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Abstract
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1. Introduction and Preliminaries

Recently Sedghi et. al. [11] introduced the concept of D∗-metric spaces and proved some common fixed
point theorems (see also [3]–[12]).
In the present work, we introduce a new notion of generalized D∗-metric space called U∗-metric space of
dimension n and study some fixed point results for two self-mappings f and g on U∗n-metric spaces. Some
fundamental properties of the proposed metric are studied.

Definition 1.1. [2] Let G be an ordered group. An ordered group metric (or OG-metric ) on a nonempty
set X is a symmetric nonnegative function dG from X × X into G such that dG(x, y) = 0 if and only if
x = y and such that the triangle inequality is satisfied; the pair (X, dG) is an ordered group metric space
(or OG-metric space).

For n ≥ 2, let Xn denotes the cartesian product X × . . . × X and R+ = [0,+∞). We begin with the
following definition.

Definition 1.2. Let X be a non-empty set. Let U∗n : Xn −→ G+ be a function that satisfies the following
conditions:
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(U1) U∗n(x1, . . . , xn) = 0 if x1 = . . . = xn,

(U2) U∗n(x1, . . . , xn) > 0 for all x1, ..., xn with xi 6= xj , for some i, j ∈ {1, ..., n},

(U3) U∗n(x1, . . . , xn) = U∗n(xπ1 , . . . , xπn), for every permutation (π(1), ..., π(n)) of (1, 2, ..., n),

(U4) U∗n(x1, x2, . . . , xn) ≤ U∗n(x1, ..., xn−1, a) + U∗n(a, xn, ..., xn), for all x1, . . . , xn, a ∈ X.

The function U∗n is called a universal ordered group metric of dimension n, or more specifically an OU∗n-metric
on X, and the pair (X,U∗n) is called an OU∗n-metric space.

For example we can place G+ = Z+ or R+. In the sequel, for simplicity we assume that G+ = R+.

Example 1.3. (a) Let (X, d) be a usual metric space, then (X,Sn) and (X,Mn) are U∗n-metric spaces,
where

Sn(x1, . . . , xn) =
2

n(n− 1)

∑
1≤i<j≤n

d(xi, xj),

Mn(x1, . . . , xn) = max{d(xi, xj) : 1 ≤ i < j ≤ n}.

(b) Let φ be a non-decreasing and concave function with φ(0) = 0. If (X, d) is a usual metric space,
then (X,φn) defined by

φn(x1, ..., xn) = φ−1
( ∑

1≤i<j≤n
φ(d(xi, xj)

)
is a U∗n-metric.
(c) Let X = C([0, T ]) be the set of all continuous functions defined on [0, T ]. Defined In : Xn −→ R+ by

In(x1, . . . , xn) =
∑

1≤i<j≤n
supt∈[0,T ]|xi(t)− xj(t)|.

Then (X, In) is a U∗n-metric space.
(d) Let X = Rn defined Ln : Rn −→ R+ by

Ln(x1, . . . , xn) =
∑

1≤i<j≤n
‖xi − xj‖

1
r

For every r ∈ R+. Then (X,Ln) is a U∗n-metric space.
(e) Let X = R defined Kn : Rn −→ R by

Kn(x1, ..., xn) =

{
0 if x1 = · · · = xn
Mox{x1, · · · , xn} otherwise

Then (X,Kn) is a U∗n-metric space.

Remark 1.4. In a U∗n-metric space, we prove that U∗(x, ..., x, y) = U∗(x, y, ...y). For
(i) U∗(x, ..., x, y) ≤ U∗(x, ..., x) + U∗(x, y, ..., y) = U∗(x, y, ..., y) and similary
(ii) U∗(y, ...y, x) ≤ U∗(y, ..., y) + U∗(y, x, ..., x) = U∗(y, x, ..., x).

Hence by (i),(ii) we get U∗(x, ..., x, y) = U∗(x, y, ...y).

Proposition 1.5. Let (X,U) and (Y, V ) be two U∗n-metric spaces. Then (Z,W ) is also a U∗n-metric space,
where Z = X × Y and W (z1, ..., zn) = max{U(x1, ..., xn), V (y1, ..., yn)} for zi = (xi, yi) ∈ Z with xi ∈
X, yi ∈ Y, i = 1, ..., n.
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Proof. Obviously (U1-U3) conditions are satisfied. To prove the (U4) inequality. Let z1, ..., zn ∈ Z, with
c = (a, b), zi = (xi, yi), i = 1, ..., n,

W (z1, ..., zn) = max{U(x1, ..., xn), V (y1, ..., yn)}) ≤ max{U(x1, ..., xn−1, a) + U(a, xn, ..., xn),

V (y1, ..., yn−1, b) + V (b, yn, ..., yn)}
≤ max{U(x1, ..., xn−1, a), V (y1, ..., yn−1, b)}
+max{U(a, xn, ..., xn), V (b, yn, ..., yn)}
= W (z1, ..., zn−1, c) +W (c, zn, ..., zn).

Hence (Z,W ) is a U∗n-metric space.

Definition 1.6. A U∗n-metric space X is said to be bounded if there exists a constant M > 0 such that
U∗n(x1, ..., xn) ≤M for all x1, ..., xn ∈ X. A U∗n-metric space X is said to be unbounded if it is not bounded.

Proposition 1.7. Let (X,U∗n) be a U∗n-metric space and let M > 0 be a fixed positive real number. Then
(X,V ) is a bounded U∗n-metric space with bound M , where the function V is given by

V (x1, ..., xn) =
MU∗(x1, ..., xn)

(k + U∗(x1, ..., xn))

for all x1, ..., xn ∈ X and with k > 0.

Proof. Obviously (U1-U3) conditions are satisfied. We only prove the (U4) inequality. Let x1, ..., xn ∈ X,

V (x1, ..., xn) =
MU∗(x1, ..., xn)

(k + U∗(x1, ..., xn))
= M − Mk

(k + U∗(x1, ..., xn))

≤ M − Mk

(k + U∗(x1, ..., xn−1, a) + U∗(a, xn, ..., xn))

=
M(U∗(x1, ..., xn−1, a) + U∗(a, xn, ..., xn))

(k + U∗(x1, ..., xn−1, a) + U∗(a, xn, ..., xn))

=
M(U∗(x1, ..., xn−1, a))

(k + U∗(x1, ..., xn−1, a) + U∗(a, xn, ..., xn))

+
M(U∗(a, xn, ..., xn))

(k + U∗(x1, ..., xn−1, a) + U∗(a, xn, ..., xn))

≤ M(U∗(x1, ..., xn−1, a))

(k + U∗(x1, ..., xn−1, a)
+

M(U∗(a, xn, ..., xn))

(k + U∗(a, xn, ..., xn))

= V (x1, ..., xn−1, a) + V (a, xn, ..., xn).

Hence (X,V ) is a U∗n-metric space.
Let x1, ..., xn ∈ X, Then we have,

V (x1, ..., xn) =
MU∗(x1, ..., xn)

(k + U∗(x1, ..., xn))
≤ MU∗(x1, ..., xn)

(U∗(x1, ..., xn))
= M

This show that (X,V ) is bounded with U∗n-bound M .

Definition 1.8. Let (X,U∗n) be a U∗n-metric space, then for x0 ∈ X, r > 0, the U∗n-ball with center x0 and
radius r is

BU∗(x0, r) = {y ∈ X : U∗n(x0, y, ..., y) < r}.
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Definition 1.9. Let (X,U∗n) be a U∗n-metric space and Y ⊂ X.
(1) If for every y ∈ Y there exist r > 0 such that BU∗(y, r) ⊂ Y , then subset Y is called open subset of X.
(2) Subset Y of X is said to be U∗-bounded if there exists r > 0 such that U∗(x, y, ..., y) < r for all x, y ∈ Y .
(3) A sequence {xk} in X converges to x if and only if

U∗(xk, ..., xk, x) = U∗(x, ..., x, xk)→ 0 as k →∞.

That is for each ε > 0 there exists N ∈ N such that

∀k ≥ N =⇒ U∗(x, ..., x, xk) < ε (?).

This is equivalent with, for each ε > 0 there exists N ∈ N such that

∀l1, ..., ln−1 ≥ N =⇒ U∗(x, xl1 , ..., xln−1) < ε (??).

(4) Let (X,U∗n) be a U∗n-metric space, then a sequence {xk} ⊆ X is said to be U∗n-Cauchy if for every ε > 0,
there exists N ∈ N such that U∗n(xk, xm, ..., xl) < ε for all k,m, ..., l ≥ N . The U∗n-metric space (X,U∗n) is
said to bo complete if every Cauchy sequence is convergent.

Remark 1.10. (i) Let τ be the set of all Y ⊂ X with y ∈ Y if and only if there exists r > 0 such that
BU∗(y, r) ⊂ Y . Then τ is a topology on X induced by the U∗n-metric.
(ii) If have (?) of Definition 1.9, then for each ε > 0 there exists,

N1 ∈ N such that for every l1 ≥ N1 =⇒ U∗(x, ..., x, xl1) <
ε

n− 1
,

N2 ∈ N such that for every l2 ≥ N2 =⇒ U∗(x, ..., x, xl2) <
ε

n− 1
,

and similary there exist Nn−1 ∈ N such that for every ln−1 ≥ Nn−1 =⇒ U∗(x, ..., x, xln−1) <
ε

n− 1
.

Let N0 = max{N1, ..., Nn−1} and K0 = min{l1, ..., ln−1}. For K0 > N0 we have

U∗(x, xl1 , ..., xln−1) ≤ U∗(x, xl1 , ..., xln−2 , x) + U∗(x, xln−1 , ..., xln−1)

≤ U∗(x, x, xl1 , ..., xln−3 , x) + U∗(x, xln−2 , ..., xln−2)

+ U∗(x, xln−1 , ..., xln−1)

≤
...

≤
n−1∑
i=1

U∗(x, xli , ..., xli)

<
(n− 1)ε

n− 1
= ε.

Conversely, set l1 = · · · = ln−1 = k in (??) we have U∗(x, ..., x, xk) < ε.

Proposition 1.11. In a U∗n-metric space, (X,U∗n), the following are equivalent.
(i) The sequence {xk} is U∗n-Cauchy.
(ii) For every ε > 0, there exists N ∈ N such that U∗n(xk, ..., xk, xl) < ε, for all k, l ≥ N .

Lemma 1.12. Let (X,U∗) be a U∗n-metric space.
(1) If r > 0, then the ball BU∗(x, r) with center x ∈ X and radius r is the open ball.
(2) If sequence {xk} in X converges to x, then x is unique.
(3) If sequence {xk} in X converges to x, then sequence {xk} is a Cauchy sequence.
(4) The function of U∗n is continuous on Xn.
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Proof. proof 1)
Let w ∈ BU∗(x, r) so that U∗(x,w, ..., w) < r. If set U∗(x,w, ..., w) = δ and r′ = r − δ then we prove
that BU∗(w, r

′) ⊆ BU∗(x, r). Let y ∈ BU∗(w, r
′), by (U4) we have U∗(x, y, ..., y) = U∗(y, ..., y, x) ≤

U∗(y, ..., y, w) + U∗(w, x, ..., x) < r′ + δ = r.
proof 2)
Let xk −→ y and y 6= x. Since {xk} converges to x and y, for each ε > 0 there exists,

N1 ∈ N such that for every k ≥ N1 =⇒ U∗(x, ..., x, xk) <
ε

2
and
N2 ∈ N such that for every k ≥ N2 =⇒ U∗(y, ..., y, xk) <

ε

2
.

If set N0 = mox{N1, N2}, then for every k ≥ N0 by (U4) we have

U∗(x, ..., x, y) ≤ U∗(x, ..., x, xk) + U∗(xk, y, ...., y) <
ε

2
+
ε

2
= ε.

then U∗(x, ..., x, y) = 0 is a contradiction. So x = y.
proof 3)
Since xk −→ x for each ε > 0 there exists,

N1 ∈ N such that for every k ≥ N1 =⇒ U∗(xk, ..., xk, x) <
ε

2
and
N2 ∈ N such that for every l ≥ N1 =⇒ U∗(x, xl..., xl) <

ε

2
.

If set N0 = mox{N1, N2}, then for every k, l ≥ N0 by (U4) we have

U∗(xk, ..., xk, xl) ≤ U∗(xk, ..., xk, x) + U∗(x, xl, ..., xl) <
ε

2
+
ε

2
= ε.

Hence sequence {xk} is a Cauchy sequence.
proof 4)
Let the sequence

{(
(x1)k, ..., (xn)k

)}
in Xn converges to a point (z1, ..., zn) i.e.

lim
k→∞

(xi)k = zi i = 1, ..., n

for each ε > 0 there exists,

N1 ∈ N such that for every k > N1 =⇒ U∗
(
z1, ..., z1, (x1)k

)
<
ε

n
N2 ∈ N such that for every k > N2 =⇒ U∗

(
z2, ..., z2, (x2)k

)
<
ε

n
...
Nn ∈ N such that for every k > Nn =⇒ U∗

(
zn, ..., zn, (xn)k

)
<
ε

n
.

If set N0 = mox{N1, ..., Nn}, then for every k ≥ N0 we have

U∗
(
(x1)k, ..., (xn)k

)
≤ U∗

(
(x1)k, ..., (xn−1)k, zn

)
+ U∗

(
zn, (xn)k, ..., (xn)k

)
≤ U∗

(
(x1)k, ..., (xn−2)k, zn, zn−1

)
+ U∗

(
zn−1, (xn−1)k, ..., (xn−1)k

)
+ U∗

(
zn, (xn)k, ..., (xn)k

)
≤
...

≤ U∗(z1, ..., zn) +
n∑
i=1

U∗
(
zi, (xi)k, ..., (xi)k

)
≤ U∗(z1, ..., zn) +

nε

n
= U∗(z1, ..., zn) + ε.

Hence we have

U∗
(
(x1)k, ..., (xn)k

)
− U∗(z1, ..., zn) < ε
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U∗(z1, ..., zn) ≤ U∗
(
z1, ..., zn−1, (xn)k

)
+ U∗

(
(xn)k, zn, ..., zn

)
≤ U∗

(
z1, ..., zn−2, (xn)k, (xn−1)k

)
+ U∗

(
(xn−1)k, zn−1, ..., zn−1

)
+ U∗

(
(xn)k, zn, ..., zn

)
≤
...

≤ U∗
(
(x1)k, ..., (xn)k

)
+

n∑
i=1

U∗
(
(xi)k, zi, ..., zi

)
≤ U∗

(
(x1)k, ..., (xn)k

)
+
nε

n
= U∗

(
(x1)k, ..., (xn)k

)
+ ε.

That is,

U∗(z1, ..., zn)− U∗
(
(x1)k, ..., (xn)k

)
< ε.

Therefore we have |U∗
(
(x1)k, ..., (xn)k

)
− U∗(z1, ..., zn)| < ε, that is

lim
k→∞

U∗
(
(x1)k, ..., (xn)k

)
= U∗(z1, ..., zn).

Definition 1.13. ([6]) Let f and g be mappings from a U∗n-metric space (X,U∗n) into itself. Then the
mappings are said to be weak compatible if they commute at their coincidence point, that is fx = gx
implies that fgx = gfx.

Definition 1.14. Let (X,U∗n) be a U∗n-metric space, for A1, ..., An ⊆ X, define

∆U∗(A1, ..., An) = sup{U∗(a1, ..., an)| ai ∈ Ai, i = 1, ..., n}.

Remark 1.15. It follows immediately from the definition that
(i) If Ai consists of a single point ai we write

∆∗U (A1, ..., Ai−1, Ai, Ai+1, ..., An) = ∆∗U (A1, ..., Ai−1, ai, Ai+1, ..., An).

If A1, ..., An also consists of a single point a1, ..., an respectively, we write

∆∗U (A1, ..., An) = ∆∗U (a1, ..., an).

Also we have
∆U∗(A1, ..., An) = 0⇐⇒ A1 = · · · = An = {a},

∆U∗(A1, ..., An) = ∆U∗(Aπ1 , ..., Aπn),

for for every permutation (π(1), ..., π(n)) of (1, 2, ..., n).
In particular for ∅ 6= A1 = · · · = An ⊆ X,

∆U∗(A1) = sup{U∗(b1, ..., bn)|b1, ..., bn ∈ A1}.

(ii) If A ⊆ B, then ∆U∗(A) ≤ ∆U∗(B).
(iii) For a sequence Ak = {xk, xk+1, xk+2, · · · } in U∗n-metric space (X,U∗n), let ak = ∆U∗(Ak) for k ∈ N.
Then
(a) : Since Ak+1 ⊆ Ak hence ∆U∗(Ak+1) ≤ ∆U∗(Ak), for every k ≥ 1.
(b) : U∗(xl1 , ..., xln) ≤ ∆U∗(Ak) = ak for every l1, ..., ln ≥ k,
(c) : 0 ≤ ∆U∗(Ak) = ak.
Therefore, {ak} is decreasing and bounded for all k ∈ N, and so there exists an 0 ≤ a such that limk→∞ ak =
a.
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Lemma 1.16. Let (X,U∗n) be an U∗n-metric space. If limk→∞ ak = 0, then sequence {xk} is a Cauchy
sequence.

Proof. Since limk→∞ ak = 0, we have that for every ε > 0, there exists a N0 ∈ N such that for every k > N0,
|ak − 0| < ε. That is ak = ∆U∗(Ak) < ε. Then for l1, ..., ln ≥ k > N0 by (b) of Remark 1.15 we have

U∗(xl1 , ..., xln) ≤ sup{U∗(xi, ..., xj) | xi, ..., xj ∈ Ak} = ak < ε.

Therefore, {xk} is a Cauchy sequence in X.

2. Main results

Theorem 2.1. Let X be a U∗n-complete metric space
I) If f and g be self-mappings of a complete U∗n-metric space (X,U∗n) satisfying:
i) g(X) ⊆ f(X), and f(X) is closed subset of X,
ii) the pair (f, g) is weakly compatible,
iii) U∗(gz1, ..., gzn) ≤ ψ(U∗(fz1, ..., fzn)), for every z1, ..., zn ∈ X, where ψ : R+ −→ R+ is a nondecreasing
continuous function with ψ(t) < t for every t > 0.
Then f and g have a unique common fixed point in X.
II) If fk : X −→ X be a sequence maps such that

U∗(fiz1, fjz2, ..., flzn−1, zn) ≤ βU∗(z1, ..., zn)

for all i 6= j and z1, ..., zn ∈ X with 0 ≤ β < 1

2
. Then {fk} have a unique common fixed point.

Proof. proof I)
Let x0 be an arbitrary point in X. By (i), we can choose a point x1 in X such that y0 = gx0 = fx1 and
y1 = gx1 = fx2. In general, there exists a sequence {yk} such that, yk = gxk = fxk+1, for k = 0, 1, 2, · · · .
We prove that sequence {yk} is a Cauchy sequence. Let Ak = {yk, yk+1, yk+2, · · · } and ak = ∆U∗(Ak), k ∈ N.
Then we know limk→∞ ak = a for some a ≥ 0.
Taking zi = xli+l in (iii) for l ≥ 1 and l1, ..., ln ≥ 0

U∗(yl1+l, ..., yln+l) = U∗(gxl1+l, ..., gxln+l)

≤ ψ(U∗(fxl1+l, ..., fxln+l))

= ψ(U∗(yl1+l−1, ..., yln+l−1))

Since U∗(yl1+l−1, ..., yln+l−1) ≤ al−1, for every l1, ..., ln ≥ 0 and ψ is increasing in t, we get

U∗(yl1+l, ..., yln+l) ≤ ψ(U∗(yl1+l−1, ..., yln+l−1)).

Therefore

sup
l1,...,ln≥0

{U∗(yl1+l, ..., yln+l) ≤ ψ(al−1).

Hence, we have al ≤ ψ(al−1). Letting l → ∞, we get a ≤ ψ(a). If a 6= 0, then a ≤ ψ(a) < a, which is a
contradiction. Thus a = 0 and hence limk→∞ ak = 0. Thus Lemma 1.16 {yk} is a Cauchy sequence in X.
By the completeness of X, there exists a v ∈ X such that

lim
k→∞

yk = lim
k→∞

gxk = lim
k→∞

= fxk+1 = v.

Let f(X) is closed, there exist w ∈ X such that fw = v, Now we show that gw = v For this it is enough set
xk, ..., xk, w replacing z1, ..., zn respectively, in inequality (iii) we get

U∗(gxk, ..., gxk, gw) ≤ ψ(U∗(fxk, ..., fxk, fw))
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Taking k →∞, we get
U∗(v, ..., v, gw) ≤ ψ(U∗(0)) = 0,

it implies gw = v.
Since the pair (f, g) are weakly compatible, hence we get, gfw = fgw. Thus fv = gv. Now we prove that
gv = v. If we substitute z1, ..., zn in (iii) by xk, ..., xk and v respectively, we get

U∗(gxk, ..., gxk, gu) ≤ ψ(U∗(fxk, ..., fxk, fv))

Taking k →∞, we get
U∗(v, ..., v, gv) ≤ ψ(U∗(v, ..., v, gv)).

If gv 6= v, then U∗(v, ..., v, gv) < U∗(v, ..., v, gv), is contradiction. Therefore,

fv = gv = v.

For the uniqueness, let v and v′ be fixed points of f, g. Taking z1 = ... = zn−1 = v and zn = v′ in (iii), we
have

U∗(v, ..., v, v′) = U∗(gv, ..., gv, gv′)

≤ ψ(U∗(fv, ..., fv, fv′))

= ψ(U∗(v, ..., v, v′))

< U∗(v, ..., v, v′),

which is a contradiction. Thus we have v = v′.
proof II)
Let x0 ∈ X be any fixed arbitrary element define a sequence {xk} in X as. xk+1 = fk+1xk for all k =
0, 1, 2, · · · .
Let dk = U∗(xk, xk+1, ..., xk+1) for all k = 0, 1, 2, · · · .
Now

dk+1 = U∗(xk+1, xk+2, ..., xk+2)

= U∗(fk+1xk, fk+2xk+1, ..., fk+2xk+1, xk+2)

≤ βU∗(xk, xk+1, ..., xk+1, xk+2)

≤ βU∗(xk, xk+1, ..., xk+1, xk+1) + βU∗(xk+1, xk+2, ..., xk+2)

= βdk + βdk+1.

Hence

dk+1 ≤
β

1− β
dk,

dk ≤
β

1− β
dk−1 for all n = 1, 2, · · · . Let α =

β

1− β
, we have

dk ≤ α dk−1 ≤ αkd0 → 0 as k →∞. Therefore
limk→β dk = 0. Thus
limk→β U

∗(xk, xk+1, ..., xk+1) = 0.
Now we shall prove that {xk} is a U∗n-Cauchy sequence in X.
Let l > k > N0 for some N0 ∈ N. Now

U∗(xk, ..., xk, xl) ≤ U∗(xk, ..., xk, xk+1) + U∗(xk+1, ..., xk+1, xl)

≤
l−1∑
t=∞

U∗(xt, ..., xt, xt+1)→ 0 as k, l→∞
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Hence limk,l→∞ U
∗(xk, ..., xk, xl) = 0.

Thus {xk} is U∗n-Cauchy sequence in X.
Since X is U∗n-complete xk → x in X. We prove that x is a fixed point of fk for all k suppose there exist a
k′ such that fk′x 6= x. Then

U∗(fk′ , x, ..., x) = lim
k→∞

U∗(fk′x, xk+1, ..., xk+1, x)

= lim
k→∞

U∗(fk′x, fk+1xk, ..., fk+1xk, x)

≤ β lim
k→∞

U∗(x, xk+1, ..., xk+1, x) = 0.

Therefore U∗(fk′ , x, ..., x) = 0, Therefore fkx = x for all k. Thus x is common fixed point of {fk} for all k.
For the uniqueness, suppose x 6= y such that fky = y for all k. Then

U∗(x, y, ..., y) = U∗(fix, fjy, ..., fjy, y)

≤ β U∗(x, y, ..., y)

This implies (1− β)U∗(x, y, ..., y) ≤ 0.
Since x 6= y we have U∗(x, y..., y) > 0 her (1− β) < 0.

This implies β > 1 which contraction to β <
1

2
.

Thus {fk} have a unique common fixed point.

Corollary 2.2. Let f be self-mapping of a complete U∗n-metric space (X,U∗n) satisfying:

U∗(z1, ..., zn) ≤ ψ(U∗(fmz1, ..., f
mzn)),

for every z1, ..., zn ∈ X, f is surjective and m ∈ N, where ψ : R+ −→ R+ is a nondecreasing continuous
function with ψ(t) < t for every t > 0.
Then f have a unique fixed point in X.

Proof. If we define g = I identity map in Theorem 2.1. There exists a unique v ∈ X such that fmv = v.
Thus

fm(fv) = f(fmv) = fv.

Since v is unique, we have fv = v.

Corollary 2.3. Let g be self-mapping of a complete U∗n-metric space (X,U∗n) satisfying:

U∗(gmz1, ..., g
mzn) ≤ ψ(U∗(z1, ..., zn)),

for every z1, ..., zn ∈ X and m ∈ N, where ψ : R+ −→ R+ is a nondecreasing continuous function with
ψ(t) < t for every t > 0.
Then g have a unique fixed point in X.

Proof. If we define f = I identity map in Theorem 2.1. There exists a unique v ∈ X such that gmv = v.
Thus

gm(gv) = g(gmv) = gv.

Since v is unique, we have gv = v.

Corollary 2.4. Let f and g be self-mappings of a complete U∗n-metric space (X,U∗n) satisfying:
(i) gr(X) ⊆ fs(X), and fs(X) is closed subset of X,
(ii) the pair (fs, gr) is weakly compatible and fsg = gfs, grf = fgr,
(iii) U∗(grz1, ..., g

rzn) ≤ ψ(U∗(fsz1, ..., f
szn)), for every z1, ..., zn ∈ X and r, s ∈ N where ψ : R+ −→ R+ is
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a nondecreasing continuous function with ψ(t) < t for every t > 0.
Then f and g have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point v ∈ X such that fsv = grv = v. On the other hand, we
have

gv = g(grv) = gr(gv) and gv = g(f sv) = fs(gv).

Since v is unique, we have gv = v. Similarly, we have fv = v.

Corollary 2.5. Let f , g and h be self-mappings of a complete U∗n-metric space (X,U∗n) satisfying:
(i) g(X) ⊆ fh(X), and fh(X) is closed subset of X,
(ii) the pair (fh, g) is weakly compatible and fh = hf , gh = hg,
(iii) U∗(gz1, ..., gzn) ≤ ψ(U∗(fhz1, ..., fhzn)), for every z1, ..., zn ∈ X, where ψ : R+ −→ R+ is a nonde-
creasing continuous function with ψ(t) < t for every t > 0.
Then f , g and h have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point v ∈ X such that fhv = gv = v.
Now, we prove that hv = v. If hv 6= v in (iii), then we have

U∗(hv, v, ..., v) = U∗(hgv, gv, ..., gv)

= U∗(ghv, gv, .., gv)

≤ ψ(U∗(fhhv, fhv, ..., fhv))

= ψ(U∗(hv, v, ..., v))

< U∗(hv, v, ..., v),

which is a contradiction. Thus we have hv = v. Therefore,

fv = fhv = v = hv = gv.
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