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Using the setting of TVS-valued ordered cone metric spaces ( order is induced by a non normal cone),
common fixed point results for four mappings satisfying implicit contractive conditions are obtained. These
results extend, unify and generalize several well known comparable results in the literature. c©2013 All
rights reserved.

Keywords: Implicit contraction; fixed point; coincidence point; common fixed point; weakly compatible
mappings; metric space; dominating maps; dominated maps; ordered metric space.
2010 MSC: 54H25, 47H10.

1. Introduction

Metric fixed point theory has primary applications in functional analysis. Extension of fixed point theory
to generalized structures as cone metrics, partial metric spaces and quasi-metric spaces has received a lot of
attention (see, for instance, [1 - 33] and references mentioned therein). The study of fixed points of mappings
satisfying certain contractive conditions has been at the center of vigorous research activity.

Fixed point theory in K-metric and K-normed spaces was developed by Perov et al. [18, 28, 29],
Mukhamadijev and Stetsenko [19], and Vandergraft [41]. For more details on this subject, we refer to
Zabrejko [42].
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Huang and Zhang [14] reintroduced such spaces under the name of cone metric spaces and reintroduced
definition of convergent and Cauchy sequences in the terms of interior points of the underlying cone. They
also proved some fixed point results in framework of cone metric spaces. Subsequently, several interesting
and valuable results have appeared about existence of fixed point in K- metric spaces (see, e.g., [1, 4,
14, 15, 19, 30, 35]). Recently, Abbas et al. [2] ( see also [12]) obtained common fixed point results in
topological vector space valued cone metric space which is a larger class than that considered in [14]. The
main motivation behind such research is an observation, that the domain of existence of a solution to a
system of first-order differential equations may be enhanced by considering generalized ( [5]).

Recently, Wei-Shih Du [13] used the scalarization function and investigated the equivalence of vectorial
versions of fixed point theorems in K-metric spaces and scalar versions of fixed point theorems in metric
spaces. He showed that many of the fixed point theorems for mappings satisfying contractive conditions of
a linear type in K-metric spaces can be considered as the corollaries of corresponding theorems in metric
spaces. Nevertheless, the fixed point theory in K-metric spaces proceeds to be actual, since the method of
scalarization cannot be applied for a wide class of mappings satisfying contractive conditions more general
than contractive conditions of a linear type.

Existence of fixed point in ordered metric spaces was first investigated by Ran and Reurings [31,
Theorem 2.1]. They also studied applications of their results to matrix equations. Subsequently, Nieto
and Rodŕıguez-López [27] extended the results in [31, Theorem 2.1] for nondecreasing mappings and then
applied it to obtain a unique solution for a first order ordinary differential equation with periodic boundary
conditions. Since then, a problem of existence and uniqueness of fixed point of mappings on metric spaces
endowed with a partial ordering has received much of attention of several mathematicians, see for example
[6, 7, 8, 9, 10, 11, 20, 21, 22, 23, 24, 25, 26, 27, 32, 34, 36, 37, 38, 39, 40] and references cited therein.

In this paper, common fixed point theorems involving two pairs of weakly compatible mappings satisfying
implicit contractions in TVS-valued ordered cone metric spaces are obtained. Our results generalize, extend
and improve some recent fixed point results in K-metric spaces including the results of Abbas and Jungck
[1], Olaleru [28], Huang and Zhang [14] and Rezapour and Hamlbarani [33]. It is worth mentioning that our
results do not require the assumption that the cone is normal.

2. Preliminaries

We shall recall some definitions and mathematical preliminaries.
Let E be always a topological vector space (in shortly, TVS).

Definition 2.1. (See Zabrejko [42]). A non-empty subset K of E is called a cone if and only if
(i) K = K, K 6= 0E ,
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ K ⇒ ax+ by ∈ K,
(iii) K ∩ (−K) = {0E}, where K is the closure of K.

A cone K defines a partial ordering ≤E in E by x ≤E y if and only if y − x ∈ K. We shall write x <E y
to indicate that x ≤E y but x 6= y, while x � y will stand for y − x ∈ int(K), where int(K) denotes the
interior of K. A cone K is said to be normal if there exists a constant M ≥ 1 such that 0E ≤E x ≤E y
implies ‖x‖E ≤M‖y‖E . The least positive number M satisfying this inequality is called the normal constant
of cone K. For further details on cone theory, one can refer to [33].

Definition 2.2. Let X be a non-empty set. Suppose the mapping d : X ×X → E satisfies
(d1) 0E ≤E d(x, y) for all x, y ∈ X and d(x, y) = 0E if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤E d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a TVS-valued cone metric on X and (X, d) is called a TVS-valued cone metric space.
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Example 2.3. Let X = {0, 1, 2}, E = R2
+ and P = {(x, y) : x ≥ 0, y ≥ 0}. Define d : X ×X → E by

(x, y) d(x, y)

(0, 0) (0, 0)

(0, 1), (1, 0) (1, 1)

(0, 2), (2, 0) (2, 2).

(1, 2), (2, 1) (3, 3)

It is straightforward to check that d satisfies all axioms of TVS-valued cone metric.

Definition 2.4. Let (X, d) be a TVS-valued cone metric space and {xn} is a sequence in X. We say
that {xn} is Cauchy if for every c ∈ E with 0E � c, there exists N ∈ N such that d(xn, xm) � c for all
n > m > N. We say that {xn} converges to x ∈ X if for every c ∈ E with 0E � c, there exists N ∈ N such
that d(xn, x)� c for all n > N. In this case, we denote xn → x as n→∞.

A TVS-valued cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent
in X.

Remark 2.5. Let E is a TVS-valued cone metric space with a cone P then,

(a) if with a cone P and if a ≤ ha where a ∈ P and h ∈ (0, 1) , then a = 0.

(b) if 0 ≤ u� c for each 0� c, then u = 0.

(c) if a ≤ b+ c for each 0� c, then a ≤ b.

For more on the properties of cone, we refer to [17].

Definition 2.6. Let f : E → E be a given mapping. We say that f is a non-decreasing mapping with
respect to ≤E if for every x, y ∈ E, x ≤E y implies fx ≤E fy.

Definition 2.7. Let f and g be self-maps on a set X. If w = fx = gx, for some x in X, then x is called
coincidence point of f and g, where w is called a point of coincidence of f and g.

Definition 2.8. [3]. Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly
compatible if they commute at every coincidence point.

Also f and g are said to be compatible if lim
n→∞

gfxn = lim
n→∞

fgxn whenever {xn} is a sequence in X such

that lim
n→∞

fxn = lim
n→∞

gxn = t for some t in X.

Definition 2.9. Let X be a nonempty set. Then (X, d,�) is called an ordered metric space if and only if
d is a metric on X having partial order � .

Definition 2.10. Let (X,�) be a partial ordered set. Then x, y ∈ X are called comparable if x � y or
y � x holds.

Definition 2.11. [3]. Let (X,�) be a partially ordered set. A mapping f is called dominating if x � fx
for each x in X.

Example 2.12. [3]. Let X = [0, 1] be endowed with usual ordering and f : X → X be defined by fx = n
√
x.

Since x ≤ x
1
3 = fx for all x ∈ X. Therefore f is a dominating map.

Definition 2.13. Let (X,�) be a partially ordered set. A mapping f is called dominated if fx � x for
each x in X.

Example 2.14. Let X = [0, 1] be endowed with usual ordering and f : X → X be defined by fx = xn for
some n ∈ N. Since fx = xn ≤ x for all x ∈ X. Therefore f is a dominated map.

Definition 2.15. A subset K of a partially ordered set X is said to be well ordered if every two elements
of K are comparable.
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3. Main Results

To complete the results, we need following setting of implicit contraction.

We consider the set L of functions ϕ : K5 → K satisfying the following properties:

(i) ϕ is continuous;

(ii) ϕ is non-decreasing with respect to ≤E in the 4th and 5th variable;

(iii) there are h1 > 0 and h2 > 0 such that h = h1h2 < 1 and if u, v ∈ K satisfy u ≤E ϕ(v, v, u, u+ v, 0E),
then u ≤E h1v and if u, v ∈ K satisfy u ≤E ϕ(v, u, v, 0E , u+ v), then u ≤E h2v;

(iv) if u ∈ K is such that u ≤E ϕ(u, 0E , 0E , u, u) or u ≤E ϕ(0E , u, 0E , 0E , u) or u ≤E ϕ(0E , 0E , u, u, 0E),
then u = 0E .

Our main result of this paper is as follows:

Theorem 3.1. Let (X, d,�) be an ordered TVS-valued cone metric space with cone K over a solid cone P .
Let S, T, I and J be self-maps on X such that

d(Sx, Ty) ≤E ϕ(d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy)), (3.1)

for all comparable x, y ∈ X, where ϕ ∈ L. Suppose that

(i) TX ⊆ IX and SX ⊆ JX;

(ii) I and J are dominating maps and S and T are dominated maps.

If for a nonincreasing sequence {xn} with yn � xn for all n and yn → u implies that u � xn and either

(a) {S, I} are compatible, S or I is continuous and {T, J} are weakly compatible or

(b) {T, J} are compatible, T or J is continuous and {S, I} are weakly compatible,

then S, T, I and J have a common fixed point. Moreover, the set of common fixed points of S, T, I and
J is well ordered if and only if S, T, I and J have one and only one common fixed point.

Proof. Let x0 be an arbitrary point in X. Since TX ⊆ IX and SX ⊆ JX, we can define the sequences
{xn} and {yn} in X by

y2n+1 = Sx2n = Jx2n+1, y2n+2 = Tx2n+1 = Ix2n+2, n = 1, 2, · · · .

By given assumptions x2n+1 � Jx2n+1 = Sx2n � x2n and x2n � Ix2n = Tx2n−1 � x2n−1. Thus, for all
n ≥ 1, we have xn+1 � xn. We suppose that d(y2n, y2n+1) > 0, for every n. If not then y2n = y2n+1, for some
n. From (3.1), we obtain

d(y2n+1, y2n+2)

= d(Sx2n, Tx2n+1)

≤E ϕ(d(Ix2n, Jx2n+1), d(Ix2n, Sx2n), d(Jx2n+1, Tx2n+1), d(Ix2n, Tx2n+1), d(Sx2n, Jx2n+1))

= ϕ(d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+2), d(y2n+1, y2n+1))

= ϕ(0E , 0E , d(y2n+1, y2n+2), d(y2n+1, y2n+2), 0E).

From (iv), this implies that d(y2n+1, y2n+2) = 0E , that is,

y2n+1 = y2n+2.

Following the similar arguments, we obtain y2n+2 = y2n+3 and so on. Thus {yn} becomes a constant
sequence and y2n is the common fixed point of S, T, I and J .
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Take, d(y2n, y2n+1) > 0 for each n. Since x2n and x2n+1 are comparable, from (3.1), we have

d(y2n+1, y2n+2)

= d(Sx2n, Tx2n+1)

≤E ϕ(d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+2), 0E)

≤E ϕ(d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+1) + d(y2n+1, y2n+2), 0E).

By (iii), we have
d(y2n+1, y2n+2) ≤E h1d(y2n, y2n+1). (3.2)

Again, using (3.1), we have

d(y2n+1, y2n)

= d(Sx2n, Tx2n−1)

≤E ϕ(d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n), 0E , d(y2n+1, y2n−1))

≤E ϕ(d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n), 0E , d(y2n+1, y2n) + d(y2n, y2n−1)).

By (iii), we obtain
d(y2n+1, y2n) ≤E h2d(y2n, y2n−1). (3.3)

Combining (3.2) and (3.3), we have

d(y2n+1, y2n+2) ≤E hd(y2n−1, y2n).

Continuing this process, we get
d(y2n+1, y2n+2) ≤E hnd(y1, y2). (3.4)

Again, using (3.1), we have

d(y2n+3, y2n+2)

= d(Sx2n+2, Tx2n+1)

≤E ϕ(d(y2n+2, y2n+1), d(y2n+2, y2n+3), d(y2n+1, y2n+2), 0E , d(y2n+3, y2n+1))

≤E ϕ(d(y2n+1, y2n+2), d(y2n+2, y2n+3), d(y2n+1, y2n+2), 0E , d(y2n+3, y2n+2) + d(y2n+2, y2n+1)).

From (iii), we get
d(y2n+2, y2n+3) ≤E h2d(y2n+1, y2n+2).

Using (3.4), we obtain
d(y2n+2, y2n+3) ≤E h2h

nd(y1, y2). (3.5)

From (3.4) and (3.5), we get

d(yn, yn+1) ≤E
max{1, h2}√

h
(
√
h)nd(y1, y2), for all n = 2, 3, . . . . (3.6)

From (3.6) and using the triangular inequality, for all n,m ∈ N with m > n, we have

d(yn, yn+m) ≤E d(yn, yn+1) + d(yn+1, yn+2) + . . .+ d(ym−1, ym)

≤E
max{1, h2}√

h
((
√
h)n + (

√
h)n+1 + . . .+ (

√
h)m−1)d(y1, y2)

≤E
max{1, h2}√

h

(
√
h)n

1−
√
h
d(y1, y2).

Let c be an arbitrary element in E with 0E � c. Since 0 < h < 1, there exists N ∈ N such that

max{1, h2}√
h

(
√
h)n

1−
√
h
d(y1, y2)� c, for all n > N. (3.7)
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Thus, for all m,n ∈ N,

d(yn, ym) ≤E
max{1, h2}√

h

(
√
h)n

1−
√
h
d(y1, y2)� c

and so the sequence {yn} is a Cauchy sequence in X. Since X is complete, there exists a point z in X, such
that y2n converges to z. Therefore,

y2n+1 = Jx2n+1 = Sx2n → z as n→∞ (3.8)

and
y2n+2 = Ix2n+2 = Tx2n+1 → z as n→∞. (3.9)

Assume that I is continuous. Since {S, I} are compatible, we have

lim
n→∞

SIx2n+2 = lim
n→∞

ISx2n+2 = Iz.

Also, Ix2n+2 = Tx2n+1 � x2n+1. Now

d(SIx2n+2, Tx2n+1)

≤E ϕ(d(IIx2n+2, Jx2n+1), d(IIx2n+2, SIx2n+2), d(Jx2n+1, Tx2n+1), d(IIx2n+2, Tx2n+1), d(SIx2n+2, Jx2n+1)).

On taking limit as n→∞, we obtain

d(Iz, z) ≤E ϕ(d(Iz, z), 0E , 0E , d(Iz, z), d(Iz, z)).

From (iv), this implies that d(Iz, z) = 0E , that is,

Iz = z. (3.10)

Now, Tx2n+1 � x2n+1 and Tx2n+1 → z as n→∞, z � x2n+1 and (3.1) becomes

d(Sz, Tx2n+1) ≤E ϕ(d(Iz, Jx2n+1), d(Sz, Iz), d(Jx2n+1, Tx2n+1), d(Iz, Tx2n+1), d(Sz, Jx2n+1)).

Taking limit as n→∞ in the above inequality,

d(Sz, z) ≤E ϕ(0E , d(Sz, z), 0E , 0E , d(Sz, z)).

From (iv), this implies that d(Sz, z) = 0E , that is,

Sz = z. (3.11)

Since S(X) ⊆ J(X), there exists a point w ∈ X such that Sz = Jw. Suppose that Tw 6= Jw. Since
w � Jw = Sz � z implies w � z. From (3.1), we obtain

d(Jw, Tw) = d(Sz, Tw) ≤E ϕ(d(Iz, Jw), d(Iz, Sz), d(Jw, Tw), d(Iz, Tw), d(Sz, Jw))

= ϕ(d(z, z), d(z, z), d(Jw, Tw), d(Jw, Tw), d(Jw, Jw))

= ϕ(0E , 0E , d(Jw, Tw), d(Jw, Tw), 0E).

From (iv), this implies that d(Jw, Tw) = 0E , that is,

Jw = Tw. (3.12)

Since T and J are weakly compatible, Tz = TSz = TJw = JTw = JSz = Jz. Thus z is a coincidence point
of T and J.

Now, since Sx2n � x2n and Sx2n → z as n→∞, implies that z � x2n, from (3.1)

d(Sx2n, T z) ≤E ϕ(d(Ix2n, Jz), d(Ix2n, Sx2n), d(Jz, Tz), d(Ix2n, T z), d(Sx2n, Jz)).
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On taking limit as n→∞, we have

d(z, Tz) ≤E ϕ(d(z, Tz), d(z, z), d(Tz, Tz), d(z, Tz), d(z, Tz))

= ϕ(d(z, Tz), 0E , 0E , d(z, Tz), d(z, Tz)).

From (iv), this implies that d(z, Tz) = 0E , that is,

z = Tz. (3.13)

Therefore Sz = Tz = Iz = Jz = z. The proof is similar when S is continuous.
Similarly, the result follows when (b) holds.
Now suppose that set of common fixed points of S, T, I and J is well ordered. We claim that common

fixed point of S, T, I and J is unique. Assume on contrary that, Su = Tu = Iu = Ju = u and Sv = Tv =
Iv = Jv = v but u 6= v. By supposition, we can replace x by u and y by v in (3.1) to obtain

d(u, v) = d(Su, Tv) ≤E ϕ(d(Iu, Jv), d(Iu, Su), d(Jv, Tv), d(Iu, Tv), d(Su, Jv))

= ϕ(d(u, v), 0E , 0E , d(u, v), d(u, v)).

From (iv), we get u = v, that is,
Su = Iu = Tu = Ju = u. (3.14)

Conversely, if S, T, I and J have only one common fixed point then the set of common fixed point of S, T, I
and J being singleton is well ordered.

Using the obtained result given by Theorem 3.1, we will prove the following theorem.

Theorem 3.2. Let (X, d,�) be an ordered TVS-valued cone metric space with cone K over a solid cone P .
Let S, T, I and J be self-maps on X such that

d(Sx, Ty) ≤E Ad(Ix, Jy) +B[d(Ix, Sx) + d(Jy, Ty)] + C[d(Ix, Ty) + d(Sx, Jy)], (3.15)

for all comparable x, y ∈ X, where A,B,C > 0 with A+ 2B + 2C < 1. Suppose that

(i) TX ⊆ IX and SX ⊆ JX;

(ii) I and J are dominating maps and S and T are dominated maps.

If for a nonincreasing sequence {xn} with yn � xn for all n and yn → u implies that u � xn and either

(a) {S, I} are compatible, S or I is continuous and {T, J} are weakly compatible or

(b) {T, J} are compatible, T or J is continuous and {S, I} are weakly compatible,

then S, T, I and J have a common fixed point. Moreover, the set of common fixed points of S, T, I and
J is well ordered if and only if S, T, I and J have one and only one common fixed point.

Proof. Define ϕ : K5 → K by

ϕ(u1, u2, u3, u4, u5) = Au1 +B(u2 + u3) + C(u4 + u5), for all ui ∈ K.

Denote

h1 = h2 =
A+B + C

1− (B + C)
.

Since A+ 2B + 2C < 1, we have h1 > 0, h2 > 0. If u ≤E ϕ(v, v, u, u+ v, 0E), we have

u ≤E Av +Bv +Bu+ Cu+ Cv,

which implies that u ≤E h1v. Now, if u ≤E ϕ(v, u, v, 0E , u+ v), we have

u ≤E Av +Bu+Bv + Cu+ Cv,



H. -K. Nashine, M. Abbas, J. Nonlinear Sci. Appl. 6 (2013), 205–215 212

which implies that u ≤E h2v. Suppose now that u ≤E ϕ(u, 0E , 0E , u, u). We get u ≤E Au + 2Cu, which
implies that −[1 − (A + 2C)]u ∈ K. Since A + 2C < 1, we have also [1 − (A + 2C)]u ∈ K. Then u = 0E .
The same result holds if u ≤E ϕ(0E , u, 0E , 0E , u) or u ≤E ϕ(0E , 0E , u, u, 0E). Therefore, ϕ ∈ L. Moreover,
inequality (3.15) is equivalent to inequality (3.1). Then, to obtain the desired result, we have only to apply
Theorem 3.1 for the considered function.

Example 3. Let X = [0, 1), E = C1
R and let P = {x ∈ E : x(t) ≥ 0}. Mapping d : X ×X → E is defined

by
d(x, y) = |x− y|ψ(t),

where ψ ∈ P is a fixed function, for example, (i) ψ(t) = et, (ii) ψ(t) = 2t, (ii) ψ(t) = λt, λ ∈ [0, 1), t ∈ P .
Clearly, the metric given above is TVS-valued ordered cone metric on X. Define the self maps I, J , S and
T on X by

S(x) =

{
0, if x ≤ 1

3
1
2(x− 1

3), if x ∈ (13 , 1]
, Tx =

{
0, if x ≤ 1

3
1
3 , if x ∈ (13 , 1]

,

J(x) =


0, if x = 0
x, if x ∈ (0, 13 ]
1, if x ∈ (13 , 1]

, Ix =


0, if x = 0
1
3 , if x ∈ (0, 13 ]
1, if x ∈ (13 , 1]

.

Then I and J are dominating maps and S and T are dominated maps with S(X) ⊆ J(X) and T (X) ⊆
I(X),i.e.

S is dominated map T is dominated map I is dominating map J is dominating map

for each x in X Sx ≤ x Tx ≤ x x ≤ Ix x ≤ Jx
x = 0 S (0) = 0 T (0) = 0 0 = I(0) 0 = J(0)

x ∈ (0, 13 ] Sx = 0 < x Tx = 0 < x x ≤ 1
3 = I(x) x = J(x)

x ∈ (13 , 1] Sx = 1
2(x− 1

3) < x Tx = 1
3 < x x ≤ 1 = I(x) x ≤ 1 = J(x)

Also, {S, I} are compatible, S is continuous and {T, J} are weakly compatible.
Define ϕ : K5 → K by

ϕ((u1, u2, u3, u4, u5)ψ(t)) =
1

30
(u1 + 7(u2 + u3) + 7(u4 + u5))ψ(t), for all ui ∈ K.

It is easy to see that ϕ satisfies axioms (i) to (iv) of Theorem 3.1.
Now we shall show that S, T, I and J satisfy (3.1).

We consider the following cases:
(i) If x = y = 0, then d(S0, T0) = 0 and (3.1) is satisfied.
(ii) For x = 0 and y ∈ (0, 13 ], then again d(Sx, Ty) = 0 and (3.1) is satisfied.
(iii) For x = 0 and y ∈ (13 , 1],

d(Sx, Ty) =
1

3
ψ(t)

<E
1

2
ψ(t)

= ϕ((1, 0,
2

3
,
1

3
, 1)ψ(t))

= ϕ((d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy))ψ(t)).

(iv) For x ∈ (0, 13 ] and y = 0, then d(Sx, T0) = 0 and (3.1) is satisfied.
(v) For x, y ∈ (0, 13 ], then d(Sx, Ty) = 0 and hence (3.1) is satisfied.
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(vi) For x = (0, 13 ] and y ∈ (13 , 1],

d(Sx, Ty) =
1

3
ψ(t)

<E
22

45
ψ(t)

= ϕ((
2

3
,
1

3
,
2

3
, 0, 1)ψ(t))

= ϕ((d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy))ψ(t)).

(vii) For x ∈ (13 , 1] and y = 0,

d(Sx, Ty) =
1

2
(x− 1

3
)ψ(t)

<E
1

2
ψ(t)

= ϕ((1, 1− 1

2
(x− 1

3
), 0, 1,

1

2
(x− 1

3
))ψ(t))

= ϕ((d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy))ψ(t)).

(viii) For x ∈ (13 , 1], y ∈ (0, 13 ],

d(Sx, Ty) =
1

2
(x− 1

3
)ψ(t) ≤ 1

3
ψ(t)

≤E
38

90
ψ(t)

≤E ϕ((1− y, 1− 1

2
(x− 1

3
), y, 1,

∣∣∣∣12(x− 1

3
)− y

∣∣∣∣)ψ(t))

= ϕ((d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy))ψ(t)).

(ix) For x, y ∈ (13 , 1],

d(Sx, Ty) =
1

2
(1− x)ψ(t) ≤ 1

3
ψ(t)

≤E
56

90
ψ(t)

≤E ϕ((0,
7− 3x

6
,
2

3
,
2

3
,
7− 3x

6
)ψ(t))

= ϕ((d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Sx, Jy))ψ(t)).

Thus (3.1) is satisfied for all x, y ∈ X. Therefore, all conditions of Theorem 1 are satisfied. Moreover, 0 is
the unique common fixed point.
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[27] J. J. Nieto and R. Rodŕıguez-López, Contractive mapping theorems in partially ordered sets and applications to

ordianry differential equations, Order 22 (2005), 223-239. 1
[28] J.O. Olaleru, Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2009,

2009:10. 1
[29] A.I. Perov, The Cauchy problem for systems of ordinary differential equations, in: Approximate Methods of

Solving Differential Equations, Kiev, Naukova Dumka, 1964, 115-134 (in Russian). 1
[30] A.I. Perov and A.V. Kibenko, An approach to studying boundary value problems, Izvestija AN SSSR, Ser. Math.

30:2 (1966), 249-264 (in Russian). 1
[31] A. C. M. Ran and M. C. B. Reurings, A fixed point thm in partially ordered sets and some applications to matrix

equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443. 1
[32] D. O’regan and A. Petrutel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math.

Anal. Appl. 341:2(2008), 241-1252. 1
[33] Sh. Rezapour and R. Hamlbarani, Some notes on the paper: cone metric spaces and fixed point theorems of

contractive mappings, J. Math. Anal. Appl. 345 (2008), 719-724. 1, 2
[34] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric

spaces, Nonlinear Anal. 72 (2010), 4508-4517. 1
[35] B. Samet, Common fixed point theorems involving two pairs of weakly compatible mappings in K-metric spaces,

Applied Mathematics Letters 24 (2011), 1245-1250. 1



H. -K. Nashine, M. Abbas, J. Nonlinear Sci. Appl. 6 (2013), 205–215 215

[36] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Computers Math. Appl. 60
(2010), 2508-2515. 1

[37] W. Shatanawi, Some fixed point theorems in ordered G-metric spaces and applications, Abstract and Applied
Analysis 2011, 2011: 11. 1

[38] W. Shatanawi, Some coincidence point results in cone metric spaces, Math. Comput. Mod. 55 (2012), 2023-2028.
1

[39] W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Applied
Mathematics Letters 25 (2012), 925-931. 1

[40] W. Shatanawi and H. K. Nashine, A generalization of Banach’s contraction principle for nonlinear contraction
in a partial metric space, J. Nonlinear Sci. Appl. 3(2012), 139-144. 1

[41] J.S. Vandergraft, Newton’s method for convex opertaors in partially ordered spaces, SIAM J. Numer. Anal. 4
(1967), 406-432. 1

[42] P.P. Zabrejko, K-metric and K-normed linear spaces, Survey Collect. Math. 48:4-6 (1997), 825-859.

1, 2.1


	1 Introduction
	2 Preliminaries
	3 Main Results

