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Abstract

Singular values and fixed points of one parameter family of generating function of Bernoulli’s numbers,
gλ(z) = λ z

ez−1 , λ ∈ R\{0}, are investigated. It is shown that the function gλ(z) has infinitely many singular
values and its critical values lie outside the open disk centered at origin and having radius λ. Further,
the real fixed points of gλ(z) and their nature are determined. The results found are compared with the
functions λ tan z, Eλ(z) = λ e

z−1
z and fλ(z) = λ z

z+4e
z for λ > 0. c©2015 All rights reserved.
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1. Introduction

The singular values and fixed points play a vital role in the dynamics or iteration of meromorphic
functions, i.e. the functions whose only singularities in the complex plane are poles. The theory of dynamics
or iteration of functions can be seen in [1, 3, 6]. The investigation of dynamics of meromorphic functions
with infinitely many bounded or unbounded singular values is scarcely found in comparison to that of
functions with finitely many singular values. To fill this gap, the present work describes some dynamical
properties of the family of transcendental meromorphic functions. The dynamics of entire functions λ sinh(z)

z
and λ e

z−1
z , λ > 0 with infinitely many bounded singular values are investigated by Prasad [8], and Kapoor

and Prasad [5] respectively. Further, the dynamics of certain class of critically bounded entire transcendental
functions is studied by Prasad and Nayak [9]. Some properties of bounded-type entire functions are shown

in [10]. The dynamics of transcendental meromorphic functions λ sinh2(z)
z4

with infinitely many bounded
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singular values was found in [11] and the dynamics of certain transcendental meromorphic functions with
unbounded singular values was explored by Nayak and Prasad [7]. The singular values of transcendental
meromorphic functions were also discussed by Zheng [13].

The motivation of the present work comes from the fact that the function z
ez−1 is a generating function

of the Bernoulli’s numbers. These Bernoulli’s numbers B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 ,

B5 = 0, B6 = 1
42 , . . . are coefficients in the series expansion z

ez−1 =
∑∞

k=0Bkz
k for |z| < 2π and also holds

strong association with Riemann zeta function [4]. By considering one parameter family of function λ z
ez−1 ,

we have to determine its singular values and fixed points.
Let,

G =

{
gλ(z) = λ

z

ez − 1
and gλ(0) = λ : λ ∈ R\{0}, z ∈ C

}
be one parameter family of transcendental meromorphic functions. The function gλ ∈ G is a transcendental
meromorphic function with infinitely many poles at {2πki : k ∈ Z}. Further, all poles are simple and all are
lying on imaginary axis. Moreover, the function gλ(z) is neither even nor odd and not periodic.

The following are the basic definitions which are needed in the sequel: A point z∗ is said to be a critical
point of f(z) if f ′(z∗) = 0. The value f(z∗) corresponding to a critical point z∗ is called a critical value of
f(z). A point w ∈ Ĉ = C∪{∞} is said to be an asymptotic value for f(z), if there exists a continuous curve
γ : [0,∞) → Ĉ satisfying limt→∞ γ(t) = ∞ and limt→∞ f(γ(t)) = w. A singular value of f is defined to be
either a critical value or an asymptotic value of f . A function f is called critically bounded or functions of
bounded type if the set of all singular values of f is bounded, otherwise unbounded-type. A point z is said
to be a fixed point of function f(z) if f(z) = z. A fixed point z0 is called an attracting, neutral (indifferent)
or repelling if |f ′(z0)| < 1, |f ′(z0)| = 1 or |f ′(z0)| > 1 respectively.

The following is the organization of this paper: In Section 2, it is found that the function gλ ∈ G has
infinitely many singular values. Further, it is shown that all the critical values of gλ(z) lie outside the open
disk centered at origin and having radius λ. The real fixed points of gλ ∈ G and their nature are determined
in Section 3. Finally, the results found here are compared with the analogous results for the functions
λ tan z, Eλ(z) = λ e

z−1
z and fλ(z) = λ z

z+4e
z for λ > 0.

2. Singular Values of gλ ∈ G

In this section, it is proved that the function gλ ∈ G has infinitely many singular values and all the
critical values of gλ(z) lie in the left half plane outside the disk centered at origin and having radius λ .

The following theorem gives the function gλ(z) has infinitely many singular values:

Theorem 2.1. Let gλ ∈ G. Then, the function gλ(z) possesses infinitely many singular values.

Proof. For critical points, g′λ(z) = λ (1−z)ez−1
(ez−1)2 = 0. This gives the equation (z − 1)ez + 1 = 0. The real and

imaginary parts of this equation are
y

sin y
− ey cot y−1 = 0 (2.1)

x = 1− y cot y (2.2)

It is seen that Equation (2.1) has infinitely many solutions (Figure 1).
Suppose {yn}n=∞n=−∞,n6=0 are solutions of Equation (2.1), where y−n ∈ [−(2n+ 1

2)π,−(2n+ 1
4)π) and yn ∈

[(2n+ 1
4)π, (2n+ 1

2)π), n = 1, 2, 3, . . . . Now, from Equation (2.2), xn = 1−yn cot yn for n = ±1,±2,±3, . . . .
Consequently, It gives that g′λ(zn) = 0 so zn = xn + iyn are critical points for gλ(z). The critical values of
gλ(z) are given by gλ(zn). It is observed that gλ(zn) are distinct for different n. It shows that the function
gλ(z) has infinitely many critical values.

Since gλ(z) tends to 0 as z tends to infinity along positive real axis, it gives that the finite asymptotic
value of gλ(z) is 0.

Thus, it follows that the function gλ ∈ G possesses infinitely many singular values.
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Figure 1: Graph of y
sin y

− ey cot y−1

The following theorem explains the function gλ(z) has no critical points in the right half plane:

Theorem 2.2. Let gλ ∈ G. Then, the function g′λ(z) has no zeros in the right half plane H+ = {z ∈ Ĉ :
Re(z) > 0}.

Proof. Suppose Re(z) > 0, and g′λ(z) = λ (1−z)ez−1
(ez−1)2 = 0 which implies that e−z = 1− z. Then,

cos y − i sin y

ex
= 1− x− iy (2.3)

Firstly, when y 6= 0, then, by imaginary part of Equation (2.3), sin y
y = ex > 1. This is not true for y > 0

and for y < 0 because sin y
y is an even function.

Secondly, when y = 0, then z = x > 0 and, by real part of Equation (2.3), ex = 1
1−x . For x > 1, it is

not valid because the left hand side is positive and the right hand side is negative. It is obviously not true
when x = 1. This is also false for 0 < x < 1. Consequently, the function g′λ(z) has no zeros in the right half
plane H+.

In the following theorem, it is shown that the function gλ(z) maps the left half plane outside the open
disk centered at origin and having radius λ.

Theorem 2.3. Let gλ ∈ G. Then, the function gλ(z) maps the left half plane H− = {z ∈ Ĉ : Re(z) < 0}
outside the open disk centered at origin and having radius λ.

Proof. Consider the line segment γ is defined by γ(t) = tz, t ∈ [0, 1] and the function h(z) = ez for an
arbitrary fixed z ∈ H−. Then∫

γ
h(z)dz =

∫ 1

0
h(γ(t))γ′(t)dt = z

∫ 1

0
etzdt = ez − 1

Since M ≡ maxt∈[0,1] |h(γ(t))| = maxt∈[0,1] |etz| < 1 for z ∈ H− and

|ez − 1| =
∣∣ ∫

γ
h(z)dz

∣∣ ≤M |z| < |z|
so | z

ez−1 | > 1 for all z ∈ H−. Therefore, it follows that |gλ(z)| = |λ z
ez−1 | > |λ| for all z ∈ H−. This shows

that the function gλ(z) maps the left half plane H− outside the open disk centered at origin and having
radius λ.
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Remark 2.4. For the zeros of g′λ(z) on imaginary axis, from Equation (2.3), it is found that cos y− i sin y =
1− iy. This equation gives y = 0. Therefore, g′λ(z) has no zeros on imaginary axis.

The following theorem proves that the function gλ(z) has all the critical values outside the open disk
centered at origin and having radius λ:

Theorem 2.5. Let gλ ∈ G. Then, all the critical values of gλ(z) lie outside the open disk centered at origin
and having radius λ.

Proof. By Theorem 2.2, the function g′λ(z) has no zeros in the right half plane H+. Consequently, all the
critical points lie in the left half plane H−. But, by using Theorem 2.3, the function gλ(z) maps the left
half plane H− outside the open disk centered at origin and having radius λ. Hence, it proves that all the
critical values of gλ(z) lie outside the open disk centered at origin and having radius λ.

3. Nature of Real Fixed Points of gλ ∈ G

In the present section, the existence of real fixed points of the function gλ(x) = λg(x), where g(x) = x
ex−1 ,

and their nature are studied. For sake of convenience, consider the function φ(x) = xg′(x) + g(x) for x ≥ 0.
It means that

φ(x) = x
(ex − 1− xex)

(ex − 1)2
+

x

(ex − 1)
=

x

(ex − 1)2
[(2− x)ex − 2]

If q(x) = (2 − x)ex − 2, then q′(x) = (1 − x)ex and q′′(x) = −xex. It is seen that q′′(x) < 0 for x ∈ R+.
Therefore, the function q′(x) is decreasing on R+. Since q′(0) = 1 and q′(x) → −∞ as x → +∞, by
continuity of q′(x), it follows that there is a unique x̃ > 0 such that q′(x) > 0 for 0 ≤ x < x̃, q′(x̃) = 0 and
q′(x) < 0 for x > x̃. Thus, q(x) increases in [0, x̃), attains its maximum at x̃ and decreases thereafter. It
ensures from the facts q(0) = 0 and q(x) → −∞ as x → +∞ that there is a unique positive x∗ > x̃ such
that q(x) > 0 for 0 < x < x∗, q(x∗) = 0 and q(x) < 0 for x > x∗. Since x

(ex−1)2 > 0 for all x > 0. We have

φ(x) =
x

(ex − 1)2
q(x)


> 0 for 0 < x < x∗

= 0 for x = x∗

< 0 for x > x∗
(3.1)

Let us define

λ∗ =
x∗

g(x∗)
= ex

∗ − 1

where x∗ is the unique positive real root of the equation (2− x)ex − 2 = 0.
The following theorem shows that the function gλ(x) has a unique real fixed point:

Theorem 3.1. Let gλ ∈ G. Then, the function gλ(x) has a unique real fixed point xλ.

Proof. Since gλ(x) > 0 for all x ∈ R, each real fixed point of gλ ∈ G is positive. The function g′λ(x) =

λ (1−x)ex−1
(ex−1)2 < 0 for x > 0 and hence gλ(x) is decreasing on R+.

Let hλ(x) = gλ(x)−x for x ∈ R. Since g′λ(x) < 0 for x > 0 and h′λ(x) = g′λ(x)−1 < 0, then the function
hλ(x) is decreasing on R+. Now, hλ(0) = λ > 0, hλ(x)→ −∞ as x→ +∞ and hλ(x) is continuous on R+.
By the intermediate value theorem, there exists a unique positive xλ such that hλ(xλ) = 0. It proves that
gλ(x) has a unique positive fixed point xλ.

In the following theorem, the nature of fixed points of gλ(x) are determined:

Theorem 3.2. Let gλ ∈ G. Then, the fixed point xλ of the function gλ(x) is (i) attracting for 0 < λ < λ∗

(ii) rationally indifferent for λ = λ∗ (iii) repelling for λ > λ∗.
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Proof. Since the derivative of x
g(x) is positive for x > 0, the function x

g(x) is increasing on R+. Using this
fact, we prove the following cases for different values of parameter λ:

(i) For 0 < λ < λ∗, since the function x
g(x) is increasing on R+ and λ = xλ

g(xλ)
, we have xλ

g(xλ)
< x∗

g(x∗) . It

means that exλ < ex
∗
. Hence, xλ < x∗. By Equation (3.1), φ(xλ) > 0. Since g′λ(xλ) = φ(xλ)

g(xλ)
− 1, it

follows that g′λ(xλ) + 1 = φ(xλ)
g(xλ)

> 0. Since g′λ(x) is negative on R+, it shows that −1 < g′λ(xλ) < 0

and consequently, the fixed point xλ of gλ(x) is an attracting for 0 < λ < λ∗.

(ii) For λ = λ∗, it is easy to prove xλ = x∗. Now, by Equation (3.1), it follows that g′λ(xλ) + 1 = φ(xλ)
g(xλ)

= 0

which implying g′λ∗(xλ) = −1. Therefore, the fixed point x∗ of gλ(x) is rationally indifferent for λ = λ∗.

(iii) For λ > λ∗, by similar arguments used in (i), it follows that xλ > x∗ . Again, by Equation (3.1) and

by the fact xλ > x∗, we have φ(xλ) < 0. It gives that g′λ(xλ) + 1 = φ(xλ)
g(xλ)

< 0 and hence g′λ(xλ) < −1.

Therefore, xλ is a repelling fixed point of g(xλ) for λ > λ∗.

It is observed from Theorem 3.2 that the nature of the fixed point changes whenever parameter λ crosses
parameter value λ∗.

Remark 3.3. For λ > λ∗, there may exist periodic points of period greater than or equal to 2. This case is
not considered in this paper. It is left for forthcoming work.

The comparisons among the analogous results of gλ(z) = λ z
ez−1 , Tλ(z) = λ tan z [2], Eλ(z) = λ e

z−1
z [5]

and fλ(z) = λ z
z+4e

z [12] for λ > 0 are shown in Table 1.

Table 1: Comparisons among the analogous results of the families of functions

gλ(z) = λ
z

ez − 1
Tλ(z) = λ tan z Eλ(z) = λ

ez − 1

z
fλ(z) = λ

z

z + 4
ez

gλ(z) is transcenden-
tal meromorphic func-
tion.

Tλ(z) is transcenden-
tal meromorphic func-
tion.

Eλ(z) is transcenden-
tal entire function.

fλ(z) is transcenden-
tal meromorphic func-
tion.

gλ(z) has infinitely
many poles.

Tλ(z) has infinitely
many poles.

Eλ(z) has no pole. fλ(z) has only one
pole.

gλ(z) has transcen-
dental meromorphic
Schwarzian Deriva-
tive.

Tλ(z) has polynomial
Schwarzian Deriva-
tive.

Eλ(z) has transcen-
dental meromorphic
Schwarzian Deriva-
tive.

fλ(z) has rational
Schwarzian Deriva-
tive.

gλ(z) is neither even
nor odd function.

Tλ(z) is an odd func-
tion.

Eλ(z) is neither even
nor odd function.

fλ(z) is neither even
nor odd function.

gλ(z) has infinitely
many critical values.

Tλ(z) has no critical
values.

Eλ(z) has infinitely
many critical values.

fλ(z) has finitely
many critical values.

gλ(z) has only one fi-
nite asymptotic value
0.

Tλ(z) has two finite
asymptotic values
±λi.

Eλ(z) has only one fi-
nite asymptotic value
0.

fλ(z) has only one fi-
nite asymptotic value
0.

All singular values
of gλ(z) are outside
of open disk except
asymptotic value 0.

All singular values of
Tλ(z) are bounded.

All singular values of
Eλ(z) are bounded.

All singular values of
fλ(z) are bounded.
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