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Abstract

In this article, we study the super stability problem for the functional equation:∑
ψ∈Kn−1

f(ψ(x1, ..., xn)) = 2n−1
n∏
i=1

f(xi)

on an Abelian group and the unknown function f is ( a complex or a semi simple Banach algebra valued ).
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1. Introduction and preliminaries

Questions concerning the stability of functional equation seem to have been first raised by Ulam in
[12]. Hyers in [6] showed that if δ � 0 an f : E → F , where E and F are Banach spaces, such that
‖f(x+ y)− f(x)− f(y)‖ ≤ δ for all x, y ∈ E then there exists a unique S : E → F such that S(x + y) =
S(x) + S(y) and ‖f(x)− S(x)‖ ≤ δ for all x, y ∈ E. In 1979, Baker et. al. [2] postulated that if f satisfies
the inequality |E1(f)− E2(f)| ≤ ε, then either f is bounded or E1(f) = E2(f).
There after it is called the super stability. Baker in [3] proved the super stability of cosine functional equation

f(x+ y) + f(x− y) = 2f(x)f(y) (1.1)
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Which is also called the d’Alembert functional equation. The stability of the generalized cosine functional
equation has been investigated in many papers ([4, 5, 7, 8, 9, 10, 11]). In 2002, Badora and Ger [1] proved the
super stability of d’Alembert functional equation concerning complex-valued mappings, as in the following
theorem.

Theorem 1.1. Let (G,+) be an Abelien group. Let f : G→ C and ϕ : G→ [0,∞) satisfy the inequality

‖f(x+ y) + f(x− y)− 2f(x)f(y)‖ ≤ ϕ(x) or ϕ(y) ∀x, y ∈ G

Then, either f is bounded or f satisfies Eq. (1.1).

In this paper, let (G,+) be an Abelian group, C the field of complex numbers, and Kn−1 = Kn−1 with
K = {+I,−I}. We consider the functional equation :

∑
ψ∈Kn−1

f(ψ(x1, ..., xn)) = 2n−1
n∏
i=1

f(xi) (1.2)

and the difference operator Df : Gn → C as

Df(x1, ..., xn) =
∑

ψ∈Kn−1

f(ψ(x1, ..., xn))− 2n−1
n∏
i=1

f(xi)

with ψ(x1, ..., xn) = x1 +

n∑
i=2

αi(xi) and αi ∈ K.

The object of Theorem 1.1 is to show that the equation can be viewed as a generalization of the cosine
functional equation Eq.(1.1). The aim of this paper is to investigate the improved super stability for
functional equation Eq.(1.2) as follows |Df(x1, ..., xn)| ≤ ϕ(xi) for i = 2...n.
Moreover, we extend all super stability result for Eq.(1.2) to the super stability on the commutative semi
simple Banach algebra.

2. Super Stability of Eq.(1.2)

In this section we will investigate the supers stability of the functional equation Eq.(1.2). The functional
equation Eq. (1.2) is connected with the d’Alembert functional equation Eq.(1.1) as follows:

Lemma 2.1. A complex valued function f on an Abelian group satisfies the functional equation:

∑
ψ∈2n−1

f(ψ(x1, ..., xn)) = 2n−1
n∏
i=1

f(xi)

for all x1, ..., xn ∈ G and f(0) ≥ 0 if and only f satisfies the d’Alembert functional equation:

f(x+ y) + f(x− y) = 2f(x)f(y)∀ x, y ∈ G

Proof. If f is a solution of Eq. (1.2), then by substituting x1, ..., xn by 0 we have:

f(0)n = f(0)

since f(0) ≥ 0 so f(0) = 0 or 1. If f(0) = 0 then f = 0, and if f(0) = 1 then by taking x3 = ... = xn = 0
we get

2n−2(f(x1 + x2) + f(x1 − x2)) = 2n−1f(x1)f(x2)

so that
f(x1 + x2) + f(x1 − x2) = 2f(x1)f(x2).
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Conversely, let f solution of Eq. (1.1), the assertion is true for n = 2. Assuming that the assertion is true
for n− 1, hence we have∑

ψ∈Kn−1

f(ψ(x1, ..., xn)) =
∑

ψ∈Kn−1

f(ψ(x1 + xn, x2, ..., xn)) + f(ψ(x1 − xn, x2, ..., xn))

= 2n−2f(x1 + xn).
n−1∏
i=2

f(xi) + 2n−2f(x1 − xn).
n−1∏
i=2

f(xi)

= 2n−1
n∏
i=1

f(xi).

Lemma 2.2. Let (G,+) be an Abelian group, f : G→ C and ψ : G→ R+ satisfy the inequality:

|Df(x1, ..., xn)| ≤ ϕ(xn) (2.1)

for all x1, ..., xn ∈ G. If there exist a sequence yk such that

|f(yk)| → +∞

for k → +∞ then
|f(2iyk)| → +∞

for i ∈ {0, ..., n− 3}.

Proof. We use induction on i, the assertion of Lemma (2.2) is true for i = 0. Assuming that is true for i,
hence by taking x1 = x2 = 2iyk and x3 = ... = xn = 0 in the inequality (2.1). We have

|2n−2f(2i+1yk) + 2n−2f(0)− 2n−1(f(2iyk))
2f(0)n−2| ≤ ϕ(0)

so that
|f(2i+1yk)| → +∞.

Theorem 2.3. Let (G,+) be an Abelian group, f : G → C and ϕ : G → R+ satisfies the inequality (2.1)
then either f is bounded or satisfies the functional equation Eq.(1.2) for all x1, ..., xn ∈ G and n ≥ 3.

Proof. Let f be unbounded, then by Lemma (2.2) we can choose a sequence {yk} inG such that |f(2iyk| → ∞
as k →∞, for i = 0, ..., n− 3. Firstly we use induction on n to prove that:∑

ψ∈Kn−1

f(ψ(2n−3yk, ..., 2yk, yk, yk, xn)) (2.2)

= f(2n−2yk + xn) + f(2n−2yk − xn) + 2

2n−3−1∑
i=1

f((2n−2 − 2i)yk + xn)

+ 2
2n−3−1∑
i=1

f((2n−2 − 2i)yk − xn) + f(xn) + f(−xn)
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The assertion (2.4) is true for n = 3. Assuming that is true for n− 1, hence we have:∑
ψ∈Kn−1

f(ψ(2n−3yk, ..., 2yk, yk, yk, xn)) =
∑

ψ∈Kn−2

f(ψ(2n−4yk, ..., 2yk, yk, yk, xn) + 2n−3yk)

+
∑

ψ∈Kn−2

f(ψ(−2n−4yk, 2
n−5yk, ..., 2yk, yk, yk, xn)− 2n−3yk)

=
∑

ψ∈Kn−2

f(ψ(2n−4yk, ..., 2yk, yk, yk, xn) + 2n−3yk)

+
∑

ψ∈Kn−2

f(ψ(−2n−4yk, ...,−2yk,−yk,−yk, xn) + 2n−3yk)

= f((2n−3yk + xn) + 2n−3yk) + f((2n−3yk − xn) + 2n−3yk)

+ 2
2n−4−1∑
i=1

f((2n−3 − 2i)yk + xn + 2n−3yk)

+ 2
2n−4−1∑
i=1

f((2n−3 − 2i)yk − xn + 2n−3yk)

+ f(2n−3yk + xn) + f(2n−3yk − xn)

+ f(−2n−3yk + xn + 2n−3yk) + f((−2n−3yk − xn + 2n−3yk)

+ 2

2n−4−1∑
i=1

f(−(2n−3 − 2i)yk + xn + 2n−3yk)

+ 2
2n−4−1∑
i=1

f(−(2n−3 − 2i)yk − xn + 2n−3yk)

+ f(2n−3yk + xn) + f(2n−3yk − xn).

= f(2n−2yk + xn) + f(2n−2yk − xn)

+ 2
2n−4−1∑
i=1

f((2n−2 − 2i)yk + xn)

+ 2
2n−4−1∑
i=1

f((2n−2 − 2i)yk − xn)

+ 2
2n−4−1∑
i=1

f(2iyk + xn) + f(2iyk − xn)

+ 2(f(2n−3yk + xn) + f(2n−3yk − xn))

+ f(xn) + f(−xn).

And using the fact that:

2
2n−4−1∑
i=1

f(2iyk + xn) + f(2iyk − xn) = 2
2n−3−1∑
i=2n−4+1

f((2n−2 − 2i)yk + xn)

+ 2

2n−3−1∑
i=2n−4+1

f((2n−2 − 2i)yk − xn)

the induction proof is completed.
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Now putting

A(xn) = f(2n−2yk + xn) + f(2n−2yk − xn)

+ 2

2n−3−1∑
i=1

f((2n−2 − 2i)yk + xn) + f((2n−2 − 2i)yk − xn).

And taking x1 = 2n−3yk...xn−3 = 2yk and xn−2 = xn−1 = yk in (2.1) we obtain∣∣∣∣∣∣∣∣∣∣∣
A(xn) + f(xn) + f(−xn)

2n−1f(yk)
n−3∏
i=0

f(2iyk)

− f(xn)

∣∣∣∣∣∣∣∣∣∣∣
≤ ϕ(xn)∣∣∣∣∣2n−1f(yk)

n−3∏
i=0

f(2iyk)

∣∣∣∣∣
then

lim
k→+∞

A(xn)

2n−1f(yk)
n−3∏
i=0

f(2iyk)

= f(xn), xn ∈ G (2.3)

Note that, the result is invariant under the inversion of xn, we deduce that f is even.
In the next we will show that f satisfies the functional equation Eq.(1.2), putting

Bψ = f(ψ(2n−2yk + x1, x2, ..., xn)) + f(ψ(2n−2yk − x1, x2, ..., xn))

+ 2

2n−3−1∑
i=1

f(ψ((2n−2 − 2i)yk + x1, x2, ..., xn))

+ 2
2n−3−1∑
i=1

f(ψ((2n−2 − 2i)yk − x1, x2, ..., xn))

|
∑

ψ∈Kn−1

f(ψ((2n−2 − 2i)yk + x1, x2, ..., xn))− 2n−1f((2n−2 − 2i)yk + x1)
n∏
i=2

f(xi)| ≤ ϕ(xn). (2.4)

And letting: x1 = (2n−2 − 2i)yk − x1 for i = 0, ..., 2n−3 − 1 in (2.1) we have∣∣∣∣∣∣
∑

ψ∈Kn−1

f(ψ((2n−2 − 2i)yk − x1, x2, ..., xn))− 2n−1f((2n−2 − 2i)yk − x1)
n∏
i=2

f(xi)

∣∣∣∣∣∣ ≤ ϕ(xn) (2.5)

For all x1, ..., xn ∈ G:
Combining (2.4) and (2.5), and using the evenness of f , we see that∣∣∣∣∣∣

∑
ψ∈Kn−1

Bψ − 2n−1
n∏
i=2

f(xi)A(x1)

∣∣∣∣∣∣ ≤ (2n−1 − 2)ϕ(xn) (2.6)

for all x1, ..., xn ∈ G. Now, we fix ψj ∈ Kn−1 for j = 1, 2, 3, ..., 2n−1, then we get
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Bψj
= f(2n−2yk + ψj(x1, x2, ..., xn)) + f(2n−2yk − ψj(x1, x2, ..., xn))

+ 2
2n−3−1∑
i=1

f((2n−2 − 2i)yk + ψj(x1, x2, ..., xn))

+ 2
2n−3−1∑
i=1

f((2n−2 − 2i)yk − ψj(x1, x2, ..., xn))

Using the fact (2.3) of f , we see that

lim
k→+∞

Bψj

2n−1f(yk)
n−3∏
i=0

f(2iyk)

= f(ψj(x1, x2, ..., xn))

Therefore, dividing each side of the inequality (2.6) by

2n−1f(yk)
n−3∏
i=0

f(2iyk)

and taking the limit as k → +∞, we get

∑
ψ∈Kn−1

f(ψ(x1, x2, ..., xn)) = 2n−1
n∏
i=1

f(xi)

Corollary 2.4. Let δ be positive real number and let f : G → C be a function satisfying the inequality
|Df(x1, ..., xn)| ≤ δ for all x1, ..., xn ∈ G and n ≥ 3, then either f is bounded or f satisfies the functional
equation: ∑

ψ∈Kn−1

f(ψ(x1, x2, ..., xn)) = 2n−1
n∏
i=1

f(xi)

3. Extension to Banach algebra

All results in section 2 can be extended to the super stability on the commutative semi simple Banach
algebra. In this section, let (G,+) be an Abelian group, and (E, ‖.‖) be a commutative semi simple algebra.

Theorem 3.1. Assume that f : G→ E and ϕ : G→ R+ satisfy the inequality

‖Df(x1, ..., xn)‖ ≤ ϕ(xn) (3.1)

for all x1, ..., xn ∈ G and n ≥ 3. If the superposition x∗ ◦ f is unbounded for each linear multiplicative
functional x∗ ∈ E∗, then f satisfies the functional equation Eq.(1.2).

Proof. Assume that (3.1) holds and fixe arbitrarily linear multiplicative functional x∗ ∈ E. As is well known
we have ‖x∗‖ = 1, whence, for every x1, ..., xn ∈ G, we have

ϕ(xn) ≥ ‖Df(x1, ..., xn)‖
= Sup‖y∗‖=1|D(y∗ ◦ f)(x1, ..., xn)|
≥ |D(x∗ ◦ f)(x1, ..., xn)|
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which states that the superposition x∗ ◦f yield a solution of the inequality (2.1) of section 2 in the Theorem
(2.3). Since by assumption the superposition x∗ ◦ f is unbounded, an appeal to Theorem (2.3) shows that
x∗ ◦ f solve functional equation Eq.(1.2). In other words, bearing the linear multi pliability of x∗, for all
x1, ..., xn ∈ G the difference Df(x1, ..., xn) falls into the kernel of x∗.
Therefore, in view of the unrestricted choice of x∗, we infer that

Df(x1, ..., xn) ∈ {kerx∗;x∗ is multiplicative of E∗}

for all x1, ..., xn ∈ G. Since the algebra E has been assumed to be semi simple, the last term of the above
formula coincides with the singleton {0}, that is

Df(x1, ..., xn) = 0 ∀x1, ..., xn ∈ G

as claimed. This completes the proof.

Corollary 3.2. Let δ be positive real number and let f : G → E be a function satisfying the inequality:
‖Df(x1, ..., xn)‖ ≤ δ for all x1, ..., xn ∈ G and n ≥ 3. If the superposition x∗ ◦f is unbounded for each linear
multiplicative functional x∗ ∈ E∗, then f satisfies the functional equation

∑
ψ∈Kn−1

f(ψ(x1, x2, ..., xn)) = 2n−1
n∏
i=1

f(xi).

Similarly, one can prove that if the difference Df(x1, ..., xn) is bounded by ϕ(x2) or ϕ(x3), ..., or ϕ(xn−1)
one obtains the same result as in the Theorem (2.3).
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