

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

On controllability for nonconvex semilinear differential inclusions

Aurelian Cernea

University of Bucharest, Faculty of Mathematics and Computer Science, Academiei 14, 010014 Bucharest, Romania.

Dedicated to the memory of Professor Viorel Radu

Communicated by Adrian Petruşel

Abstract

We consider a semilinear differential inclusion and we obtain sufficient conditions for h-local controllability along a reference trajectory.

Keywords: Differential inclusion, *h*-local controllability, mild solution 2010 MSC: Primary 34A60

1. Introduction

In this paper we are concerned with the following semilinear differential inclusion

$$x' \in Ax + F(t, x), \quad x(0) \in X_0$$
 (1.1)

where $F : [0,T] \times X \to \mathcal{P}(X)$ is a set valued map, A is the infinitesimal generator of a C_0 -semigroup $\{G(t)\}_{t\geq 0}$ on a separable Banach space X and $X_0 \subset X$. Let S_F be the set of all mild solutions of (1.1) and let $R_F(T)$ be the reachable set of (1.1). For a mild solution $z(.) \in S_F$ and for a locally Lipschitz function $h : X \to X$ we say that the semilinear differential inclusion (1.1) is *h*-locally controllable around z(.) if $h(z(T)) \in int(h(R_F(T)))$. In particular, if h is the identity mapping the above definitions reduces to the usual concept of local controllability of systems around a solution.

The aim of the present paper is to obtain a sufficient condition for h-local controllability of inclusion (1.1) when X is finite dimensional. This result is derived using a technique developed by Tuan for differential inclusions ([13]). More exactly, we show that inclusion (1.1) is h-locally controlable around the mild solution

Email address: acernea@fmi.unibuc.ro (Aurelian Cernea)

z(.) if a certain linearized inclusion is λ -locally controlable around the null solution for every $\lambda \in \partial h(z(T))$, where $\partial h(.)$ denotes Clarke's generalized Jacobian of the locally Lipschitz function h. The key tools in the proof of our result is a continuous version of Filippov's theorem for mild solutions of semilinear differential inclusions obtained in [2] and a certain generalization of the classical open mapping principle in [14].

Our results may be interpreted as extensions of the results in [13] to semilinear differential inclusions and as extensions of the controllability results in [3] to h-controllability.

We note that existence results and qualitative properties of the mild solutions of problem (1.1) may be found in [2], [3], [4], [5], [6], [8], [9], [10], [12] etc..

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the sequel and in Section 3 we present our main results.

2. Preliminaries

Let denote by I the interval [0, T] and let X be a real separable Banach space with the norm ||.|| and with the corresponding metric d(., .). Denote by $\mathcal{L}(I)$ the σ -algebra of all Lebesgue measurable subsets of I, by $\mathcal{P}(X)$ the family of all nonempty subsets of X and by $\mathcal{B}(X)$ the family of all Borel subsets of X. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$d_H(A,B) = \max\{d^*(A,B), d^*(B,A)\}, \quad d^*(A,B) = \sup\{d(a,B); a \in A\},$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

As usual, we denote by C(I, X) the Banach space of all continuous functions $x(.) : I \to X$ endowed with the norm $||x(.)||_C = \sup_{t \in I} ||x(t)||$ and by $L^1(I, X)$ the Banach space of all (Bochner) integrable functions $x(.) : I \to X$ endowed with the norm $||x(.)||_1 = \int_I ||x(t)|| dt$.

We consider $\{G(t)\}_{t\geq 0} \subset L(X, X)$ a strongly continuous semigroup of bounded linear operators from X to X having the infinitesimal generator A and a set valued map F(.,.) defined on $I \times X$ with nonempty closed subsets of X, which define the following differential inclusion:

$$x'(t) \in Ax(t) + F(t, x(t))$$
 a.e. (I) $x(0) = x_0$ (2.1)

It is well known that, in general, the Cauchy problem

$$x' = Ax + f(t, x), \ f(t, x) \in F(t, x), \quad x(0) = x_0$$
(2.2)

may not have a classical solution and that a way to overcome this difficulty is to look for continuous solutions of the integral equation

$$x(t) = G(t)x_0 + \int_0^t G(t-u)f(u, x(u))du$$

This is why the concept of the mild solution is convenient for solving (2.1)

A mapping $x(.) \in C(I, X)$ is called a *mild solution* of (2.1) if there exists a (Bochner) integrable function $f(.) \in L^1(I, X)$ such that

$$f(t) \in F(t, x(t)) \quad a.e. (I), \tag{2.3}$$

$$x(t) = G(t)x_0 + \int_0^t G(t-u)f(u)du \quad \forall t \in I,$$
(2.4)

i.e., f(.) is a locally (Bochner) integrable selection of the set-valued map F(., x(.)) and x(.) is the mild solution of the initial value problem

$$x'(t) = Ax(t) + f(t), \quad x(0) = x_0.$$
 (2.5)

We shall call (x(.), f(.)) a trajectory-selection pair of (2.1) if f(.) verifies (2.3) and x(.) is a mild solution of (2.5).

$$d_H(F(t, x_1), F(t, x_2)) \le L(t) ||x_1 - x_2|| \quad \forall x_1, x_2 \in X.$$

In the theorem to follow, S is a separable metric space, $X_0 \subset X$, $a(.) : S \to X_0$ and $c(.) : S \to (0, \infty)$ are given continuous mappings.

Hypothesis 2.2. The continuous mappings $g(.): S \to L^1(I, X), y(.): S \to C(I, X)$ are given such that

$$(y(s))'(t) = Ay(s)(t) + g(s)(t), \quad t \in I, \quad y(s)(0) \in X_0$$

There exists a continuous function $p(.): S \to L^1(I, \mathbf{R}_+)$ such that

$$d(g(s)(t), F(t, y(s)(t))) \le p(s)(t) \quad a.e. (I), \ \forall s \in S.$$

Theorem 2.1. Assume that Hypotheses 2.1 and 2.2 are satisfied.

Then there exist M > 0 and the continuous functions $x(.) : S \to L^1(I, X)$, $h(.) : S \to C(I, X)$ such that for any $s \in S$ (x(s)(.), h(s)(.)) is a trajectory-selection of (1.1) satisfying for any $(t, s) \in I \times S$

$$x(s)(0) = a(s),$$

$$||x(s)(t) - y(s)(t)|| \le M[c(s) + ||a(s) - y(s)(0)|| + \int_0^t p(s)(u)du].$$

The proof of Theorem 2.1 may be found in [2].

In what follows we assume that $X = \mathbf{R}^n$. We recall that if $X = \mathbf{R}^n$ then (2.5) is a Cauchy problem associated to an affine (linear nonhomogenous) differential equation and its solution (2.4) is obtained with the variation of constants method. In this case $G(t) = \exp(tA)$, $A \in L(\mathbf{R}^n, \mathbf{R}^n)$, $t \in I$.

A closed convex cone $C \subset \mathbf{R}^n$ is said to be *regular tangent cone* to the set X at $x \in X$ ([11]) if there exists continuous mappings $q_{\lambda} : C \cap B \to \mathbf{R}^n$, $\forall \lambda > 0$ satisfying

$$\lim_{\lambda \to 0+} \max_{v \in C \cap B} \frac{||q_{\lambda}(v)||}{\lambda} = 0,$$
$$x + \lambda v + q_{\lambda}(v) \in X \quad \forall \lambda > 0, v \in C \cap B$$

From the multitude of the intrinsic tangent cones in the literature (e.g. [1]) the *contingent*, the *quasitan*gent and *Clarke's tangent cones*, defined, respectively, by

$$\begin{split} K_x X &= \{ v \in \mathbf{R}^n; \quad \exists s_m \to 0+, \ x_m \in X: \ \frac{x_m - x}{s_m} \to v \} \\ Q_x X &= \{ v \in \mathbf{R}^n; \quad \forall s_m \to 0+, \exists x_m \in X: \ \frac{x_m - x}{s_m} \to v \} \\ C_x X &= \{ v \in \mathbf{R}^n; \forall (x_m, s_m) \to (x, 0+), \ x_m \in X, \ \exists y_m \in X: \ \frac{y_m - x_m}{s_m} \to v \} \end{split}$$

seem to be among the most often used in the study of different problems involving nonsmooth sets and mappings. We recall that, in contrast with $K_x X, Q_x X$, the cone $C_x X$ is convex and one has $C_x X \subset Q_x X \subset K_x X$.

The results in the next section will be expressed, in the case when the mapping $g(.): X \subset \mathbf{R}^n \to \mathbf{R}^m$ is locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([7])

$$\partial g(x) = \operatorname{co}\{\lim_{i \to \infty} g'(x_i); \quad x_i \to x, \quad x_i \in X \setminus \Omega_g\},\$$

where Ω_g is the set of points at which g is not differentiable.

Corresponding to each type of tangent cone, say $\tau_x X$ one may introduce (e.g. [1]) a set-valued directional derivative of a multifunction $G(.): X \subset \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$ (in particular of a single-valued mapping) at a point $(x, y) \in \operatorname{graph}(G)$ as follows

$$\tau_y G(x; v) = \{ w \in \mathbf{R}^n; (v, w) \in \tau_{(x,y)} \operatorname{graph}(G) \}, \quad \in \tau_x X.$$

We recall that a set-valued map, $A(.) : \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$ is said to be a *convex* (respectively, closed convex) process if graph $(A(.)) \subset \mathbf{R}^n \times \mathbf{R}^n$ is a convex (respectively, closed convex) cone. For the basic properties of convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis 2.3. i) Hypothesis 2.1 is satisfied and $X_0 \subset \mathbb{R}^n$ is a closed set.

ii) $(z(.), f(.)) \in C(I, \mathbf{R}^n) \times L^1(I, \mathbf{R}^n)$ is a trajectory-selection pair of (1.1) and a family $P(t, .) : \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$, $t \in I$ of convex processes satisfying the condition

$$P(t,u) \subset Q_{f(t)}F(t,.)(z(t);u) \quad \forall u \in dom(P(t,.)), \ a.e. \ t \in I$$

$$(2.6)$$

is assumed to be given and defines the variational inclusion

$$v' \in Av + P(t, v). \tag{2.7}$$

We note that for any set-valued map F(.,.), one may find an infinite number of families of convex process $P(t,.), t \in I$, satisfying condition (2.6); in fact any family of closed convex subcones of the quasitangent cones, $\overline{P}(t) \subset Q_{(z(t),f(t))}graph(F(t,.))$, defines the family of closed convex process

$$P(t, u) = \{ v \in \mathbf{R}^n; (u, v) \in \overline{P}(t) \}, \quad u, v \in \mathbf{R}^n, t \in I$$

that satisfy condition (2.6). One is tempted, of course, to take as an "intrinsic" family of such closed convex process, for example Clarke's convex-valued directional derivatives $C_{f(t)}F(t,.)(z(t);.)$.

We recall (e.g. [1]) that, since F(t, .) is assumed to be Lipschitz a.e. on I, the quasitangent directional derivative is given by

$$Q_{f(t)}F(t,.)((z(t);u)) = \{ w \in \mathbf{R}^n; \lim_{\theta \to 0+} \frac{1}{\theta} d(f(t) + \theta w, F(t,z(t) + \theta u)) = 0 \}.$$
 (2.8)

In what follows B or $B_{\mathbf{R}^n}$ denotes the closed unit ball in \mathbf{R}^n and 0_n denotes the null element in \mathbf{R}^n .

Consider $h : \mathbf{R}^n \to \mathbf{R}^m$ an arbitrary given function. Inclusion (1.1) is said to be *h*-locally controllable around z(.) if $h(z(T)) \in int(h(R_F(T)))$. Inclusion (1.1) is said to be *locally controllable* around the solution z(.) if $z(T) \in int(R_F(T))$.

Finally a key tool in the proof of our results is the following generalization of the classical open mapping principle due to Warga ([14]).

For $k \in \mathbf{N}$ we define

$$\Sigma_k := \{ \gamma = (\gamma_1, ..., \gamma_k); \quad \sum_{i=1}^k \gamma_i \le 1, \quad \gamma_i \ge 0, \ i = 1, 2, ..., k \}.$$

Lemma 2.2. Let $\delta \leq 1$, let $g(.) : \mathbf{R}^n \to \mathbf{R}^m$ be a mapping that is C^1 in a neighborhood of 0_n containing $\delta B_{\mathbf{R}^n}$. Assume that there exists $\beta > 0$ such that for every $\theta \in \delta \Sigma_n$, $\beta B_{\mathbf{R}^m} \subset g'(\theta) \Sigma_n$. Then, for any continuous mapping $\psi : \delta \Sigma_n \to \mathbf{R}^m$ that satisfies $\sup_{\theta \in \delta \Sigma_n} ||g(\theta) - \psi(\theta)|| \leq \frac{\delta\beta}{32}$ we have $\psi(0_n) + \frac{\delta\beta}{16} B_{\mathbf{R}^m} \subset \psi(\delta \Sigma_n)$.

3. The main result

In what follows C_0 is a regular tangent cone to X_0 at z(0), denote by S_P the set of all mild solutions of the semilinear differential inclusion

$$v' \in Av + P(t, v), \quad v(0) \in C_0$$

and by $R_P(T) = \{x(T); x(.) \in S_P\}$ its reachable set at time T.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied and let $h : \mathbf{R}^n \to \mathbf{R}^m$ be a Lipschitz function with Lipschitz constant l > 0.

Then inclusion (1.1) is h-local controllable around the solution z(.) if

$$0_m \in int(\lambda R_P(T)) \quad \forall \lambda \in \partial h(z(T)).$$

$$(3.1)$$

Proof. By (3.1), since $\lambda R_P(T)$ is a convex cone, it follows that $\lambda R_P(T) = \mathbf{R}^m \ \forall \lambda \in \partial f(z(T))$. Therefore using the compactness of $\partial f(z(T))$ (e.g. [7]), we have that for every $\beta > 0$ there exist $k \in \mathbf{N}$ and $u_j \in R_P(T)$ j = 1, 2, ..., k such that

$$\beta B_{\mathbf{R}^m} \subset \lambda(u(\Sigma_k)) \quad \forall \lambda \in \partial f(z(T)), \tag{3.2}$$

where

$$u(\Sigma_k) = \{u(\gamma) := \sum_{j=1}^k \gamma_j u_j, \quad \gamma = (\gamma_1, ..., \gamma_k) \in \Sigma_k\}$$

Using an usual separation theorem we deduce the existence of $\beta_1, \rho_1 > 0$ such that for all $\lambda \in L(\mathbb{R}^n, \mathbb{R}^m)$ with $d(\lambda, \partial f(z(T))) \leq \rho_1$ we have

$$\beta_1 B_{\mathbf{R}^m} \subset \lambda(u(\Sigma_k)). \tag{3.3}$$

Since $u_j \in R_P(T)$, j = 1, ..., k, there exist $(w_j(.), g_j(.))$, j = 1, ..., k trajectory-selection pairs of (2.7) such that $u_j = w_j(T)$, j = 1, ..., k. We note that $\beta > 0$ can be take small enough such that $||w_j(0)|| \le 1$, j = 1, ..., k.

Define

$$w(t,s) = \sum_{j=1}^{k} s_j w_j(t), \quad \overline{g}(t,s) = \sum_{j=1}^{k} s_j g_j(t), \quad \forall s = (s_1, ..., s_k) \in \mathbf{R}^k$$

Obviously, $w(.,s) \in S_P, \forall s \in \Sigma_k$.

Taking into account the definition of C_0 , for every $\varepsilon > 0$ there exists a continuous mapping $o_{\varepsilon} : \Sigma_k \to \mathbf{R}^n$ such that

$$z(0) + \varepsilon w(0, s) + o_{\varepsilon}(s) \in X_0, \tag{3.4}$$

$$\lim_{\varepsilon \to 0+} \max_{s \in \Sigma_k} \frac{||o_\varepsilon(s)||}{\varepsilon} = 0.$$
(3.5)

Define

$$p_{\varepsilon}(s)(t) := \frac{1}{\varepsilon} d(\overline{g}(t,s), F(t,z(t) + \varepsilon w(t,s)) - f(t)),$$
$$q(t) := \sum_{j=1}^{k} [||g_j(t)|| + L(t)||w_j(t)||], \quad t \in I.$$

Then, for every $s \in \Sigma_k$ one has

$$\begin{aligned} p_{\varepsilon}(s)(t) &\leq ||\overline{g}(t,s)|| + \frac{1}{\varepsilon} \mathrm{d}_{H}(0_{n}, F(t, z(t) + \varepsilon w(t,s)) - f(t)) \leq ||\overline{g}(t,s)|| + \\ \frac{1}{\varepsilon} \mathrm{d}_{H}(F(t, z(t)), F(t, z(t) + \varepsilon w(t,s))) \leq ||\overline{g}(t,s)|| + L(t)||w(t,s)|| \leq q(t). \end{aligned}$$

Next, if $s_1, s_2 \in \Sigma_k$ one has

$$\begin{aligned} |p_{\varepsilon}(s_1)(t) - p_{\varepsilon}(s_2)(t)| &\leq ||\overline{g}(t,s_1) - \overline{g}(t,s_2)|| + \frac{1}{\varepsilon} \mathrm{d}_H(F(t,z(t) + \varepsilon w(t,s_1)), \\ F(t,z(t) + \varepsilon w(t,s_2))) &\leq ||s_1 - s_2|| \cdot \max_{j=\overline{1,k}} [||g_j(t)|| + L(t)||w_j(t)||], \end{aligned}$$

thus $p_{\varepsilon}(.)(t)$ is Lipschitz with a Lipschitz constant not depending on ε .

On the other hand, from (2.8) it follows that

$$\lim_{\varepsilon \to 0} p_{\varepsilon}(s)(t) = 0 \quad a.e. (I), \quad \forall s \in \Sigma_k$$

and hence

$$\lim_{\varepsilon \to 0+} \max_{s \in \Sigma_k} p_{\varepsilon}(s)(t) = 0 \quad a.e. \ (I).$$
(3.7)

Therefore, from (3.6), (3.7) and Lebesgue dominated convergence theorem we obtain

$$\lim_{\varepsilon \to 0+} \int_0^T \max_{s \in \Sigma_k} p_{\varepsilon}(s)(t) dt = 0.$$
(3.8)

By (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find $\varepsilon_0, e_0 > 0$ such that

$$\max_{s\in\Sigma_k} \frac{||o_{\varepsilon_0}(s)||}{\varepsilon_0} + \int_0^T \max_{s\in\Sigma_k} p_{\varepsilon_0}(s)(t) \mathrm{d}t \le \frac{\beta_1}{2^8 l^2},\tag{3.9}$$

$$\varepsilon_0 w(T,s) \le \frac{e_0}{2} \quad \forall s \in \Sigma_k.$$
 (3.10)

If we define

$$y(s)(t) := z(t) + \varepsilon_0 w(t, s), \quad g(s)(t) := f(t) + \varepsilon_0 \overline{g}(t, s) \quad s \in \mathbf{R}^k,$$
$$a(s) := z(0) + \varepsilon_0 w(0, s) + o_{\varepsilon_0}(s), \quad s \in \mathbf{R}^k,$$

then we apply Theorem 2.1 and we find that there exists the continuous function $x(.): \Sigma_k \to C(I, \mathbf{R}^n)$ such that for any $s \in \Sigma_k$ the function x(s)(.) is solution of the differential inclusion $x' \in Ax + F(t, x)$, x(s)(0) = x(s)(0) $a(s) \ \forall s \in \Sigma_k$ and one has

$$||x(s)(T) - y(s)(T)|| \le \frac{\varepsilon_0 \beta_1}{2^6 l} \quad \forall s \in \Sigma_k.$$
(3.11)

We define

$$h_0(x) := \int_{\mathbf{R}^n} h(x - by) \chi(y) dy, \quad x \in \mathbf{R}^n,$$

$$\phi(s) := h_0(z(T) + \varepsilon_0 w(T, s)),$$

where $\chi(.): \mathbf{R}^n \to [0,1]$ is a C^{∞} function with the support contained in $B_{\mathbf{R}^n}$ that satisfies $\int_{\mathbf{R}^n} \chi(y) dy = 1$ and $b = \min\{\frac{e_0}{2}, \frac{\varepsilon_0 \beta_1}{2^6 l}\}$. Therefore $h_0(.)$ is of class C^{∞} and verifies

$$||h(x) - h_0(x)|| \le lb, \tag{3.12}$$

$$h'_0(x) = \int_{\mathbf{R}^n} h'(x - by)\chi(y) \mathrm{d}y.$$
 (3.13)

In particular

$$h'_0(x) \in \overline{\mathrm{co}}\{h'(u); \quad ||u-x|| \le b, \quad h'(u) \text{ exists}\},\\ \phi'(s)\mu = h'_0(z(T) + \varepsilon_0 w(T, \mu)) \quad \forall \mu \in \Sigma_k.$$

Using again the upper semicontinuity of Clarke's generalized Jacobian we obtain

$$d(h'_0(z(T) + \varepsilon_0 w(T, s)), \partial h(z(T))) \le \sup\{d(h'_0(u), \partial h(z(T))); ||u - z(t)|| \le ||u - (z(T) + \varepsilon_0 w(T, s))|| + ||\varepsilon_0 w(t, s)|| \le e_0, \quad h'(u) \text{ exists}\} < \rho_1.$$

The last inequality with (3.3) gives

$$\varepsilon_0 \beta_1 B_{\mathbf{R}^m} \subset \phi'(s) \Sigma_k \quad \forall s \in \Sigma_k.$$

Finally, for $s \in \Sigma_k$, we put $\psi(s) = h(x(s)(T))$. Obviously, $\psi(.)$ is continuous and from (3.11), (3.12), (3.13) one has

$$\begin{aligned} ||\psi(s) - \phi(s)|| &= ||h(x(s)(T)) - h_0(y(s)(T))|| \le ||h(x(s)(T)) - h(y(s)(T))|| + \\ ||h(y(s)(T)) - h_0(y(s)(T))|| \le l||x(s)(T) - y(s)(T)|| + lb \le \frac{\varepsilon_0 \beta_1}{64} + \frac{\varepsilon_0 \beta_1}{64} = \frac{\varepsilon_0 \beta_1}{32}. \end{aligned}$$

We apply Lemma 2.2 and we find that

$$h(x(0_k)(T)) + \frac{\varepsilon_0 \beta_1}{16} B_{\mathbf{R}^m} \subset \psi(\Sigma_k) \subset h(R_F(T)).$$

On the other hand, $||h(z(T)) - h(x(0_k)(T))|| \leq \frac{\varepsilon_0 \beta_1}{64}$, so we have $h(z(T)) \in int(R_F(T))$ and the proof is complete.

Remark 3.2. If in Theorem 3.1, $A \equiv 0$, then the semilinear differential inclusion (1.1) reduces to the classical differential inclusion

$$x' \in F(t, x), \quad x(0) \in X_0.$$
 (3.14)

A similar result to the one in Theorem 3.1 for problem (3.14) may be found in [13]. On the other hand, if m = n and $h(x) \equiv x$, Theorem 3.1 yields Theorem 3.4 in [3].

References

- [1] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Berlin, 1990. 2
- [2] A. Cernea, Continuous version of Filippov's theorem for a semilinear differential inclusion, Stud. Cerc. Mat. 49 (1997), 319–330. 1, 2
- [3] A. Cernea, Derived cones to reachable sets of semilinear differential inclusions, Proc. 19th Int. Symp. Math. Theory Networks Systems, Budapest, Ed. A. Edelmayer, 2010, 235–238. 1, 3.2
- [4] A. Cernea, Some qualitative properties of the solution set of an infinite horizon operational differential inclusion, Revue Roumaine Math. Pures Appl. 43 (1998), 317–328.
- [5] A. Cernea, On the relaxation theorem for semilinear differential inclusions in Banach spaces, Pure Math. Appl. 13 (2002), 441–445.
- [6] A. Cernea, On the solution set of some classes of nonconvex nonclosed differential inclusions, Portugaliae Math. 65 (2008), 485–496. 1
- [7] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. 2, 3
- [8] F. S. De Blasi, G. Pianigiani, Evolutions inclusions in non separable Banach spaces, Comment. Math. Univ. Carolinae 40 (1999), 227–250. 1
- F. S. De Blasi, G. Pianigiani, V. Staicu, Topological properties of nonconvex differential inclusions of evolution type, Nonlinear Anal. 24 (1995), 711–720.
- [10] H. Frankowska, A priori estimates for operational differential inclusions, J. Diff. Eqs. 84 (1990), 100–128.
- [11] E.S. Polovinkin and G.V. Smirnov, An approach to differentiation of many-valued mapping and necessary condition for optimization of solution of differential inclusions, Diff. Equations. 22 (1986), 660–668. 2
- [12] V. Staicu, Continuous selections of solutions sets to evolution equations, Proc. Amer. Math. Soc. 113 (1991), 403–413. 1
- [13] H. D. Tuan, On controllability and extremality in nonconvex differential inclusions, J. Optim. Theory Appl. 85 (1995), 437–474. 1, 3.2
- [14] J. Warga, Controllability, extremality and abnormality in nonsmooth optimal control, J. Optim. Theory Appl. 41 (1983), 239-260. 1, 2