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Abstract

In this paper, we consider a new system of implicit nonconvex variational inequality problems in setting of
prox-regular subsets of two different Hilbert spaces. Using projection method, we establish the equivalence
between the system of implicit nonconvex variational inequality problems and a system of relations. Using
this equivalence formulation, we suggest some iterative algorithms for finding the approximate solution of
the system of implicit nonconvex variational inequality problems and its special case. Further, we establish
some theorems for the existence and iterative approximation of the solutions of the system of implicit
nonconvex variational inequality problems and its special case. The results presented in this paper are new
and different form the previously known results for nonconvex variational inequality problems. These results
also generalize, unify and improve the previously known results of this area.
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1. Introduction

In 1985, Pang [25] showed that a variety of equilibrium models, for example, the traffic equilibrium
problem, the spatial equilibrium problem, the Nash equilibrium problem and the general equilibrium pro-
gramming problem can be uniformly modelled as a variational inequality defined on the product sets. He
decomposed the original variational inequality into a system of variational inequalities and discuss the
convergence of method of decomposition for system of variational inequalities. Later, it was noticed that
variational inequality over product sets and the system of variational inequalities both are equivalent, see
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for applications [3, 11, 21, 25]. Since then many authors, see for example [2, 10, 11, 13, 18, 21] studied the
existence theory of various classes of system of variational inequalities by exploiting fixed-point theorems
and minimax theorems. Recently, a number of iterative algorithms based on projection method and its
variant forms have been developed for solving various systems of variational inequalities, see for instance
[7, 12, 15, 16, 19, 27].

It is well known that the projection method and its variant forms based on projection operator over
convex set are important tools for the study of existence and iterative approximation of solutions of various
classes (systems) of variational inequality problems in the convexity settings, but these may not be applicable
in general, when the sets are nonconvex. To overcome the difficulties that rise from the nonconvexity of
underlying sets, the properties of projection operators over uniformly prox-regular sets are used.

In recent years, Bounkhel et al. [6], Moudafi [20], Wen [28], Kazmi et al. [17], Noor [[23, 24, 22] and
the relevant references cited therein], Alimohammady et al. [1], Balooee et al. [4] suggested and analyzed
iterative algorithms for solving some classes (systems) of nonconvex variational inequality problems in the
setting of uniformly prox-regular sets.

On the other hand, to the best of our knowledge, the study of iterative algorithms for solving the systems
of variational inequality problems considered in [7, 27] in nonconvex setting has not been done so far.

Motivated and inspired by research going on in this area, we introduce a system of implicit nonconvex
variational inequality problems (in short, SINVIP) defined on the uniformly prox-regular sets in different
two Hilbert spaces. SINVIP is different from those considered in [1, 4, 6, 16, 20, 22, 23, 24, 28] and includes
the new and known systems of nonconvex (convex) variational inequality problems as special cases. Using
the properties of projection operator over uniformly prox-regular sets, we suggest some iterative algorithms
for finding the approximate solution of SINVIP and its an important special case. Further, we establish
some theorems for the existence and iterative approximation of the solutions of the SINVIP and its special
case. The results presented in this paper are different form the previously known results for nonconvex
variational inequality problems. These results also generalize, unify and improve the previously known
results of this area. The methods presented in this paper extend, unify and improve the methods presented
in [1, 4, 6, 16, 14, 20, 22, 23, 24, 28].

2. Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted by ‖ · ‖ and 〈·, ·〉, respectively.
Let K be a nonempty closed set in H, not necessarily convex.

First, we recall the following well-known concepts from nonlinear convex analysis and nonsmooth anal-
ysis, see [5, 8, 9, 26].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP (K;u) := {ξ ∈ H : u ∈ PK(u+ αξ)},

where α > 0 is a constant and PK is projection operator of H onto K, that is,

PK(u) = {u∗ ∈ K : dK(u) = ‖u− u∗‖},

where dK(u) is the usual distance function to the subset K, that is,

dK(u) = inf
v∈K
‖v − u‖.

The proximal normal cone NP (K;u) has the following characterization.
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Lemma 2.2. Let K be a nonempty closed subset of H. Then ξ ∈ NP (K;u) if and only if there exists a
constant α > 0 such that

〈ξ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.3. The Clarke normal cone, denoted by NC(K;u), is defined as

NC(K;u) = c̄o[NP (K;u)],

where c̄oA means the closure of the convex hull of A.

Poliquin et al. [26] and Clarke et al. [8] have introduced and studied a class of nonconvex sets, which
are called uniformly prox-regular sets. This class of uniformly prox-regular sets has played an important
role in many nonconvex applications such as optimization, dynamic systems and differential inclusions. In
particular, we have

Definition 2.4. For a given r ∈ (0,∞], a subset K of H is said to be normalized uniformly r-prox-regular
if and only if every nonzero proximal normal to K can be realized by any r-ball, that is, ∀u ∈ K and
0 6= ξ ∈ NP (K;u) with ‖ξ‖ = 1, one has

〈ξ, v − u〉 ≤ 1

2r
‖v − u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to include the class
of convex sets, p-convex sets, C1,1 submanifolds (possibly with boundary) of H, the images under a C1,1

diffeomorphism of convex sets and many other nonconvex sets, see [8, 9].

It is note that if r =∞, then uniformly r-prox-regularity of K reduces to its convexity.

It is known that if K is a uniformly r-prox-regular set, the proximal normal cone NP (K;u) is closed as
a set-valued mapping. Thus, we have NC(K;u) = NP (K;u).

Now, let us state the following proposition which summarizes some important consequences of the uni-
formly prox-regularities:

Proposition 2.5. Let r > 0 and let Kr be a nonempty closed and uniformly r-prox-regular subset of H.
Set Ur = {x ∈ H : d(x,Kr) < r}.

(i) For all x ∈ Ur, PKr(x) 6= ∅;
(ii) For all r′ ∈ (0, r), PKr is Lipschitz continuous with constant

r

r − r′
on Ur′ = {x ∈ H : d(x,Kr) < r′}.

3. System of implicit nonconvex variational inequality problems

Throughout the paper unless otherwise stated, we assume that for each i ∈ {1, 2},Ki,ri is a prox-regular
subset of Hi. Let Ni : H1 ×H2 → Hi, gi : Hi → Hi be nonlinear mappings. For any constant ρi > 0, we
consider the problem of finding (x1, x2) ∈ H1 ×H2 such that (g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2 and

〈ρiNi(x1, x2), yi − gi(xi)〉i +
1

2ri
‖yi − gi(xi)‖2i ≥ 0,∀yi ∈ Ki,ri . (3.1)

We call the problem (3.1), a system of implicit nonconvex variational inequality problems (SINVIP).
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Some special cases of SINVIP (3.1):

(1) If gi = Ii, the identity operator onHi, then SINVIP (3.1) reduces to the system of nonconvex variational
inequality problems (in short, SNVIP) of finding (x1, x2) ∈ K1,r1 ×K2,r2 such that

〈ρiNi(x1, x2), yi − xi〉i +
1

2ri
‖yi − xi‖2i ≥ 0, ∀yi ∈ Ki,ri , (3.2)

which appears to be new.

(2) If ri = +∞, that is, Ki,ri = Ki, the convex subset of Hi, and gi = Ii, then SINVIP (3.1) reduces the
system of variational inequality problems of finding (x1, x2) ∈ K1,r1 ×K2,r2 such that

〈Ni(x1, x2), yi − xi〉i ≥ 0, ∀yi ∈ Ki, (3.3)

which has been considered and studied in [2, 27] using different approaches.

The following definitions are needed in the proof of main result.

Definition 3.1. A nonlinear mapping g1 : H1 → H1 is said to be k1-strongly monotone if there exists a
constant k1 > 0 such that

〈g1(x1)− g1(y1), x1 − y1〉1 ≥ k1‖x1 − y1‖21, ∀x1, y1 ∈ H1.

Definition 3.2. Let N1 : H1 ×H2 → H1 be a nonlinear mapping. Then N1 is said to be

(i) δ1-strongly monotone in the first argument if there exists a constant δ1 > 0 such that

〈N1(x1, x2)−N1(y1, x2), x1 − y1〉1 ≥ δ1‖x1 − y1‖21,

∀x1, y1 ∈ H1, x2 ∈ H2;

(iii) (L(N1,1), L(N1,2))-mixed Lipschitz continuous if there exist constants L(N1,1), L(N1,2) > 0 such that

‖N1(x1, x2)−N1(y1, y2)‖1 ≤ L(N1,1)‖x1 − y1‖1 + L(N1,2)‖x2 − y2‖2,

∀x1, y1 ∈ H1, x2, y2 ∈ H2.

Similarly to Definition 3.2(i), we can define the strongly monotonicity of N2 : H1 × H2 → H2 in the
second argument.

First we prove the following technical Lemmas.

Lemma 3.3. SINVIP (3.1) is equivalent to the following system of implicit nonconvex variational inclusions
of finding (x1, x2) ∈ H1 ×H2 such that (g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2 and

0i ∈ ρiNi(x1, x2) +Np
Ki,ri

(gi(xi)), (3.4)

for ρi > 0, i = 1, 2, where Np
Ki,ri

(u) denotes the proximal normal cone of Ki,ri at u in the sense of nonconvex
analysis and 0i is the zero vector in Hi.

Proof. Let (x1, x2) ∈ H1 × H2 with (g1(x1), g2(x2)) ∈ K1,r1 × K2,r2 be a solution of SINVIP (3.1). If
Ni(x1, x2) = 0i, evidently the inclusion (3.4) follows for each i = 1, 2. If Ni(x1, x2) 6= 0i, from (3.1) and
Lemma 2.2, we get the inclusion (3.4) for each i = 1, 2. Converse part directly follows from Definition 2.4.
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Lemma 3.4. (x1, x2) ∈ H1 ×H2 with (g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2 is a solution of SINVIP (3.1) if and
only if it satisfies the system of relations

gi(xi) = PKi,ri

[
gi(xi)− ρiNi(x1, x2)

]
, (3.5)

for ρi > 0, i = 1, 2, where PKi,ri is the projection operator of Hi onto the prox-regular set Ki,ri .

Proof. The proof is directly followed from Lemma 3.3 and from the fact that PKi,ri = (Ii +Np
Ki,ri

)−1.

The alternative formulation (3.5) of SINVIP (3.1) enable us to suggest and analyze the following
iterative algorithm for solving SINVIP (3.1).

Iterative algorithm 3.5. For each i = 1, 2, given z0i ∈ Hi, compute the iterative sequences {zni }, {xni }
defined by the iterative schemes:

gi(x
n
i ) = PKi,ri(z

n
i ), (3.6)

zn+1
i = gi(x

n
i )− ρiNi(x

n
1 , x

n
2 ), (3.7)

for all n = 0, 1, 2, ....., and ρi > 0.

Remark 3.6. We observe that {gi(xni )}∞n=0 ⊂ Ki,ri for each i = 1, 2.

Taking gi = Ii in Iterative algorithm 3.5, we have the following iterative algorithm for solving SNVIP
(3.2).

Iterative algorithm 3.7. For each i = 1, 2, given z0i ∈ Hi, compute the iterative sequences {zni }, {xni }
defined by the iterative schemes:

xni = PKi,ri(z
n
i ),

zn+1
i = xni − ρiNi(x

n
1 , x

n
2 ),

for all n = 0, 1, 2, ..., and ρi > 0.

Now, we prove some theorems concerning the existence and iterative approximation of solutions of
SINVIP (3.1) and SNVIP (3.2).

Theorem 3.8. For each i ∈ {1, 2}, let Ki,ri be closed and uniformly prox-regular subsets of real Hilbert
space Hi; let Ni : H1 × H2 → Hi be δi-strongly monotone in ith argument and (L(Ni,1), L(Ni,2))-mixed
Lipschitz continuous and let gi : Hi → Hi be ki-strongly monotone and continuous. For each i ∈ {1, 2} and
j ∈ {1, 2}\{i}, if the constant ρi > 0 satisfies the following condition:

Mi −∆i < ρi < min
{
Mi + ∆i, ψi,

r′i
1 + ‖Ni(xn1 , x

n
2 )‖i

,
r′i

1 + ‖Ni(x
n+1
1 , xn+1

2 )‖i

}
, (3.8)

where

∆i :=

√
(biki − aiei)2 − b2i (1− e2i )(1− a2i )

b2i (1− e2i )

Mi :=
biki − aiei
b2i (1− e2i )

; ai :=
1

µi
− φi; φi := biρjL(Nj ,i);

ψj <
1

µibiL(Nj ,i)
; bi :=

1√
2ki + 3

; µi :=
ri

ri − r′i
;
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ei :=
√

1− 2δi + L2
(Ni,i)

; biki > aiei + bi

√
(1− e2i )(1− a2i )

ρ2i − 2ρiki
2ki + 3

∈ [−1, 0); r′i ∈ (0, ri); ri ∈ (0,∞].

Then the sequences {xni } and {zni } generated by Iterative algorithm 3.5 converge strongly to xi, zi ∈ Hi,
respectively, where (x1, x2) ∈ H1 ×H2 with gi(xi) ∈ Ki,ri is a solution of SINVIP (3.1).

Proof. From (3.6), we have

‖zn+2
i − zn+1

i ‖i = ‖gi(xn+1
i )− gi(xni )− ρi(Ni(x

n+1
1 , xn+1

2 )−Ni(x
n
1 , x

n
2 ))‖i

≤ ‖gi(xn+1
i )− gi(xni )− ρi(xn+1

i − xni )‖i
+ ρi‖Ni(x

n+1
1 , xn+1

2 )−Ni(x
n
1 , x

n
2 )− (xn+1

i − xni )‖i. (3.9)

Since Ni is δi-strongly monotone in ith argument and (L(Ni,1), L(Ni,2))-mixed Lipschitz continuous, we
have the following estimates:

‖N1(x
n+1
1 , xn+1

2 )−N1(x
n
1 , x

n
2 )− (xn+1

1 − xn1 )‖1

≤ ‖N1(x
n+1
1 , xn+1

2 )−N1(x
n
1 , x

n+1
2 )− (xn+1

1 − xn1 )‖1
+‖N1(x

n
1 , x

n+1
2 )−N1(x

n
1 , x

n
2 )‖1

≤
√

1− 2δ1 + L2
(N1,1)

‖xn+1
1 − xn1‖1 + L(N1,2) ‖x

n+1
2 − xn2‖2. (3.10)

‖(N2(x
n+1
1 , xn+1

2 )−N2(x
n
1 , x

n
2 )− (xn+1

2 − xn2 )‖2

≤ ‖(N2(x
n+1
1 , xn+1

2 )−N2(x
n+1
1 , xn2 )− (xn+1

2 − xn2 )‖2
+‖(N2(x

n+1
1 , xn2 )−N2(x

n
1 , x

n
2 )‖2

≤
√

1− 2δ2 + L2
(N2,2)

‖xn+1
2 − xn2‖2 + L(N2,1) ‖x

n+1
1 − xn1‖1. (3.11)

Next it follows from the conditions (3.8) on ρi that zni ∈ Ki,r′i
for all n = 1, 2, ... . Hence using the

ki-strongly monotonicity of gi, Proposition 2.5 and (3.6), we have the following estimates.

‖xn+1
i − xni ‖2i ≤ ‖gi(xn+1

i )− gi(xni )‖2i − 2〈gi(xn+1
i )− gi(xni ) + xn+1

i − xni , xn+1
i − xni 〉i

= ‖gi(xn+1
i )− gi(xni )‖2i − 2〈gi(xn+1

i )− gi(xni ), xn+1
i − xni 〉i

−2〈xn+1
i − xni , xn+1

i − xni 〉i.

≤ µ2i ‖zn+1
i − zni ‖2i − (2ki + 2)‖xn+1

i − xni ‖2i .

or
‖xn+1

i − xni ‖i ≤
µi√

2ki + 3
‖zn+1

i − zni ‖i, (3.12)

where µi = ri
ri−r′i

.

‖gi(xn+1
i )− gi(xni )− ρi(xn+1

i − xni )‖2i

≤ ‖gi(xn+1
i )− gi(xni )‖2i

−2ρi〈gi(xn+1
i )− gi(xni ), xn+1

i − xni 〉+ ρ2i ‖xn+1
i − xni ‖2i

≤ µ2i ‖zn+1
i − zni ‖2i + (ρ2i − 2ρiki)‖xn+1

i − xni ‖2i . (3.13)
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From (3.12) and (3.13), we have

‖gi(xn+1
i )−gi(xni )−ρi((xn+1

i −xni )‖i ≤ µi

√
1 +

ρ2i − 2ρiki
2ki + 3

‖zn+1
i −zni ‖i.

(3.14)
Now, from (3.9)-(3.11) and (3.14), we have

‖zn+2
i − zn+1

i ‖i ≤ µi

√
1 +

ρ2i − 2ρiki
2ki + 3

‖zn+1
i − zni ‖i

+ ρi

[ µi√
2ki + 3

(√
1− 2δi + L2

(Ni,i)

)
‖zn+1

i − zni ‖i +
µjL(Ni,j)√

2kj + 3
‖zn+1

j − znj ‖j
]
, (3.15)

for each i ∈ {1, 2} and j ∈ {1, 2}\{i}.

Define norm ‖ · ‖∗ on H1 × H2 by ‖(x1, x2)‖∗ =
2∑

i=1
‖xi‖i for all (x1, x2) ∈ H1 × H2. We note that

(H1 ×H2, ‖ · ‖∗) is a Banach space.

It follows from (3.15) that

‖(zn+2
1 , zn+2

2 )− (zn+1
1 , zn+1

2 )‖∗ =

2∑
i=1

‖zn+2
i − zn+1

i ‖i

≤ θ‖(zn+1
1 , zn+1

2 )− (zn1 , z
n
2 )‖∗, (3.16)

where θ := max{θ1, θ2}; θi := µi[pi + bi(ρiei + ρjdj)];

pi :=
[
1 +

ρ2i − 2ρiki
2ki + 3

] 1
2
; ei :=

√
1− 2δi + L2

(Ni,i)
;

bi :=
1√

2ki + 3
; dj := L(Nj ,i).

From condition (3.8), we have 0 < θ < 1. Hence it follows from (3.16) that {(zn1 , zn2 )} is a Cauchy
sequence in H1×H2. Assume that (zn1 , z

n
2 )→ (z1, z2) in H1×H2 as n→∞, that is, for each i = 1, 2, zni → zi

in Hi as n → ∞. Hence, we observe from (3.12) that {xni } is also a Cauchy sequence and hence assume
that xni → xi in Hi as n → ∞ for each i = 1, 2. Further the continuity of Ni, gi and PKi,ri and Iterative
algorithm 3.5 imply that

gi(xi) = PKi,ri

[
gi(xi)− ρiNi(x1, x2)

]
.

Now it follows from Lemma 3.4 that (x1, x2) ∈ H1 × H2 with gi(xi) ∈ Ki,ri is a solution of SINVIP
(3.1). This completes the proof.

Theorem 3.9. For each i ∈ {1, 2} and j ∈ {1, 2}\{i}, let Ki,ri , Ni and gi be same as in Theorem 3.8, and
let the constant ρi > 0 satisfy the condition:

Mi −∆i < ρi < min
{
Mi + ∆i, ψi,

r′i
1 + ‖Ni(xn1 , x

n
2 )‖i

,
r′i

1 + ‖Ni(x
n+1
1 , xn+1

2 )‖i

}
, (3.17)

where

∆i :=

√
δ2i − L2

(Ni,i)
(1− a2i )

L2
(Ni,i)

; ai :=
1

µibi
− (2 + φi); φi := ρjL(Ni,i);
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Mi :=
δi

L2
(Ni,i)

; ψi <
1

µjbjdi
; δi > L(Ni,i)

√
(1− a2i ); a2i < 1;

bi :=
1√

2ki + 3
; µi :=

ri
ri − r′i

; r′i ∈ (0, ri); ri ∈ (0,∞].

Then the sequences {xni } and {zni } generated by Iterative algorithm 3.5 converge strongly to xi, zi ∈ Hi,
respectively, where (x1, x2) ∈ H1 ×H2 with gi(xi) ∈ Ki,ri is a solution of SINVIP (3.1).

Proof. From (3.6), we have

‖zn+2
i − zn+1

i ‖i ≤ ‖gi(xn+1
i )− gi(xni )− (xn+1

i − xni )‖i

+ ‖(xn+1
1 − xn2 )− ρi(Ni(x

n+1
1 , xn+1

2 )−Ni(x
n
1 , x

n
2 ))‖i. (3.18)

Using the same arguments used in proof of Theorem 3.8, we have the following estimates:

‖(xn+1
1 − xn1 )− ρ1(N1(x

n+1
1 , xn+1

2 )−N1(x
n
1 , x

n
2 ))‖1

≤
√

1− 2ρ1δ1 + ρ2L2
(N1,1)

‖xn+1
1 − xn1‖1 + ρ1L(N1,2)‖x

n+1
2 − xn2‖2. (3.19)

‖(xn+1
2 − xn2 )− ρ2(N2(x

n+1
1 , xn+1

2 )−N2(x
n
1 , x

n
2 ))‖2

≤
√

1− 2ρ2δ2 + ρ2L2
(N2,2)

‖xn+1
2 − xn2‖2 + ρ2L(N2,1)‖x

n+1
1 − xn1‖1. (3.20)

‖xn+1
i − xni ‖i ≤ µibi‖zn+1

i − zni ‖i, (3.21)

where

µi =
ri

ri − r′i
; bi :=

1√
2ki + 3

.

and

‖gi(xn+1
i )− gi(xni )− (xn+1

i − xni )‖i ≤ 2µibi‖zn+1
i − zni ‖i. (3.22)

Now, from (3.17)-(3.22), we have

‖zn+2
i − zn+1

i ‖i ≤ 2µibi‖zn+1
i − zni ‖i + µibiei‖zn+1

i − zni ‖i + ρiµjbjL(Ni,j)‖z
n+1
j − znj ‖j , (3.23)

where ei :=
√

1− 2ρiδi + ρ2iL
2
(Ni,i)

for each i ∈ {1, 2} and j ∈ {1, 2}\{i}.

It follows from (3.23) that.

‖(zn+2
1 , zn+2

2 )− (zn+1
1 , zn+1

2 )‖∗ ≤ θ‖(zn+1
1 , zn+1

2 )− (zn1 , z
n
2 )‖∗, (3.24)

where θ := max{θ1, θ2} and θi := biµi[2 + ei + ρjdj)]; dj := L(Nj ,i).

From condition (3.17), we have 0 < θ < 1. Hence it follows from (3.24) that {(zn1 , zn2 )} is a Cauchy
sequence in H1 × H2. The rest of the proof is same as the proof of Theorem 3.8. This is completes the
proof.

In the following theorem, we have relaxed the condition of strongly monotonicity from Ni.
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Theorem 3.10. For each i ∈ {1, 2}, let Ki,ri be closed and uniformly prox-regular subsets of real Hilbert
space Hi; let Ni be (L(Ni,1), L(Ni,2))-mixed Lipschitz continuous and let gi be ki-strongly monotone and
continuous. For each i ∈ {1, 2} and j ∈ {1, 2}\{i}, if the constant ρi > 0 satisfies the condition:

0 < ρi < min
{

∆i, ψi,
r′i

1 + ‖Ni(xn1 , x
n
2 )‖i

,
r′i

1 + ‖Ni(x
n+1
1 , xn+1

2 )‖i

}
, (3.25)

where

∆i :=
1

L(Ni,i)

[
1

µibi
− (1 + φi)

]
> 0; ψi <

1

µjbjL(Ni,j)
; φi := ρjL(Nj ,i)

bi :=
1√

2ki + 3
; µi :=

ri
ri − r′i

; r′i ∈ (0, ri); ri ∈ (0,∞].

Then the sequences {xni } and {zni } generated by Iterative algorithm 3.5 converge strongly to xi, zi ∈ Hi,
respectively, where (x1, x2) ∈ H1 ×H2 with gi(xi) ∈ Ki,ri is a solution of SINVIP (3.1).

Proof. Since Ni is (L(Ni,1), L(Ni,2))-mixed Lipschitz continuous, we have

‖zn+2
i − zn+1

i ‖i ≤ ‖gi(xn+1
i )− gi(xni )‖i + ρi‖Ni(x

n+1
1 , xn+1

2 )−Ni(x
n
1 , x

n
2 )‖i

≤ ‖gi(xn+1
i )− gi(xni )‖i + ρi

(
L(Ni,1)‖x

n+1
1 − xn1‖1 + L(Ni,2)‖x

n+1
2 − xn2‖2

)
.

Hence it follows from (3.21) that

‖zn+2
i − zn+1

i ‖i ≤ µibi‖zn+1
i − zni ‖i + ρiL(Ni,1)µ1b1‖z

n+1
1 − zn1 ‖1 + ρiL(Ni,2)µ2b2‖z

n+1
2 − zn2 ‖2, (3.26)

where

µi =
ri

ri − r′i
; bi :=

1√
2ki + 3

,

which gives
‖(zn+2

1 , zn+2
2 )− (zn+1

1 , zn+1
2 )‖∗ ≤ θ‖(zn+1

1 , zn+1
2 )− (zn1 , z

n
2 )‖∗, (3.27)

where θ := max{θ1, θ2} and θi := biµi(1 + ρiL(Ni,i) + ρjL(Nj ,j)).

From condition (3.25), we have 0 < θ < 1. and hence (3.27) implies {(zn1 , zn2 )} is a Cauchy sequence in
H1 ×H2. The rest of the proof is same as the proof of Theorem 3.8. This is completes the proof.

Finally we prove the following theorem for the existence and iterative approximation of solutions of
SNVIP (3.2).

Theorem 3.11. For each i ∈ {1, 2} and j ∈ {1, 2}\{i}, let Ki,ri be closed and uniformly prox-regular subset
of real Hilbert space Hi; let Ni be δi-strongly monotone in ith argument and (L(Ni,1), L(Ni,2))-mixed Lipschitz
continuous. If ρi > 0 satisfies the following condition:

δi
L2
(Ni,i)

−∆i < ρi < min

{
δi

L2
(Ni,i)

+ ∆i, ψi,
r′i

1 + ‖Ni(xn1 , x
n
2 )‖i

,
r′i

1 + ‖Ni(x
n+1
1 , xn+1

2 )‖i

}
, (3.28)

where

∆i :=

√
δ2i − L2

(Ni,i)
(1− a2i )

L2
(Ni,i)

; δi > L(Ni,i)

√
(1− a2i ); a2i :=

1

µi
− φi; a2i < 1;

φi := ρjL(Nj ,i); ψi <
1

µjL(Ni,j)
; µi :=

ri
ri − r′i

; r′i ∈ (0, ri); ri ∈ (0,∞].

Then the sequences {xni } and {zni } generated by Iterative algorithm 3.7 converge strongly to xi, zi ∈ Hi,
respectively, where (x1, x2) ∈ K1,r1 ×K2,r2 is a solution of SNVIP (3.2).
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Proof. We easily observe that the condition (3.28) on ρi assures that zni ∈ Ki,r′i
for all n = 1, 2, ... .

From Iterative algorithm 3.7 and Proposition 2.5, we have

‖xn+1
i − xni ‖i ≤ µi‖zn+1

i − zni ‖i, (3.29)

where µi = ri
ri−r′i

and

‖zn+2
i − zn+1

i ‖i = ‖xn+1
i − xni − ρi(Ni(x

n+1
1 , xn+1

2 )−Ni(x
n
1 , x

n
2 ))‖i. (3.30)

Since Ni is δi-strongly monotone in ith argument and (L(Ni,1), L(Ni,2))-mixed Lipschitz continuous, from
(3.19),(3.20),(3.29) and (3.30), we have

‖zn+2
i − zn+1

i ‖i ≤ µiei‖zn+1
i − zni ‖i + ρiµjL(Ni,j)‖z

n+1
j − znj ‖j , (3.31)

where ei :=
√

1− 2ρiδi + ρ2iL
2
(Ni,i)

for each i ∈ {1, 2} and j ∈ {1, 2}\{i}.

It follows from (3.31) that

‖(zn+2
1 , zn+2

2 )− (zn+1
1 , zn+1

2 )‖∗ =

2∑
i=1

‖zn+2
i − zn+1

i ‖i

≤ θ‖(zn+1
1 , zn+1

2 )− (zn1 , z
n
2 )‖∗, (3.32)

where θ := max{θ1, θ2}; θi := µi(ei + ρjdj); dj := L(Nj ,i).

From condition (3.28), we have 0 < θ < 1. Hence it follows from (3.32) that {(zn1 , zn2 )} is a Cauchy
sequence in H1 × H2. The rest of the proof is same as the proof of Theorem 3.8. This is completes the
proof.

Remark 3.12. (i) The methods presented in this paper extend and unify the methods considered in [14,
15, 16, 17, 18, 20, 21, 23, 24] to the systems of nonconvex variational inequality problems defined on
the product of two different Hilbert spaces.

(ii) The methods presented in this paper improve the methods considered in [21, 23, 24] in the sense that
the continuity of g is required instead of the Lipschitz continuity.

(iii) One needs further research effort to extend the methods presented for solving the systems of nonconvex
variational inequality problems involving set-valued mappings.
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