution
z(.) if z(T ) ∈ int(RF (T )).

Finally a key tool in the proof of our results is the following generalization of the classical open mapping
principle due to Warga ([14]).

For k ∈ N we define

Σk := {γ = (γ1, ..., γk);

k∑
i=1

γi ≤ 1, γi ≥ 0, i = 1, 2, ..., k}.

Lemma 2.2. Let δ ≤ 1, let g(.) : Rn → Rm be a mapping that is C1 in a neighborhood of 0n containing
δBRn. Assume that there exists β > 0 such that for every θ ∈ δΣn, βBRm ⊂ g′(θ)Σn. Then, for any
continuous mapping ψ : δΣn → Rm that satisfies supθ∈δΣn

||g(θ) − ψ(θ)|| ≤ δβ
32 we have ψ(0n) + δβ

16BRm ⊂
ψ(δΣn).
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3. The main result

In what follows C0 is a regular tangent cone to X0 at z(0), denote by SP the set of all mild solutions of
the semilinear differential inclusion

v′ ∈ Av + P (t, v), v(0) ∈ C0

and by RP (T ) = {x(T ); x(.) ∈ SP } its reachable set at time T .

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied and let h : Rn → Rm be a Lipschitz function with
Lipschitz constant l > 0.

Then inclusion (1.1) is h-local controllable around the solution z(.) if

0m ∈ int(λRP (T )) ∀λ ∈ ∂h(z(T )). (3.1)

Proof. By (3.1), since λRP (T ) is a convex cone, it follows that λRP (T ) = Rm ∀λ ∈ ∂f(z(T )). Therefore
using the compactness of ∂f(z(T )) (e.g. [7]), we have that for every β > 0 there exist k ∈ N and uj ∈ RP (T )
j = 1, 2, ..., k such that

βBRm ⊂ λ(u(Σk)) ∀λ ∈ ∂f(z(T )), (3.2)

where

u(Σk) = {u(γ) :=
k∑
j=1

γjuj , γ = (γ1, ..., γk) ∈ Σk}.

Using an usual separation theorem we deduce the existence of β1, ρ1 > 0 such that for all λ ∈ L(Rn,Rm)
with d(λ, ∂f(z(T ))) ≤ ρ1 we have

β1BRm ⊂ λ(u(Σk)). (3.3)

Since uj ∈ RP (T ), j = 1, ..., k, there exist (wj(.), gj(.)), j = 1, ..., k trajectory-selection pairs of (2.7)
such that uj = wj(T ), j = 1, ..., k. We note that β > 0 can be take small enough such that ||wj(0)|| ≤ 1,
j = 1, ..., k.

Define

w(t, s) =
k∑
j=1

sjwj(t), g(t, s) =
k∑
j=1

sjgj(t), ∀s = (s1, ..., sk) ∈ Rk.

Obviously, w(., s) ∈ SP , ∀s ∈ Σk.
Taking into account the definition of C0, for every ε > 0 there exists a continuous mapping oε : Σk → Rn

such that
z(0) + εw(0, s) + oε(s) ∈ X0, (3.4)

lim
ε→0+

max
s∈Σk

||oε(s)||
ε

= 0. (3.5)

Define

pε(s)(t) :=
1

ε
d(g(t, s), F (t, z(t) + εw(t, s))− f(t)),

q(t) :=

k∑
j=1

[||gj(t)||+ L(t)||wj(t)||], t ∈ I.

Then, for every s ∈ Σk one has

pε(s)(t) ≤ ||g(t, s)||+ 1
εdH(0n, F (t, z(t) + εw(t, s))− f(t)) ≤ ||g(t, s)||+

1
εdH(F (t, z(t)), F (t, z(t) + εw(t, s))) ≤ ||g(t, s)||+ L(t)||w(t, s)|| ≤ q(t).



A. Cernea, J. Nonlinear Sci. Appl. 6 (2013), 145–151 150

Next, if s1, s2 ∈ Σk one has

|pε(s1)(t)− pε(s2)(t)| ≤ ||g(t, s1)− g(t, s2)||+ 1
εdH(F (t, z(t) + εw(t, s1)),

F (t, z(t) + εw(t, s2))) ≤ ||s1 − s2||.maxj=1,k[||gj(t)||+ L(t)||wj(t)||],

thus pε(.)(t) is Lipschitz with a Lipschitz constant not depending on ε.
On the other hand, from (2.8) it follows that

lim
ε→0

pε(s)(t) = 0 a.e. (I), ∀s ∈ Σk

and hence
lim
ε→0+

max
s∈Σk

pε(s)(t) = 0 a.e. (I). (3.7)

Therefore, from (3.6), (3.7) and Lebesgue dominated convergence theorem we obtain

lim
ε→0+

∫ T

0
max
s∈Σk

pε(s)(t)dt = 0. (3.8)

By (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find
ε0, e0 > 0 such that

max
s∈Σk

||oε0(s)||
ε0

+

∫ T

0
max
s∈Σk

pε0(s)(t)dt ≤ β1

28l2
, (3.9)

ε0w(T, s) ≤ e0

2
∀s ∈ Σk. (3.10)

If we define
y(s)(t) := z(t) + ε0w(t, s), g(s)(t) := f(t) + ε0g(t, s) s ∈ Rk,

a(s) := z(0) + ε0w(0, s) + oε0(s), s ∈ Rk,

then we apply Theorem 2.1 and we find that there exists the continuous function x(.) : Σk → C(I,Rn) such
that for any s ∈ Σk the function x(s)(.) is solution of the differential inclusion x′ ∈ Ax+F (t, x), x(s)(0) =
a(s) ∀s ∈ Σk and one has

||x(s)(T )− y(s)(T )|| ≤ ε0β1

26l
∀s ∈ Σk. (3.11)

We define

h0(x) :=

∫
Rn

h(x− by)χ(y)dy, x ∈ Rn,

φ(s) := h0(z(T ) + ε0w(T, s)),

where χ(.) : Rn → [0, 1] is a C∞ function with the support contained in BRn that satisfies
∫
Rn χ(y)dy = 1

and b = min{ e02 ,
ε0β1
26l
}.

Therefore h0(.) is of class C∞ and verifies

||h(x)− h0(x)|| ≤ lb, (3.12)

h′0(x) =

∫
Rn

h′(x− by)χ(y)dy. (3.13)

In particular
h′0(x) ∈ co{h′(u); ||u− x|| ≤ b, h′(u) exists},

φ′(s)µ = h′0(z(T ) + ε0w(T, µ)) ∀µ ∈ Σk.

Using again the upper semicontinuity of Clarke’s generalized Jacobian we obtain

d(h′0(z(T ) + ε0w(T, s)), ∂h(z(T ))) ≤ sup{d(h′0(u), ∂h(z(T ))); ||u− z(t)||
≤ ||u− (z(T ) + ε0w(T, s))||+ ||ε0w(t, s)|| ≤ e0, h′(u) exists} < ρ1.
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The last inequality with (3.3) gives

ε0β1BRm ⊂ φ′(s)Σk ∀s ∈ Σk.

Finally, for s ∈ Σk, we put ψ(s) = h(x(s)(T )).
Obviously, ψ(.) is continuous and from (3.11), (3.12), (3.13) one has

||ψ(s)− φ(s)|| = ||h(x(s)(T ))− h0(y(s)(T ))|| ≤ ||h(x(s)(T ))− h(y(s)(T ))||+
||h(y(s)(T ))− h0(y(s)(T ))|| ≤ l||x(s)(T )− y(s)(T )||+ lb ≤ ε0β1

64 + ε0β1
64 = ε0β1

32 .

We apply Lemma 2.2 and we find that

h(x(0k)(T )) +
ε0β1

16
BRm ⊂ ψ(Σk) ⊂ h(RF (T )).

On the other hand, ||h(z(T )) − h(x(0k)(T ))|| ≤ ε0β1
64 , so we have h(z(T )) ∈ int(RF (T )) and the proof is

complete.

Remark 3.2. If in Theorem 3.1, A ≡ 0, then the semilinear differential inclusion (1.1) reduces to the classical
differential inclusion

x′ ∈ F (t, x), x(0) ∈ X0. (3.14)

A similar result to the one in Theorem 3.1 for problem (3.14) may be found in [13]. On the other hand, if
m = n and h(x) ≡ x, Theorem 3.1 yields Theorem 3.4 in [3].
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