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Abstract

Two new type of visco-resolvent algorithms for finding a zero of the sum of two monotone operators and a
fixed point of a nonexpansive mapping in a Hilbert space are investigated. The algorithms consist of the
zeros and the fixed points of the considered problems in which one operator is replaced with its resolvent
and a viscosity term is added. Strong convergence of the algorithms are shown. As special cases, we can
approach to the minimum norm common element of the zero of the sum of two monotone operators and the
fixed point of a nonexpansive mapping without using the metric projection. Some applications are included.
(©2014 All rights reserved.

Keywords: Monotone operator, nonexpansive mapping, zero point, fixed point, resolvent.
2010 MSC': 49J40, 47J20, 47H09, 65J15.

1. Introduction

Let H be a real Hilbert space. Let A: H — H be a single-valued nonlinear mapping and B : H — 21
be a set-valued mapping. Now we concern the following variational inclusion, which is to find a zero x € H
of the sum of two monotone operators A and B such that

0 € A(z) + B(z), (1.1)
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where 0 is the zero vector in H. The set of solutions of problem is denoted by (A + B)~1(0). If
H = R™, then problem becomes the generalized equation introduced by Robinson [22]. If A = 0, then
problem becomes the inclusion problem introduced by Rockafellar [24]. It is known that pro-
vides a convenient framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity, variational inequalities, optimal control, mathe-
matical economics, equilibria, game theory, etc. Also various types of variational inclusions problems have
been extended and generalized. Recently, Zhang et al. [32] introduced a new iterative scheme for finding
a common element of the set of solutions to the problem and the set of fixed points of nonexpan-
sive mappings in Hilbert spaces. Peng et al. [2I] introduced another iterative scheme by the viscosity
approximate method for finding a common element of the set of solutions of a variational inclusion with
set-valued maximal monotone mapping and inverse strongly monotone mappings, the set of solutions of an
equilibrium problem and the set of fixed points of a nonexpansive mapping. Some related works, please see
[3, 4 7, 9L 10, [12), 13] 15 16l 19, 20] and the references therein.

Recently, Takahashi et al. [27] introduced the following iterative algorithm for finding a zero of the sum
of two monotone operators and a fixed point of a nonexpansive mapping

Tpt1 = Bnxn + (1 — Bn)S(an:E +(1- an)Jﬁ (xp — )\nA:cn)) (1.2)

for all n > 0. Under some assumptions, they proved that the sequence {z,} converges strongly to a point
of F(S)N (A + B)~'0.

Remark 1.1. We note that in their result, the authors added an additional assumption: the domain of B is
included in C' (The reader can refer to Lemma 4.3 in the last section for a possible example which satisfies
this assumption). This assumption is indeed not restrict in order to guarantee J fn (X, — ApAzxy,) € C.

Remark 1.2. From the listed references, there exist a large number of problems which need to find the
minimum norm solution, see, e.g., [11, 17, 25, B0, B1]. A useful path to circumvent this problem is to use
projection. Bauschke and Browein [2] and Censor and Zenios [6] provide reviews of the field. The main
difficult is in computation. Hence, it is an interesting problem of finding the minimum norm element without
using the projection. We note that the algorithm can not use to find the minimum norm element.

Motivated and inspired by the works in this field, we first suggest the following two algorithms without
using projection:

ze = J{ (tvf(ze) + (1 — t)Szp — ANASz;), te (0,1)

and
Tn+l1 = Bnl'n + (1 - 511)‘])\3; (an7f<xn) + (1 - an)sxn - AnAS-Tn)a n > 0.

(Notice that these two algorithms are indeed well-defined (see the next section).) We will show the suggested
algorithms converge strongly to to a point ¥ = Pp(gyn(a+5)-10(7.f(Z)) which solves the following variational
inequality

(vf(&@) =&, —2) >0, Vze F(S)n(A+ B)~lo.

As special cases, we can approach to the minimum norm element in F(S) N (A + B)~'0 without using the
metric projection. Some applications are also included.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C' be a nonempty
closed convex subset of H. Recall that a mapping S : C' — C' is said to be nonexpansive if

1Sz = Syl| < [l= = yll
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for all z,y € C. We denote by F(S) the set of fixed points of S. A mapping A : C — H is said to be
a-inverse strongly-monotone iff
(Az — Ay,x —y) > af|Az — Ay|?

for some a > 0 and for all z,y € C. It is known that if A is a-inverse strongly-monotone, then || Az — Ay|| <
Lz —y| for all z,y € C.

Let B be a mapping of H into 2. The effective domain of B is denoted by dom(B), that is, dom(B) =
{x € H: Bx # 0}. A multi-valued mapping B is said to be a monotone operator on H iff

<x_y7u_v>20

for all x,y € dom(B), u € Bz, and v € By. A monotone operator B on H is said to be maximal iff its graph
is not strictly contained in the graph of any other monotone operator on H. Let B be a maximal monotone
operator on H and let B~10 = {z € H : 0 € Bx}.
For a maximal monotone operator B on H and A > 0, we may define a single-valued operator JAB =
(I +AB)~!: H — dom(B), which is called the resolvent of B for A. It is known that the resolvent J¥ is
firmly nonexpansive, i.e.,
Hfo - nyHQ < <J/{Baz — JPy,x— )

for all 2,y € C and B710 = F(JP) for all A > 0.
The following resolvent identity is well-known: for A > 0 and p > 0, there holds the identity

wasz(ix%—(l—/;)fo), x € H. (2.1)

We use the following notation:

e 1, — x stands for the weak convergence of (z,,) to x;
e 1z, — z stands for the strong convergence of (z,) to x.
We need the following lemmas for the next section.

Lemma 2.1. ([28]) Let C be a nonempty closed convexr subset of a real Hilbert space H. Let the mapping
A :C — H be a-inverse strongly monotone and A > 0 be a constant. Then, we have

11 = AM)a = (I = MY < llz — yl> + A — 20)]| Az — Ay|[2,Va,y € C.
In particular, if 0 < A < 2a, then I — \A is nonexpansive.

Lemma 2.2. ([14]) Let C be a closed convex subset of a Hilbert space H. Let S : C' — C' be a nonexpansive
mapping. Then F(S) is a closed convex subset of C' and the mapping I — S is demiclosed at 0, i.e. whenever
{zp} C C is such that x,, = x and (I — S)x, — 0, then (I — S)z = 0.

Lemma 2.3. ([18]) Let C be a nonempty closed convex subset of a real Hilbert space H. Assume that the
mapping F : C — H is monotone and weakly continuous along segments, that is, F(z + ty) — F(x) weakly
as t — 0. Then the variational inequality

e, (Fz*,z—2x%)>0, VxeC.
1s equivalent to the dual variational inequality
z*eC, (Fr,x—2x*)>0, VreC.

Lemma 2.4. ([20]) Let {z,,} and {y,} be bounded sequences in a Banach space X and let {B3,} be a sequence
in [0, 1] with 0 < liminf, o By < limsup,,_,o Bn < 1. Suppose xy11 = (1 — Bpn)yn + Bnxn for alln >0 and
Hm sup,, o0 ([[Yn+1 = Ynll = [[2n41 — znll) < 0. Then, limp o0 [[yn — znl| = 0.
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Lemma 2.5. ([29]) Assume {a,} is a sequence of nonnegative real numbers such that

n+1 < (1 - 'Yn)an + 5n7n7

where {yn} s a sequence in (0,1) and {0,} is a sequence such that

(1) 3o0iq ¥n = 003
(2) Hmsup,, yoo 0 <0 07 307 [0pyn| < 0.
Then lim;,,—o0 Gp, = 0.

3. Main results
In this section, we will prove our main results.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
a-inverse strongly-monotone mapping of C into H. Let f : C'— H be a p-contraction and v be a constant
such that 0 < v < %. Let B be a maximal monotone operator on H, such that the domain of B is included

in C. Let Jf = (I +AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive mapping of C into
itself, such that F(S)N(A+ B)~10 # (). Let X be a constant satisfying a < A < b where [a,b] C (0,2a). For
te(0,1- %), let {z+} C C be a net generated by

Xy = Jf(tvf(:nt) + (1 —t)Say — AASxy). (3.1)

Then the net {x:} converges strongly, as t — 0+, to a point T = Pr(syn(a+p)-10(7f(Z)) which solves the
following variational inequality

(vf(&) —2,2—2) >0, VYze F(S)n(A+ B)7l0.

Proof. First, we show the net {x;} is well-defined. For any ¢ € (O, 1 - %), we define a mapping W :=
JE(tvf + (1 —t)S — AAS). Note that J, S and I — ﬁA (see Lemma 2.1) are nonexpansive. For any
x,y € C, we have

Wa— Wyl

R (s +a-0(1-7254)50) = R (s + -0 (1 Z54) )|

< ot - son+a-o|(1- 2a)se- (1- 1 25a)s] |
< ol - s+ 0 ofju- 2ase (1 )]
< typllz —yll + 1 =)z —y

= [1—=0—=yp)t]llz -yl

which implies the mapping W is a contraction on C'. We use z; to denote the unique fixed point of W in
C'. Therefore, {z:} is well-defined.
Take any z € F(S) N (A+ B)~!0. It is obvious that z = Sz = JP(z — AAz) for all A > 0. So, we have

z:Sz:Jf(z—)\Az):J;\B(tz—i—(l—t)(j'—1)_\{4)52)
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for all t € (0,1). Since JZ is nonexpansive for all A > 0, we have

IN

IN

IN

[z = ]|

JP <tfyf(a:t) +(1—1t) <I — 1)_‘tA> S:z:t) .

R (inste0 -0 (w0 g Zgasm) ) <o (14 (1052 2qase) )

(a0 + - (500 24820)) - (1 10 (55— 2 08:)|

(1—1¢) <(Sa:t - 1)\tASa:t> - <Sz - 1)\tASz>) (v f(a) — 2)

oo (1= )5 (1 22 a) s

(1 =)z — 2l + typllee — 2l + ¢l f(2) — =] (3.2)

+ [ f (ze) = N+ tlvf(2) = 2]l

It follows that

e — 2] <

1

) =l

Therefore, {z:} is bounded. We deduce immediately that {f(x:)}, {Az¢} {Sa:} and {ASx:} are also

bounded.

By using the convexity of || - || and the a-inverse strong monotonicity of A, from ({3.2)), we derive

IN

IN

<

IN

e — 2

H(1 1) <<smt - /\Asxt> - <5’z - litASz» oty (20) — 2)

2

1-1¢

2
+tllyf (@) — 2]

A A

2
(1—t)H(Sxt—Sz)—H(ASxt—ASz) + tlyf () — 2|
2\ A2
2 2
(1—1) (HSmt - Sz|| — ﬁ(ASﬂft — ASz,Sxy — Sz) + WHAS@} — ASz|| )
+llyf () - 2|
_ g2 2N _AssP 4+ A8
(1 t)(HSxt Sz|| . _tHASa:t ASz||* + a _t)QHASxt ASz||

Hl|yf () — 2|

(1-1) <H53«"t — Sz|* + (A =2(1 =)o) || ASz; — ASZH2> +tlvf(ze) — 2

A
(1-1)?

(1= D)l — 21 + T2 (8~ 21~ )| ASz, — AS=|” + thvf(a0) — 21 (33)
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So,

(200~ t)a— N[4S, — Az <t (a0) — 2l — tlze — 2| = 0.
By the assumption, we have 2(1 —t)aa — A > 0 for all ¢ € (0,1 — ﬁ) Then, we obtain

t£%1+ |ASz, — Az|| = 0. (3.4)

Next, we show ||z; — Sz¢|| — 0. By using the firm nonexpansivity of JZ, we have
e — 2|
= HJ)]\3 (tvf () + (1 — t)Szy — AASmy) — sz

= HJ)]\B(tvf(ajt) + (1 —t)Sxy — NASzy) — Jf(z - )\AZ)HQ

< (tvf(@e) + (1 —t)Say — NASzy — (2 — MNAz), 2 — 2)
1
= S (ltvf(ze) + (1= )8z — AASz; — (2 = AA2)|* + [l — 2]*

—||tvf (@) + (1 = t) Sz — A(ASzy — AAz) — xtHQ).
By the nonexpansivity of I — ﬁA, we have
[ty f(2) + (1 —t)Say — ANASxs — (2 — AA2)|?
2

_ H(1 1 <<S:Et _ %AS@ _ (Sz _ 1)\_tASz)> (v f () — 2)

2
+ ity f () = 2|

IN

A A

< (U= O)llwe — 2 + v f (@) — 21
Thus,

—_

lze =212 < S((1 = Ollze — 27+t f (@) = 201 + llae — 2|

\)

[ @) + (1 = S0~ A(ASw, = 42) — ).
That is,
|l — 2|
< (L =t)llze = 2l + thvf () — 21

—|tvf () + (1 = t)Swp — x4 — A(ASz, — Az)||?

= (L=t)lee — 2l + tllvf (@) = 2> = [t f (@) + (1 = 1) Sy — @
2Nty f (1) + (1 — 1) Sz — 34, AST; — A2) — A2 ASw; — Az|?

< (U=t — 2l + v f (@) — 21> = v f (@) + (1= 1) Sz — 2

F2X|[ty f(x) + (1 — €)Sxp — 4| || ASxr — Az]|.
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Hence,

[t (@) + (1= )8y — w2 < v f ) — 212 + 2\ 7 ) + (1 — £)S0 — || ASm, — Az
Since ||ASz; — Az|| — 0, we deduce

Jm [ty f(ze) + (1 =)z — 2| = 0.

Which implies that

i — =0. 3.5
tl_%i H.I't S:L'tH 0 ( )
From (3.2)), we have
e — 2|2
A A 2
< H(l —o((sm- 2 asm) - (- 12542) ) + st -
A A 2
_ AV _ _ _
= (1-1) <Smt . tASm) <z . tAZ>

+ 2¢(1— t)<fyf(act) — 2z, <S.T}t — J\_tASxt) - <z — 1 i tAz)> + 2y f (@) — 2|

< (=12 — 2|+ 26(1 — t)<7f(mt) _ 4, Say — %(Asxt _AS) — z>

7 f (xe) = 2|

= (1 —t)2|lxs — 2|* +2t(1 — t)7<f(xt) — f(2), Sz — ﬁ(ASa;t — ASz) — z>

+2¢(1 — t)<’yf(z) —z, 8% — ﬁ(ASxt — ASz) — z> + 2|y f () — 2|

< (= 0P 3l 4+ 200 = 0l o)~ S (5 21+ | 2 (A5 - 452)

)

+2¢(1 — t)<'yf(z) —z,Sx; — ﬁ(ASa:t — ASz) — Z> + 2|y f () — 2|

< (L=t — 2l® + 261 = t)ypllee — 2| + 2tAyplla — 2 ||| ASxy — AS||

+2t(1 — t)<’yf(z) — 2z, Sz — %(AS:Q — ASz) — z> + tQH”yf(:Ut) — zH2

< 1201 —p)t]lae — 2| + 2t{<1 - t)<7f(Z) 2 S~ O (ASm — A2) >

t
5 (I f () = 2% + e = 2[1%) + Mol — 21|[| ASz: — ASZH}-

It follows that

e — 2]
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1
I—np

<<7f(@-—z,Sxt—:lit(ASxt—aAz)—z>

Sz — ﬁ(ASmt —Az) -z

+5Unf ) = 212 + llze = 21%) + £ (=) - =]

+xyploc = 2|48z, - A5+

1
L—=np
where M is some constant such that

{30050 =P+ o = 1),y — 21

<’yf(z) — 2,87 — z> + (t+ [|[ASzy — Az||) M, (3.6)

sup

Sy — %(AS% — Az) — z||,

1
L—~p

A
Myplley — z||,t € <0,1 — >} < M.
2a

Next we show that {z;} is relatively norm-compact as ¢ — 0+. Assume {¢,} C (0,1 — %) is such that

t, — 0+ as n — oco. Put z, := x4,. From (3.6)), we have

2
Ty — 2|7 <
o 2l < 7=
Since {zy} is bounded, without loss of generality, we may assume that z,, — & € C. Hence, z,; —

1_);%_ (ASzy; — Az) — 7 because of |ASx, — Az| — 0 by 1) From 1 , we have
|zn, — Sz = 0. (3.8)

(vf(2) = 2, 5Ty — 2) + (tn + [|ASz) — Az|) M. (3.7)

lim

n— o0
We can use Lemma 2.2 to (3.8) to deduce & € F(S). Further, we show that 7 is also in (A + B)~'0. Let
v € Bu. Note that x, = Jf (tn’yf(a:n) + (1 —tp)Szy, — )\ASa:n) for all n. Then, we have

tnyf(xn) + (1 —t,)Szy, — NASx, € (I + AB)xy,

tn7f<mn) 1-t, Tn
n — ASx, — — € Bx,,.
— 3 + 3 Sz St 3 € Bz

Since B is monotone, we have, for (u,v) € B,

<tn7f(xn) + 1_tnsxn_Aan_xn—v,xn—U> 20

A A A

= (tp,vf(zn) + (1 — tn)Sxp — AAST), — 2y — Ay —u) >0

=  (ASz, +v,x, —u) < %(an — T, Ty, — UY — %(an —vf(xn), zn — u)
_tn

1
= (AST+v,x, —u) < X<S~"Un — Tp, Ty, — W) (Sxp, —vf(zp), xn — u)

A
+(AST — ASxy, 2y — )

- 1 tn
= (AST+v,z, —u) < XHSwn = znlll|lzn — ull + X”Sﬂcn — v f (@) [ ||77 — ]

+||AST — ASzy||||zn — ul|-
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It follows that
(AST +v,T — u)

1 tn
< 1S5z, = an,llllen, = ull + =7 l1Swn, = 7f(@n)llzn, — ull

+HAST — ASzp,||||Tn; — ull + (AST + v, — p,). (3.9)
Since
(n, — &, ASx,, — AST) > a||ASxz,, — ASE|?,

ASwy; — ASz and x,; — T, we have ASz,, — ASZ. We also observe that t,, — 0 and ||Sx, — x| — 0.
Then, from (3.9), we derive

(ASZ +v,2 —u) <0.

That is, (—AZ — v, —u) > 0. Since B is maximal monotone, we have —Az € Bz. This shows that
0 € (A+ B)Z. Hence, we have & € F(S)N (A + B)~10. Therefore we can substitute Z for z in (3.7) to get

=112
— <
|z, — 2] < T
Consequently, the weak convergence of {x,} to Z actually implies that x,, — Z. This has proved the relative

norm-compactness of the net {x;} as t — 0+.
Now we return to (3.7) and take the limit as n — oo to get

- 1
& - 2 < =
yp

In particular, z solves the following variational inequality
FeF(S)N(A+B)'0, (vf(2) — 2,2 —2) >0,

for all z € F(S) N (A + B)~10, or the equivalent dual variational inequality (see Lemma 2.3)
FeF(S)N(A+B)70, (vf(&) —&,& —2) >0,

for all z € F(S)N (A+ B)~10. Hence,

(vf(@) — &, Sz — %) + (tn + ||ASz,, — AZ||) M.

(Vf(2) — 2,7 —2), YzeF(S)Nn(A+ B)~ 0.

T = Pr(syn(a+n)-10(1f(@))-
Clearly this is sufficient to conclude that the entire net {z;} converges to . This completes the proof. [

Theorem 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
a-inverse strongly-monotone mapping of C into H. Let f : C'— H be a p-contraction and v be a constant
such that 0 < v < %. Let B be a mazimal monotone operator on H, such that the domain of B is included

in C. Let J)]\B = (I +AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive mapping of C into
itself, such that
F(S)Nn(A+B)~'0#£0.

For given xo € C, let {z,,} C C be a sequence generated by
Tpt1 = BnTn + (1 — ﬁn)Jﬁ (an’yf(acn) + (1 —ap)Szy, — )\nASacn) (3.10)

for all n > 0, where {\,} C (0,2a),{an} C (0,1) and {B,} C (0,1) satisfy

(i) limy oo, =0 and ), o, = 00;
(i) 0 < liminf, o Bn < limsup,,_, . Bn < 1;
(iii) a(l —an) < Ay < b(1 — o) where [a,b] C (0,2a) and lim,,—yo0(An+1 — An) = 0.
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Then {xn} generated by (3.10) converges strongly to a point & = Pp(syn(atp)-10(7f(Z)) which solves the
following variational inequality

<7f(j>_jai_z> 207
for all z € F(S) N (A+ B)~0.

Proof. Pick up z € F(S) N (A + B)~10. It is obvious that
z = J)i(z — MAz) = J)]\Bn (anz+ (1 —an)(z — \pAz/(1 — o))

for all n > 0. Since J ){9, S and I — ﬁA are nonexpansive for all A > 0 and n, we have

172 (qnvf () + (1= @) Sz = M ASz,) — 2|
8 (a4 (= an) (2 - 24
An | 0 )\ # 1—-qa, i

|(cwrston+ 1 -an o0 122 50,))

— ay,

(e - (o 2 )

= H(l - an) <an 1 d ASx, — (Z 1 An AZ> + Oln(’yf(xn) - Z)

— Qp — Op

_an

I (1) + (1 = ) (8, = 225, ) )

IN

2

(3.11)

< (U= an)llen = 2l + anllvf(@n) = 7f ()] + anllvf(2) — 2]

< =@ =ap)an]llzn — 2] + anlvf(2) = 2|

Hence, we have

[2n1 =2l < Ballen =2 + (1 = Bu)[L = (1 = yp)an]llzn — 2 + (1 = Ba)an|[7f(2) — 2|

= =0 =9p)an(l = Bu)lllzn — 2l + (1 = Bn)anlvf(2) — 2.
By induction, we have

1
41 — ]| SmaX{on—ZH,l 17/ (=) —ZH}~
—p

Therefore, {x,} is bounded. Since A is a-inverse strongly monotone, it is é-LipschitZ continuous. We deduce
immediately that { f(z,)}, {Sx,} and {ASz,} are also bounded. Set u,, = anyf(zn)+(1—ap)Szyn—A ASxy,
and y, = an up for all n > 0. Noticing that J fn is nonexpansive, we can check easily that {u,} and {y,}
are bounded.

By using the convexity of || - || and the a-inverse strong monotonicity of A, from , we derive

H(1 — an) <<S:cn _ 1i\”anASa;n> - (z - j”an Az)> + an(vf(@n) - 2)

An An 9 9
(S0 = 2, ) = (5= 242 )P+ aullfen) ¢

— ay,

2

S (1 _an)
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2

An
= (- an)|(San - 2) - 2 (A, — 42)|| + anl ) - 2
— _ _ L2 ﬂ _ _ )\7% _ 2
_— an)<HSazn 2 = T (A, — Az San = )+ s ASan — A2)
Tanlf(n) - 2|
2a)\ A2
< B o2 n B 2, An B 2
< (1)l = 21 = 222 S, — Al 4 2R AS e — A5
Tanlf(a) - 2P
An
el @) — 2|1 (3.12)

By condition (iii), we get
An—2(1 —ap)a <0

for all n > 0. Then, from (3.11) and (3.12)), we obtain

An
8 =27 < (1= an)(Jlow = 2P+ O = 201 = )| ASa, — 45|
|y f () — 2| (3.13)
From , we have
lzni1 =2l = ||Bal@n —2) + (1= Ba) (JE 1 — 2) |
< Ballen — 22+ (1= Bo)||TE un — 2| (3.14)

We can rewrite (3.10)) as zp41 = Bpzpn + (1 — Bp)yn for all n > 0. Next, we estimate ||z, 41 — z,|. In fact,
we have

|Yn+1 — Ynll

= IRt = i |

18 s msr = Ty unl |+ (5t = T

IN

[ (ens17f (@ng1) + (1 — @ng1)STni1 — Any1AS2p 1)
—(anvf(wn) + (1 — ap)Szy, — )\nASmn)H + HJ)]iHun - anunH
= (I = A\114)S2pi1 — (I — Mps1A)Szp + (A — A\g1)ASzy,
+an(Sxn —vf(2n)) — g1 (Szps1 — v f(2ns1))]| + ||J/€L+1un - Jﬁ“n”
< N = Ar1A)Szngr — (I — A1 4) Sz || + [Antr — An[|ASzy ||

+an||Szn — 7 f(za) | + on1[|1STni1 = Y (@ng )| + 1L, 1 — T -
Since I — A\,+1A4 is nonexpansive for A\,4+1 € (0,2a), we have

(I = Apt14)Sangr — (I = Any1A) Sy ||
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< STpg1 — Szl < f|zng — zall-
By the resolvent identity (2.1)), we have

A A
B B n n B
o = (5 (1752 ) o)

It follows that

||in+1un — J/{gnunH

A A
B n n B B
£, (it 4= 52 = S

An An | B
< H ()\n_Hun + (1 - At )Jz\n+1u” — Un
‘)‘n—&-l - )‘n’ B

< THW - J,\nHUnH-

So,
[yt = unll < lznts — 2nll + [Ang1 = Anl[ASTR || + anl[Szn — 7 (20)]]
Antl — A
Fani|Sana = v @nr)ll + 220, g,
An+1 +

Then,

[Ynt1 = ynll = lzns1 —znll < [Anga = Anl[|ASzn[| + anl[Szn — 7 f (@)

’/\n—irl - )‘n‘

B

Fon 1] STper — Vf(Xng1)| +

Since o, — 0, Apr1 — Ay — 0 and liminf, o A\, > 0, we obtain

lmsup([|yns1 = yall = #nt1 — 2zal) < 0.
n—oo
From Lemma 2.4, we get
lim |y, — zn|| = 0. (3.15)
n—oo
Consequently, we obtain
Tim 21 — @l = Tim (1= 8o — ] = 0.
From (3.13) and (3.14)), we have
|1 — 2|
2
< Bn”xn - ZH2 + (1 - Bn)HJ)iun - ZH
A
< (= af 0= an) (o=l + 200 = 201 - o)l A8, — 4517
n

tanlf(an) - zu?} + Bullen — 2|

= - (0 Bwanle— 212+ SN0 o a0 S, — Az
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+(1 = Bu)an|lvf(zn) — 2”2

1— 06\
< lan — 2))* + (1—504)()\” —2(1 — ap)a)||ASz, — Az|?
+(1 = Bn)an|lvf(2n) — 2”2‘
Then, we obtain

(1 - ﬁn))‘

< len = 207 = lzngs — 2017 + (1= B)anllvf (@n) — 2|
< (llon = 2ll = 2znsr — 2 @ng1 — zall + (1 = Bo)omllvf (zn) — 2|
Since
lim a, =0,
n—oo
nh_{go [Znt1 — 2| =0
and ) \
lim inf %(2(1 —an)a—\,) >0,
n—00 —ay
we have
le |ASx, — Az|| = 0. (3.16)

Next, we show ||z, — Sz,|| — 0. By using the firm nonexpansivity of .J /{i , we have

HJﬁun — zH2 = Hin (v f(zn) + (1 — an)Szp — A\yASzy) — an (z — A\pAz) ||2

< <an’yf(xn) + (1 — ap)Sz, — \yASz, — (2 — M\ A2), anun — z>
1
= 5(Hoznfyf(a:n) + (1 — an) Sz — MyAST, — (2 — M A2)|> + Hanun — zH2

_Han')’f(xn) + (1 — ap)Swy — A (ASx, — Az) — ‘]fnu”H2)

From condition (iii) and the a-inverse strongly monotonicity of A, we know that I — A\, A/(1 — «,) is
nonexpansive. Hence

lanyF () + (1= @n)Szn = A ASz — (2 = A A2)|

2

= a-an (s 2ase, - (o 2ae) ) Fanse) -

— Qp Qp

2

>\n )\n 2
< — — — — —
(1 —ap)||Szyp ] nASﬂsn <z ] nAz) + an||vf(zn) — 2|
< (I —an)zn ZHZ an v f(zn) ZHZ

Thus,

173 = =
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<

(1= an)llzn — 2] + anlly f(@n) — 20 + | JE wn — 2|

N =

—||anyf(@n) + (1 — an) Sz, — I un — A (ASz,, — AZ)HQ)-
That is,
|8, = ||

< (L= ag)llzn = 2l° + anlvf(za) — 2|
—||emyf(zn) + (1 — o) Sz — J)]\Bnun — A\ (ASz, — Az)H2

= (1= a)lzn = 27 + anllvf (@) = 2[* = [Janyf (@n) + (1 = an) Sz — I un]”
+2An (Y f () + (1 — o) Sy, — Jﬁun, ASz, — Az) — N3||ASz, — Az|?

< (1= an)llen = 2| + anllyf (@n) = 212 = [Janyf (@a) + (1 = ) Sy = I ua*

+2)\n”an7f(xn) + (1 —ap)Sz, — JﬁunH |ASxz, — Az||.
This together with (3.14)) imply that
|zns1 =217 < Ballzn = 212+ (1 = B2) (1 = an)l|lzn — 21> + (1 = Bu)anlvf(zn) — 2|

—(1 = Bo)|lomyf () + (1 = o) Sz — JE 1 |*

20, (1 = Bo) ||y f (mn) + (1 = @) Sy, — T wp[[| AS, — A2
= (1= (1= B)an]llzn — 22 + (1 = Bu)awllnf (@n) — 211

~(1 = o)y f (@) + (1= an) Sz — T2 uy ||

+2A,(1 — ﬁn)Han'yf(xn) + (1 —ap)Szy — JﬁunH |ASz,, — Az||.
Hence,

(1= Ba)|anyf () + (1~ an) Sz — IB un||”

< an = 2012 = engr — 2l = (1= Ba)anllzn — 21> + (1 = B)awn|vf (xn) — 2|2
220 (1 = Bp)||an v f(zn) + (1 — ) Sz — I3 up ||| ASzr — A2 ||

< (llen = 2l + enir = 2D zns1 = zall + (1= Bo)anllyf(z0) — 2|12

2 (1 = Bn)||an v f (@n) + (1 — an) Sz — J/{BnunH |ASz, — Az||.
Since limsup,, . Bn < 1, [|[Zpn+1 — Zn]| = 0, ay — 0 and ||ASz,, — Az|| — 0 (by (3.16)), we deduce
lim Han’yf(a:n) + (1 — ap)Sz, — JﬁunH =0.

n—oo

This implies that
lim || Szn — J{ un = 0. (3.17)

n—oo

Combining (3.15)) and (3.17)), we get
le |zn, — Szp|| = 0. (3.18)
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Put & = limyo04 2t = Pr(s)n(a+n)-10(7f(Z)) where z; is the net defined by (1). We will finally show that
Ty — T.

Setting v, = , — 22— (ASxz, — AZ) for all n. Taking z = % in 1D to get ||[ASx, — AZ|| — 0. First,

1—an

we prove limsup,, . (7f(Z) — &, Sz, — ) < 0. We take a subsequence {Sz,,} of {Sz,} such that
limsup(yf(Z) — &, Szy, — &) = lim (vf(Z) — T, Sxp, — T).
n—00 1—>00

It is clear that { Sz, } is bounded due to the boundedness of { Sz, } and ||ASx,,—AZ| — 0. Then, there exists
a subsequence {anij} of {Sxz,,} which converges weakly to some point w € C. Hence, {xm]} and {yni].}
also converge weakly to w because of HSiL'nij — Zn,, | = 0 and me] — Yn,, | = 0. By the demi-closedness

principle of the nonexpansive mapping (see Lemma 2.2) and ({3.18)), we deduce w € F(S). Furthermore, by
the similar argument as that of Theorem 3.1, we can show that w is also in (4 + B)~10. Hence, we have
w € F(S)N (A+ B)~1'0. This implies that

limsup{y f(2) — &, 82 — ) = lim (v/(&) — &, Sn,, — 3) = (1/(3) — 5w — 3).
n—00 j—o0
Note that & = Pp(g)n(at+5)-10(7f(%)). Then, (vf(&) — Z,w — ) < 0,w € F(S) N (A+ B)~'0. Therefore,

limsup(yf(z) — &, Sz, — ) < 0.
n—oo

From ({3.10), we have
|zns1 — iHQ
< Ballwn — 22+ 1 = Bl T un — 712

= Bullzn — j||2 + (1 - ﬂn)”an“n - J)i(f - /\nACE)HQ
< Ballen = Z* + (1 = Bo)Jun — (2 — A AD)|?

= Bullzn — jHQ + (1 = Bu)llanyf(zn) + (1 — an)Szn — A ASTY — (T — )‘nAi‘)HQ

({00 - 2240 ) - (- 22 a2) )

2
+ Bullzn — j||2

= (1 _571)

+on(vf(2n) — T)

2

= Bullzn — i||2 +(1=75n) ((1 - an)2H <an ~1 An ASmn> — <:Z“ — An Ai:)

— oy, 1—o,

+2a,(1 —an)<7f(f6n) - T, <an 7 o AS%) - <x - Af>>

— oy, 1—o,

a2l en) — :zn?)

< Bullwn — 57H2 +(1— ﬂn)((l - O‘n)2Hxn - 55“2 + 20 M (v f (20) — T, ASw), — AT)
+2an (1 — an)¥(f(zn) — f(Z), Sy — ) + 200 (1 — an)(vf(Z) — &, Sz, — T)
+ag|lvf(zn) — Z[*)

< Ballzn — JNCHQ + (1= pn) ((1 - an)zuxn - 53”2 + 204n)\n”’7f(xn) — ||| ASz, — AZ||
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200, (1 — an)’YpHxn - 3}”2 + 204n<1 - an)('}’f@) —Z,81, — i") =+ O‘ZH’Yf(wn) - *%”2)
< [1=201— B)(1 — vp)anlllen — 72 + 20n(1 - B)AallrS (a) — G| ASzy — A7
+2a5 (1 = Bp)(1 = an) (v (&) — &, Swp — &) + (1 = Bu)ap (7S (zn) = Z|* + l|l2n — Z(%)

= [1-2(1-Bn)(1 = vp)an]llzn — 7|

An . .
+21 = 8,)(1 = o) T2 f (o) - a4z, - Adl

1—a, o7

Fp oo @) = 8 S = )+ g

It is clear that ) 2(1 — 8,)(1 — yp)oy, = oo and

(I f () — 22 + o — az\|2>}.

. An - - 1—ap, - - -
lim su Tn) — Z||||AST, — AZ|| + z)—Z,5t, — %
msup { 12y (en) - 3145, — AT+ 1201 (@) - 3,520~ )
5 (7 (@) = &I + |on - azr?)} <0.
2(1—p)
We can therefore apply Lemma 2.5 to conclude that z,, — Z. This completes the proof. O

Corollary 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
a-tnverse strongly-monotone mapping of C' into H. Let B be a maximal monotone operator on H, such that
the domain of B is included in C'. Let Jf = (I + AB)~! be the resolvent of B for A > 0 and let S be a
nonexpansive mapping of C into itself, such that F(S) N (A + B)710 # (. Let \ be a constant satisfying
a < X < b where [a,b] C (0,2a). Forte (0,1 —35), let {z;} C C be a net generated by

Tt = J)\B((l - t)SiL’t — )\AS.CEt)

Then the net {x:} converges strongly, as t — O+, to a point & = Pp(s)n(a+B)-10(0) which is the minimum
norm element in F(S) N (A + B)~10.

Corollary 3.4. Let C be a closed and convexr subset of a real Hilbert space H. Let A be an a-inverse
strongly-monotone mapping of C into H and let B be a mazximal monotone operator on H, such that the
domain of B is included in C. Let JB = (I+AB)~! be the resolvent of B for A > 0 such that (A+B)~10 # §.
Let X\ be a constant satisfying a < A < b where [a,b] C (0,2a). Fort € (0,1 — %), let {x;} C C be a net
generated by

Ty = Jf((l —t)zy — )\Aazt).

Then the net {x:} converges strongly, ast — 0+, to a point & = P44 p)-19(0) which is the minimum norm
element in (A + B)~10.

Corollary 3.5. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
a-inverse strongly-monotone mapping of C into H. Let B be a mazimal monotone operator on H, such that
the domain of B is included in C. Let Jf = (I + AB)~! be the resolvent of B for A\ > 0 and let S be a
nonexpansive mapping of C into itself, such that F(S) N (A+ B)~'0 # (). For given zo € C, let {x,} C C
be a sequence generated by

Tpt1 = Bnn + (1 — ﬂn)JABn ((1 — ap)Sxy, — )\nASacn)

for all n >0, where {\,} C (0,2a),{an} C (0,1) and {B,} C (0,1) satisfy

(i) limy—oo p, =0 and ), o, = 00;
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(i1) 0 < liminf, e By < limsup,,_, . Bn < 1;
(iii) a(l — an) < Ay < (1 — o) where [a,b] C (0,2q) and limy,—o0(An+1 — An) = 0.
Then {x,} converges strongly to a point ¥ = Pp(s)n(a+p)-10(0) which is the minimum norm element in

F(S)N (A+ B)~10.

Corollary 3.6. Let C be a closed and convexr subset of a real Hilbert space H. Let A be an a-inverse
strongly-monotone mapping of C into H and let B be a maximal monotone operator on H, such that the
domain of B is included in C. Let JB = (I+AB)~! be the resolvent of B for A > 0 such that (A+B)~10 # §.
For given xg € C, let {x,,} C C be a sequence generated by

Tpt1 = Bnxn + (1 — /Bn):])i((l — Qp )Ty — )\nAasn)

for all n > 0, where {\,} C (0,2a),{an} C (0,1) and {B,} C (0,1) satisfy
(i) limy oo =0 and Y, oy, = 00;
(ii) 0 < liminf, o By < limsup,, o Bn < 1;
(iii) a(l —ay) < Ay < b(1 — ap) where [a,b] C (0,2q) and lim,, o0 (Ant1 — An) = 0.
Then {xn} converges strongly to a point & = Paypy-10(0) which is the minimum norm element in (A +
B)~to.

Remark 3.7. The present paper provides some methods which do not use projection for finding the minimum
norm solution problem.

4. Applications

Next, we consider the problem for finding the minimum norm solution of a mathematical model related
to equilibrium problems. Let C' be a nonempty, closed and convex subset of a Hilbert space and let
G : C x C — R be a bifunction satisfying the following conditions:

(E1) G(z,z) =0 for all z € C}

(E2) G is monotone, i.e., G(z,y) + G(y,x) < 0 for all z,y € C;

(E3) for all x,y,z € C, limsup, |, G(tz + (1 — t)x,y) < G(x,y);

(E4) for all z € C, G(z,-) is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problems (with respect to C') is to find & € C such

that
G(z,y) >0 (4.1)

for all y € C. The set of such solutions Z is denoted by EP(G). The following lemma appears implicitly in
Blum and Oettli [5]:

Lemma 4.1. Let C' be a nonempty, closed and convex subset of H and let G be a bifunction of C x C' into
R satisfying (E1)-(E4). Letr >0 and x € H. Then, there exists z € C' such that

1
G(z,y)—i—;(y—z,z—x) >0, WeC.

The following lemma was given in Combettes and Hirstoaga [§]:

Lemma 4.2. Assume that G : C x C — R satisfies (E1)-(E4). For r > 0 and © € H, define a mapping
T, : H— C as follows:

1
T, (x) = {z € C:G(z,y)+;<y—z,z—$> ZO,VyEC'}

for all x € H. Then, the following hold:
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(1) T, is single-valued;
(2) T) is a firmly nonexpansive mapping, i.e., for all z,y € H,

| Tz — TTy”z <(Trx —Try,x —y);

3) F(T;) = EP(G);
(4) EP(G) is closed and convez.

We call such T, the resolvent of G for r > 0. Using Lemmas 4.1 and 4.2, we have the following lemma.
See [I] for a more general result.

Lemma 4.3. Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of H. Let
G :C x C = R satisfy (E1)-(E4). Let Ag be a multivalued mapping of H into itself defined by

{{{Z €H:G(x,y) >(y—=z2),YyeC}, zeC,
Aqx =
®7 ZL‘%C

Then, EP(G) = AZ'(0) and Ag is a mazimal monotone operator with dom(Ag) C C . Further, for any
x € H and r > 0, the resolvent T, of G coincides with the resolvent of Ag; i.e.,

Trx=(I+71Ag) a.
Form Lemma 4.3, Theorems 3.1 and 3.2, we have the following results.

Theorem 4.4. Let C' be a nonempty, closed and conver subset of a real Hilbert space H. Let G be a
bifunction from C x C — R satisfying (E1)-(E4) and let T, be the resolvent of G for r > 0. Let S be a
nonexpansive mapping from C into itself such that F(S)NEP(G) # 0. Fort € (0,1), let {1} C C be a net
generated by

zy =T, ((1—t)Sz¢), te(0,1).

Then the net {x;} converges strongly, as t — 0+, to a point & = Pr(s)nep(@)(0) which is the minimum
norm element in F(S) N EP(G).

Corollary 4.5. Let C' be a nonempty, closed and convex subset of a real Hilbert space H. Let G be a
bifunction from C x C — R satisfying (E1)-(E4) and let T, be the resolvent of G for r > 0. Suppose
EP(G) # 0. Fort e (0,1), let {x;} C C be a net generated by

zy =T ((1—t)zy), te(0,1).

Then the net {x:} converges strongly, as t — 0+, to a point T = Pgp)(0) which is the minimum norm
element in EP(G).

Theorem 4.6. Let C' be a nonempty, closed and convexr subset of a real Hilbert space H. Let G be a
bifunction from C x C' — R satisfying (E1)-(E4) and let Ty be the resolvent of G for A > 0. Let S be a
nonexpansive mapping from C' into itself such that F(S) N EP(G) # 0. For given xg € C, let {x,} C C be
a sequence generated by

Tp41 = ﬁnxn + (1 - BH)T)\n((l - O‘TL)S$”)
for all n >0, where {\,} C (0,00),{an} C (0,1) and {B,} C (0,1) satisfy

(i) limy—soo ay =0 and ), oy = 00;
(ii) 0 < liminf, o By < limsup,,_, Bn < 1;
(iii) a < Ay, < b where [a,b] C (0,00) and limy,— o0 (Ap+1 — An) = 0.

Then {xn} converges strongly to a point & = Pp(synpp(q)(0) which is the minimum norm element in F'(S)N
EP(G).
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Corollary 4.7. Let C' be a nonempty, closed and convex subset of a real Hilbert space H. Let G be a
bifunction from C x C — R satisfying (E1)-(E4) and let Ty be the resolvent of G for A > 0. Suppose
EP(G) # 0. For given xy € C, let {z,} C C be a sequence generated by

Tptl = ann + (1 - ﬁn)T)\n ((1 - Oén)-rn)
for all n >0, where {\,} C (0,00),{a,} C (0,1) and {B,} C (0,1) satisfy

(i) limy oo, =0 and ), o = 00;
(ii) 0 < liminf, o By < limsup,, o Bn < 1;
(iii) a < A\, < b where [a,b] C (0,00) and limy,—y00(An+1 — An) = 0.

Then {xn} converges strongly to a point & = Pgp(g)(0) which is the minimum norm element in EP(G).
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