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1. Introduction and Preliminaries

Recently Sedghi et. al. [I1] introduced the concept of D*-metric spaces and proved some common fixed
point theorems (see also [3]-[12]).
In the present work, we introduce a new notion of generalized D*-metric space called U*-metric space of
dimension n and study some fixed point results for two self-mappings f and g on U} -metric spaces. Some
fundamental properties of the proposed metric are studied.

Definition 1.1. [2] Let G be an ordered group. An ordered group metric (or OG-metric ) on a nonempty
set X is a symmetric nonnegative function dg from X x X into G such that dg(z,y) = 0 if and only if
x = y and such that the triangle inequality is satisfied; the pair (X, d) is an ordered group metric space
(or OG-metric space).

For n > 2, let X™ denotes the cartesian product X x ... x X and RT = [0, +00). We begin with the
following definition.

Definition 1.2. Let X be a non-empty set. Let U} : X" — G be a function that satisfies the following
conditions:
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(U1) Ul(x1y...,zp) =0if 21 = ... =z,

(U2) Uy(z1,...,2n) > 0 for all xq,...,z, with z; # x;, for some i, j € {1,...,n},

(U3) Up(z1,---s20) = Uy (Tays - - -, Ta,, ), for every permutation (7, ..., 7)) of (1,2,...,n),
(U4) Ui(x1,x2,...,20) < UM x1,.ccytpn_1,a) + Ul(a,zp,...,xy), for all z1,... 24,0 € X.

The function U} is called a universal ordered group metric of dimension n, or more specifically an OU,;-metric
on X, and the pair (X, U}) is called an OU}-metric space.

For example we can place Gt = ZT or RT. In the sequel, for simplicity we assume that GT = R™.

Example 1.3. (a) Let (X,d) be a usual metric space, then (X, S,) and (X, M,) are U}-metric spaces,
where

Sp(z1,...,xy) = % Z d(zi, xj),
n(n—1)

1<i<j<n
My(z1,...,2,) = max{d(z;,z;):1<i<j<n}

(b) Let ¢ be a non-decreasing and concave function with ¢(0) = 0. If (X,d) is a usual metric space,

then (X, ¢,,) defined by
ular. ) =07 (0 oty )
1<i<j<n
is a U}-metric.
(c) Let X = C(]|0,T]) be the set of all continuous functions defined on [0, T]. Defined I,, : X" — R™ by
L(z1,.yxn) = ) supepopyl@i(t) —a(t)]-

1<i<j<n

Then (X, I,,) is a Uf-metric space.
(d) Let X = R" defined L,, : R" — R* by

1
Lo(@i,..mn) = > wi—allr
1<i<j<n
For every r € Rt. Then (X, L,,) is a U} -metric space.
(e) Let X =R defined K,, : R™ — R by

Kot oan) =4 ° ifo) = =
n(T1, .y Tp) = Mox{x1, -+ ,z,} otherwise

Then (X, K,,) is a U -metric space.

Remark 1.4. In a U-metric space, we prove that U*(z,...,z,y) = U*(z, v, ...y). For
(1) U (z,...,z,y) <U*(z,....,2) + U*(x,y,....,y) = U*(z,vy,...,y) and similary
(@) Uy, -y 2) Uy, oy y) + U (Y, 25 s 2) = U (Y, 2, o0 T).

Hence by (i),(ii) we get U*(x, ...,x,y) = U*(z, vy, ...y).

Proposition 1.5. Let (X,U) and (Y,V) be two U}-metric spaces. Then (Z,W) is also a U -metric space,
where Z = X xY and W(z1,...,zn) = maz{U(x1,...;xn),V (Y1, ..., yn)} for zi = (zi,y;) € Z with z; €
X, yyeY i=1,..n.
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Proof. Obviously (U1-U3) conditions are satisfied. To prove the (U4) inequality. Let zi,...,2, € Z, with
¢ = (a’a b)7 2 = (:I:i)yi)? 1= ]-7 ey Ty
W(z1, ..., 2n) = maz{U(z1, ... xn), VY1, -, yn)}) < maz{U(z1,...,Tn—1,a) + U(a, xn, ..., Tpn),
V(yb s Yn—1, b) + V(b7 Yny -y yn)}

< mcw{U(xl, <5 Tn—1, CL), V(yl’ s Yn—1, b)}
+max{U(a,Zp, ..., Tn), V (b, Yn, -, Yn) }
=W(z1, ey 2n—1,¢) + W(c, 2n, ey 2n).

Hence (Z,W) is a U;;-metric space. O

Definition 1.6. A U -metric space X is said to be bounded if there exists a constant M > 0 such that
Ut(x1,...,xn) < M for all z1,...,x, € X. A U}-metric space X is said to be unbounded if it is not bounded.

Proposition 1.7. Let (X,U;) be a U} -metric space and let M > 0 be a fized positive real number. Then
(X,V) is a bounded U} -metric space with bound M, where the function V is given by

MU*(x1, ..., xp,)

k+ U*(l’l, s :L‘n))

V(.Z’l, ,xn) = (

for all x1,...,x, € X and with k > 0.

Proof. Obviously (U1-U3) conditions are satisfied. We only prove the (U4) inequality. Let x1,...,z, € X,

MU*(x1, ..., xp,) Mk
VL) = 0 m)) — T G U, o)
Mk
(k+U*(x1,...,xpn-1,0) + U*(a, xpn, ..., x,))
MU*(z1,...,xn-1,a) + U*(a, zp, ..., Tn))
(k+U*(x1,...,xn-1,0a) + U*(a, Tp, ..., xy))
MU*(z1,...,xp-1,0a))
(k+U*(x1,...,xn-1,a) + U*(a, Tp, ..., xy))
M(U*(a, zy, ..., xn))
(k+U*(x1,...,xn-1,a) + U*(a, Tp, ..., xy))
MU*(x1,...,2n-1,0)) M(U*(a, zy, ..., xn))
(k+U*(x1,...,xpn-1,0) (E+U*(a,zpn,...,Tpn))
= V(z1,...,xp-1,a) + V(a,zp, ..., zy).

IN

Hence (X, V) is a U -metric space.
Let x1,...,z, € X, Then we have,
MU*(x1, ..., Tp) MU*(x1,...,zpn)
V(x1,.onTn) = < =M
(1 ) (k+U*(z1,...,xp)) — (U*(x1, ..., xp))

This show that (X, V') is bounded with U}-bound M. O

Definition 1.8. Let (X, U;}) be a U -metric space, then for o € X, r > 0, the U-ball with center z¢ and
radius r is

By+(zo,r) ={y € X : U, (z0,y,...,y) <1}
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Definition 1.9. Let (X,U;) be a U;-metric space and Y C X.

(1) If for every y € Y there exist 7 > 0 such that By«(y,r) C Y, then subset Y is called open subset of X.
(2) Subset Y of X is said to be U*-bounded if there exists » > 0 such that U*(x,y,...,y) < rforallz,y € Y.
(3) A sequence {z} in X converges to x if and only if

U (g, ooy Ty x) = U (2, ooy xyx) = 0 as k — oo.
That is for each € > 0 there exists N € N such that
V>N = U"(z,...,z,2p) <& (%)
This is equivalent with, for each € > 0 there exists N € N such that
Vi, lpm1 > N = U*(z, 21y, ..., x,_,) <& (*%).

(4) Let (X, U;) be a Uj-metric space, then a sequence {x;} C X is said to be Ui-Cauchy if for every € > 0,
there exists N € N such that U} (zg, Ty, ...,x;) < € for all k,m,...,l > N. The U;-metric space (X,U}) is
said to bo complete if every Cauchy sequence is convergent.

Remark 1.10. (i) Let 7 be the set of all Y € X with y € Y if and only if there exists r > 0 such that
By+(y,r) C Y. Then 7 is a topology on X induced by the U}-metric.
(73) If have (x) of Definition then for each € > 0 there exists,

€
N; € N such that for every Iy > Ny = U*(z,...,x,x;,) <
n

1
Ny € N such that for every Iy > Ny = U*(z,...,x,x1,) < T
€
and similary there exist N,,_1 € N such that for every l,_1 > N,y = U*(z,...,x, 21, ,) < T
n _

Let Nog = max{Ny,..., Np—1} and Ko = min{ly,...,l,,—1}. For Ky > Ny we have

U (z,xpyy ey, ) < US(z,zyy, ., o,x) + U (2,2, 4y ey Xy, )
< U*(x,x,xy, .21, 4, 0) F U (2,20, 5, sl )
+ Uz, 2, 4y, )
<
n—1
< ZU*($amlia"'amli)
i=1
-1
< Ve,
n—1
Conversely, set Iy = -+ = 1,1 = k in (xx) we have U*(z, ..., x,x) < €.

Proposition 1.11. In a U}-metric space, (X,U)), the following are equivalent.
(1) The sequence {xy} is U, -Cauchy.
(1) For every € > 0, there exists N € N such that U (xg, ...z, x;1) <¢€, for all k,1 > N.

Lemma 1.12. Let (X,U*) be a U} -metric space.

(1) If r > 0, then the ball By-(x,r) with center x € X and radius r is the open ball.
(2) If sequence {x} in X converges to x, then x is unique.

(3) If sequence {xy} in X converges to x, then sequence {xy} is a Cauchy sequence.
(4) The function of U} is continuous on X™.
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Proof. proof 1)
Let w € By+(z,r) so that U*(z,w,...,w) < r. If set U*(z,w,...,w) = § and ' = r — § then we prove
that By«(w,r’) C Bys(x,r). Let y € By«(w,r"), by (Us) we have U*(z,vy,...,y) = U*(y,...,y,x) <
Uy, ..,y w) + U (w, 2, .coox) <1’ + 5 =r.

proof 2)

Let xp — y and y # z. Since {x} converges to = and y, for each £ > 0 there exists,

N; € N such that for every k > Ny = U*(z, ..., x, ) <

and

<
2
Ny € N such that for every k > Ny = U*(y, ..., y, ) < %

If set No = mox{N1, N}, then for every k > Ny by (Us) we have

e €
Uz, ..z, y) KU (2, .z, xp) + U (2, Yy ooy y) < 3 + ;=€

then U*(z, ...,z,y) = 0 is a contradiction. So = = y.
proof 3)

Since x — x for each € > 0 there exists,

N; € N such that for every k > Ny = U*(zg, ..., 2, ) <

DN ™

and
Ny € N such that for every | > Ny = U*(z, z;..., ;) <

If set Ny = mox{Ny, N2}, then for every k,l > Ny by (Uy) we have

N ™

E €
U2k, ey Ty ) < UN(Xpy ooy gy ) + U (2, 27, 000y 7)) < 2 + 5=¢

Hence sequence {z} is a Cauchy sequence.
proof 4)
Let the sequence {((z1)g, ..., (zn)k)} in X™ converges to a point (21, ..., z) i.e.

lm (z)r =2 1=1,..,n
k—o00

for each € > 0 there exists,

Ni € N such that for every kK > Ny — U* (zl, ey 21, (:pl)k) < £
n

N5 € N such that for every k > Ny =— U* (ZQ, ey 22, (xg)k) < <
n

N,, € N such that for every k > N,, = U* (zn, ey Zny (a:n)k) < £
n

If set Ng = mox{Ny,..., Ny, }, then for every k > Ny we have

U ((@0)ks o @a)k) < U (@0)ks ooor @01k 20) + U (20, (@) -oos (@0))
< U*((xl)lm XD (xn—Q)kv Zn, Zn—l) +U” (Z”_l’ ($n—1)k7 o (xn_l)k)
+ U (2n, (@n)ks -os (@0)k)
<
< U*(21y 0 2n) +ZU*(Zi7($i)ka--w(xi)k)
i=1
< U*(zl,...,zn)—l—%s:U*(zl,...,zn)—i-a.

Hence we have

U*((ml)k, s (:Jcn)k) —U (21, ey 2n) <€
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U(21,.,2n) < U*(215 000, 2n—1, (@n)k) + U ((Zn)ks 20y s 2n)
< U™ (21, o0 Zn—2s (@n)k, @n—1)k) + U ((@n=1)k Zn—15 - Zn—1)
+ U*((xn)kazna-"azn)
<
n
< U ((@1)ks oo (@n)r) + D U ((@i)ks 205 ey 22)
i=1
< U (@)oo (@) + o = U (@) (@0)1) + .
That is,

U*(21y ey 2n) — U*((xl)k, - (a:n)k) < €.
Therefore we have |U*((£L'1)k, ey (mn)k) —U*(z1,...,2n)| < €, that is

im U*((21)k, - (Tn)k) = U (21, ey 20).
k—o0
O

Definition 1.13. ([6]) Let f and g be mappings from a U;-metric space (X,U;)) into itself. Then the
mappings are said to be weak compatible if they commute at their coincidence point, that is fxr = gz
implies that fgr = gfx.

Definition 1.14. Let (X, U;) be a Uj-metric space, for Ay, ..., 4, C X, define
Ap+(Ar, ..., An) = sup{U* (a1, ...,an)| a; € Ai, i =1,...,n}.

Remark 1.15. It follows immediately from the definition that
(1) If A; consists of a single point a; we write

A (AL, o Air, Ay Ay, o An) = A (AL, s A1, a4, Aigas s Ap).
If Ay, ..., A, also consists of a single point a1, ..., a, respectively, we write
A*U(Ala ceey An) = A*U(al, ceey an).

Also we have

AU*(Ala ,An) =0<= A1 == An = {a},

Ay« (A1, ..., An) = Ay« (Anyy oy Az,

for for every permutation (71, ..., m(ny) of (1,2,...,n).
In particular for @ # Ay =--- = A, C X,

AU*(Al) = Sup{U*(bl, ...,bn)|b1, ey b € Al}.

(17) If A C B, then Ay«(A) < Ay«(B).

(i7i) For a sequence Ay = {zk, Th+1, Trt2,- -+ } in Uj-metric space (X, U), let ap = Ay+(Ag) for k € N.
Then

(a) : Since Agy1 C Ag, hence Ay (Agt1) < Ap+(Ay), for every k > 1.

(b) : U*(z1y, ..., 71,,) < Ay=(Ag) = ay, for every Iy, ..., 1, >k,

(C) : 0 < AU* (Ak) = ag.

Therefore, {ay} is decreasing and bounded for all £ € N, and so there exists an 0 < a such that limy_, o ar =
a.
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Lemma 1.16. Let (X,U}) be an U} -metric space. If limy_oo ar, = 0, then sequence {x} is a Cauchy
sequence.

Proof. Since limy_, o, ar, = 0, we have that for every € > 0, there exists a Ng € N such that for every k > Np,
la, — 0| < e. That is ar, = Ay«(Ag) < . Then for 1, ...,l,, > k > Ny by (b) of Remark we have

U (x1y, . x,) < sup{U™(xi, ..., z5) | @iy ..., xj € A} = a < €.

Therefore, {z)} is a Cauchy sequence in X. O]

2. Main results

Theorem 2.1. Let X be a U} -complete metric space

I) If f and g be self-mappings of a complete U -metric space (X,U}) satisfying:

i) 9(X) C f(X), and f(X) is closed subset of X,

i) the pair (f,g) is weakly compatible,

i11) U*(g21, oy 92n) < W(U*(f21, ..., f2n)), for every z1,..., 2z, € X, where ¢ : RT — RT is a nondecreasing
continuous function with ¥ (t) <t for every t > 0.

Then f and g have a unique common fized point in X.

IT) If fr. : X — X be a sequence maps such that

U*(fizlu fj227 cey flzn—lv Zn) S /BU*(ZL seey ZTL)
1
foralli# j and z1,...,2, € X with 0 < B < 3 Then {fr} have a unique common fized point.

Proof. proof I)
Let xy be an arbitrary point in X. By (i), we can choose a point x; in X such that yo = gzo = fz; and
y1 = gr1 = fxo. In general, there exists a sequence {yx} such that, y, = gy = frgsq, for k=0,1,2,---.
We prove that sequence {yy} is a Cauchy sequence. Let Ay = {yk, Yk+1, Yk+2, - } and ap = Ay« (Ag), k € N.
Then we know limg_.~, ar = a for some a > 0.
Taking z; = x,4; in (¢4i) for [ > 1 and Iy, ...,0,, > 0
Uty ts oY) = U (920115 -, 921, 11)
< YU (fiy+15 o fT1,41))
= YU W+1=15 > Yluti-1))

Since U* (Y1, 411 - Yl +1—1) < aj—1, for every Iy, ...,l, > 0 and 1 is increasing in ¢, we get

U (Y115 o Y1) < VU (Yii4i=15 -0 Yl ti-1))-
Therefore
sup AU Wiy s Yt 1) < ¥(ai—1).
l1,~-.,ln20

Hence, we have a; < 9(a;—1). Letting I — oo, we get a < 9(a). If a # 0, then a < 9(a) < a, which is a
contradiction. Thus a = 0 and hence limj_,,, ar = 0. Thus Lemma {yx} is a Cauchy sequence in X.
By the completeness of X, there exists a v € X such that

lim y, = lim gap = lim = faiq = 0.
k—o00 k—o00 k—o00

Let f(X) is closed, there exist w € X such that fw = v, Now we show that gw = v For this it is enough set
Ty -y Ty w Teplacing z1, ..., 2, respectively, in inequality (iii) we get

U*(gl'k, 7gxkvgw) < ¢(U*(kaa sey kav f’U]))
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Taking k — oo, we get
U*(v,...,v,gw) < (U*(0)) =0,

it implies gw = v.
Since the pair (f, g) are weakly compatible, hence we get, gfw = fgw. Thus fv = gv. Now we prove that
gv = v. If we substitute 21, ..., z, in (i) by z, ..., xx and v respectively, we get

U*(gl'k, -y Tk, gu) < ?l}(U*(fZEk, cey kaa fU))

Taking k — oo, we get
U* (0,00, g0) < (U (0, 0, g0)).

If gv # v, then U*(v, ...,v,gv) < U*(v, ..., v, gv), is contradiction. Therefore,
fo=gv=w.

For the uniqueness, let v and v’ be fixed points of f,g. Taking z; = ... = z,—1 = v and 2, = v in (iii), we
have

-

*

—~
<
<
4

—
I

U*(gv, ..., gv, gv')
V(U (fo, ..., fv, f))
= P(U*(v,...,v,0"))

< U*(v,...,v,v"),

IN

which is a contradiction. Thus we have v = v'.

proof IT)

Let zp € X be any fixed arbitrary element define a sequence {xy} in X as. zpi1 = frp12x for all k =
0,1,2, - .

Let dy, = U*(zg, Tg41, ..., Tpy1) for all k =0,1,2,--- .

Now
diy1 = UM(@hg1, Tpyo, ooy Thg2)
= U (fet1%k, fot2Thats - foaoThet, Thao)
S BU*(xka:Ek‘-i-la"'7mk‘+17xk+2)
S BU*(I'k, Lh41, "'7xk+17xkz+1) + ﬁU*(xk_A,_l, Th+2, ...,$k+2)
= Bdi + Bdgi1.
Hence
d < d
B S 3 k>
B B
di < di_1 T In=1,2---. Let o = —— h
k_l_ﬁkloran , 2, et o 1_B,We ave

dp < ady_1 < a¥dy — 0 as k — co. Therefore

limk_>,3 dk = 0. Thus

limy_, g U* (g, Tht1, oo, Thp1) = 0.

Now we shall prove that {z;} is a U}-Cauchy sequence in X.
Let [ > k > Ny for some Ny € N. Now

U (g Ty 1) < U@k, oo, Tk, Thge1) + US(Tpge1s oo Thige1, 27)

-1
< Z U*(z¢y ...,z x441) — Oas k,l — oo
t=o00



A. Dehghan Nezhad, N. Khajuee, J. Nonlinear Sci. Appl. 6 (2013), 216-226 224

Hence limy, ;00 U* (x4, ..., Tk, 21) = 0.

Thus {z} is U-Cauchy sequence in X.

Since X is U;-complete z; — = in X. We prove that z is a fixed point of fi for all k£ suppose there exist a
k' such that fix # x. Then

U*(fk/,fﬂ,...,x) = kli_{goU*(fk'wakarh"-7mk+17x)

= lim U*(fk’wafk+1xk7"'7fk+1xk7$)
k—o00

IN

,Bkli_glo U(z, Zgg1y . Tpt1, ) = 0.

Therefore U*(fys, x, ...,x) = 0, Therefore fyx = x for all k. Thus z is common fixed point of {f;} for all k.
For the uniqueness, suppose = # y such that fry = y for all k. Then

U(z,y,....,y) = U (fix, f39, - [59,9)
< BUz,y, - y)
This implies (1 — B)U*(x,y, ...,y) < 0.
Since x # y we have U*(z,y...,y) > 0 her (1 — ) <0.
This implies S > 1 which contraction to 5 < %

Thus { fx} have a unique common fixed point. O

Corollary 2.2. Let f be self-mapping of a complete U -metric space (X,U)) satisfying:

U*(21y ey 2n) S OU (215 00y [ 20)),

for every z1,...,2, € X, f is surjective and m € N, where 1 : Rt — R is a nondecreasing continuous
function with ¥(t) < t for every t > 0.
Then f have a unique fized point in X.

Proof. If we define g = I identity map in Theorem There exists a unique v € X such that f™v = v.
Thus

f"(fo) = F(f"0) = fo.

Since v is unique, we have fv = v. O

Corollary 2.3. Let g be self-mapping of a complete U-metric space (X,U)) satisfying:

U (g™z1y.0s9™20) <O(U (21, ..., 2n))s

for every z1,....,z, € X and m € N, where ¢ : Rt — R* is a nondecreasing continuous function with
P(t) <t for every t > 0.
Then g have a unique fized point in X.

Proof. If we define f = I identity map in Theorem There exists a unique v € X such that ¢"v = v.
Thus

g™ (gv) = g(g"v) = gv.

Since v is unique, we have gv = v. O

Corollary 2.4. Let f and g be self-mappings of a complete U}-metric space (X,U}) satisfying:

(1) ¢"(X) C f5(X), and f5(X) is closed subset of X,

(17) the pair (f*,g") is weakly compatible and f5g = gf*, ¢"f = fg",

(i13) U*(g" 21, o §"20) < O(U*(f521, .., [520)), for every z1,...,2n, € X and r,s € N where ¢ : Rt — RT is
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a nondecreasing continuous function with ¥ (t) <t for everyt > 0.
Then f and g have a unique common fized point in X.

Proof. By Theorem there exists a fixed point v € X such that f*v = ¢g"v = v. On the other hand, we
have

gv = g(g"v) = g"(gv) and gv = g(f*v) = f*(gv).

Since v is unique, we have gv = v. Similarly, we have fv = v. O

Corollary 2.5. Let f, g and h be self-mappings of a complete U -metric space (X,U}) satisfying:

(1) g(X) C fh(X), and fh(X) is closed subset of X,

(1i) the pair (fh,g) is weakly compatible and fh = hf, gh = hg,

(ii7) U*(gz1y ey g2n) < O(U*(fh21, ..., fh2y)), for every zi,...,z, € X, where ¢ : Rt — R is a nonde-
creasing continuous function with 1 (t) <t for every t > 0.

Then f, g and h have a unique common fixed point in X.

Proof. By Theorem there exists a fixed point v € X such that fhv = gv =v.
Now, we prove that hv = v. If hv # v in (¢i7), then we have
U*(hv,v,...,v) = U*(hgv,guv,...,gv)
U*(ghv, gv, .., gv)
(U (fhho, fhw, ..., fho))
= P(U*(hv,v,...,v))
< U*(hv,v,...,v),

IN

which is a contradiction. Thus we have hv = v. Therefore,

fv=fhv=v=hv = gv.
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